
Performance analysis of FlexRay-based systems
using Real-Time Calculus, Revisited

Devesh B. Chokshi
Computer Engineering and Networks Laboratory

ETH Zurich
8092 Zurich, Switzerland

devesh.chokshi@tik.ee.ethz.ch

Purandar Bhaduri
Dept. of Computer Science and Engineering

Indian Institute of Technology Guwahati
Guwahati 781039, India

pbhaduri@iitg.ernet.in

ABSTRACT
The FlexRay protocol [4] is likely to be the de facto standard
for automotive communication systems. Hence, there is a
need to provide hard performance guarantees on properties
like worst case response times of messages, their buffer re-
quirements, end-to-end latency (for example, from sensor to
actuator), etc., for FlexRay based systems. The paper [11]
provides an analysis for finding worst case response times
of the messages transmitted on the FlexRay bus, but the
analysis is done using ILP formulation and is thus compu-
tationally expensive. The paper [5] models the FlexRay in
the analytic framework of Real-Time Calculus [12, 3] and
is compositional as well as scalable. In this paper, we show
that the analysis of [5] may lead to results that are over op-
timistic; in particular, we show that obtaining the “upper
service curves” is not trivial and does not follow the reason-
ing of the “lower service curves” which the authors obtain.
We also provide tighter “lower service curves” than that of
[5]. Finally we show that our model allows the messages to
be of variable size which is not the case with [5].

Categories and Subject Descriptors
C.3 [Special-purpose and application-based systems]:
Real-time and embedded systems; C.4 [Performance of
systems]: Design studies and modeling techniques

General Terms
Performance, Design

Keywords
FlexRay, Real-Time Calculus

1. INTRODUCTION
The constraints imposed by application requirements in

the automotive domain lead to complex distributed architec-
tures consisting of multiple electronic control units (ECUs)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’10 March 22-26, 2010, Sierre, Switzerland.
Copyright 2010 ACM 978-1-60558-638-0/10/03 ...$10.00.

communicating via a bus. Applications are partitioned into
tasks mapped onto different ECUs with message passing
between these tasks. Modern high-end cars may contain
around 70 ECUs with up to 2500 messages for communi-
cation between them [5], which leads to bus-based system.
This has led to the development of several communication
protocols like CAN [2], LIN [10], etc.

Communication protocols are broadly classified as time-
triggered (message triggered at specific moments) or event
triggered (message triggered by some event). The main dis-
advantage of time-triggered protocols like TTP [8] is the
lack of flexibility and lower bandwidth utilization, especially
for aperiodic messages, but they have the advantage of pre-
dictability. On the other hand, event-triggered protocols
are more flexible and have high bandwidth utilization. But
the analysis of event-triggered protocols is difficult without
making pessimistic assumptions as they are dynamic, due
to which they pose a challenge for safety-critical systems
which require hard bounds on properties like message re-
sponse time, buffer requirements, end-to-end delay, etc.

Therefore, there is now growing interest in hybrid proto-
cols such as TTCAN [9], Byteflight [7] and FlexRay, that
support both time-triggered and event-triggered communi-
cations. FlexRay is promoted by a large number of auto-
motive companies and is likely to be the de facto standard
for in-vehicle communication. Hence there has been a lot of
interest in performance analysis of FlexRay based systems.

Related work: The paper [11] formally models the
FlexRay bus i.e., both ST and DYN segments. It propose
the techniques of finding worst case response time of the
event-triggered message mapped on to the DYN segment
using the ILP formulation and this problem is shown to be
similar to bin covering problem, and hence this technique is
computationally expensive. The paper also provides certain
pessimistic heuristics to address the issue of scalability.

Using the framework of Real-Time Calculus (RTC), [5]
presents a compositional analysis of FlexRay based systems,
and it can be used to determine various performance criteria
such as worst-case response time of messages mapped onto
the FlexRay bus, end-to-end delay from sensor to actuator,
buffer requirements for the tasks and messages, etc.

Our contribution: In this paper, we show that the anal-
ysis of [5] may lead to overly optimistic results. Particularly,
we show that obtaining the“upper service curves” is not triv-
ial and does not follow the reasoning of the “lower service
curves” which the authors of [5] obtain. We also provide
tighter “lower service curves” than that of [5]. Moreover,
[5] assumes that all the messages are of fixed sizes. But we

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�

Cycle

empty minislots

DYN ST DYN

Cycle

ma

m2

m1, m2, m3 mc

mc

mb

mb m1 m3

ST

ma

waiting time of m3

response time of m3

Figure 1: FlexRay cycles

show that our model allows the messages to be of variable
sizes specified in terms of best case and worst case sizes.
Note that the analysis of the messages mapped onto the ST
segment is known as it is like TDMA, so we discuss how to
analyze DYN messages only in this paper.

