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Abstract— Nonlinear state estimation by the derivative-free
Sigma Point Kalman Filters is treated. Particularly, impact
of the derivative-free Kalman filters on estimation quality
of the Sigma Point Gaussian Sum Filters is discussed. New
relations between the Unscented Kalman Filter and the Divided
Difference Filters are derived. The main stress is laid on the
covariance matrixes which have crucial role for the behaviour
explanation of the Sigma Point Gaussian Sum Filters. The
theoretical results are illustrated in some numerical examples.

I. INTRODUCTION

The general solution of the estimation problem is given
by the Bayesian Recursive Relations (BRR). Exact solution
of the BRR is available only for a few special cases [1], [2],
e.g. for linear Gaussian system. In other cases it is necessary
to apply some approximative methods. These methods can
be divided into local and global methods [3].

The local methods are often based on approximation of
the nonlinear functions in the state or measurement equation
so that the technique of the Kalman filter can be used for the
BRR solution. This approach causes that all conditional pdf’s
of the state estimate are given by the first two moments, i.e.
mean value and covariance matrix. This rough approximation
of the a posteriori estimates induces local validity of the state
estimates and consequently impossibility to ensure the con-
vergency of the local filter estimates. The resulting estimates
of the local filters are suitable mainly for point estimates. On
the other hand, the advantage of the local methods can be
found in the simplicity of the BRR solution. As a suitable
tool for approximation of the nonlinear functions the Taylor
expansion or the Stirling’s interpolation can be used, which
leads to the Extended Kalman Filter (EKF) [1], the Second
Order Filter (SOF) [4] or to the Divide Difference Filters
(DDF’s) [5], [6], respectively. Further, the DDF’s can be
divided into the Divide Difference Filter 1st Order (DD1)
and the Divide Difference Filter 2nd order (DD2) which
are based on the Stirling’s interpolation 1st and 2nd order,
respectively. Instead of substitution of the nonlinear functions
in the system description an approximation of the pdf’s
representing state estimates by a set of the deterministically
chosen weighted points (so called σ -points) can be utilized
as a base for the local filters. The Unscented Kalman Filter
(UKF) [7], [8] or the Gauss-Hermite Filter [9] exemplify
this approach. It is very important that for the UKF and the
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DDF common features can be found although they come
from quite different assumptions [5], [10], [11]. Thus these
local filters are often mentioned together as the Sigma Point
Kalman Filters (SPKF’s) or derivative-free Kalman filters.

The global methods are based on approximation of the
conditional pdf of the state estimate of some kind to ac-
complish better state estimates. These methods are more so-
phisticated but they have higher computational demands than
the local methods. There are three main global approaches:
analytical approach often based on the model linearization
and Gaussian sum approximation of all pdf’s [12], [13],
which leads to e.g. the Gaussian Sum Filter (GSF), numerical
approach based on the numerical solution of integrals in
the BRR [14], [15], e.g. the Point-Mass Filter (PMF), and
simulation approach using Monte Carlo approximation [16],
[17], e.g. the Particle Filter.

Some global methods are based on multiple application
of local methods. As an example of these methods the GSF
can be mentioned [12]. The advancement of the local filters
influenced development in the area of the global filters. In
the last five years a few new global approaches have been
designed by this way, e.g. the Unscented Particle Filter, the
Gaussian Mixture Sigma Point Particle Filter [16] or the
Sigma Point Gaussian Sum Filter (SPGSF) [8] which are
grounded on the SPKF’s.

On the contrary to the local methods, the main result of the
global filters should be the state estimate in the form of
conditional pdf of the state. Accordingly, the comparison of
the global filters’ performance should be primarily based on
the estimated pdf of the state. Unfortunately, the new global
filters, which are based on the SPKF’s, have been compared
from the viewpoint of the point estimates only and the quality
of a posteriori pdf’s has not been discussed.

