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Performance Analysis of Equalized OFDM
Systems in Rayleigh Fading

Ming-Xian Chang, and Yu T. Su, Member, IEEE

Abstract—Channel estimation is usually needed to compensate
for the amplitude and phase distortions associated with a received
orthogonal frequency-division multiplexing (OFDM) waveform.
This paper presents a systematic approach for analyzing the
bit-error probability (BEP) of equalized OFDM signals in
Rayleigh fading. Closed-form expressions for BEP performance
of various signal constellations [phase-shift keying (PSK), differ-
ential phase-shift keying (DPSSK), quaternary phase-shift keying
(QPSK)] are provided for receivers that use a linear pilot-assisted
channel estimate. We also derive the optimal linear channel esti-
mates that yield the minimum BEP and show that some previous
known results are special cases of our general formulae. The
results obtained here can be applied to evaluate the performance
of equalized single-carrier narrowband systems as well.

Index Terms—Error analysis, frequency division multiplexing,
gain control.

I. INTRODUCTION

ORTHOGONAL frequency-division multiplexing
(OFDM) is a promising candidate technique for

high speed transmissions in a frequency-selective fading envi-
ronment [1]. By converting a wideband signal into an array of
properly-spaced narrowband signals for parallel transmission,
each narrowband OFDM signal suffers from frequency-flat
fading and, thus, needs only a one-tap equalizer to compensate
for the corresponding multiplicative channel distortion.

One popular method to estimate the multiplicative channel
response (CR) is to insert pilot symbols among transmitted data
symbols [2]–[9]. Though many pilot-assisted channel estima-
tion algorithms have been suggested, there still lacks a gen-
eral analysis for the associated bit-error probability (BEP) per-
formance. This paper presents a systematic approach for eval-
uating the BEP performance of OFDM receivers in Rayleigh
fading when a linear pilot-assisted channel estimate is used.
These BEP expressions are functions of the average bit signal
energy to noise level ratio (SNR), and some corre-
lation coefficients that depend on the true channel statistic and
the estimation method used. Our derivations are based on the
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facts that Rayleigh fading is resulted from a zero-mean com-
plex Gaussian CR process and a linear pilot-assisted channel
estimate is a linear function of the true CRs at pilot symbol loca-
tions. Using our general result, we are able to derive the optimal
linear channel estimate that provides the best BEP performance.

The rest of this paper is organized as follows. Section II pro-
vides a mathematical model of an OFDM system in Rayleigh
fading and gives a brief descriptions of some CR estimation al-
gorithms. Section III contains our BEP analysis for phase-shift
keying (PSK), differential PSK (DPSK) and quadrature ampli-
tude modulation (QAM) constellations while Section IV deals
with the BEP performance for general linear channel estimates.
Section V gives some numerical examples based on our anal-
ysis. Finally, Section VI summarizes our main results.

II. SYSTEM MODEL AND CHANNEL ESTIMATE ALGORITHMS

A. Signal and Channel Models

A baseband OFDM signal during theth symbol interval can
be expressed by

(1)

where denotes the number of narrowband channels,
, being a symbol duration and represents the

data symbol of the th subchannel in the th time interval.
The values assumes depend on the signal constellation
format. For example, quaternary phase-shift keying (QPSK) is
represented by the set while the rectangular
16-QAM is the set . The corresponding
sampled version of is equal to the inverse discrete Fourier
transform (IDFT) of , i.e.

(2)

A guard time of s is usually inserted such that the
resulting waveform during theth “extended” symbol interval
becomes (3), shown at the bottom of the next page, where

. is further modified by a pulse shaping filter,
yielding a transmitted baseband waveform that can be expressed
as , where is of duration and unit power. The
corresponding received baseband signal is then given by

(4)
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Fig. 1. A typical pilot symbol distribution in the time-frequency plane of
an OFDM system.r andr are the numbers of data symbols between two
neighboring pilot symbols in the time and frequency domains, respectively.
The parameter values for this distribution arer = 4 andr = 1.

where is the number of paths of the channel, and
are the the delay and the complex fading envelope of theth
path and , and being indepen-
dent lowpass white Gaussian noise processes with the same flat
spectral density (W/Hz).

