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Abstract. In the last one decade, the tremendous growth 
in data emphasizes big data storage and management 
issues with the highest priorities. For providing better 
support to software developers for dealing with big data 
problems, new programming platforms are continuously 
developing and Hadoop MapReduce is a big game-
changer followed by Spark, which sets the world of big 
data on fire with its processing speed and comfortable 
APIs. Hadoop framework emerged as a leading tool 
based on the MapReduce programming model with a 
distributed file system. Spark is on the other hand, 
recently developed big data analysis and management 
framework used to explore unlimited underlying features 
of Big Data. In this research work, a comparative 
analysis of Hadoop MapReduce and Spark has been 
presented based on working principle, performance, 
cost, ease of use, compatibility, data processing, failure 
tolerance, and security. Experimental analysis has been 
performed to observe the performance of Hadoop 
MapReduce and Spark for establishing their suitability 
under different constraints of the distributed computing 
environment. 

Keywords. Big data, parallel processing, distributed 
environments, distributed frameworks, Hadoop 
MapReduce, Spark, big data analytics. 

1 Introduction 

Recently, tremendous growth is seen in 
Information Technology (IT) applications where 
data in terms of various sizes, velocities, and 
veracities have been observed that give the new 
field of research known as big data. Big Data 
scenario motivates re-searchers to work on high-

speed data processing and management schemes 
which are not possible by using traditional 
approaches and demands distributed processing 
infrastructure [1, 2, 3]. 

Hadoop, a framework of a distributed 
processing environment is designed and 
developed for batch processing based on the 
MapReduce programming model. It runs in a 
distributed manner on various systems and can be 
run as well in a standalone mode with full 
potentiality and functionality. It was developed for 
handling the huge amount of data across various 
systems in less time with great performance [4]. 

Spark is also a programming framework just like 
Hadoop but it is designed and developed for real-
time along with batch processing. It works in a fully 
distributed fashion and more powerful to handle 
the big data problems as compared to Hadoop 
MapReduce with the help of its streaming API, 
which pro-vides continues the processing of data 
in terms of short interval batches. In Spark, jobs 
may run continuously till shutdown either by users 
or by any unrecoverable failure. It can also run in a 
standalone environment [5]. 

In this paper, we have performed a comparative 
study of distributed frameworks and find out its 
impact over big data. Spark and Hadoop 
MapReduce frameworks are being used for this 
purpose. Both are capable of big data processing 
in a distributed manner using large datasets. 

The paper is organized as follows: In section II, 
the state of art in the field of the distributed 
framework is discussed. 
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A comparative study is grounded on the 
working principle of Spark and Hadoop 
MapReduce is discussed in section III. In section 
IV, analysis of these frameworks based on various 
parameters are performed and discussed. Section 
V shows the performance evaluation, which is 
observed using the standalone setup of both 
distributed frame-works by using two benchmark 
datasets. Concluding comments with future 
perspective has been presented in the last 
section VI. 

2 State of Art 

In this section, the working principle of Spark and 
Hadoop MapReduce has been discussed in detail, 
as follows: 

2.1 The Hadoop MapReduce Approach 

Hadoop is a MapReduce based distributed 
framework, designed to process the enormous 
volume of data on several nodes or computers. It 
is based on the concept of parallel data processing 
that makes it cost and time effectively. It is based 
on the MapReduce programming model [6]. The 
two pillars of Hadoop are: 

2.1.1 YARN 

YARN represents Yet Another Resource 
Negotiator. It is aimed to provide more features for 
those applications, which are running in a Hadoop 
distributed cluster environment. The key 
functionalities are Memory organization, which 
assigns CPU and storage support to the 
applications that are running on Hadoop distributed 
environment. In the initial versions, YARN was 
absent due to the fact that only MapReduce jobs 
were implemented, but in a more recent version, 
the presence of YARN allows the processing of 
other frameworks media to run on the Hadoop 
distributed environment [7, 8]. 