This paper is focused on comparison of the global filters
based on various derivative-free local filters. This comparison
is based on the estimated pdf’s mainly. As it will be shown,
behavior of these global filters is influenced by choice of the
local filters. Hence, the main stress of this paper is laid on
analysis and comparison of the local filters, especially from
the viewpoint of the estimated covariance matrixes.

II. PROBLEM STATEMENT

Consider the discrete-time nonlinear non-Gaussian
stochastic system

xk+1 = fk(xk) + wk, k = 0, 1, 2, . . . , (1)

zk = hk(xk) + vk, k = 0, 1, 2, . . . , (2)

where xk ∈ R
nx and zk ∈ R

nz represent the immeasurable
state of the system and the measurement at time instant k,
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TABLE I

MEAN SQUARE ERROR OF DERIVATIVE-FREE FILTERS.

DD1 UKF SPGSF(DD1) SPGSF(UKF) PMF

MSE 0.1955 0.1304 0.0222 0.0133 3.55 · 10−4

Time(s) 0.086 0.080 2.520 2.140 3170

Fig. 1. Estimated filtering pdf’s (κ = 2, h2 = 3).

respectively, and fk : R
nx → R

nx , hk : R
nx → R

nz are
known vektor functions. The variables wk ∈ R

nx , vk ∈ R
nz

are state and measurement zero mean white noises. The pdf’s
of both noises pwk (wk), pvk (vk) are assumed to be known
as well as the pdf of the initial state px0(x0). The noises are
mutually independent and independent of the initial state.

The aim of the filtering is to find the state estimate in the
form of the conditional pdf p(xk |zk) given by the Bayesian
rule [1], where zk = [z0, . . . , zk].

For clear specification of the motivation for this paper, it
is suitable to begin with an example. Suppose the nonlinear
non-Gaussian system with one-dimensional state [16]

xk+1 = φ1xk + 1 + sin(ωπk) + wk (3)

with the state noise wk with Gamma pdf Ga(3, 2), ∀k, φ1 =
0.5, ω = 0.04 are scalar parameters and k = 0, 1, . . . , 60.
The state is observed by the scalar measurement zk given as

zk =
{

φ2x2
k + vk, k ≤ 30,

φ3xk − 2 + vk, k > 30.
(4)

The measurement zk is influenced by the measurement noise
vk ∼ N (vk : 0, Rk), Rk = 10−5, ∀k, and the scalar
parameters are chosen as φ2 = 0.2 and φ3 = 0.5. The
initial condition is given by p(x0) = N (x0 : 0, 12) and
p(x0|z−1) = p(x0). An approximation of the Gamma pdf
in the state equation (3) is considered in the form of the
Gaussian mixture p̂(wk) = 0.29 × N (wk : 2.14, 0.72) +
0.18 × N (wk : 7.45, 8.05) + 0.53 × N (wk : 4.31, 2.29),
for the SPGSF’s and in the form of the normal distribution
p̂(wk) = N (wk : 4.26, 6.03) for the local filters, ∀k.

Accuracy of the point estimates in the form of the Mean
Square Error (MSE) and the average computational demands
(in seconds) of the DD1, the UKF, the SPGSF based on
the DD1 (SPGSF(DD1)), the SPGSF based on the UKF
(SPGSF(UKF)) and the PMF are given in Table I. Better
estimation performance of the UKF and the DD2 over the
DD1 is well known [5]. The estimation quality should be
improved by utilization of a bank of the local filters in the

Gaussian sum framework which is confirmed by results in
Table I. From Table I it could be supposed the estimated pdf’s
of the SPGSF(DD1) and the SPGSF(UKF) are very similar.
In fact the estimated pdf’s, as a main result of global filters,
of the SPGSF’s are completely different as it is shown in
Fig. 1 in the time instant k = 5.

It is important to mention that the nearly same shape of
estimated pdf as the SPGSF(UKF) is acquired by the SPGSF
based on the DD2 (SPGSF(DD2)) for this case. On the other
hand, the similar estimates to the SPGSF(DD1) are obtained
by the well-known GSF based on the EKF [4], [13]. The pdf
given by the PMF can be considered as a “nearly true” pdf
if a sufficient number of grid points is used [15]. For this
example 50001 grid points for the PMF were employed.