is filtered by a matched filter and sampled at sam-
ples/second. Removing those samples in guard intervals and
performing DFT on , we obtain

(5)

where is a zero-mean com-
plex Gaussian random variable with independent in-phase
and quadrature phase components and identical variance

. Furthermore

(6)

represents the corresponding channel effect (response).
Equation (5) implies that, if is perfectly known, the

maximum-likelihood (ML) receiver would select the signal
point in the constellation that is closest to .
When the true CR is not known, the receiver needs a CR
estimate to make a symbol decision. A practical solu-
tion, as mentioned before, is to insert pilot symbols at some
predetermined (pilot) locations in the time-frequency plane
(see Fig. 1), where the ( )th location denotes the th
channel and the th time interval. Usually, a receiver would
first estimate the CRs at pilot locations and then, based on this

information, obtain CR estimations at other (data symbols)
locations through interpolation.

B. CR Estimates at Pilot Locations

1) The LS Method:One obvious CR estimate at a pilot lo-
cation ( ) is the least-squares (LS) estimate [2]

(7)

where is the error term due to the presence of noise
whose conditional variance is

. The corresponding vector representation of (7)
is given by

(8)

where bold face lowercase letters are vectors of the corre-
sponding terms in (7) and is a diagonal matrix with pilot
symbols s as its diagonal elements. We shall use bold face
uppercase and lowercase letters to denote matrices and vectors
throughout our discussion.

2) Linear Minimum Mean-Squared Error (LMMSE)
Method: A more elaborate method that is capable of reducing
the effect of is the LMMSE method [2]–[5]. Based on
the estimated channel autocorrelation matrix and the noise
variance , this method yields the following CR estimation
vector at the pilot locations [3]

(9)

where represents the Hermitian of.

C. CR Estimates at Data Locations

1) Polynomial Interpolation:After the CRs at pilot loca-
tions are obtained, either by the LS or LMMSE method, the CRs
at data locations can then be estimated by various interpolation
methods [5]. For example, if we have three pilot CR estimates,

, and of a given subchannel, we need to the find the
coefficients of the degree-2 polynomial

(10)

such that , and . The
coefficients ( ) can be obtained by solving the Lagrange
interpolating polynomial

(11)

2) Model-Based Estimate:The CRs at data locations can
also be estimated by applying regression surface model to
LS-estimated CRs of pilots [8], [9]. The model-based approach
divides the time-frequency plane into blocks of the same basic

(3)
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structure and finds a nonlinear two-dimensional surface that
best fits the CRs of the pilot locations within a block. The
noise effect of LS-estimated pilot CRs is greatly reduced by
this solution. Furthermore, this approach does not need channel
information such as the channel autocorrelation matrix and the
noise level .

3) General Linear CR Estimate:Although estimating the
CRs at data locations may involve a nonlinear interpolating
polynomial, e.g., (10), the derived data CR estimate, e.g., (11),
is still a linear combinations of LS- or LMMSE-estimated pilot
CRs. Since each LMMSE-estimated pilot CR is also a linear
function of the LS-estimated pilot CRs [see (9)], the resulting
data CR estimate is a linear function of the LS-estimated pilot
CRs. This conclusion is also valid for the model-based CR
estimate [8], [9] and other modified algorithms based on the LS
or LMMSE method. In summary, for a general class of linear
channel estimates, we can express the CR estimate as

(12)

where is the noise component in and
can be viewed as the channel estimate in the absence of noise.
The weighting vector is a function of both the pilot CR esti-
mation algorithm and the interpolation method.

III. BEP ANALYSIS

Throughout our analysis, we shall assume that the true CR,
, is a bandpass wide sense stationary zero-mean complex

Gaussian process so that at a given location, (),
is Rayleigh distributed and is uniformly distributed
within . We begin with BEP analysis for systems with
a channel estimate that can also be modeled as a bandpass
stationary zero-mean complex Gaussian process. Dropping the
time and frequency indices for convenience, we have

(13)

(14)

where is the true CR and is the estimated CR. The equation
, as can be seen from (12), decomposesinto the

noise-absent estimate and the noise component . The ad-
ditive white Gaussian noise (AWGN) is complex Gaussian
distributed with zero mean and variance . Be-
cause is a function of noise samples at pilot locations while

is the noise component at a data symbol location,is inde-
pendent of . On the other hand, is a linear combination of
LS-estimated CRs, which, as can be seen from (7), are complex
Gaussian distributed, it is also complex Gaussian distributed.
We, therefore, conclude that , , and are all Gaussian

distributed, and are Rayleigh distributed and and
are uniformly distributed in .