2.1.2 HDFS 

HDFS represents the Hadoop Distributed File 
System, which empowers the system to perform 
the task in a distributed manner. 

Its works on the principle of by linking of all file 
systems, which are presented at several nodes, 
and merge them into a single file system [8, 9]. 

2.1.3 MapReduce 

A job in Hadoop is made up of mainly two important 
functions, a map function and a reduce function. 
There are many other functions also available in 
Hadoop, which generally perform after the map 
function or in between the map and reduce 
functions. The initial task of the map function is to 
read the chunk of data from HDFS and return into 
(key, value) pairs with their distinct partitions. 

For example, in-text mining, it works as a parser 
and cleaner for the dataset as shown in figure 1 
where the input is partitioned in various mappers 
followed by reducer task in order to perform related 
computations in parallel. It is indicated in figure 1 
that the output coming from the map stage is fed 
into the various reducers. The reducers are now 
read the input in (key, value) pairs and perform the 
computations on it like sum, average, etc. [10, 11]. 

The workflow of nodes in Hadoop is shown in 
figure 2.  

All MapReduce task is divided into three nodes, 
job submission node, Namenode and Slave node 
for successful completion of Hadoop task. Job 
tracker and task tracker are used to tracking the 
MapReduce task and all the operation is performed 

 

Fig. 1. Functioning of map and reduce programming 
model 
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on Datanode, controlled by Namenode. These 
operations are executed in the Slave node. 

2.2 The Spark Approach 

Spark is one of the big data analysis frameworks 
based on the concept of distributed processing. It 
was designed for processing the data in real-time. 

It follows In-memory computing by which the 
processing speed becomes much faster as 
compared to disk-based computing in Hadoop. 
Spark has three language supports, which means, 
it does not follow only one programming language 
or model as Hadoop. By having the support of 
Python, Java, and Scala, it contains algorithms that 
can be developed using these programming 
languages. All the programing language, which is 
supported by Spark, is encapsulated with high-
level APIs enables execution of graph too [11]. 

In addition to this, MLlib supports machine 
learning, Spark SQL is available for handling 
structured data and for handling graph, GraphX 
is used. 

Parallel application development is possible 
using Spark Streaming. The main objective of 
Spark is to perform the task in a distributed either 
for real-time data or for batch data with less time 
obligation [12]. 

RDDs, which stand for Resilient Distributed 
Datasets, are supported by Spark. The data is 
collected from internal storage (HDFS), external 
storage, or a derived dataset formed by other 
RDDs. These RDDs are maintained by inbuilt 
options such as On-disk storage, Serialized data 
(In-memory storage) and Desterilized java objects 
(In-memory storage) [13, 14, 15]. 

In figure 3, an overview of the Spark framework 
is shown along with its collaboration to higher-level 
tools and APIs. 

3 Discussion based on Working 
Principle 

3.1 Working of Map Side Shuffle 

Working of Map side shuffle phase of Hadoop 
MapReduce and Spark is shown in figure 4 
[16, 17]. 

3.1.1 Map Side of Hadoop MapReduce 

Step 1: At each map task the output of data come 
in (Key, Value) pair. 

Step 2: The output is being stored in a buffer 
(circular) rather than writing directly to disk. 

 

Fig. 2. Nodes workflow in MapReduce programming 
model 

 

Fig. 3. Spark framework 
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Step 3: Circular buffer size is approximate 100MB 
and if the buffer size = 80% than the data is spilled. 
This process is called shuffling of spill files. 

Step 4: Many map tasks produces many spill files 
on a specific node. Spill files of single map task (not 
all map tasks) are merged as one file, which is 
organized (sorted), and partitioning is done based 
on the total number of reducer pre-sent. 

3.1.2 Map side of Spark-Initial Design 

3.1.2.1 Initial Design Phase 

Step 1: The output is written to an operating 
system buffer cache. 

Step 2: It will depend upon the operating system 
whether the data will remain on the buffer or it will 
be spilled to disk. 