2. THE FLEXRAY PROTOCOL
In this section, we show how the messages generated

by ECUs are transmitted on the FlexRay bus. Note that
throughout the paper, we will consider the system model
and assumptions of [5] which we describe here in brief.

In the FlexRay protocol, each communication cycle is
composed of a ST segment and a DYN segment and such a
cycle is repeated periodically. The lengths of ST and DYN
segments may not be equal but they are fixed across com-
munication cycles during the design phase.

The ST segment consists of a fixed number of equal-length
slots. Each such slot is allocated to a particular message and
a message is allowed to be send only during its allocated
slot. If the message is not ready at the beginning of its
allocated slot, then this slot is empty and other messages
are not allowed to be sent in this slot.

The DYN segment consists of equal-length “minislots”.
Messages mapped onto DYN segment are assigned fixed pri-
orities. At the beginning of the DYN segment, the highest
priority message is allowed to be send. The length of such
message can be arbitrary long but it must fit within one
DYN segment. However, if this message is not ready at the
beginning of the slot, then one minislot goes empty. In ei-
ther case, the access is then given to a next- highest priority
message, which is sent if it is ready and if it fits into the re-
maining portion of DYN segment. Otherwise, one minislot
goes empty. This process is repeated for all the messages or
till the end of the DYN segment whichever is early.

As an example, consider the messages ma, mb and mc

mapped onto the ST segment and messages m1, m2 and m3

(m1 has highest priority) mapped onto the DYN segment.
Figure 1 shows two consecutive FlexRay cycles. The arrival
of the message is shown by a downward arrow. Considering
ST messages, in the first cycle, only ma is sent as it is ready
and the slots corresponding to mb and mc go empty. In
the second cycle, mb and mc are sent. Considering DYN
messages, in the first cycle, m1 arrives just after its turn, so
it is not sent in the first cycle, and one minislot goes empty.
Then, m2 is sent. The message m3 is not sent in the first
cycle as it cannot be accommodated in the remaining DYN
segment. In the second cycle, m1 is sent. One minislot goes

α GPC

β

α′

β′

[Eu, El]

Figure 2: Greedy processing component

empty as m2 has not arrived. Then, m3 is sent.

3. REAL-TIME CALCULUS (RTC)
The key concepts in the framework of Real-Time Calcu-

lus [12, 3] are (i) the modeling of the arrival pattern of tasks
(or the event model) which generates demands on the re-
sources, (ii) the modeling of the service offered by the re-
sources to the tasks (i.e., the resource model), and (iii) the
component model (processing semantics). It can be used to
derive hard upper and lower bounds of various performance
criteria such as maximum end-to-end delay experienced by
an event stream or buffer requirements.

Arrival Curves: The event model is captured by the
notion of arrival curves. Let R[s, t) be the number of events
that arrive in the time interval [s, t). Then R, the upper
arrival curve αu and the lower arrival curve αl are related by
αl(t−s) ≤ R[s, t) ≤ αu(t−s), ∀s ≤ t with αl(0) = αu(0) = 0.
We write α = [αu, αl] and call it the arrival curve.

Service curves: The resource model is captured by the
notion of service curves. Let S[s, t) be the number of events
that a resource can service in the time interval [s, t). Then

S, the upper service curve β
u

and the lower service curve β
l

are related by β
l
(t − s) ≤ S[s, t) ≤ β

u
(t − s), ∀s ≤ t with

β
l
(0) = β

u
(0) = 0. We write β = [β

u
, β

l
] and call it the

service curve.
Arrival and service curves can also be described in terms of

the amount of resources, such as the number of processing or
communication cycles, instead of number of events as above.
The resource based service curve β(∆) denotes the resource
units available in any time interval of length ∆. Similarly,
the resource-based arrival curve α(∆) denotes the requests
in terms of resource units that arrive in any time interval of
length ∆.

Greedy Processing Component: In Real-Time Cal-
culus, the greedy processing component (GPC) [3, 13, 6] is
an abstract component that is triggered whenever an event
is available on the input event stream (described by the ar-
rival curve α) and produces a single output event stream
(described by α′). At every event arrival, a task is instan-
tiated to process the incoming event. Events are processed
in a greedy fashion in first-in-first-out order, while being re-
stricted by the availability of processing resources described
by the service curve β.