Invoking the general Rayleigh fading process assumption,,
are independent and identically distributed (i.i.d.) processes

with

(15)

we can show that , are also i.i.d. processes (see
Appendix A) with

(16)

(17)

Re (18)

Im (19)

The correlation coefficients and average SNR per bit are de-
fined, respectively, as

(20)

(21)

where denotes the number of bits represented by one symbol.
For example, for QPSK, for 16-QAM.

Note that (18) and (19) imply

(22)

and for a reasonably good estimate, i.e., , (22) then leads
to and ( ). Furthermore, the
mean-squared estimation error (MSEE) is

(23)

which is independent of ( ). However, as we will see shortly
that the BEP performance of systems with imperfect channel
estimate does indeed depend on( ). Hence, the MSEE, as
a performance measure, is not necessarily proper in general. An
exception can be found in single-carrier narrowband channels
based on Jakes or similar models in which we have
; see (66).
The joint probability density function (pdf) of ( )

[11] is given by (24), shown at the bottom of the page. Trans-
forming the rectangular coordinate ( ) into the

(24)
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polar coordinate ( ) and making the changes of
variables, , we have in (25).

(25)

The parameters , , and in (25) are functions of the
channel statistic and the CR estimation method used. More
detailed expressions for them will be given in Section IV-A.

Expressing an equalized symbol as

(26)

we notice that is a zero-mean complex Gaussian
random variable whose variance is the same as that of. It can
be shown that is also independent of even though the
phase-shift and are correlated. Using (13) and (14), we
can rewrite (26) as

(27)

A. Binary Phase Shift Keying (BPSK) and QPSK Systems

Coherent BPSK and QPSK receivers base their symbol de-
cisions solely on the phase location of the associated matched
filter output. Equation (27) indicates that such decisions are in-
dependent of . Their respective BEPs conditioned on
a fixed phase error and fading envelope are given
in [15, 10.14a]

(28)

for BPSK and

(29)

for QPSK, where . We can express
the (unconditional) BEPs in a Rayleigh fading channel as

(30)
Substituting (25), (28), and (29) into (30) and using the integral
formula (B.1) of Appendix B, we obtain

(31)

for an OFDM-BPSK system and

(32)

for an OFDM-QPSK system. In the above two equations, (31)
and (32)

(33)

is the average SNR per bit for both BPSK and QPSK systems,
as can be seen from (21).

B. DPSK System (Without Channel Equalization)

The need of channel equalization can be avoided by using
DPSK modulation if the difference of channel-induced phase
rotation remains relatively small during two or more symbol
intervals. The performance of a narrowband DPSK or an
OFDM-DPSK system can also be analyzed by the same
method presented in the above subsection. Neglecting the
subscript denoting the channel number and leaving only the
time index, we have

(34)

where the phase of contains the data information of a
DPSK signal. The parameternow represents the phase differ-
ence between and the pseudo CR estimate

. Comparing (34) with (26) and assuming a Jakes
Rayleigh channel [14], we obtain, from the definitions given by
(15)–(21),

(35)

(36)

(37)

(38)

(39)
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Fig. 2. Constellation of Gray-coded rectangular 16-QAM and the
corresponding I-Q bit mapping.

where denotes the complex conjugate of . Substi-
tuting and into (31) and (32) we have, for differential
BPSK ( ),

(40)

which is the same as (13-34) of [13] and, for differential QPSK
( )

(41)
Note that for slow fading (zero or very small Doppler) channels,

, (40) then becomes

(42)

while (41) is reduced to

(43)

which coincides with (50b) of [16].

C. QAM Systems

This subsection gives the BEP performance analysis of
the rectangular 16-QAM constellation with gray-bit mapping
shown in Fig. 2. The performance of other QAM constellations,
like rectangular 64-QAM or 128-QAM, can be derived in a
similar manner. Unlike PSK or DPSK signals, the performance

of QAM systems does depend on the the distribution of
.