 

Fig. 4. Map Side: Shuffle phase differences (Hadoop 
vs. Spark) 

 

Fig. 5. Reduce side: Shuffle phase differences (Hadoop 
vs .Spark) 

 

Fig. 6. Programming model workflow of Hadoop and Spark 
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Step 3: Shuffle spill files are created is equal to the 
number of reducers in each map task. It does not 
marge spills files into one big file. 

3.1.2.2 Shuffle Files Consolidation 

Step 1: The output is written to an operating 
system buffer cache. It will depend upon the 
operating system whether the data will remain on 
the buffer or it will be spilled to disk. 

Step 2: Shuffle spill files are created as many as 
the number of reducers in each map task. It does 
not marge spills files into one big file. 

Step 3: The map task is consolidated into a single 
file, which runs on the same cores. Therefore, the 

output generated by each core is as many shuffle 
files as the number of reducers. 

3.2 Working of Reduce side Shuffle Phase 

Working of Reduce side shuffle phase of Hadoop 
MapReduce and Spark is shown in figure 5 [16,17]. 

3.2.1 Reduce Side of Hadoop MapReduce 

Step 1: The intermediate files, which are 
generated at the map side are being PUSHED and 
loaded into the memory. 

Step 2: The data will spill to disk (if buffer = 70%) 

Step 3: After that, the bigger files form from 
merging the spills. 

 

Fig. 7. Iterative workload handling in Hadoop and Spark 

Table 1. Comparison based on performance evaluation 

 Hadoop (MapReduce) Spark 

Data Processing 
MapReduce persists back to the disk 
after a map or reduce action.   

In-memory (all data and computation 
are performed and the result is loaded 
at the end) 

Memory 
Kill the process as soon as a job is 
done and release the memory. 

A lot of memory needed (like standard 
DBs) and keep it safe there until 
further notice. 

Running 
Processes run alongside other 
services too. 

Processes run alone. 

Iterative Computations 
It was designed for one-pass ETL-like 
jobs. 

Give the best result in iterative, the 
same data many times. 
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Step 4: At the end, the reduce method 
gets invoked. 

3.2.2 Reduce Side of Spark 

Step 1: The intermediate files being PULLED 
to Reducer. 

Step 2: In this step, the data is written to memory. 

Step 3: If the data size is large and it does not fit in 
the memory, Out of Memory Exception (OOM) 
occurs but it is being solved in 0.9 and its grater 
version via spilling the data to disk. 

Step 4: At the end, the reduce functionality 
gets invoked. 

Table 2. Comparison based on ease of use 

 Hadoop (MapReduce) Spark 

APIs Support Yes (only Java) Yes (Java, Scala, and Python) 

Language Support Java only Java, Scala, and Python 

SQL Compatibility  Yes (Hive) [23] Yes [Spark SQL (Shark)][24] 

Programming model  Within MapReduce programming model Within user define function 

Inactive mode No (command line) Yes 

Table 3. Comparison based on cost evaluation (on single node) 

 Hadoop (MapReduce) Spark 

Open-source Yes  Yes  

Run-on cloud  Yes  Yes  

Cores  4 8-16 

Memory  24GB 8GB 

Disks  4-6 one-TB disks 4-8 

Network  1 GB Ethernet all-to-all 10GB or more 

Table 4. Comparison based on compatibility measurement 

 Hadoop(MapReduce) Spark 

Support of data sources of 
Hadoop 

Yes Yes 

Support file formats Yes  Yes 

Work with BI tools No  Yes  

Code size (Lines of code) Very Long (due to only java support)  
Less (due to python and 
scala support) 
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Based on the working principle it is clear that 
both frameworks work in a different style but also 
have some common functionality. 