Let Eu and El denote the execution demand in terms
of the maximum and minimum resource units required for
processing one event. Then the GPC can be modeled as:

α′u = dmin{(αu ⊗ β
u
)� β

l
, β

u}e (1)

α′l = bmin{(αl � β
u
)⊗ β

l
, β

l}c (2)

β′u = max{(βu − αl)�0, 0} (3)

β′l = (βl − αu)⊗0 (4)

where β′ denotes the remaining service available to process
other event streams , and the workload transformations are

β
u

= βu/El, β
l
= βl/Eu, αu = Eu.αu, and αl = El.αl. See

[1] for the definitions of ⊗, �, ⊗, and �. Refer to [3, 13] for
a discussion of these results on the GPC.

The worst case response time WR (time between activa-
tion and completion) experienced by any event on the event
stream and the maximum number of events in the input
queue Buffer can be determined as follows [3, 13]:

WR ≤ Del(αu, β
l
) (5)

Buffer ≤ Buf (αu, β
l
) (6)

where Del(αu, βl) = sup∆≥0{inf{µ ≥ 0 : αu(∆) ≤ βl(∆ +

µ)}} and Buf (αu, βl) = supλ≥0{αu(λ)− βl(λ)}.
The end-to-end response time r experienced by an event

with upper arrival curve αu that is processed on N consec-

utive GPCs with lower service curves β
l

1, . . . , β
l

N is [13]:

r ≤ Del(αu, β
l

1 ⊗ . . .⊗ β
l

N) (7)

4. FLEXRAY MODEL OF [5]
In this section, we briefly describe the model of FlexRay

given by [5] and in section 4.1, we show that obtaining the
upper service offered to a message is not trivial and does
not follow the reasoning of the lower service given by [5]. In
section 5, we revise the FlexRay model of [5].

Suppose there are n messages m1, . . . , mn mapped onto
DYN segment (m1 has the highest priority). For now, as-
sume that message mi requires ki minislots. Let the length
of the DYN segment be k minislots (or d time units) and the
length of the communication cycle be p time units. Each
minislot is ms time units long. Assume that β = [βu, βl]
is the bound on the service (expressed in terms of minislots
in a given time interval) offered by the unloaded DYN seg-
ment (i.e., the total service to all DYN messages). We are
interested in finding out βi = [βu

i , βl
i], which is the service

actually offered to the message mi.
According to [5], to obtain βl

1, i.e. the lower service avail-
able to the highest priority message m1 mapped onto DYN
segment, βl is transformed using the following steps:

1. Extract k1 minislots during each communication cycle
from βl. Nullify the communication cycles containing
less than k1 minislots. This is to model that in any
communication cycle, at most k1 minislots are avail-
able to m1 (as at most one instance of m1 is allowed
to be sent in one DYN segment). See Figure 3(a).

2. Discretize the service obtained from step 1. This is be-
cause a message can not straddle two communication
cycles. See Figure 3(a).

3. Shift the service obtained after step 2 by d time units.
This is to model that if a message is ready just after its
turn, it has to wait for the next communication cycle.
See Figure 3(b).

The other properties (like empty minislot) are considered
later.

 ∆

 #

 m
in

is
lo

ts

p−d p−d+ms.k
1

p 2p−d 2p−d+ms.k
1

2p

k
1

k

2k
1

2k

βl

step1

step2

(a)

∆

m

in
is

lo
ts

p−d+ms.k
1

2p−d+ms.k
1

k
1

2k
1

3k
1

3p−d+ms.k
1

step2

step3

d

d

(b)

Figure 3: (a) Steps 1 and 2 and (b) Step 3 to obtain
βl

1 [5]

4.1 Discussion on the upper service available
to a message

The paper [5] does not discuss on how to obtain the up-
per service available to a message. To obtain the upper
service curve, clearly, step 3 as discussed above is not re-
quired. However, it is not obvious whether one can obtain
upper service curve using the other two steps. We now show
that the upper service curve obtained by using any of the
following two methods will lead to incorrect results:

• Method 1: use steps 1 and 2 as discussed above

• Method 2: use step 1 only as discussed above

actuator

m1
m2

ECU1 ECU2

Tv Tx Ty Tz

sensor

Figure 4: Example system

Consider a system having two ECUs (both use fixed pri-
ority preemptive scheduling) and a FlexRay bus as shown in
Figure 4. Task Tx (highest priority) on ECU1 generates mes-
sage m1 (highest priority) which is mapped onto the DYN
segment of the FlexRay bus. Task Ty (highest priority) on
ECU2 is activated by the reception of m1. Task Tz on ECU2

is activated by the completion of Ty, which sends message
m2 through DYN segment to task Tv. Suppose the FlexRay
cycle length is 10 time units and the DYN segment length
is 7 time units. Assume that the length of one minislot is 1
time unit. Task Tx on ECU1 is activated periodically with
a period of 21 time units, and Tx requires an execution time
of fixed 3 time units. Task Ty requires an execution time of
fixed 2 units. Assume that the length of one processor cycle
is 1 time unit on both ECUs. The size of m1 is 4 minislots.

