
Performance Analysis of Distributed Computing Frameworks for Big
Data Analytics: Hadoop Vs Spark

Shwet Ketu1, Pramod Kumar Mishra1, Sonali Agarwal2

1 Banaras Hindu University, Institute of Science,
Department of Computer Science,

India,

2 Indian Institute of Information and Technology, Allahabad,
India

shwetiiita@gmail.com, mishra@bhu.ac.in, sonali@iiita.ac.in

Abstract. In the last one decade, the tremendous growth
in data emphasizes big data storage and management
issues with the highest priorities. For providing better
support to software developers for dealing with big data
problems, new programming platforms are continuously
developing and Hadoop MapReduce is a big game-
changer followed by Spark, which sets the world of big
data on fire with its processing speed and comfortable
APIs. Hadoop framework emerged as a leading tool
based on the MapReduce programming model with a
distributed file system. Spark is on the other hand,
recently developed big data analysis and management
framework used to explore unlimited underlying features
of Big Data. In this research work, a comparative
analysis of Hadoop MapReduce and Spark has been
presented based on working principle, performance,
cost, ease of use, compatibility, data processing, failure
tolerance, and security. Experimental analysis has been
performed to observe the performance of Hadoop
MapReduce and Spark for establishing their suitability
under different constraints of the distributed computing
environment.

Keywords. Big data, parallel processing, distributed
environments, distributed frameworks, Hadoop
MapReduce, Spark, big data analytics.

1 Introduction

Recently, tremendous growth is seen in
Information Technology (IT) applications where
data in terms of various sizes, velocities, and
veracities have been observed that give the new
field of research known as big data. Big Data
scenario motivates re-searchers to work on high-

speed data processing and management schemes
which are not possible by using traditional
approaches and demands distributed processing
infrastructure [1, 2, 3].

Hadoop, a framework of a distributed
processing environment is designed and
developed for batch processing based on the
MapReduce programming model. It runs in a
distributed manner on various systems and can be
run as well in a standalone mode with full
potentiality and functionality. It was developed for
handling the huge amount of data across various
systems in less time with great performance [4].

Spark is also a programming framework just like
Hadoop but it is designed and developed for real-
time along with batch processing. It works in a fully
distributed fashion and more powerful to handle
the big data problems as compared to Hadoop
MapReduce with the help of its streaming API,
which pro-vides continues the processing of data
in terms of short interval batches. In Spark, jobs
may run continuously till shutdown either by users
or by any unrecoverable failure. It can also run in a
standalone environment [5].

In this paper, we have performed a comparative
study of distributed frameworks and find out its
impact over big data. Spark and Hadoop
MapReduce frameworks are being used for this
purpose. Both are capable of big data processing
in a distributed manner using large datasets.

The paper is organized as follows: In section II,
the state of art in the field of the distributed
framework is discussed.

Computación y Sistemas, Vol. 24, No. 2, 2020, pp. 669–686
doi: 10.13053/CyS-24-2-3401

ISSN 2007-9737

mailto:shwetiiita@gmail.com
mailto:mishra@bhu.ac.in
mailto:sonali@iiita.ac.in

A comparative study is grounded on the
working principle of Spark and Hadoop
MapReduce is discussed in section III. In section
IV, analysis of these frameworks based on various
parameters are performed and discussed. Section
V shows the performance evaluation, which is
observed using the standalone setup of both
distributed frame-works by using two benchmark
datasets. Concluding comments with future
perspective has been presented in the last
section VI.

2 State of Art

In this section, the working principle of Spark and
Hadoop MapReduce has been discussed in detail,
as follows:

2.1 The Hadoop MapReduce Approach

Hadoop is a MapReduce based distributed
framework, designed to process the enormous
volume of data on several nodes or computers. It
is based on the concept of parallel data processing
that makes it cost and time effectively. It is based
on the MapReduce programming model [6]. The
two pillars of Hadoop are:

2.1.1 YARN

YARN represents Yet Another Resource
Negotiator. It is aimed to provide more features for
those applications, which are running in a Hadoop
distributed cluster environment. The key
functionalities are Memory organization, which
assigns CPU and storage support to the
applications that are running on Hadoop distributed
environment. In the initial versions, YARN was
absent due to the fact that only MapReduce jobs
were implemented, but in a more recent version,
the presence of YARN allows the processing of
other frameworks media to run on the Hadoop
distributed environment [7, 8].

2.1.2 HDFS

HDFS represents the Hadoop Distributed File
System, which empowers the system to perform
the task in a distributed manner.

Its works on the principle of by linking of all file
systems, which are presented at several nodes,
and merge them into a single file system [8, 9].

2.1.3 MapReduce

A job in Hadoop is made up of mainly two important
functions, a map function and a reduce function.
There are many other functions also available in
Hadoop, which generally perform after the map
function or in between the map and reduce
functions. The initial task of the map function is to
read the chunk of data from HDFS and return into
(key, value) pairs with their distinct partitions.

For example, in-text mining, it works as a parser
and cleaner for the dataset as shown in figure 1
where the input is partitioned in various mappers
followed by reducer task in order to perform related
computations in parallel. It is indicated in figure 1
that the output coming from the map stage is fed
into the various reducers. The reducers are now
read the input in (key, value) pairs and perform the
computations on it like sum, average, etc. [10, 11].

The workflow of nodes in Hadoop is shown in
figure 2.