3.3 Programming Model of HADOOP and 
SPARK 

The workflow of Spark and Hadoop MapReduce 
programming models are shown in figure 6. 
MapReduce based programming model is less 

generic than Spark because Spark is based on In-
memory computation model, which makes Spark 
more effective, powerful and easy to use. The 
Hadoop work on the principle On-disk MapReduce 
programming model that means the data is stored 
on secondary storage. The Hadoop Distributed file 
system (HDFS) is the place where the data is 
stored and where all computation is being 
performed. Due to On-disk computation, the 
processing turns out to be slow in Hadoop, which 

Table 5. Comparison based on data processing 

 Hadoop (MapReduce) Spark 

Data processing Batch (apache mahout) Real-time and batch(Storm or 
Impala and Giraph)  

Machine learning libraries  No  Yes  

Table 6. Comparison based on failure tolerance 

 Hadoop (MapReduce) Spark 

Retires per task Yes Yes 

Speculative execution Yes Yes 

Relies on Hard drives Buffers 

Time is taken (Cost) Less More 

Table 7. Comparison based on security 

 Hadoop (MapReduce) Spark 

Security via Use Hadoop’s security policy Sheared secret key and Kerberos 

Security feature vise  Highly reliable Less reliable 

Table 8. Comparison in terms of machine learning support 

 Hadoop (MapReduce) Spark 

Tools Support for machine Learning Mahout [29] MLLib 

APIs Support For Java only Java, Scala, and Python 

Iterative algorithm performance 
(processing speed) 

Slower Very fast (due to In-memory 
computation) 

Support In-memory processing  Yes No 
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consequently increases processing delay and time 
complexity. Hadoop having the support of Java 
language and its linked APIs but Spark have to 
support of three programming languages i.e. 
Scala, Java and Python with its linked APIs [17, 
18, 19]. 

3.4 Better Fit for Iterative Workloads Handling 

Figure 7 shows the iterative workload handling 
models for Hadoop MapReduce and Spark For 
iterative workload handling, Spark is much better 
than Hadoop because it follows In-memory and 
cache-based processing. Cache-based 
processing enables Spark to work efficiently and 
faster for iterative algorithms. It follows In-memory 
based computation by which fetching of data from 
local cache reduces the computation time and data 
loading time.  

While in Hadoop MapReduce, due to it is on 
disk computation through HDFS, it is not possible. 
Hence, it is clear that for iterative computation, 
Spark is more powerful and faster than Hadoop 
MapReduce [20]. 

Both the framework has its own advantages 
that establish its completeness and usability for 
handling the big data processing. 

4 Comparison of Hadoop and Spark 

A comparative analysis based on resource 
utilization and application scope of Hadoop 
MapReduce and Spark have been performed to 
highlight their similarities and dissimilarities [21]. 

4.1 Analysis based on Resource Utilization 
(Hadoop vs Spark) 

4.1.1 Performance 

From the table 1, it is clear that when all data fits in 
the memory (buffer memory) the performance of 
the Spark is better and when the data does not fits 
in the memory and it is needed to run other 
services along with the main process, the 
performance of the Hadoop MapReduce would be 
excellent [22]. 

Table 9. Comparison in terms of ETL support 

 Hadoop (MapReduce) Spark 

ETL tools support Yes (Pig, Cascading, Oozie) [21] Yes (Native RDD programming 

{Scala, Java, Python}) [21] 

ETL Workflow  High-level ETL workflow Spork is used  

Cascading level High level Support only Spark- scalding  

Table 10. Comparison in terms of SQL support 

 Hadoop (MapReduce) Spark 

Engine Hive [23] Spark SQL [25] 

Language HiveQL 
HiveQL and RDD programming 
language (Java, Scala, Python) 

Scale Petabytes Terabytes 

Inter-operability possible  No 
Yes (Can read Hive tables or 
standalone data) 

Formats CSV, JSON, Parquet CSV, JSON, Parquet 
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4.1.2 Ease of Use 

In table 2, it is clearly mentioned that Spark is 
easier in context of programming and its interactive 
mode gives the smooth drive to the users as 
compared to Hadoop, which is quite difficult to 
work in the context of programming and handling 
due to its command line mode. 