If the time instant is k ≤ 30, the difference between pdf’s
estimated by the SPGSF(DD1) and the SPGSF(UKF,DD2) is
significant. For k > 30 the estimated pdf’s are very similar
for all the filters because the system (3), (4) becomes linear
and therefore all local filters turned to the KF.

The objective of the previous example was to show the
considerable differences between the shape of estimated
pdf’s by means of the global filters based on the various
local filters. For that reason it is not suitable to compare the
global filters only from viewpoint of the point estimates as
it was done in [8], [16].

Therefore the aim of this paper is to compare the
global methods exploiting local filters, namely SPGSF(DD1),
SPGSF(DD2) and SPGSF(UKF). This confrontation will be
based on the estimated pdf’s and also on the point estimates.
For the analysis of behavior of these global filters it will be
necessary to deal with the algorithms of the SPKF’s.

III. SOME ASPECTS OF SIGMA POINT KALMAN FILTERS

The goal of this section is to analyse algorithms of the
local filters, namely the UKF, the DD1 and the DD2, and
consequently to find the reason which causes the signifi-
cant differences in the estimated pdf’s of the global filters
SPGSF(UKF,DD2) and SPGSF(DD1). The main stress is laid
on the relations for the covariance matrix computation.

The algorithms of all local filters have the same structure
where the filtering and the predictive mean and covariance
matrix are recursively computed to obtain the Gaussian
approximation of the estimated pdf’s [1], [5], [7]. The crucial
difference between the particular local filters can be found
in the transformation of a random variable through the
nonlinear function [5], [7].

A. Transformation of a random variable

Let x ∈ R
nx and y ∈ R

ny be random vector variables
related through the known nonlinear function y = g(x) =
[g1(x), . . . , gny (x)]T . The variable x is given by the first two
moments, i.e. the mean x̄ and the covariance matrix Px , and
the aim is to calculate the mean ȳ and the covariance matrix
Py of y and the cross-covariance matrix Pxy .

One of the possible solution is based on the unscented
transformation (UT) where the random variable x is approx-
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imated by a set of deterministically chosen weighted σ -points

X0 = x̄,W0 = κ

nx + κ
,

Xi = x̄ +
(√

(nx + κ)Px

)
i
,

X j = x̄ −
(√

(nx + κ)Px

)
j−nx

,

where i = 1, . . . , nx , j = nx + 1, . . . , 2nx , Wi = W j =
1/

(
2(nx +κ)

)
, ∀i, j and the term

(√
(nx + κ)Px

)
i represents

i-th column of the matrix
√

(nx + κ)Px . Then, each point is
transformed via the nonlinear function

Yi = g(Xi ), ∀i.

And the resulting characteristics are given as

ȳU K F
A =

2nx∑
i=0

WiYi , (5)

PU K F
y,A =

2nx∑
i=0

Wi (Yi − ȳU K F
A )(Yi − ȳU K F

A )T , (6)

PU K F
xy,A =

2nx∑
i=0

Wi (Xi − x̄)(Yi − ȳU K F
A )T , (7)

where the subscript A highlights that these results are only
approximations of the true mean and the covariance matrixes
which can not be generally computed. This approach leads to
the UKF. The recommended settings of the scaling parameter
κ is κ = 3 − nx for the Gaussian distribution of x [7].