A 16-QAM symbol can be written as
, where , . From (27), we have

the equalized data symbol

(44)

where . If the transmitted symbol is, say,
, then the corresponding bit pattern is 0001 withand

components being 00 and 01, respectively. The conditional
BEPs for the component channels are thus, given by

(45)

(46)

The above equations, (44)–(46) lead to

(47)
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where . We can obtain the conditional BEPs of other
transmitted bit patterns

in a similar manner and the overall conditional BEP is

(48)
where each term on the right hand side is either of the form

(49)

or

(50)

with ,

. As in (30), the BEP is given by

(51)

For the rectangular 16-QAM, the average SNR per bit defined
by (21) becomes

(52)

Substituting (25), (48), and (52) into (51) and using (B.1) in
Appendix B, we obtain (53) shown at the bottom of the page,
where the associated coefficients (sgn )
are listed in in Table I.

The BEP expression of the 16-QAM system in flat Rayleigh
fading derived in [10] involves a few finite-range integrals.
Using the above equation with , , we can obtain a
closed-form expression instead.

IV. PERFORMANCE OFGENERAL LINEAR CHANNEL ESTIMATES

As discussed in Section II-B, a linear pilot-assisted CR esti-
mate can be written as

(54)

TABLE I
COEFFICIENTSASSOCIATEDWITH VARIOUS TERMS IN (53)

where is the vector contains the true CRs at pilot locations
and is the weighting vector that depends on the CR estimation
method.

A. Procedure for Computing BEP

The general procedure for evaluating the BEP of an OFDM
receiver with a linear channel estimate algorithms can be de-
scribed as follows.

1) Derive the weighting vector from the CR estimate used.
2) Evaluate the following parameters:

(55)

(56)

(57)

Re

(58)

sgn (53)
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Im

(59)

where and .
3) Substitute , , and into a proper BEP formula.
To illustrate how the weighting vectoris obtained, we con-

sider the OFDM-16QAM system. The receiver first estimates
the pilot CRs by the LMMSE method (9) then compute the CR
of a data location by using a polynomial interpolation, i.e.,

(60)

where is the vector of the interpolating coefficients. In-
voking the Lagrangian interpolation formula and equating (60)
and (11), we obtain

(61)

Therefore, the final weighting vector for the CR estimateis

(62)

B. Channel Correlation Functions

To evaluate the parameters,, , , , we need to know
channel correlation functions like and . We consider
two classes of Rayleigh channels based on Jakes model [14].
The first class has a maximum Doppler frequencyand an
exponentially distributed delay profile with mean delayand
channel correlation

(63)

where is the Bessel function of the first kind of order zero.
The second class assumes an-tap impulse response

(64)

where and are independent stationary com-
plex zero-mean Gaussian processes with unit variance and
is the relative delay of theth cluster. The discrete version of

this model is equivalent to a special case of the frequency-do-
main model of (6). The resulting channel correlation function is
given by

(65)

For a single-carrier narrowband channel, both (63) and (65)
become

(66)

C. Optimal Linear CR Estimate

As has been shown before, the problem of finding the optimal
linear CR estimate is equivalent to finding a weighting vector
that minimizes the BEP performance. Appendix C shows that,
for BPSK signals, the optimal weighting vector is given by

(67)

where can be any nonzero real number. It is straight-
forward to show that the same conclusion holds for QPSK
signals. For QAM signals, the corresponding has the
same form as (67) but is a constant that depends on
the system and channel parameters. Numerical experiment
has revealed that is in the vicinity of 1 and if

.
In summary, the optimal linear CR estimate has the form of

an LMMSE estimate that combines LS-estimated CRs at pilot
locations by using the optimal weighting vector given by
(67). The complexity of this optimal estimate is very high since
we need to estimate for each location.

D. Perfect Channel Estimation

When the perfect channel estimation is available, we have
, , , and the resulting BEP

performances can serve as the lower bound for the performance
of various OFDM systems in Rayleigh fading channels.

1) PSK Constellation:For this ideal case, both (31) and (32)
reduce to the same BEP expression

(68)

which coincides with the well-known result given by (14-3-7)
of [11].