4.1.3 Cost 

From table 3, it is clear that the Spark is more cost-
effective than Hadoop MapReduce according to 
benchmarks. In respect to memory, the Hadoop 
require more due to its On-disk computation rather 
than Spark. 

4.1.4 Compatibility 

Both Spark and Hadoop MapReduce are the same 
in reference to data types and data sources, which 
are mentioned in table 4. 

4.1.5 Data Processing 

Hadoop is developed for batch processing but for 
real-time processing, Hadoop requires additional 
platforms. Spark is developed for both batch and 
real-time processing and there is no need for 
external platforms. Table 5 also indicates that 
machine learning libraries are also missing in 
Hadoop MapReduce. 

4.1.6 Failure tolerance 

From table 6, it is clear that the Spark and Hadoop 
MapReduce both retires per task and follows 
speculative execution. However, MapReduce 
starts on the hard drives, which give an advantage 
to Hadoop over Spark.  

In Hadoop, if the process crashes in the middle 
of its execution, it restores current execution status 
next time. However, in Spark, this feature is absent 
and it starts the process from the very beginning 
due to that time complexity increases. 

4.1.7 Analysis based on Resource Utilization 
(Hadoop vs Spark) 

In the context of big data handling, the Spark is 
less secure than Hadoop. Hadoop MapReduce 
pro-jects are considered more reliable than Spark 
as shown in table 7. 

4.2 Analysis based on Application Scope 
(Hadoop vs Spark) 

4.2.1 Machine Learning Support 

Table 8 shows the machine learning a feature-
based comparison of both the frameworks for 
batter understating and suitability in Big Data 
analytics. Both frameworks having machine 
learning tools but Hadoop has only Java API 
support and it runs slowly with the iterative 
algorithm in turns of processing speed because it 
does not follow In-memory computation. 

Table 11. Comparison in Terms of Streaming Support 

 Hadoop (MapReduce) Spark 

Stream Processing / 

Real-Time processing 

Storm [27] 

Kafka [28] 
Spark Streaming [26] 

Processing of live data streams 
possible 

No Yes 

Streaming API support  For Java only Java, Scala, and Python 

Real-time lookups 
NoSQL (Hbase, 

Cassandra...etc.) 

No Spark component. 

But Spark can query 

data in NoSQL stores 
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4.2.3 SQL Support 

Table 10 shows the SQL support-based 
comparison of both the frameworks for better 
understating, suitability and richness in terms of 

features. Both frameworks having SQL supporting 
tools but Hadoop SQL tool Hive works slow and 
having fewer features as compared to Spark. In 
terms of scalability, the Spark has terabytes 
support, which is very less than the Hadoop [25]. 

Table 12. A quick lookup of what has whatnot 

Functionalities Hadoop (MapReduce) Spark 

Operational Principle 
Distributed Compute + Distributed 

Storage 
Only Distributed Compute 

Computation type Based on MapReduce Widespread computation 

Storage area Typically, data on HDFS (On-disk) Both In-memory and On-disk 

Iterative support Not ideal for iterative workload 
Perform Efficiently   at Iterative 

workloads 

Coding support Java supported, Compact code 
Java, Scala, and Python 

supported, Compact code 

Process support Batch process only 

Batch and Real-time process 
both (work Up to 100x faster in 
In-memory and 2x - 10x faster 

on On-disk) 

Hadoop and YARN capability Yes Yes 

The flexibility of the programming 
model 

Less flexible More flexible 

Data size Compatibility Terabytes Gigabytes 

Usability Relatively complex Easy as compare to Hadoop 

Great performance with Large datasets (>= 100GB) 
Small and medium datasets (<= 

100GB) 

Multiple APIs support No (Java only) Yes (Java, Scala, Python) 

Distributed Storage Use HDFS 
Enables Cloud storage such as 

NFS mounts Or Amazon S3 

SQL querying By Hive By Spark SQL 

Machine Learning tools Mahout [29] MLLib [21] 

NoSQL DB Yes (Hbase) No 
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4.2.4 Streaming Support 

In table 11 a comparison based on streaming 
support is discussed. The Spark supports its own 
Spark streaming but Hadoop uses the Strom and 
Kafka for stream and real-time processing 
respectively. For live data streams, the processing 
is possible only in Spark. In context to APIs, for 
streaming Hadoop has java support and, on 
another hand, Spark has Java, Scala, and Python 
support. For real-time lookup, NoSQL is used 
in Hadoop. 