The next possible approximation utilizes the Stirling’s
interpolation formula first order [5].

y ≈ g(x̄) + 1

h

( nx∑
i=1

�xiµiδi

)
g(x̄),

where �xi = xi − x̄i , h is half of the interpolation interval,
µiδi g(x̄) = g(x̄+hsi )−g(x̄−hsi )

2 and si is the i-th column of the
matrix Sx which is the square root of the covariance matrix
Px = Sx ST

x . For the desired characteristics it holds

ȳDD1
A = g(x̄), (8)

PDD1
y,A = 1

4h2

nx∑
i=1

(
g(x̄ + hsi ) − g(x̄ − hsi )

)× (9)

× (
g(x̄ + hsi ) − g(x̄ − hsi )

)T = SDD1
y,A (SDD1

y,A )T ,

PDD1
xy,A = 1

2h

nx∑
i=1

si
(
g(x̄ + hsi ) − g(x̄ − hsi )

)T

= Sx (SDD1
y,A )T , (10)

SDD1
y,A = {SDD1

y,A (i, j)} = { 1
2h

(
gi (x̄ + hs j ) − gi (x̄ − hs j )

)}.
The more exact approximation is feasible by exploiting of

the Stirling’s interpolation second order [5]

y ≈ g(x̄) + 1

h

( nx∑
i=1

�xiµiδi

)
g(x̄) + 1

2h2

( nx∑
i=1

(�xi )
2+

+
nx∑

i=1

nx∑
j=1,i �= j

�xi�x j (µiδi )(µ jδ j )

)
g(x̄),

where δ2
i g(x̄) = g(x̄ + hsi ) + g(x̄ − hsi ) which lead to the

more accurate characteristics

ȳDD2
A = h2 − nx

h2
g(x̄)+

+ 1

2h2

nx∑
i=1

(
g(x + hsi ) + g(x − hsi )

)
, (11)

PDD2
y,A = PDD1

y,A + h2 − 1

4h4

nx∑
i=1

(
g(x̄ + hsi )+

+ g(x̄ − hsi ) − 2g(x̄)
) × (

g(x̄ + hsi )+
+ g(x̄ − hsi ) − 2g(x̄)

)T = PDD1
y,A + PDD2

y,e (12)

PDD2
xy,A = 1

2h

nx∑
i=1

si
(
g(x̄ + hsi ) − g(x̄ − hsi )

)T
. (13)

The optimal choice of the interval length is h2 = 3 for the
Gaussian distribution of x [5]. Note that if length of the
interval is chosen h2 = 1 then the relation PDD2

y,A (12) will
have formally the same form as PDD1

y,A (9). The DDF’s are
based on this approximation.

The resulting estimates of the local filters are assumed to
be Gaussian but the true pdf’s are unknown. Therefore, the
choice of the scaling parameters κ and h2 can be different
from the recommended settings.

B. Common features of unscented transformation and Stir-
ling’s interpolation

It was shown that the relation for the mean computation
ȳU K F

A and ȳDD2
A are the same and the covariance matrix

PU K F
y,A is less exact than PDD2

y,A [5]. The aim of this section
is to show that the relation for PU K F

y,A can be written as

PU K F
y,A = PDD1

y,A + PU K F
y,e (14)

similarly to PDD2
y,A (12).

Firstly, to confirm the relation (14), it is advantageous to
express the unscented transformation in the form [10]

y ≈ b + Ax,

where A = (PU K F
xy,A )T P−1

x , b = ȳU K F
A − Ax̄. Then, the

covariance matrix can be rewritten as [10]

PU K F
y,A = APx AT + PU K F

y,e . (15)

Secondly, it is necessary to show the equality PU K F
xy,A =

PDD1,2
xy,A . Proceeding from the relation (7), where nx +κ = h2

and
(√

(nx + κ)Px
)

i = hsi , it holds that

PU K F
xy,A = κ

nx + κ
(X0 − x̄)(Y0 − ȳU K F

A )T +

+ 1

2(nx + κ)

2nx∑
i=1

(Xi − x̄)(Yi − ȳU K F
A )T

= 1

2h2

nx∑
i=1

[
hsi

(
g(x̄ + hsi ) − g(x̄)

)T +

+ (−hsi )
(
g(x̄ − hsi ) − g(x̄)

)T
]

=
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= 1

2h

nx∑
i=1

si
(
g(x̄ + hsi ) − g(x̄ − hsi )

)T = PDD1,2
xy,A

Finally, return to the relation (15) and recall (10)

PU K F
y,A = (PU K F

xy,A )T P−1
x PU K F

xy,A + PU K F
y,e (16)

= SDD1
y,A ST

x (Sx ST
x )−1Sx (SDD1

y,A )T + PU K F
y,e

= SDD1
y,A Inx (S

DD1
y,A )T + PU K F

y,e = PDD1
y,A + PU K F

y,e .