2) QAM Constellation:As for the rectangular 16-QAM
system, setting , , and in (53) yields

(69)
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Fig. 3. BEP performance of differential BPSK and QPSK systems as functions
of  andf T .

Another way to obtain this lower bound is by noticing that, as a
result of , (26) becomes

(70)

and the corresponding BEP becomes

(71)

where is the BEP of the rectangular 16-QAM system in
AWGN [15]

(72)

Substituting (72) into (71) gives (69).
3) Asymptotic Performance:With perfect CR information,

the asymptotic BEP behaviors of various constellations con-
verge to known results. For both BPSK and QPSK systems, (68)
indicates that for , while for DPSK,

, according to (42) and (43). This is consistent
with (14-3-13) of [11]. In the case of the rectangular 16-QAM
system, (69) reveals that when is large
enough.

V. NUMERICAL EXAMPLES

This section presents some application examples of our BEP
analysis. We first examine cases (Figs. 3–4) in which the BEP
performance depends explicitly on some system or channel pa-
rameters, say or . Then, we consider the other cases
when we must resort to the procedure given in Section IV-A
in order to calculate the BEP performance.

Using (40) and (41), Fig. 3 shows the BEP performance of
DPSK signals in Rayleigh fading, parameterized by , the
normalized Doppler shift. Letting in (40) and (41),

Fig. 4. BEP performance of an OFDM-16QAM system for various values of
� ; � = 0 is assumed.

we find that the corresponding BEPs approach a constant that
depends on . The constants correspond to different
are the error floors in the figure. The behavior of the error floor
level as a function of is predictable as is monotonic
decreasing in the neighborhood of . The fact that the dif-
ference of the error floor levels of differential BPSK and QPSK
systems is an increasing function of can also be predicted
by (40) and (41).

The BEP behavior of an OFDM-16QAM system as a function
of and is plotted in Fig. 4, assuming and .
When , represents the correlation between the true CR
and estimated CR, higher not only results in smaller mean
squared estimation error [see (23)] but smaller BEP as well. In
a time-varying environment, smaller or may be caused by
higher fading rate, less frequent channel estimation (i.e., larger
estimation period) and/or smaller pilot density, which, as ex-
pected, leads to higher BEP floor.

Now consider an OFDM-16QAM system whose receiver
uses the LMMSE method to estimate the pilot CRs and then
obtains the CRs of the data locations by a polynomial interpo-
lation. We consider the time-varying multipath Rayleigh-fading
channel based on (6). The parameter values used are ,

and . All s are independent
stationary complex zero-mean Gaussian processes with unit
variance while the relative path strengths and delays are

, 0.7305, 0.3175, 0.1137, and , 0.1, 0.5,
1 s, respectively. Assuming this receiver knows the correlation
matrix perfectly but not , we depict the BEP performance
in Fig. 5 where denotes the estimated and five pilot
symbols are uniformly inserted in each block with four data
symbols between two neighboring pilot symbols. These curves
indicate that overestimating causes negligible degradation
at smaller s while underestimation leads to much greater
degradation when the true is much larger. It is, therefore,
preferred to assume a larger than the designed operating.

Fig. 6 illustrates the impact of the frequency domain
CR correlation on OFDM-QPSK system explicitly. Let

be the pilot symbol vector at
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Fig. 5. BEP performance of OFDM-16QAM systems using the LMMSE
method and polynomial interpolation; = the estimated and
f T = 2:76 � 10 .

Fig. 6. BEP performance of the OFDM-QPSK system for different normalized
mean channel delay� =T which affects the channel correlation function via
(73).

the th symbol interval. The correlation values for various
components of can be obtained from (63) by setting

(73)

The receiver first estimates the pilot CRsby the LMMSE
method, then interpolates the CRs at data locations
( ) by a polynomial. Fig. 6 plots the BEP
performance for different s, assuming . Smaller
normalized mean channel delay yields larger CR corre-
lation and smaller channel variation in frequency domain, thus
reduce the channel estimation error and improve the system
performance.

