

Performance Analysis of Error Control Codes for Wireless Sensor Networks

Gopinath Balakrishnan†, Mei Yang‡, Yingtao Jiang‡, and Yoohwan Kim*

† Texas Instruments Inc., Dallas, TX 75243
‡ Department of Electrical and Computer Engineering

* School of Computer Science
University of Nevada, Las Vegas, NV 89154

Emails: †gopi@ti.com, ‡{ meiyang, yingtao}@egr.unlv.edu, *yoohwan@cs.unlv.edu

Abstract
In wireless sensor networks, the data transmitted from the sensor
nodes are vulnerable to corruption by errors induced by noisy
channels and other factors. Hence it is necessary to provide a proper
error control scheme to reduce the bit error rate (BER). Due to the
stringent energy constraint in sensor networks, it is vital to use
energy efficient error control scheme. In this paper, we focus our
study on the performance analysis of various error control codes in
terms of their BER performance and power consumption on different
platforms. In detail, error control codes with different constraints are
implemented and simulated using VHDL. Implementation on FPGA
and ASIC design is carried out and the energy consumption is
measured. The error control performance of these codes is evaluated
in terms of Bit Error Rate (BER) by transmitting randomly generated
data through a Gaussian channel. Based on the study and
comparison of the three different error control codes, we identify that
binary-BCH codes with ASIC implementation are best suitable for
wireless sensor networks.
Keywords - Wireless sensor network; Error Control Code; BER;
power consumption.

1. Introduction
The low-cost, rapid deployment, ability of self-organization and

cooperative data-processing, have made wireless sensor networks a
practical solution for a wide range of application areas, including
military and homeland security, health, environment, industry and
commercial, and home [1]. The most significant challenge in sensor
networks is to overcome the energy constraints since each sensor
node has limited energy to consume. Since data transmitted over the
wireless media is vulnerable to corruption by noise, error control
schemes are necessary to keep the Bit Error Rate (BER) low. Due to
the stringent energy constraint, it is impossible to increase the signal
power of the transmitted signal in wireless sensor networks. Hence an
alternative way is to use the error control codes to reduce the BER.
The encoding and decoding circuitry for error control codes may
consume a sizable amount of power. This motivates us to study
energy-efficient error detection/correction codes.

In the literature, there is limited work on energy-efficient error
control schemes for sensor networks and some of them are reviewed
as follows. In [1], it is shown that usage of ARQ is limited for sensor
networks due to the additional retransmission energy cost and
overhead. In [8], convolutional codes are analyzed for power in a
frequency nonselective, slow Rayleigh fading channel. Results show
that the energy required for encoding data is negligible. However,
performing Viterbi decoding on a Strong-ARM processor using a C
compiler is energy-intensive as the average energy consumption per
useful bit grows exponentially with the constraint length of the code
and independent of code rate. Using forward error correction (FEC) is
inefficient if the decoding is performed using a microprocessor, for
which a dedicated onboard Viterbi decoder is suggested [8]. To the
best of our knowledge, study of other error control codes for sensor
networks is not available in the literature.

In [7], the Minimum Energy (ME) coding scheme for sources
with unknown statistics and a new method of code-by-code detection
that can detect and correct certain errors in the received codeword is
proposed. This research combines the modulation with the error
control scheme to minimize power consumption. The on/off key
modulation performance is improved with a ME-Coding. However,
the ME codes have no capability of error correction [7].

To identify energy-efficient error control codes for sensor
networks, in this paper, we study and analyze the performance of
several error control codes. Power consumption in a circuit is directly
proportional to its complexity. In general, the encoder consumes
negligible power when compared to the decoder. Thus, the challenge
is to choose an error control code with less complex decoding circuit.