That means the covariance matrixes PDD2
y,A (12) and PU K F

y,A
(6) are greater or equal to PDD1

y,A (9) by preservation of the
condition nx + κ = h2. Unfortunately, the relation between
PDD2

y,e in (12) and PU K F
y,e is generally unknown.

Transformation of a scalar variable. Nevertheless, if the
scalar variables are considered in the system description and
the condition nx+κ = h2 is fulfilled, the variances P DD2

y and
PU K F

y are the same. To prove this, it is suitable to proceed
from the square root version of the UKF [8] and return to
the transformation of the random variable via the nonlinear
function. Relations (5) and (6) can be rewritten in the form

ȳU K F
A =h2 − 1

h2
g(x̄)

+ 1

2h2

(
g(x̄ + hSx ) + g(x̄ − hSx )

)
, (17)

SU K F
y,A =

√
1

2h2

[
ξ(g(x̄) − ȳU K F

A ), g(x̄ + hSx )

− ȳU K F
A , g(x̄ − hSx ) − ȳU K F

A

]
, (18)

where ξ = √
2(h2 − 1) and PU K F

y,A = SU K F
y,A (SU K F

y,A )T .
Then, substitution of ȳU K F

A (17) in (18) and some necessary
adjustments yield

SU K F
y,A = 1

2h

[
g(x̄ + hSx ) − g(x̄ − hSx ), (19)

√
h2 − 1

h

(
g(x̄ + hSx ) + g(x̄ − hSx ) + 2g(x̄)

)]
.

Considering the relations (12), (18) and (19) it is clear

PU K F
y,A = SU K F

y,A (SU K F
y,A )T = P DD2

y,A . (20)

From (16), (20) the equality PU K F
y,e = P DD2

y,e follows as well.
Therefore for the scalar systems (1), (2) the algorithms

of the square root version of the UKF [8] and the DD2 are
the same. Because the estimation performance of the square
root UKF and the original UKF is naturally the same [8] the
estimation performance of the UKF and the DD2 (for scalar
systems) are the same as well.

C. Impact approximation on filtering covariance matrix

The relations for computation of the filtering mean x̂k =
E[xk |zk] and the covariance matrix Pk = cov[xk |zk] for the
local filters represents the Gaussian approximation of the
filtering pdf, i.e. p(xk |zk) ≈ N {xk : x̂k, Pk}, where

x̂k = x̂
′
k + P

′
xz,kP

′−1
z,k (zk − ẑ

′
k), (21)

Pk = P
′
k − P

′
xz,kP

′−1
z,k P

′T
xz,k, (22)

and x̂
′
k , P

′
k , ẑ

′
k , P

′
z,k , P

′
xz,k represent the predictive mean and

covariance matrix of the state estimate, the predictive mean
and covariance matrix of the measurement estimate and the
predictive cross-covariance matrix at time instant k, respec-
tively. It should be mentioned that the covariance matrix
of the measurement noise Rk is included in the predictive
covariance matrix of the measurement P

′
z,k . Relations (21),

(22) are formally the same for all the local filters. Substantial
difference lies in the transformation of the predictive state
estimate given by x̂

′
k , P

′
k through the measurement function

hk(·) with respect to the above mentioned approximation
which yields ẑ

′
k , P

′
z,k and P

′
xz,k [5], [7], [8].