A quick evaluation of distributed programming 
framework on the basis of key features, 
functionally and use cases is achieved and 
deliberated in below table 12. 

Key feature-based analysis of Spark and 
Hadoop is shown in table 13 and table 
14 respectively.  

The table demonstrations that Hadoop has a 
broader range of business platforms, better 
scalability, and broader application space, while 
Spark supports three languages, easy to adapt, 
and has outstanding computational abilities. 

5 Experimental Evaluation 

The experimental analysis is based on mainly 
three algorithms such as world count, logistic 
regression and distributed K-Means clustering. All 
experiments have been performed using four 
benchmark datasets which are: Wikilinks [30], 
Wikilanguage [30], Wikipedia [32] and Enron [31] 
dataset in Pseudo-Distributed Mode. The 
experimental settings and hardware required to 
perform the experiments on a single node (Pseudo 
Distributed Mode) are given in Table 14. 

Table 13. Spark Key features 

Key features Explanation 

Ease of Growth 
 Having the support of Scala, Python and Java language 

 Having quick and easy APIs support 

Performance (In-memory) 
 It follows the RDDs file system 

 It enables DAGs Unify Processing 

Joint Workflow  Shark, Streaming, ML and GraphX support is enabled here 

Table 14. Hadoop MapReduce Key features 

Key features (Hadoop MapReduce) Explanation 

Unlimited Scalability 

 For all users 

 For all applications 

 For all Data sources  

Enterprise Platform 

 More Reliable  

 Healthier Security 

 Offer Multi-tenancy 

Wide Range of Applications 

 Files 

 Database  

 Semi-structured  
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5.1 Analysis Using Word Count 

For this experimental evaluation, two benchmark 
datasets i.e. wiki-links and wiki-language have 
been taken in various combinations of sizes 
(500MB- 10GB) and iterations. The processing 

time of these various groupings of data sizes over 
Hadoop MapReduce and Spark is recorded. A 
word count algorithm with the varying data sizes 
has been taken for evaluation. Based on the 
results obtained, a comparative analysis is 
presented here.  

 

Fig. 8. Variation in data size over processing time in seconds on wikilinks dataset 

 

Fig. 9. Variation in data size over processing time in seconds on wikilanguage dataset 

 

Fig. 10. Logistic regression performance in Hadoop and Spark on wikilinks dataset 
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The suitability and performance of these 
distributed frameworks are also shown with the 
help of graphs. 

The figure 8 and 9 show the performance of 
Hadoop MapReduce and Spark based on the 
variation of data sizes over time using word 
count algorithm. 

Two benchmark datasets, wikilinks, and 
wikilanguages have been considered for 
experimental evaluation and various combination 
of data sizes such as 500MB, 1GB, 2.5GB, 5GB, 
10GB, 20GB, and 40GB have been used to see the 
performance of Hadoop and Spark frameworks 
with regard to the processing time. 

 

Fig. 11. Logistic regression performance in Hadoop and Spark on wikilanguage dataset 

 

Fig. 12. Data size variation over processing time on wikilinks dataset 

 

Fig. 13. Variation in data size over processing time on wiki-language dataset 
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After plotting a graph, it is clear that Spark is 
better than the Hadoop MapReduce due to its In-
memory processing capability that is absent in 
Hadoop MapReduce disk-based processing. 