In our study, we consider two types of codes: linear block codes
and convolutional codes. Linear block codes can be either cyclic or
non-cyclic. Cyclic codes are of interest and importance due to their
rich algebraic structure which has extremely concise specifications
and can be efficiently implemented using simple shift registers [5].
The most widely used cyclic codes for wireless applications are BCH
codes [4]. For the purpose of our study, binary-BCH codes and the
most popular non-binary BCH codes, namely Reed Solomon (RS)
codes, are studied and analyzed. For comparison purpose, we also
studied and analyzed the convolutional code with Viterbi algorithm.

The rest of the paper is organized as follows. Section 2 discusses
the methodology used to conduct the performance analysis. Section 3
presents and compares the BER performance and power consumption
of several error correction codes and identifies the energy-efficient
error control code with the results obtained.

2. Methodology
In this work, we evaluate the power consumption of three

different FEC codes, BCH, RS, and convolution codes on different
platforms. The implementation on general processors may be
inefficient due to the limitation of the compiler and other factors [8].
Hence, we implement the three codes with different constraints using
hardware description language and estimate their power consumption
on FPGA and ASIC. The code with the least power consumption is
identified. All the comparison is based on the assumption of the same
error control performance which is evaluated by the BER test. In the
following, we explain the methods used in our study.
2.1. Implementation of Codes

The three types of error correction codes are implemented using
VHDL. Fig. 1 illustrates the procedure of encoding and decoding in a
communication system, where u is the information word, v is the
codeword, v’ is the received word and u’ is the decoded word. The
encoder circuits of linear block codes and convolutional codes have
simple hardware and are easy to implement. Some of the issues
considered while implementing the decoder circuits are as follows.
• In binary-BCH and RS codes, the Euclid's Algorithm (EA) [9] the

Berlekamp-Massey Algorithm (BMA) [1][5] can be used to
compute the coefficients of error polynomial σ(x) = σ0 + σ1x +
... + σtxt. In EA, all the steps used for computation are identical

and easy to implement in hardware. Hence for efficient hardware
implementation EA is preferred than BMA [6].

• The information received by the receiver shown in Fig. 1 is
quantized before decoding. Depending on the level of
quantization, the decoding can be classified into Hard Decision
Decoding (HDD) or Soft Decision Decoding (SDD) [6]. The
HDD is used when the quantization level is two while SDD is
used for quantization level greater than two. The SDD performs
better than HDD but requires highly complex circuitry [6]. Hence
HDD is implemented to minimize the power in the decoder [6].

Figure 1. Procedure of encoding and decoding in a

communication system.

2.2. Performance Measure
The next step is to measure the error correcting capability of the

implemented codes which is given by BER, which is obtained by the
number of erroneous bits divided by the total number of transmitted
bits. BER is affected by several factors including noise in the
channel, quantization technique used, code rate R, energy per symbol
to noise ratio Es/No and transmitter power level Pout. The code rate is
given by R = k/n, where k is the number of bits at the input of the
encoder and n is the number of bits at the output of the encoder. The
BER is shown to be directly proportional to the code rate and
inversely proportional to energy per symbol noise ratio and
transmitter power level [2].

The encoder encodes the data with code rate R and transmits it
over the noisy channel. If the transmitter power level Pout is
unchanged, then the received energy per symbol E decreases to R*E.
Hence, the BER measured at the input of the decoder is larger than
the BER of the data transmitted without coding [2]. This increase in
BER is overcome by using a decoder that can correct errors. Proper
choice of error correction codes will reduce the BER to several orders
of magnitude. The difference in BER achieved by using error
correction codes to that of uncoded transmission is referred to as
coding gain. The BER test is performed by simulations on Matlab
following the procedure shown in Fig. 1.

First the information bits are generated using a random number
generator. The randomly generated data is then sent to the encoder
circuit and encoded into code words, which are transmitted over the
noisy channel. Before transmitting, the encoded data is modulated
using Phase Shift Keying (BPSK), which is done by mapping 1/0 at
the output of the encoder to -1/+1 of an antipodal baseband signal [3].