Therefore the reason of quite different filtering covariance
matrixes Pk for particular SPKF’s can be found in the fact
that PDD2,U K F

y,A � PDD1
y,A and in the relation (22). The cross-

covariance matrixes P
′
xz,k are formally the same for all the

filters, i.e. for the UKF, the DD1 and the DD2. However, the
covariance matrixes Pz,k of the DD2 or the UKF are greater
than (or equal to) the DD1 one. In equation (22) the inversion
of P

′
z,k is required and if P

′ DD2,U K F
z,e,k is significant towards

P
′ DD1
z,k and P

′ DD2,U K F
z,e,k 
 Rk then (P

′ DD2,U K F
z,k )−1 �

(P
′ DD1
z,k )−1 which can cause PDD2,U K F

k 
 PDD1
k . The last

inequality can be found as an objective that induces the
differences in the estimated pdf’s (see Fig. 1).

In other words, the difference between the filtering co-
variance matrixes PDD2,U K F

k and PDD1
k was shown. This

difference becomes significant especially in the situations
where the covariance matrix of the measurement noise vk

in (2) is significantly less than the covariance matrix of the
state noise wk in (1) and the function hk(·) in (2) is highly
nonlinear.

IV. SIGMA POINT GAUSSIAN SUM FILTER

PERFORMANCE

This section is devoted to the description of influence
of the derivative-free local filters in the Gaussian sum ap-
proach. The main idea of this approach is based on the
approximation of an arbitrary pdf by a Gaussian mixture
[8], [12], [13]. To apply this idea for the system (1), (2),
it is necessary to assume the prior pdf, the state and the
measurement noise pdf’s in the form of Gaussian mixtures.
To obtain a close-loop solution of the BRR, the multipoint
approximation of the nonlinear functions fk(·), hk(·) has to
be done. Then, the SPGSF or the GSF can be understood as a
bank of concurrently running SPKF’s or EKF’s, respectively,
generating filtering pdf’s in the form of Gaussian mixtures
[8], [13]. In the progress of estimation each local filter and
its estimate is assessed by the weight corresponding to the
estimate accuracy towards the measurement.

For the analysis of the SPKF’s impact on the Gaussian sum
properties it is advantageous to proceed from the relations
for the filtering mean and the covariance matrix computation
of Gaussian mixture of N Gaussians [13]

x̂k =
N∑

j=1

α j,k x̂ j,k, (23)

1944



TABLE II

NONLINEAR TRANSFORMATION OF RANDOM VARIABLE.

h2=3 κ=2 h2=1 κ=0
DD1 DD2 UKF DD1 DD2 UKF MC

ȳ 2.80 4.20 4.20 2.80 4.20 4.20 4.20
Py 4.48 8.40 8.40 4.48 4.48 4.48 8.40
Py,e – 3.92 3.92 – 0 0 –
Pxy 5.60 5.60 5.60 5.60 5.60 5.60 5.60

Pk =
N∑

j=1

α j,k
(
P j,k + (x̂k − x̂ j,k)(x̂k − x̂ j,k)

T )
, (24)

where x̂ j,k and P j,k are the mean and the covariance matrix
obtained by the j-th SPKF at the time instant k. The weight
of the j-th local filter is given by α j,k . While the filtering
mean x̂k (23) is the weighted sum of particular means x̂ j,k

(21) the covariance matrix Pk (24) is not only the sum of
the particular covariance matrixes P j,k (21) but it is also
influenced by the placement of the mean values x̂ j,k (21).
Then, the impact of the particular local filter covariance
matrixes P j,k on the global Pk can be reduced especially if
the means x̂ j,k are widely spread in the state space. Therefore
the global covariance matrixes Pk of the SPGSF(DD1), the
SPGSF(DD2) and the SPGSF(UKF) can be mutually very
similar although the covariance matrixes of the DD1, the
DD2 and the UKF are considerably different.

V. NUMERICAL ILLUSTRATIONS

This section is devoted to verification of the theoretical
results given in the previous parts.