5.2 Analysis Using Logistic Regression 

For further analysis based on logistic regression 
algorithm the same benchmark datasets, i.e. 
wikilinks and wiki-language have been taken. The 
analysis is purely based on iterations rather than 
various combinations of data sizes. Time taken on 
each level of iterations over Hadoop MapReduce 
and Spark is recorded.  

A logistic regression with varying iterations 
based on processing time has been taken for 
evaluation. Based on the results obtained, a 
comparative analysis is presented here. The 
performance and suitability of these distributed 
model-based frameworks are also shown through 
the help of graphs. 

The figures 10 and 11 shows processing time-
based performance evaluation of the logistic 
regression algorithm at various iterations. In the 
shown graph, the x-axis indicates various iterations 
and the y-axis indicates the processing time taken 
by the algorithm in seconds.  

For performing the logistic regression, a 
dataset, which has the size of 40GB, has been 
used. The two-benchmark dataset wiki-links and 
wiki-language are used here. All the computation 
is performed on Spark and Hadoop frameworks. 
On various iteration sizes, which are 1, 5, 10, 20, 
30, and 40 times have been used to evaluate 
performance based on processing time over the 
existing distributed frameworks. 

On wiki-link dataset, Hadoop takes 97 sec in 
every iterative cycle and Spark takes 133 sec in the 
first iteration but for later iterations, it takes only 6 
sec. Due to the feature of In-memory computation, 
the Spark reuses the cache data in future 
iterations, which enhance the overall performance 
as, indicated in figure 10. 

On wiki-language dataset, Hadoop takes 120 
sec in every iterative cycle and Spark takes 169 
sec in the first iteration but for later iterations, it 
takes only 7 sec more as shown in figure 11. 

5.3 Analysis Using Distributed K-Means 
Clustering Algorithm 

The experimental evaluation of distributed K-
Means clustering is performed using Hadoop 
MapReduce and Spark frameworks. Four 
benchmark datasets i.e. Wiki language, Wikilinks, 
Enron and Wikipedia dataset are used so far. 
Various combinations of data sizes and increased 
number of iterations are used for result findings 
based on their processing time. To obtain more 
generalized results the performance and behavior 
of both frameworks are exhaustively observed. 

Wiki-links dataset with different combinations of 
sizes (500MB to 10GB) has been shown in figure 
12. The processing time (in seconds) of various 
data sizes i.e. 500MB, 1GB, 2GB, 5GB, and 10GB 
is analyzed by using both distributed frameworks, 
which is shown in the graph After analyzing the 
graph, it is clearly visible that performance (based 
on processing time elapse) of Spark is better than 
the Hadoop MapReduce. 

The wiki-language dataset with different 
combinations of sizes (500MB to 10GB) has been 
shown in figure 13. The processing time (in 
seconds) of various data sizes i.e. 500MB, 1GB, 
2GB, 5GB, and 10GB is analyzed by using both 
distributed frameworks, which is shown in 
the graph.  

After analyzing the graph, it is clearly visible that 
performance (based on processing time elapse) of 
Spark is better than the Hadoop MapReduce. 

Four benchmark datasets having the size of 
5GB each is taken i.e. Wikipedia, Enron, Wikilinks 
and wiki language and its analysis is shown in 
figure 14. Varying iterations and processing time in 
seconds are taken as constraints in x-axis and y-
axis respectively on the graph.  

All the computation is performed on the 
Hadoop, which is an On-disk computation model. 
We calculate the processing time elapses in 
seconds at each iteration. In iteration one the 
Hadoop takes, 460 seconds, 500 seconds, 990 
seconds and 690 seconds., In the second iteration 
it takes 917 seconds, 1004 seconds, 1975 seconds 
and, 1382 seconds and in the third iteration it takes 
1372 seconds, 1503 seconds, 2967 seconds and 
2072 seconds to process Enron, Wikipedia, 
Wikilanguage and Wikilinks and dataset 
respectively.  
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Having a size of 5GB the all four-benchmark 
dataset is taken i.e. Wikipedia, Enron, Wikilinks 
and Wikilanguage and its analysis are shown in 
figure 15. Varying iterations and processing time in 

seconds are taken as constraints in x-axis and y-
axis respectively on the graph. 