To evaluate the performance of the error control codes in the
noisy channel, an Additive White Gaussian Noise (AWGN) channel
is modeled. Adding Gaussian noise to the encoded data is done by
generating Gaussian random numbers with desired energy per symbol
to noise ratio. The variance σ2 of additive Gaussian noise which has
the power spectrum of No/2 Watts/Hz is equal to No/2. If the energy
per symbol Es is set to 1, then we have Es/No = 1/2 σ2 and the
standard deviation σ is given by σ = sqrt(1/2(Es/No)). Hence, the
standard deviation σ with desired Es/No is calculated and used to
obtain a Rayleigh random variable R as shown in Eq. (1).
 R = sqrt(2*σ2*ln(1/1-U)), (1)
where σ2 is the variance of the Rayleigh random variable and U is a
uniformly distributed random number.

The Gaussian random number G obtained by using Rayleigh
random variable R is given by Eq. (2).
 G = µ+R*cos(2*π*T), (2)
where T is a uniformly distributed random number and µ is the mean
of the Gaussian random variable. The generated Gaussian noise is
then added to the encoded bits and transmitted.

The received symbols are quantized and fed to the decoder to
obtain the information bits. Quantization refers to the process of
approximating the continuous set of values with a finite set of values.
As explained in Section 2.1, the 2-level quantization is used to reduce
the complexity of the decoder. In the 2-level quantization, the
received signal is mapped to 0 if the signal level is greater than zero
and mapped to one if the signal level is less than 0. The result
obtained in this way is called hard decision. The hard decision
decoder is used to decode the quantized data which are 1’s and 0’s.

The decoded data is then compared with the corresponding input
given to the encoder and the BER is calculated. The BER of the
uncoded channel is theoretically calculated using Eq. (3).

P(e) = ½ *erfc(sqrt(Eb/No) = Q(sqrt(2Eb/No)). (3)
The performance of the coded and uncoded channels is compared

based on the calculated BER.
2.3. Power Estimation in FPGA Design

The FPGA used for this work is Xilinx Virtex-E XCV200E-
6CS144 [12]. The Xilinx Integrated Software Environment (ISE) 7
along with Xilinx Power (XPower) [12] is used for estimating power.
XPower calculates the power in the design by summing up the power
consumed by each element. The power consumed by each switching
element in the design is given by Eq. (4).
 P = C*V2*E*F, (4)
where P represents the power in mW, C represents the capacitance in
Farads, V represents the voltage in Volts, E represents the switching
activity (average number of transitions per clock cycle), and F
represents the frequency in Hz.
2.4. Power Estimation in ASIC Design

Power estimation in ASIC is studied using Synopsys’s Design
Compiler (DC) and Design Vision [10]. The power analysis in ASIC
is performed in the following procedure. First the VHDL design is
analyzed to check if it uses the synthesizable VHDL subset. Then the
design is elaborated, where the design is built with generic and
technology-independent components like Gates, Flip Flops, MUX,
etc. It is followed by uniquify, where multiple copies of the sub-
design are made whenever it is referred in the upper level of the
hierarchy, and each copy is optimized in a unique way according to
the conditions and constraints. The last step of synthesis is compiling,
where the network generic components is translated into a netlist of
the target library. Compilation can be constrained in terms of power.
The power report is then generated.

3. Performance Analysis
In this section, we present and compare the performance of the

binary-BCH, RS codes, and Viterbi codes in terms of their error
correction capability in bit error rate (BER) and complexity and
power consumption on FPGA and ASIC.
3.1. BER Test

Fig. 2 compares the BER of uncoded channel, binary-BCH and
RS codes. A (n, k, t) binary-BCH and RS code can correct up to t-
errors, where t is directly proportional to the number of parity bits (n-
k) [4]. Hence the performance of various binary-BCH and RS codes
are analyzed by varying n and k and their corresponding energy
consumption is measured. For this purpose, implementation is done
by varying (n-k).