All MapReduce task is divided into three nodes,
job submission node, Namenode and Slave node
for successful completion of Hadoop task. Job
tracker and task tracker are used to tracking the
MapReduce task and all the operation is performed

Fig. 1. Functioning of map and reduce programming
model

Computación y Sistemas, Vol. 24, No. 2, 2020, pp. 669–686
doi: 10.13053/CyS-24-2-3401

Shwet Ketu, Pramod Kumar Mishra, Sonali Agarwal670

ISSN 2007-9737

on Datanode, controlled by Namenode. These
operations are executed in the Slave node.

2.2 The Spark Approach

Spark is one of the big data analysis frameworks
based on the concept of distributed processing. It
was designed for processing the data in real-time.

It follows In-memory computing by which the
processing speed becomes much faster as
compared to disk-based computing in Hadoop.
Spark has three language supports, which means,
it does not follow only one programming language
or model as Hadoop. By having the support of
Python, Java, and Scala, it contains algorithms that
can be developed using these programming
languages. All the programing language, which is
supported by Spark, is encapsulated with high-
level APIs enables execution of graph too [11].

In addition to this, MLlib supports machine
learning, Spark SQL is available for handling
structured data and for handling graph, GraphX
is used.

Parallel application development is possible
using Spark Streaming. The main objective of
Spark is to perform the task in a distributed either
for real-time data or for batch data with less time
obligation [12].

RDDs, which stand for Resilient Distributed
Datasets, are supported by Spark. The data is
collected from internal storage (HDFS), external
storage, or a derived dataset formed by other
RDDs. These RDDs are maintained by inbuilt
options such as On-disk storage, Serialized data
(In-memory storage) and Desterilized java objects
(In-memory storage) [13, 14, 15].

In figure 3, an overview of the Spark framework
is shown along with its collaboration to higher-level
tools and APIs.

3 Discussion based on Working
Principle

3.1 Working of Map Side Shuffle

Working of Map side shuffle phase of Hadoop
MapReduce and Spark is shown in figure 4
[16, 17].

3.1.1 Map Side of Hadoop MapReduce

Step 1: At each map task the output of data come
in (Key, Value) pair.

Step 2: The output is being stored in a buffer
(circular) rather than writing directly to disk.

Fig. 2. Nodes workflow in MapReduce programming
model

Fig. 3. Spark framework

Computación y Sistemas, Vol. 24, No. 2, 2020, pp. 669–686
doi: 10.13053/CyS-24-2-3401

Performance Analysis of Distributed Computing Frameworks for Big Data Analytics: Hadoop Vs Spark 671

ISSN 2007-9737

Step 3: Circular buffer size is approximate 100MB
and if the buffer size = 80% than the data is spilled.
This process is called shuffling of spill files.

Step 4: Many map tasks produces many spill files
on a specific node. Spill files of single map task (not
all map tasks) are merged as one file, which is
organized (sorted), and partitioning is done based
on the total number of reducer pre-sent.

3.1.2 Map side of Spark-Initial Design

3.1.2.1 Initial Design Phase

Step 1: The output is written to an operating
system buffer cache.

Step 2: It will depend upon the operating system
whether the data will remain on the buffer or it will
be spilled to disk.

Fig. 4. Map Side: Shuffle phase differences (Hadoop
vs. Spark)

Fig. 5. Reduce side: Shuffle phase differences (Hadoop
vs .Spark)

Fig. 6. Programming model workflow of Hadoop and Spark

Computación y Sistemas, Vol. 24, No. 2, 2020, pp. 669–686
doi: 10.13053/CyS-24-2-3401

Shwet Ketu, Pramod Kumar Mishra, Sonali Agarwal672

ISSN 2007-9737

Step 3: Shuffle spill files are created is equal to the
number of reducers in each map task. It does not
marge spills files into one big file.

3.1.2.2 Shuffle Files Consolidation

Step 1: The output is written to an operating
system buffer cache. It will depend upon the
operating system whether the data will remain on
the buffer or it will be spilled to disk.

Step 2: Shuffle spill files are created as many as
the number of reducers in each map task. It does
not marge spills files into one big file.

Step 3: The map task is consolidated into a single
file, which runs on the same cores. Therefore, the

output generated by each core is as many shuffle
files as the number of reducers.

3.2 Working of Reduce side Shuffle Phase

Working of Reduce side shuffle phase of Hadoop
MapReduce and Spark is shown in figure 5 [16,17].

3.2.1 Reduce Side of Hadoop MapReduce

Step 1: The intermediate files, which are
generated at the map side are being PUSHED and
loaded into the memory.

Step 2: The data will spill to disk (if buffer = 70%)

Step 3: After that, the bigger files form from
merging the spills.

Fig. 7. Iterative workload handling in Hadoop and Spark

Table 1. Comparison based on performance evaluation

 Hadoop (MapReduce) Spark

Data Processing
MapReduce persists back to the disk
after a map or reduce action.

In-memory (all data and computation
are performed and the result is loaded
at the end)

Memory
Kill the process as soon as a job is
done and release the memory.

A lot of memory needed (like standard
DBs) and keep it safe there until
further notice.

Running
Processes run alongside other
services too.

Processes run alone.

Iterative Computations
It was designed for one-pass ETL-like
jobs.

Give the best result in iterative, the
same data many times.

Computación y Sistemas, Vol. 24, No. 2, 2020, pp. 669–686
doi: 10.13053/CyS-24-2-3401

Performance Analysis of Distributed Computing Frameworks for Big Data Analytics: Hadoop Vs Spark 673

ISSN 2007-9737

Step 4: At the end, the reduce method
gets invoked.