First of all an example of nonlinear transformation of
random variable is given. Consider a scalar normal random
variable x with known mean x̄ = 2 and variance Px = 7 and
the nonlinear function y = g(x) = 0.2x2 + 2. The resulting
characteristics of the random variable y obtained by means of
the UT and the Stirling’s interpolation 1st and 2nd order are
shown in Table II where impact of choice of the parameters
κ and h2 on the variances is illustrated. Therefore in some
cases, especially for strong nonlinearities, the increase of
covariance for PU K F

y and P DD2
y with respect to P DD1

y is
significant. However, if κ = 0 and h2 = 1 the variance
P DD2,U K F

y is equal to P DD1
y . The true values were obtained

by the Monte Carlo (MC) simulation with 107 samples.
Now, the nonlinear system (3), (4) defined above, which is

quite unusual due to the fundamental difference in size of the
state and the measurement noise variance is considered. In
Fig. 1 the different estimated pdf’s of the SPGSF(DD1) and
the SPGSF(UKF) are depicted. Note that common choice of
the parameters (i.e. κ = 2 and h2 = 3) were used.

However, in the case of the scaling parameters κ = 0
or h2 = 1 the relation for the covariance matrixes of the
UKF and the DD2 are formally the same as the DD1 ones
but the relations for the means remain formally without any
change as it was shown above. This fact may be the reason
of similar shape of the filtering pdf’s of the SPGSF(DD1)
and the SPGSF(UKF,DD2) (see Fig. 2) which are moved

Fig. 2. Estimated filtering pdf’s (κ = 0, h2 = 1).

TABLE III

DEPENDENCE OF MSE ON NOISE VARIANCE.

Rk 10−5 10−3 10−2 10−1 1

M SE S PGSF(DD1)

h2=3
0.0222 0.0277 0.0425 0.2130 1.2400

M SE S PGSF(U K F)
κ=2 0.0133 0.0163 0.0327 0.1654 1.2367

M SE S PGSF(U K F)
κ=0 0.0129 0.0173 0.0289 0.2037 1.2454

M SE P M F 3.55 · 10−4 0.0021 0.0145 0.1625 1.3997

M SE DD1
h2=3

0.1955 0.2123 0.2156 0.4018 1.4064

M SEU K F
κ=2 0.1304 0.1424 0.1508 0.3320 1.3567

M SEU K F
κ=0 0.1690 0.1884 0.1874 0.3694 1.3867

due to the more exact calculation of the mean in the UKF
or the DD2 towards the DD1. It is necessary to note that
the choice of the parameters κ = 0 or h2 = 1 causes the
accuracy of estimated pdf’s to be less exact due to the less
exact covariance matrix computation (the true state in most
cases is not in the area of nonzero probability) even if the
shape is more similar to the “true” pdf obtained by the PMF.

One of the aims of this paper was to demonstrate that
the global filter comparison based on a point estimates
only is insufficient. To confirm this, two tables are given
(Table III includes M SE = (∑100

i=1
∑60

k=1(xi
k − x̂ i

k)
2
)
/6000

and Table IV includes average values of variance at k = 5,
i.e. Vc = (∑100

i=1 Pi
5)

)
/100) with respect to the different

choice of the measurement noise variance Rk and different
choice of the scaling parameters (specified in the subscript).
The experiment was repeated 100 times in order to calculate
MC performance estimates for each filter (the superscript i
determines the order of repetition). For completeness M SE
and Vc for the DD1 and the UKF are shown as well.

TABLE IV

DEPENDENCE OF FILTERING VARIANCE ON NOISE VARIANCE.

Rk 10−5 10−3 10−2 10−1 1

V S PGSF(DD1)

c,h2=3
0.0239 0.0268 0.0271 0.0336 0.0881

V S PGSF(U K F)
c,κ=2 0.0809 0.0662 0.0644 0.0728 0.1245

V S PGSF(U K F)
c,κ=0 0.0223 0.0217 0.0189 0.0278 0.0788

V P M F
c 1.36 · 10−6 7.71 · 10−5 0.0007 0.0076 0.0738

V DD1
c,h2=3

5.93 · 10−7 5.73 · 10−5 0.0005 0.0057 0.0562

V U K F
c,κ=2 0.1753 0.1696 0.1720 0.1751 0.2231

V U K F
c,κ=0 6.14 · 10−7 5.93 · 10−5 0.0006 0.0059 0.0788
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Fig. 3. Dependence of criterion Vp on noise variance.