For binary-BCH codes, n is chosen as 31 and k varies in {26, 21,
16, 11}. It is clear from Fig. 2 that the BCH(31,11,5) code, which can
correct up to 5 errors has the lowest BER curve with the highest

Informati
on Source

Modulator

Information
destination

Decoder Demodulator

Encoder

Noisy
Medium

v

v’ u’

Information
Source

u

coding gain of 5 dB and the lowest code rate of 0.355. While the
BCH(31,26,1) code, which can correct up to 1 error has very minimal
coding gain with the highest code rate of 0.839. The BCH(31,16,3)
and BCH(31,21,2) have coding gain of 4 dB and 2 dB with code rate
of 0.516 and 0.677, respectively.

Figure 2. BER of linear cyclic block codes.

Figure 3. BER of convolutional codes.

For RS codes, n is chosen as 31 and k varies in {25, 21, 15, 11}.
Fig. 2 clearly shows that the coding gains of RS codes are not the
same for all the BER. They perform worse than the uncoded channel
for higher values of BER and provide asymptotically high gain at
lower values of BER. From the figure, we can see that using RS
codes for BER of 10-1 or higher results in channel loss while using
them for BER lesser than 10-1 results in extremely high gain. Because
the RS codes correct symbol errors, they are more suitable for
applications with BER lesser than 10-1. For BER lower than 10-1, the
RS(31,11,10) code, which can correct up to 10 symbol error, has the
lowest BER curve with a coding gain of approximately 6 dB and a
minimum code rate of 0.355. While the RS(31,25,3) code capable of
correcting 3 symbol errors has the largest BER curve with a coding
gain of 2 dB and a maximum code rate of 0.806. The RS (31,15,8)
code and the RS (31,21,5) code have coding gain of 4 dB and 3 dB
and code rate of 0.4838 and 0.677, respectively.

Fig. 2 also compares the binary-BCH codes with the RS codes
based on code rates. The binary-BCH codes show a better
performance at higher BER than the RS codes. But for lower BER,
the RS codes perform better than the binary-BCH codes. For

example, considering BCH(31,16,3) and RS(31,15,8) with code rate
0.5, for BER greater than 10-2, the BCH code performs better than the
RS code, while for BER less than 10-2 the RS codes perform better.

Unlike block codes, low BER and large coding gain in (n, k, m)
convolutional codes are achieved not by increasing k and n but by
increasing the memory order m. Hence to analyze the performance of
these codes, various convolutional codes of different memory orders
are implemented and their energy consumption is measured. In this
thesis, simulation is done for convolutional encoders with fixed code
rate R = ½ and by varying memory order m in {3, 4, 5, 6}.

Fig. 3 shows that the coding gain increases with the increased
memory order m. The Viterbi (VIT) (2,1,3), (2,1,4), (2,1,5), and
(2,1,6) codes approximately have a coding gain of 1 dB, 2 dB, 3 dB
and 4 dB, respectively. Convolutional codes implemented using soft
decision decoder improves the coding gain by 3 dB than that
implemented using hard decision decoder [3]. The tradeoff is that soft
decision decoder requires highly complex hardware [6].
3.2. Complexity and Power Analysis in FPGA

0
200
400
600
800

1000
1200
1400
1600
1800
2000
2200
2400

BC
H(15

,11
,1)

BC
H(31

,26
,1)

BC
H(31

,21
,2)

BC
H(31

,16
,3)

BC
H(31

,11
,5)

RS(
15

,11
,2
)

RS
(3
1,2

5,3
)

RS(
31

,21
,5
)

RS(
31

,15
,8
)

RS
(3
1,1

1,1
0)

Vit
(2

,1,
3)

Vit
(2

,1,
4)

Vit
(2
,1,

5)

Vit
(2

,1,
6)

Codes

N
um

be
r o

f S
lic

es

Encoder
Decoder

Figure 4. Complexities of BCH, RS, and Viterbi Codes.