3.2.2 Reduce Side of Spark

Step 1: The intermediate files being PULLED
to Reducer.

Step 2: In this step, the data is written to memory.

Step 3: If the data size is large and it does not fit in
the memory, Out of Memory Exception (OOM)
occurs but it is being solved in 0.9 and its grater
version via spilling the data to disk.

Step 4: At the end, the reduce functionality
gets invoked.

Table 2. Comparison based on ease of use

 Hadoop (MapReduce) Spark

APIs Support Yes (only Java) Yes (Java, Scala, and Python)

Language Support Java only Java, Scala, and Python

SQL Compatibility Yes (Hive) [23] Yes [Spark SQL (Shark)][24]

Programming model Within MapReduce programming model Within user define function

Inactive mode No (command line) Yes

Table 3. Comparison based on cost evaluation (on single node)

 Hadoop (MapReduce) Spark

Open-source Yes Yes

Run-on cloud Yes Yes

Cores 4 8-16

Memory 24GB 8GB

Disks 4-6 one-TB disks 4-8

Network 1 GB Ethernet all-to-all 10GB or more

Table 4. Comparison based on compatibility measurement

 Hadoop(MapReduce) Spark

Support of data sources of
Hadoop

Yes Yes

Support file formats Yes Yes

Work with BI tools No Yes

Code size (Lines of code) Very Long (due to only java support)
Less (due to python and
scala support)

Computación y Sistemas, Vol. 24, No. 2, 2020, pp. 669–686
doi: 10.13053/CyS-24-2-3401

Shwet Ketu, Pramod Kumar Mishra, Sonali Agarwal674

ISSN 2007-9737

Based on the working principle it is clear that
both frameworks work in a different style but also
have some common functionality.

3.3 Programming Model of HADOOP and
SPARK

The workflow of Spark and Hadoop MapReduce
programming models are shown in figure 6.
MapReduce based programming model is less

generic than Spark because Spark is based on In-
memory computation model, which makes Spark
more effective, powerful and easy to use. The
Hadoop work on the principle On-disk MapReduce
programming model that means the data is stored
on secondary storage. The Hadoop Distributed file
system (HDFS) is the place where the data is
stored and where all computation is being
performed. Due to On-disk computation, the
processing turns out to be slow in Hadoop, which

Table 5. Comparison based on data processing

 Hadoop (MapReduce) Spark

Data processing Batch (apache mahout) Real-time and batch(Storm or
Impala and Giraph)

Machine learning libraries No Yes

Table 6. Comparison based on failure tolerance

 Hadoop (MapReduce) Spark

Retires per task Yes Yes

Speculative execution Yes Yes

Relies on Hard drives Buffers

Time is taken (Cost) Less More

Table 7. Comparison based on security

 Hadoop (MapReduce) Spark

Security via Use Hadoop’s security policy Sheared secret key and Kerberos

Security feature vise Highly reliable Less reliable

Table 8. Comparison in terms of machine learning support

 Hadoop (MapReduce) Spark

Tools Support for machine Learning Mahout [29] MLLib

APIs Support For Java only Java, Scala, and Python

Iterative algorithm performance
(processing speed)

Slower Very fast (due to In-memory
computation)

Support In-memory processing Yes No

Computación y Sistemas, Vol. 24, No. 2, 2020, pp. 669–686
doi: 10.13053/CyS-24-2-3401

Performance Analysis of Distributed Computing Frameworks for Big Data Analytics: Hadoop Vs Spark 675

ISSN 2007-9737

consequently increases processing delay and time
complexity. Hadoop having the support of Java
language and its linked APIs but Spark have to
support of three programming languages i.e.
Scala, Java and Python with its linked APIs [17,
18, 19].

3.4 Better Fit for Iterative Workloads Handling

Figure 7 shows the iterative workload handling
models for Hadoop MapReduce and Spark For
iterative workload handling, Spark is much better
than Hadoop because it follows In-memory and
cache-based processing. Cache-based
processing enables Spark to work efficiently and
faster for iterative algorithms. It follows In-memory
based computation by which fetching of data from
local cache reduces the computation time and data
loading time.

While in Hadoop MapReduce, due to it is on
disk computation through HDFS, it is not possible.
Hence, it is clear that for iterative computation,
Spark is more powerful and faster than Hadoop
MapReduce [20].

Both the framework has its own advantages
that establish its completeness and usability for
handling the big data processing.

4 Comparison of Hadoop and Spark

A comparative analysis based on resource
utilization and application scope of Hadoop
MapReduce and Spark have been performed to
highlight their similarities and dissimilarities [21].

4.1 Analysis based on Resource Utilization
(Hadoop vs Spark)

4.1.1 Performance

From the table 1, it is clear that when all data fits in
the memory (buffer memory) the performance of
the Spark is better and when the data does not fits
in the memory and it is needed to run other
services along with the main process, the
performance of the Hadoop MapReduce would be
excellent [22].