The BEP performance of the model-based estimate proposed
in [9], with the same delay profile as the example in Fig. 5, can
also be derived from our analysis. We present some typical per-
formance in Fig. 7, where , are defined in Fig. 1 and

Fig. 7. BEP performance of the OFDM-16QAM system that uses the
model-based channel estimate. The parameters (N ;N ; r ; r ) are defined in
Fig. 1 and Section V,f T = 2:76 � 10 .

are the numbers of pilot symbols in the time and frequency do-
mains per time-frequency block. The 4-tuple ( )
thus completely specify the pilot density and the channel es-
timation period. As expected, increasing pilot density does in-
deed enhance the system BEP performance. Simulation results
are also given to validate the accuracy of our analysis.

VI. CONCLUSION

In this work, we have presented a unified approach for ana-
lyzing the BEP performance of various OFDM systems using
an arbitrary linear pilot-assisted CR estimate. Our analysis can
be applied to estimate the BEP behavior of various signal con-
stellation like QAM, PSK (BPSK, QPSK), and DPSK as long
as the fading process can be modeled as a bandpass stationary
zero-mean complex Gaussian process. Some of the previous
known results become special cases of our general analysis, i.e.,
(40), (42), (43), and (68). The correctness of our analysis is ver-
ified by the fact that the system performance predicted by our
analysis and computer simulation yields almost the same result.
These closed-form BEP formulae enable us to derive the op-
timal linear CR estimate and to easily predict the influence of
both the channel statistics and the CR estimation method on the
system performance.

Finally, we notice that fast channel fading may cause inter-
channel interference (ICI) amongst subchannels. By modeling
the ICI as an equivalent Gaussian noise,, we can also obtain
an estimation of the BEP performance by adding an equivalent
variance term, , the variance of the ICI, to the corresponding
BEP expression, if the variance can be evaluated.

APPENDIX A
CROSS-CORRELATION PROPERTIES OFESTIMATED CRS

From (12), we see that the CR estimate is a linear combination
of the true CRs at pilot locations plus an independent complex
Gaussian noise i.e.

(A.1)
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where is the vector of the
true CRs at pilot locations,
is the weighted vector. In this appendix, for simplicity, we
use single letter subscripts to indicate the locations of pilot
symbols. The real and imaginary parts of are denoted by

and , respectively. The real and imaginary parts of
in (A.1) can be decomposed as and

. The stationarity assumption of the true
CR process implies [12]

where we denote the ( )th entry of a matrix by .
Therefore, we have and

, which implies

(A.2)

and

Hence

(A.3)

Equations (A.2) and (A.3) lead to

(A.4)

Because and are independent, we have

(A.5)

(A.6)

(A.7)

(A.8)

APPENDIX B
DERIVATION OF AN INTEGRAL IDENTITY

We want to establish the identity

(B.1)

where is defined by (25) and . The
change of variable, , , 2, on the first
line of (B.1) yields

(B.2)

The changes of variables, ,
and definition , give

(B.3)

If we define and ,
then can be simplified to
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(B.4)

We now further simplify the two integrals, and .

sgn

sgn

(B.5)

Using the identity , we obtain

sgn

sgn

(B.6)

where the sign function sgn is defined by

sgn (B.7)

Substituting (B.5) and (B.6) into (B.4), we then obtain the de-
sired equation.

APPENDIX C
OPTIMAL LINEAR CR ESTIMATE

Consider an arbitrary linear pilot-assisted CR estimate of the
form (12). To find the optimal CR estimate is equivalent to find
the weighting vector that minimizes the BEP performance.
We shall only derive the optimal for the BPSK system in this
appendix; those for QPSK and QAM signal constellations can
be obtained by analogous procedures as we can see that the BEP
expressions for BPSK, QPSK, and QAM systems, (31), (32),
and (53), all have similar forms.

Rewriting (31) as

(C.1)

taking derivative with respect to and setting it to zero, we
obtain

(C.2)

Substituting

Re

Im

into (C.2), we have

(C.3)

which implies

(C.4)

where is a scalar to be determined. Substituting (C.4) into
(C.3), we have , or , hence,
can be any nonzero real number. The same conclusion holds for
OFDM-QPSK signals. As for OFDM-QAM signals, replacing
(C.1) with (53) and following a similar approach, we find that
the solution of (C.2) is still of the form of (C.4), but now
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depends on other parameters like Doppler frequency, channel
delay spread and . Numerical investigation indicates that
is usually in the vicinity of one.
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