The average variance Vc (Table IV) is quite different for
the UKF(κ = 2) and the DD1 for “small” values of Rk . If
κ = 0 the influence of PU K F

y,e is cancelled and the filtering
variance Pk of the UKF is comparable with the DD1’s
one. With increasing of variance Rk the estimated filtering
variances of the DD1 and the UKF (for any choice of κ)
become the same. That is that impact of PU K F

y,e is reduced
by Rk (i.e. Rk ≈ PU K F

y,e ). The choice of the scaling parameter
h2 for the estimation quality of the DD1 is negligible.

From Tables III, IV and Fig. 1, 2 it is clear that estimated
pdf’s are specified neither by the mean nor by the variance.
For instance, the values of the MSE and the criterion Vc

for the SPGSF(DD1) and the SPGSF(UKF,κ = 2) are quite
similar but the shapes of pdf’s are completely different.
Likewise to the local filters, the estimated pdf’s of the
global filters become mutually similar if the variance Rk is
increasing. If a scalar system is considered and the condition
nx + κ = h2 is kept the estimation performance of the
algorithms SPGSF(UKF) and the SPGSF(DD2) becomes the
same. Moreover, if the square root UKF is considered, the
algorithms of the SPGSF(UKF) and the SPGSF(DD2) are the
same for scalar systems. In the case of the multidimensional
systems, their estimated pdf’s are comparable. Further, the
estimates of the GSF resemble to the SPGSF(DD1) ones.

The SPGSF’s comparison from the viewpoint of the
estimated pdf’s is done by means of the criterion Vp =(∑100

i=1

∫ |pi (x5|z5)− p̂i (x5|z5)|)/100 where pi (x5|z5) is the
“true” pdf obtained by the PMF and p̂i (x5|z5) is the pdf of
the particular SPGSF. The results are depicted in Fig. 3.

Moreover, it should be mentioned the estimated pdf’s
of the Unscented Particle Filter and the Gaussian Mixture
Sigma Point Particle Filter [16], which are a combination of
the Particle Filter and the UKF, are close to the SPGSF(UKF)
ones for arbitrary chosen scaling parameter κ .

The simulation results support the theoretical conclusions
from previous section. The significant difference between
the covariance matrixes P DD1

y,A and P DD2,U K F
y,A is confirmed

by Table II. Impact of particular approximations to the
derivative-free local and global filters is given in Tables III,
IV where influence of the scaling parameter κ is shown as
well. It means that the estimated pdf’s of the SPGSF’s do
not depend on the selected local filter (i.e. on the selected
approximation) only but they also strongly depend on the
choice of the scaling parameters as well. Although the first
two moments of the estimated pdf’s of the SPGSF’s given in

Table III, IV seem to be very similar, the estimated pdf’s are
substantially different. That is the reason for the SPGSF’s
comparison based on the pdf’s given by Fig. 1, 2 and 3.

VI. CONCLUSION

The derivative-free Kalman filters were introduced under
the Gaussian sum framework. The impact of the choice of
the particular Sigma Point Kalman Filter on the resulting
estimated pdf’s of the Sigma Point Gaussian Sum Filter
was shown. To explain the quite different shapes of the
estimated pdf’s of the particular Sigma Point Gaussian Sum
Filters, the analysis of the Sigma Point Kalman Filters
was done mainly from the viewpoint of their covariance
matrixes. The analysis brought the new relations between the
Divided Difference Filters and the Unscented Kalman Filter
which allow the performance analysis of the derivative-free
filters. The theoretical results were verified by the numerical
illustrations.
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