Table 9. Comparison in terms of ETL support

 Hadoop (MapReduce) Spark

ETL tools support Yes (Pig, Cascading, Oozie) [21] Yes (Native RDD programming

{Scala, Java, Python}) [21]

ETL Workflow High-level ETL workflow Spork is used

Cascading level High level Support only Spark- scalding

Table 10. Comparison in terms of SQL support

 Hadoop (MapReduce) Spark

Engine Hive [23] Spark SQL [25]

Language HiveQL
HiveQL and RDD programming
language (Java, Scala, Python)

Scale Petabytes Terabytes

Inter-operability possible No
Yes (Can read Hive tables or
standalone data)

Formats CSV, JSON, Parquet CSV, JSON, Parquet

Computación y Sistemas, Vol. 24, No. 2, 2020, pp. 669–686
doi: 10.13053/CyS-24-2-3401

Shwet Ketu, Pramod Kumar Mishra, Sonali Agarwal676

ISSN 2007-9737

4.1.2 Ease of Use

In table 2, it is clearly mentioned that Spark is
easier in context of programming and its interactive
mode gives the smooth drive to the users as
compared to Hadoop, which is quite difficult to
work in the context of programming and handling
due to its command line mode.

4.1.3 Cost

From table 3, it is clear that the Spark is more cost-
effective than Hadoop MapReduce according to
benchmarks. In respect to memory, the Hadoop
require more due to its On-disk computation rather
than Spark.

4.1.4 Compatibility

Both Spark and Hadoop MapReduce are the same
in reference to data types and data sources, which
are mentioned in table 4.

4.1.5 Data Processing

Hadoop is developed for batch processing but for
real-time processing, Hadoop requires additional
platforms. Spark is developed for both batch and
real-time processing and there is no need for
external platforms. Table 5 also indicates that
machine learning libraries are also missing in
Hadoop MapReduce.

4.1.6 Failure tolerance

From table 6, it is clear that the Spark and Hadoop
MapReduce both retires per task and follows
speculative execution. However, MapReduce
starts on the hard drives, which give an advantage
to Hadoop over Spark.

In Hadoop, if the process crashes in the middle
of its execution, it restores current execution status
next time. However, in Spark, this feature is absent
and it starts the process from the very beginning
due to that time complexity increases.

4.1.7 Analysis based on Resource Utilization
(Hadoop vs Spark)

In the context of big data handling, the Spark is
less secure than Hadoop. Hadoop MapReduce
pro-jects are considered more reliable than Spark
as shown in table 7.

4.2 Analysis based on Application Scope
(Hadoop vs Spark)

4.2.1 Machine Learning Support

Table 8 shows the machine learning a feature-
based comparison of both the frameworks for
batter understating and suitability in Big Data
analytics. Both frameworks having machine
learning tools but Hadoop has only Java API
support and it runs slowly with the iterative
algorithm in turns of processing speed because it
does not follow In-memory computation.

Table 11. Comparison in Terms of Streaming Support

 Hadoop (MapReduce) Spark

Stream Processing /

Real-Time processing

Storm [27]

Kafka [28]
Spark Streaming [26]

Processing of live data streams
possible

No Yes

Streaming API support For Java only Java, Scala, and Python

Real-time lookups
NoSQL (Hbase,

Cassandra...etc.)

No Spark component.

But Spark can query

data in NoSQL stores

Computación y Sistemas, Vol. 24, No. 2, 2020, pp. 669–686
doi: 10.13053/CyS-24-2-3401

Performance Analysis of Distributed Computing Frameworks for Big Data Analytics: Hadoop Vs Spark 677

ISSN 2007-9737

4.2.3 SQL Support

Table 10 shows the SQL support-based
comparison of both the frameworks for better
understating, suitability and richness in terms of

features. Both frameworks having SQL supporting
tools but Hadoop SQL tool Hive works slow and
having fewer features as compared to Spark. In
terms of scalability, the Spark has terabytes
support, which is very less than the Hadoop [25].

Table 12. A quick lookup of what has whatnot

Functionalities Hadoop (MapReduce) Spark

Operational Principle
Distributed Compute + Distributed

Storage
Only Distributed Compute

Computation type Based on MapReduce Widespread computation

Storage area Typically, data on HDFS (On-disk) Both In-memory and On-disk

Iterative support Not ideal for iterative workload
Perform Efficiently at Iterative

workloads

Coding support Java supported, Compact code
Java, Scala, and Python

supported, Compact code

Process support Batch process only

Batch and Real-time process
both (work Up to 100x faster in
In-memory and 2x - 10x faster

on On-disk)

Hadoop and YARN capability Yes Yes

The flexibility of the programming
model

Less flexible More flexible

Data size Compatibility Terabytes Gigabytes

Usability Relatively complex Easy as compare to Hadoop

Great performance with Large datasets (>= 100GB)
Small and medium datasets (<=

100GB)

Multiple APIs support No (Java only) Yes (Java, Scala, Python)

Distributed Storage Use HDFS
Enables Cloud storage such as

NFS mounts Or Amazon S3

SQL querying By Hive By Spark SQL

Machine Learning tools Mahout [29] MLLib [21]

NoSQL DB Yes (Hbase) No

Computación y Sistemas, Vol. 24, No. 2, 2020, pp. 669–686
doi: 10.13053/CyS-24-2-3401

Shwet Ketu, Pramod Kumar Mishra, Sonali Agarwal678

ISSN 2007-9737

4.2.4 Streaming Support

In table 11 a comparison based on streaming
support is discussed. The Spark supports its own
Spark streaming but Hadoop uses the Strom and
Kafka for stream and real-time processing
respectively. For live data streams, the processing
is possible only in Spark. In context to APIs, for
streaming Hadoop has java support and, on
another hand, Spark has Java, Scala, and Python
support. For real-time lookup, NoSQL is used
in Hadoop.

A quick evaluation of distributed programming
framework on the basis of key features,
functionally and use cases is achieved and
deliberated in below table 12.