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400
420

BCH(15
,11

,1)

BCH(31
,26

,1)

BCH(31
,21

,2)

BCH(31
,16

,3)

BCH(31
,11

,5)

RS(15
,11

,2)

RS(31
,25

,3)

RS(31
,21

,5)

RS(31
,15

,8)

RS(31
,11

,10
)

Vit(2
,1,

3)

Vit(2
,1,

4)

Vit(2
,1,

5)

Vit(2
,1,

6)

Codes

D
yn

am
ic

 P
ow

er
/b

it
(m

W
)

Encoder(mW)
Decoder(mW)
Error Control

Figure 5. Power consumption in FPGA design.

The complexity of the FPGA implementation is measured by the
number of slices used on Xilinx XCV200E. The slice utilization of
each of the codes obtained from the synthesis report is plotted in Fig.
4. From the figure, it can be inferred that the complexity of the
encoder and decoder circuitry of BCH codes and RS codes increases
linearly with the number of parity bits (n-k) increasing. On the other
hand, the complexity of the Viterbi decoder circuitry increases
alarmingly with memory order m increasing.

It can be observed that the encoder circuit of the convolutional
codes and the binary-BCH codes are less complex than that of the RS
codes. This is because the RS codes use non-binary encoders. For
decoder, the binary-BCH codes have less complex circuit than those
of the RS codes and the convolutional codes. Power estimation of all

the codes using XPower is plotted in Fig. 5. Among all the codes, the
binary-BCH codes consume the least power.
3.3. Power Analysis in ASIC

Power consumption in ASIC design is obtained as explained in
Section 2. The target library used is lsi_10k.db [10]. Fig. 6 shows the
power consumed by the encoder and decoder circuitry of all three
type of codes in ASIC. It is clear that the power consumption in
binary-BCH and RS codes are directly proportional to the number of
parity bits and the power consumption of the convolutional code is
proportional to the memory order m. Also the power consumed by the
decoder circuit is significantly higher than that consumed by the
encoder circuit of all the codes. The decoding of RS codes and
convolutional codes consume significantly larger amount of power
compared to that of the binary-BCH codes. And the binary-BCH
codes consume the least power among all the codes.

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320

BCH(15
,11

,1)

BCH(31
,26

,1)

BCH(31
,21

,2)

BCH(31
,16

,3)

BCH(31
,11

,5)

RS(
15

,11
,2)

RS(
31

,25
,3)

RS(
31

,21
,5)

RS(
31

,15
,8)

RS(31
,11

,10
)

Vit(2
,1,

3)

Vit(2
,1,

4)

Vit(2
,1,

5)

Vit(2
,1,

6)

Codes

Po
w

er
/b

it
(n

W
)

Encoder(nW)
Decoder(nW)
Error Control

Figure 6. Power consumption in ASIC design.
3.4. Power Analysis for Sensor Nodes

In the following, we analyze the power consumption of the
encoding/decoding circuit in a sensor node. As the power
consumption in ASIC implementation is much less than that in FPGA
implementation, we use the power results in ASIC implementation
for the analyze based on TSMC 0.18µm by taking 2.5 times the results
obtained using lsi_10k.db (as we measured through experiments).
The total power consumed in the sensor node for communication
with coded channel is given by Eq. (5) [8].
 E(k,d) = {ET(k,d)+Eencode}+{ER(k)+Edecode}, (5)
where ET is the energy used by the transmitter circuitry, which is a
function of the no. of message bits (k) and the distance between the
sensor nodes (d); ER is the energy used by the receiver circuitry,
which is given by Eelec*k; Eencode and Edecode is the energy used to
encode and decode respectively, which can be obtained from the
results in Section 2.2.

For uncoded channel, the receiving power is same as that of the
coded channel, while the transmission power is given by Eq. (6).
 ET(k,d)=Eelec*k + Eamp*k*d2, (6)
where Eelec is the energy consumed by transmitter/receiver circuit;
Eamp is the energy consumed by the amplifier; k is the no. of message
bits; d is the distance between the sensor nodes. For our analysis d2 is
chosen as 500, k = 1201200, Eelec = 50nJ/bit and Eamp = 100pJ/bit/m2.