All the computation is performed on the 
Hadoop, which is an On-disk computation model. 

 

Fig. 14. Performance analysis based on the iteration of Distributed K-Means in Hadoop 

 

Fig. 15. Performance analysis based on the iteration of Distributed K-Means in Spark 

 

Fig. 16. Performance analysis based on the iteration of distributed k-means in Hadoop and Spark 
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We calculate processing time elapses in 
seconds at each iteration. In iteration one Spark 
takes 480 seconds, 515 seconds, 1000 seconds 
and 700 seconds to process Enron, Wikipedia, 
Wikilanguage and Wikilinks dataset respectively 
but in later iterations, Spark takes only 20 more 
seconds in subsequent iterations. The cached data 
is reused by the Spark so that in later iterations its 
performance is enhanced. 

After analyzing figure 14 and 15, it is observed 
that the performance and speed (based on pro-
cessing time elapse) of Spark is more the Hadoop 
because Spark follows In-memory computation 
mod-el which is far better than Hadoop’s On-disk 
computation model. 

The benchmark wiki-language dataset having 
40GB of size has been taken for analysis using a 
distributed clustering algorithm (distributed K-
means). The distributed K-means clustering 
algorithm is developed for both distributed 
frameworks (Hadoop and Spark) and its analysis is 
shown in figure 16. 

Varying iterations and processing time in 
seconds are taken as constraints in x-axis and y-
axis respectively on the graph. 

All the computation is performed on the Hadoop 
and Spark, which are an On-disk, based 
computation model and In-memory based 
computation model respectively. 

We calculate processing time elapses in 
seconds at various iteration such as 9 time, 7 
times, 5 times, 3 times and 1 time. Spark and 
Hadoop take 1721 and 1821 seconds in the first 
iteration respectively. In subsequent iterations, 
Hadoop takes same as it takes in the first iteration 
i.e. 1721 seconds but Spark takes only 20 more 
seconds in subsequent iterations. 

Due to the feature of In-memory computation, 
the Spark reuses the cache data in future 
iterations, which enhance the overall performance 
as, indicated in the graph. 

6 Conclusion 

In this research work, a comparative analysis of 
Hadoop and Spark has been presented based on 
working principle, performance, cost, ease of use, 
compatibility, data processing, failure tolerance, 
and security. Experimental analysis has also been 

performed to observe the performance of Hadoop 
and Spark for establishing their suitability under 
different constraints of the distributed computing 
environment.  

From the experimental analysis, it is clearly 
observed that the Hadoop, which is an On-disk 
computation-based model, is lacking behind in 
terms of performance than In-memory based 
computation model that is Spark.  

It is also visibly proven from the experimental 
results that the On-disk based computation is ten 
times slower than In-memory based computation. 
So, the In-memory based computation model 
(Spark) wins the battle which is two times faster 
than On-memory based computation model 
(Hadoop) and it is also observed that the 
algorithmic performance does not depend only on 
the size of dataset moreover it depends more on 
the richness of the corpus in the given dataset. 
Hadoop MapReduce framework is a milestone in 
Big Data analytics and it has given a backbone to 
technocrats for the development of a new 
programming framework. 

As a period of time, it is also noticed that the 
MapReduce is not capable enough to resolve all 
the needs of the distributed environment but still 
researchers prefer it for research, experimentation 
and data manipulation. 

On the other hand, the Spark is up-to-date and 
having many additional feature especially In-
memory data processing. Although both 
frameworks are equally compatible as per recent 
trends, Hadoop MapReduce is better in terms of 
cost, security and fault tolerance and most suitable 
for platforms for batch processing while Spark is 
more suitable for real-time data processing. In the 
future, these frameworks and some new one like 
shark may be tested more rigorously on an 
experimental basis for establishing their impact 
and suitability. 
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