Key feature-based analysis of Spark and
Hadoop is shown in table 13 and table
14 respectively.

The table demonstrations that Hadoop has a
broader range of business platforms, better
scalability, and broader application space, while
Spark supports three languages, easy to adapt,
and has outstanding computational abilities.

5 Experimental Evaluation

The experimental analysis is based on mainly
three algorithms such as world count, logistic
regression and distributed K-Means clustering. All
experiments have been performed using four
benchmark datasets which are: Wikilinks [30],
Wikilanguage [30], Wikipedia [32] and Enron [31]
dataset in Pseudo-Distributed Mode. The
experimental settings and hardware required to
perform the experiments on a single node (Pseudo
Distributed Mode) are given in Table 14.

Table 13. Spark Key features

Key features Explanation

Ease of Growth
 Having the support of Scala, Python and Java language

 Having quick and easy APIs support

Performance (In-memory)
 It follows the RDDs file system

 It enables DAGs Unify Processing

Joint Workflow Shark, Streaming, ML and GraphX support is enabled here

Table 14. Hadoop MapReduce Key features

Key features (Hadoop MapReduce) Explanation

Unlimited Scalability

 For all users

 For all applications

 For all Data sources

Enterprise Platform

 More Reliable

 Healthier Security

 Offer Multi-tenancy

Wide Range of Applications

 Files

 Database

 Semi-structured

Computación y Sistemas, Vol. 24, No. 2, 2020, pp. 669–686
doi: 10.13053/CyS-24-2-3401

Performance Analysis of Distributed Computing Frameworks for Big Data Analytics: Hadoop Vs Spark 679

ISSN 2007-9737

5.1 Analysis Using Word Count

For this experimental evaluation, two benchmark
datasets i.e. wiki-links and wiki-language have
been taken in various combinations of sizes
(500MB- 10GB) and iterations. The processing

time of these various groupings of data sizes over
Hadoop MapReduce and Spark is recorded. A
word count algorithm with the varying data sizes
has been taken for evaluation. Based on the
results obtained, a comparative analysis is
presented here.

Fig. 8. Variation in data size over processing time in seconds on wikilinks dataset

Fig. 9. Variation in data size over processing time in seconds on wikilanguage dataset

Fig. 10. Logistic regression performance in Hadoop and Spark on wikilinks dataset

0

1000

2000

500MB 1GB 2GB 5GB 10GB 20GB 40GB

Hadoop 102 234 386 620 992 1452 1762

Spark 54 169 288 502 882 1323 1630

P
ro

ce
ss

in
g

 t
im

e
 i

n

se
co

n
d

s

0

1000

2000

500MB 1GB 2GB 5GB 10GB 20GB 40GB

Hadoop 131 267 432 696 1025 1598 1889

Spark 66 184 307 582 965 1473 1750

P
ro

ce
ss

in
g

 t
im

e
 i

n

se
co

n
d

s

1 5 10 20 30 40

Hadoop 97 485 970 1940 2910 3880

Spark 133 157 187 247 307 367

0

1000

2000

3000

4000

5000

P
ro

ce
ss

in
g

 t
im

e
 i

n

se
co

n
d

s

Computación y Sistemas, Vol. 24, No. 2, 2020, pp. 669–686
doi: 10.13053/CyS-24-2-3401

Shwet Ketu, Pramod Kumar Mishra, Sonali Agarwal680

ISSN 2007-9737

The suitability and performance of these
distributed frameworks are also shown with the
help of graphs.

The figure 8 and 9 show the performance of
Hadoop MapReduce and Spark based on the
variation of data sizes over time using word
count algorithm.

Two benchmark datasets, wikilinks, and
wikilanguages have been considered for
experimental evaluation and various combination
of data sizes such as 500MB, 1GB, 2.5GB, 5GB,
10GB, 20GB, and 40GB have been used to see the
performance of Hadoop and Spark frameworks
with regard to the processing time.

Fig. 11. Logistic regression performance in Hadoop and Spark on wikilanguage dataset

Fig. 12. Data size variation over processing time on wikilinks dataset

Fig. 13. Variation in data size over processing time on wiki-language dataset

1 5 10 20 30 40

Hadoop 120 600 1200 2400 3600 4800

Spark 169 197 232 302 372 442

0

1000

2000

3000

4000

5000

6000
P

ro
ce

ss
in

g
 t

im
e

 i
n

se
co

n
d

s

0

500

1000

1500

500MB 1GB 2GB 5GB 10GB

Hadoop 126 302 407 988 1243

Spark 68 240 335 899 1162

P
ro

ce
ss

in
g

 t
im

e

in
 s

e
co

n
d

s

0
200
400
600
800

1000
1200
1400

500MB 1GB 2GB 5GB 10GB

Hadoop 180 366 554 889 1325

Spark 100 288 489 813 1280

P
ro

ce
ss

in
g

 t
im

e
 i

n

se
co

n
d

s

Computación y Sistemas, Vol. 24, No. 2, 2020, pp. 669–686
doi: 10.13053/CyS-24-2-3401

Performance Analysis of Distributed Computing Frameworks for Big Data Analytics: Hadoop Vs Spark 681

ISSN 2007-9737

After plotting a graph, it is clear that Spark is
better than the Hadoop MapReduce due to its In-
memory processing capability that is absent in
Hadoop MapReduce disk-based processing.

5.2 Analysis Using Logistic Regression

For further analysis based on logistic regression
algorithm the same benchmark datasets, i.e.
wikilinks and wiki-language have been taken. The
analysis is purely based on iterations rather than
various combinations of data sizes. Time taken on
each level of iterations over Hadoop MapReduce
and Spark is recorded.