Fig. 7 compares the power consumption of the coded channel and
uncoded channel with encoders/decoders implemented in ASIC. It
can be inferred that the power consumed by the binary-BCH codes
and RS codes for coded channel is less than that of the uncoded
channel. While coded channel using convolutional encoder with
Viterbi decoder consumes more power than that of the uncoded
channel. Hence it is clear that convolutional codes are not suitable for
wireless sensor networks.

Fig. 8 clearly shows that the significant amount of power
consumed by the sensor node goes for error control if convolutional
codes are used while power consumed by transceivers dominate the
total power consumption if binary-BCH codes or RS codes are used.

Hence, linear cyclic block codes consume significantly less power
than uncoded channel.

0
100
200
300
400
500
600
700
800
900

1000
1100
1200

BCH(15
,11

,1)

BCH(31
,26

,1)

BCH(31
,21

,2)

BCH(31
,16

,3)

BCH(31
,11

,5)

RS(
15

,11
,2)

RS(
31

,25
,3)

RS(
31

,21
,5)

RS(
31

,15
,8)

RS(
31

,11
,10

)

Vit(2
,1,

3)

Vit(2
,1,

4)

Vit(2
,1,

5)

Vit(2
,1,

6)

Codes

Po
w

er
/ b

it
(n

W
) Coded Channel

Uncoded Channel

Figure 7. Power consumption in sensor node for coded

and uncoded Channels.

0
100
200
300
400
500
600
700
800
900

1000
1100
1200

BCH(15
,11

,1)

BCH(31
,26

,1)

BCH(31
,21

,2)

BCH(31
,16

,3)

BCH(31
,11

,5)

RS(
15

,11
,2)

RS(
31

,25
,3)

RS(
31

,21
,5)

RS(31
,15

,8)

RS(
31

,11
,10

)

Vit(2
,1,

3)

Vit(2
,1,

4)

Vit(2
,1,

5)

Vit(2
,1,

6)

Codes
P

ow
er

/b
it

(n
W

) Error Control/bit

Transceiver/bit
Coded Channel

Figure 8. Power consumption in transceivers and error

control circuitry.

References
[1] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A

survey on sensor networks,” IEEE Communications Magazine, pp. 102-
114, Aug. 2002.

[2] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless
sensor networks: a survey,” Computer Networks: The Int’l Journal of
Comp. and Telecom. Net., vol. 38, no.4, pp.393-422, Mar. 2002.

[3] Chip Fleming, A Tutorial on Convolutional Coding with Viterbi
Decoding, Spectrum applications, Derwood, USA, 1999.

[4] S. Lin and D.J. Castello, Error control coding, Fundamentals and
applications, Premtice-Hall, New Jersey, 1983.

[5] J.L. Massey, “Shift-register synthesis and BCH decoding”, IEEE Trans.
Inf. Theory, vol. 15, pp. 122-127, January 1969.

[6] Robert H. Morelos-Zaragoza, The Art of Error Correcting Coding, John
Wiley & sons, New York, 2002.

[7] Y. Prakash and S.K.S. Gupta, “Energy efficient source coding and
modulation for wireless applications,” IEEE Trans. Inform. Theory, pp.
212-217, Mar. 2003.

[8] E. Shih et al., “Physical layer driven protocol and algorithm design for
energy-efficient wireless sensor networks,” Proc. ACM MobiCom ’01,
Rome, Italy, pp. 272–86, Jul. 2001.

[9] Y. Sugiyama, M. Kasahara, S.Hirasawa, and T. Namekawa, “A method
for solving key equation for decoding Goppa codes,” Inf and Control,
vol. 27, pp. 87-99, 1975.

[10] Synopsys Inc.,
http://www.synopsys.com/products/logic/design_compiler.html.

[11] TSMC Inc., http://www.mosis.org/products/fab/vendors/tsmc/tsmc018.
[12] XILINX, The Programmable Logic Data Book, Xilinx Inc, San Jose,

CA, 2002.