A logistic regression with varying iterations
based on processing time has been taken for
evaluation. Based on the results obtained, a
comparative analysis is presented here. The
performance and suitability of these distributed
model-based frameworks are also shown through
the help of graphs.

The figures 10 and 11 shows processing time-
based performance evaluation of the logistic
regression algorithm at various iterations. In the
shown graph, the x-axis indicates various iterations
and the y-axis indicates the processing time taken
by the algorithm in seconds.

For performing the logistic regression, a
dataset, which has the size of 40GB, has been
used. The two-benchmark dataset wiki-links and
wiki-language are used here. All the computation
is performed on Spark and Hadoop frameworks.
On various iteration sizes, which are 1, 5, 10, 20,
30, and 40 times have been used to evaluate
performance based on processing time over the
existing distributed frameworks.

On wiki-link dataset, Hadoop takes 97 sec in
every iterative cycle and Spark takes 133 sec in the
first iteration but for later iterations, it takes only 6
sec. Due to the feature of In-memory computation,
the Spark reuses the cache data in future
iterations, which enhance the overall performance
as, indicated in figure 10.

On wiki-language dataset, Hadoop takes 120
sec in every iterative cycle and Spark takes 169
sec in the first iteration but for later iterations, it
takes only 7 sec more as shown in figure 11.

5.3 Analysis Using Distributed K-Means
Clustering Algorithm

The experimental evaluation of distributed K-
Means clustering is performed using Hadoop
MapReduce and Spark frameworks. Four
benchmark datasets i.e. Wiki language, Wikilinks,
Enron and Wikipedia dataset are used so far.
Various combinations of data sizes and increased
number of iterations are used for result findings
based on their processing time. To obtain more
generalized results the performance and behavior
of both frameworks are exhaustively observed.

Wiki-links dataset with different combinations of
sizes (500MB to 10GB) has been shown in figure
12. The processing time (in seconds) of various
data sizes i.e. 500MB, 1GB, 2GB, 5GB, and 10GB
is analyzed by using both distributed frameworks,
which is shown in the graph After analyzing the
graph, it is clearly visible that performance (based
on processing time elapse) of Spark is better than
the Hadoop MapReduce.

The wiki-language dataset with different
combinations of sizes (500MB to 10GB) has been
shown in figure 13. The processing time (in
seconds) of various data sizes i.e. 500MB, 1GB,
2GB, 5GB, and 10GB is analyzed by using both
distributed frameworks, which is shown in
the graph.

After analyzing the graph, it is clearly visible that
performance (based on processing time elapse) of
Spark is better than the Hadoop MapReduce.

Four benchmark datasets having the size of
5GB each is taken i.e. Wikipedia, Enron, Wikilinks
and wiki language and its analysis is shown in
figure 14. Varying iterations and processing time in
seconds are taken as constraints in x-axis and y-
axis respectively on the graph.

All the computation is performed on the
Hadoop, which is an On-disk computation model.
We calculate the processing time elapses in
seconds at each iteration. In iteration one the
Hadoop takes, 460 seconds, 500 seconds, 990
seconds and 690 seconds., In the second iteration
it takes 917 seconds, 1004 seconds, 1975 seconds
and, 1382 seconds and in the third iteration it takes
1372 seconds, 1503 seconds, 2967 seconds and
2072 seconds to process Enron, Wikipedia,
Wikilanguage and Wikilinks and dataset
respectively.

Computación y Sistemas, Vol. 24, No. 2, 2020, pp. 669–686
doi: 10.13053/CyS-24-2-3401

Shwet Ketu, Pramod Kumar Mishra, Sonali Agarwal682

ISSN 2007-9737

Having a size of 5GB the all four-benchmark
dataset is taken i.e. Wikipedia, Enron, Wikilinks
and Wikilanguage and its analysis are shown in
figure 15. Varying iterations and processing time in

seconds are taken as constraints in x-axis and y-
axis respectively on the graph.

All the computation is performed on the
Hadoop, which is an On-disk computation model.

Fig. 14. Performance analysis based on the iteration of Distributed K-Means in Hadoop

Fig. 15. Performance analysis based on the iteration of Distributed K-Means in Spark

Fig. 16. Performance analysis based on the iteration of distributed k-means in Hadoop and Spark

0
500

1000
1500
2000
2500
3000

wikipedia enron Gwiki Wlan

Iteration 1 500 460 690 990

Iteration 2 1004 917 1382 1975

Iteration 3 1503 1372 2072 2967

P
ro

ce
ss

in
g

 t
im

e
 i

n

se
co

n
d

s

0
200
400
600
800

1000
1200

wikipedia enron Gwiki Wlan

Iteration 1 515 480 700 1000

Iteration 2 535 501 720 1022

Iteration 3 555 520 740 1041

P
ro

ce
ss

in
g

 t
im

e
 i

n

se
co

n
d

s

0

5000

10000

15000

20000

It1 It2 It3 It5 It7 It9

On Disk 1721 3442 5163 8605 12047 15489

In Memory 1821 1841 1861 1901 1941 1981

P
ro

ce
ss

in
g

 t
im

e
 i

n

se
co

n
d

s

Computación y Sistemas, Vol. 24, No. 2, 2020, pp. 669–686
doi: 10.13053/CyS-24-2-3401

Performance Analysis of Distributed Computing Frameworks for Big Data Analytics: Hadoop Vs Spark 683

ISSN 2007-9737

We calculate processing time elapses in
seconds at each iteration. In iteration one Spark
takes 480 seconds, 515 seconds, 1000 seconds
and 700 seconds to process Enron, Wikipedia,
Wikilanguage and Wikilinks dataset respectively
but in later iterations, Spark takes only 20 more
seconds in subsequent iterations. The cached data
is reused by the Spark so that in later iterations its
performance is enhanced.

After analyzing figure 14 and 15, it is observed
that the performance and speed (based on pro-
cessing time elapse) of Spark is more the Hadoop
because Spark follows In-memory computation
mod-el which is far better than Hadoop’s On-disk
computation model.

The benchmark wiki-language dataset having
40GB of size has been taken for analysis using a
distributed clustering algorithm (distributed K-
means). The distributed K-means clustering
algorithm is developed for both distributed
frameworks (Hadoop and Spark) and its analysis is
shown in figure 16.

Varying iterations and processing time in
seconds are taken as constraints in x-axis and y-
axis respectively on the graph.

All the computation is performed on the Hadoop
and Spark, which are an On-disk, based
computation model and In-memory based
computation model respectively.

We calculate processing time elapses in
seconds at various iteration such as 9 time, 7
times, 5 times, 3 times and 1 time. Spark and
Hadoop take 1721 and 1821 seconds in the first
iteration respectively. In subsequent iterations,
Hadoop takes same as it takes in the first iteration
i.e. 1721 seconds but Spark takes only 20 more
seconds in subsequent iterations.

Due to the feature of In-memory computation,
the Spark reuses the cache data in future
iterations, which enhance the overall performance
as, indicated in the graph.

6 Conclusion

In this research work, a comparative analysis of
Hadoop and Spark has been presented based on
working principle, performance, cost, ease of use,
compatibility, data processing, failure tolerance,
and security. Experimental analysis has also been

performed to observe the performance of Hadoop
and Spark for establishing their suitability under
different constraints of the distributed computing
environment.

From the experimental analysis, it is clearly
observed that the Hadoop, which is an On-disk
computation-based model, is lacking behind in
terms of performance than In-memory based
computation model that is Spark.

It is also visibly proven from the experimental
results that the On-disk based computation is ten
times slower than In-memory based computation.
So, the In-memory based computation model
(Spark) wins the battle which is two times faster
than On-memory based computation model
(Hadoop) and it is also observed that the
algorithmic performance does not depend only on
the size of dataset moreover it depends more on
the richness of the corpus in the given dataset.
Hadoop MapReduce framework is a milestone in
Big Data analytics and it has given a backbone to
technocrats for the development of a new
programming framework.

As a period of time, it is also noticed that the
MapReduce is not capable enough to resolve all
the needs of the distributed environment but still
researchers prefer it for research, experimentation
and data manipulation.

On the other hand, the Spark is up-to-date and
having many additional feature especially In-
memory data processing. Although both
frameworks are equally compatible as per recent
trends, Hadoop MapReduce is better in terms of
cost, security and fault tolerance and most suitable
for platforms for batch processing while Spark is
more suitable for real-time data processing. In the
future, these frameworks and some new one like
shark may be tested more rigorously on an
experimental basis for establishing their impact
and suitability.

References

1. Jacobs, A. (2009). The pathologies of big data.
Communications of the ACM, Vol. 52, No. 8, pp.
36– 44.

2. Zikopoulos, P. & Eaton, C. (2011). Understanding
big data: Analytics for enterprise class Hadoop and
streaming data. McGraw-Hill Osborne Media.

Computación y Sistemas, Vol. 24, No. 2, 2020, pp. 669–686
doi: 10.13053/CyS-24-2-3401

Shwet Ketu, Pramod Kumar Mishra, Sonali Agarwal684

ISSN 2007-9737

3. Kaisler, S., Armour, F., Espinosa, J.A., & Money,
W. (2013). Big data: Issues and challenges moving
forward. 46th Hawaii International Conference on
System Sciences, pp. 995–1004. DOI: 10.1109/
HICSS.2013.645.

4. Spark (2013). https://Spark.apache.org/Intro to
Spark: stanford.edu/~rezab/Sparkclass/ slides/itas_
workshop.pdf

5. Liu, X., Han, J., Zhong, Y., Han, C., & He, X.
(2009). August. Implementing WebGIS on Hadoop:
A case study of improving small file I/O performance
on HDFS. IEEE International Conference on Cluster
Computing and Workshops, pp. 1–8. DOI: 10.1109/
CLUSTR.2009.5289196.

6. YARN (2013). http://hadoop.apache.org/

7. Jiang, L., Li, B., & Song, M. (2010). The
optimization of HDFS based on small files. 3ed
IEEE international conference on broadband
network and multimedia technology (IC-BNMT), pp.
912–915. DOI: 10.1109/ICBNMT.2010.5705223.

8. Mackey, G., Sehrish, S., & Wang, J., (2009).
Improving metadata management for small files in
HDFS. IEEE international conference on cluster
computing and workshops, pp. 1–4. DOI: 10.1109/
CLUSTR.2009.5289133.

9. Xie, J., Yin, S., Ruan, X., Ding, Z., Tian, Y.,
Majors, J., Manzanares, A., & Qin, X. (2010).
Improving mapreduce performance through data
placement in heterogeneous Hadoop clusters.
Processing, Workshops and Phd Forum (IPDPSW),
pp. 1–9. DOI: 10.1109/IPDPSW.2010.5470880.

10. Thanh, T.D., Mohan, S., Choi, E., Kim, S., & Kim,
P. (2008). A taxonomy and survey on distributed file
systems. Fourth International Conference on
Networked Computing and Advanced Information
Management, Vol. 1, pp. 144–149. DOI: 10.1109/
NCM.2008.162.

11. Zaharia, M., Chowdhury, M., Franklin, M.J.,
Shenker, S., & Stoica, I. (2010). Spark: Cluster
computing with working sets. HotCloud, Vol. 10, pp.
1–7.

12. Cito, J., Leitner, P., Fritz, T., & Gall, H.C. (2015).
The making of cloud applications: An empirical
study on software development for the cloud.
Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, pp. 393–
403). DOI: 10.1145/2786805.2786826.

13. Cavallaro, G., Riedel, M., Benediktsson, J.A.,
Goetz, M., Runarsson, T., Jonasson, K., &
Lippert, T. (2014). Smart data analytics methods for
remote sensing applications. IEEE geoscience and
remote sensing symposium, pp. 1405–1408. DOI:
10.1109/IGARSS.2014.6946698.

14. Zaharia, M., Chowdhury, M., Das, T., Dave, A.,
Ma, J., McCauley, M., Franklin, M.J., Shenker, S.,
& Stoica, I. (2012). Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster
computing. Proceedings of the 9th USENIX
conference on Networked Systems Design and
Implementation, pp. 2.

15. Vavilapalli, V.K., Murthy, A.C., Douglas, C.,
Agarwal, S., Konar, M., Evans, R., Graves, T.,
Lowe, J., Shah, H., Seth, S., & Saha, B. (2013).
Apache Hadoop Yarn: Yet another resource
negotiator. Proceedings of the 4th Annual
Symposium on Cloud Computing, No. 5, pp. 1–16.
DOI: 10.1145/2523616.2523633.

16. Ketu, S., Prasad, B.R., & Agarwal, S. (2015).
Effect of corpus size selection on performance of
map-reduce based distributed k-means for big
textual data clustering. Proceedings of the Sixth
International Conference on Computer and
Communication Technology, pp. 256–260. DOI:
10.1145/2818567.2818653.

17. Nandimath, J., Banerjee, E., Patil, A., Kakade, P.,
Vaidya, S., & Chaturvedi, D. (2013). Big data
analysis using Apache Hadoop. IEEE 14th
International Conference on Information Reuse &
Integration (IRI), pp. 700–703. DOI: 10.1109/IRI.
2013.6642536.

18. Gu, L. & Li, H. (2013). Memory or time:
Performance evaluation for iterative operation on
Hadoop and spark. IEEE 10th International
Conference on High Performance Computing and
Communications & IEEE International Conference
on Embedded and Ubiquitous Computing, pp. 721–
727. DOI: 10.1109/HPCC.and.EUC.2013.106.

19. Chen, M., Mao, S., & Liu, Y. (2014). Big data: A
survey. Mobile networks and applications, Vol. 19,
No. 2, pp. 171–209. DOI: 10.1007/s11036-013-
0489-0.

20. Shinnar, A., Cunningham, D., Saraswat, V., &
Herta, B. (2012). M3R: increased performance for
in-memory Hadoop jobs. Proceedings of the VLDB
Endowment, Vol. 5, No. 12, pp. 1736–1747.

21. Thusoo, A., Sarma, J.S., Jain, N., Shao, Z.,
Chakka, P., Anthony, S., Liu, H., Wyckoff, P., &
Murthy, R. (2009). Hive: a warehousing solution
over a map-reduce framework. Proceedings of the
VLDB Endowment, Vol. 2, No.2, pp.1626–1629.

22. Xin, R.S., Rosen, J., Zaharia, M., Franklin, M.J.,
Shenker, S., & Stoica, I. (2013). Shark: SQL and
rich analytics at scale. Proceedings of the ACM
SIGMOD International Conference on Management
of data, pp. 13–24. DOI: 10.1145/ 2463676.
2465288.

Computación y Sistemas, Vol. 24, No. 2, 2020, pp. 669–686
doi: 10.13053/CyS-24-2-3401

Performance Analysis of Distributed Computing Frameworks for Big Data Analytics: Hadoop Vs Spark 685

ISSN 2007-9737

23. Zaharia, M., Das, T., Li, H., Hunter, T., Shenker,
S., & Stoica, I. (2013). Discretized streams: Fault-
tolerant streaming computation at scale.
Proceedings of the twenty-fourth ACM symposium
on operating systems principles, pp. 423–438. DOI:
10.1145/2517349.2522737.

24. Marz, N., Xu, J., & Jackson, J. (2013). Storm.

25. Garg, N. (2013). Apache Kafka. Packt
Publishing Ltd.

26. Owen, S., Anil, R., Dunning, T., & Friedman, E.
(2011). Mahout in action. Manning Publications.

27. WIKIPEDIA (2013). http://wiki.dbpedia.org/

28. CMU (2012). https://www.cs.cmu.edu/~./enron/

29. DBPEDIA.ORG (2014). http://wiki.dbpedia.org/

Article received on30/10/2019; accepted 05/03/2020.
Corresponding author is Shwet Ketu.

Computación y Sistemas, Vol. 24, No. 2, 2020, pp. 669–686
doi: 10.13053/CyS-24-2-3401

Shwet Ketu, Pramod Kumar Mishra, Sonali Agarwal686

ISSN 2007-9737