Upper service using method 1: We now show the
result of using βu

1 as obtained using method 1 in the compu-
tation of outgoing arrival curves. Let the arrival curve of m1

be α1 = [αu
1 , αl

1], which is periodic with period 21. Figure 5
shows the service curves β1 available to m1 (note that βu

1

is calculated using Method 1). The output arrival curve α′1
(shown in Figure 6) of m1 is computed by Equations 1 and
2 using α1 and β1. It can be seen from Figure 6 that αu

1 is
incorrect, as it says that in any time interval of less than 4
units, there can be maximum zero messages in the outgoing
message stream, which is incorrect, because a message can
appear at the output any time, i.e., in any interval of time
0+, there c an be a message at the output. Next, this α′u1 is
used as the incoming arrival curve for task Ty. Using this α′u1
for task Ty, the remaining lower service after processing Ty

is shown in Figure 7 which shows that the remaining lower
service curve after processing Ty is also incorrect, because it
shows that in any interval of 2 time units, minimum service
is 2 cycles, which is not the case because in any interval of
2 time units, lower service is 0 as higher priority task Ty

may be occupying the ECU. Thus, we have shown how the
incorrect α′u1 further introduces errors in the analysis.

4 14 24

4

8

∆

m

in
is

lo
ts

βu

1

βl

1

Figure 5: β1 for the example

Upper service using method 2: If we use method 2 for
obtaining the upper service curve βu

1 , then the upper service
unutilized by m1 (calculated using Eq. 3) comes out to be
incorrect as shown in Figure 8. In reality, in any cycle, either
the entire service available to a message is left unutilized or
it is consumed entirely. But from Figure 8, we see that in the
communication cycle in the interval 10 to 20, only 1 minislot
is unutilized, and thus it is incorrect. Further, this incorrect
service curve will lead to over optimistic analysis when it is
used for obtaining the service available to m2.

4 14 32 53

1

2

3

4

∆

m

es
sa

ge
s

α
′u

1

α
′l

1

Figure 6: α′1 for the example

2 4 6 14

2

4

12

∆

pr

oc
es

si
ng

 c
yc

le
s

β′l
y

Figure 7: β′ly for the example

Note: We defer to the next section the discussion to show
that the lower service curve available to a message given by
[5] results in pessimistic remaining lower service curve, and
we also present a tighter lower service curve than that of [5].

4 10 11 21 24

4

5

8

∆

m

in
is

lo
ts

Figure 8: Upper service unutilized by m1

5. REVISED FLEXRAY MODEL
In this section, we revise the FlexRay model given by [5]

by giving the service curve available to a message.
In contrast to the previous work of [5] in which the mes-

sages are assumed to be of fixed sizes, we assume that mi

requires minimum of kl
i and a maximum of ku

i minislots.
We model the DYN message as shown in Figure 9. This

α′′
i

α′
i

βi

[ku
i , kl

i] [ku
i , kl

i]

β′
i

GPC-C

βF

β′
F

GPC-Wαi

Figure 9: RTC model for message mi

model is based upon the fact that the response time of a mes-
sage consists of a waiting time and a communication time.
The waiting time of a message is the time from its arrival
till it gets access to the bus to start transmission. Figure 1
shows the waiting time for message m3. The communication
time (minislots required/bus speed) is the time the message
takes for transmission once it occupies the bus.

Thus, there are two GPCs (GPC-W and GPC-C) in the
model of any DYN message.

∆

m

in
is

lo
ts

p−d p−d+ms.k
1
u p 2p−d 2p−d+ms.k

1
u 2p

k
1
u

k

2k
1
u

2k
βtl

1

step1

step2

(a)

∆

m

in
is

lo
ts

p−d 2p−d 3p−d

k
1
u

2k
1
u

3k
1
u

step2

step3

d

d

(b)

Figure 10: (a) Steps 1 and 2 and (b) Step 3 to obtain
βl

1 according to our method

Thus, we need to modify the total service available to mi

i.e., βt
i = [βtu

i , βtl
i] to obtain βi = [βu

i , βl
i] in such a way that

GPC-W represents only the waiting time of mi. The com-

munication time of mi will be taken into account by GPC-C
whose incoming service curve βF is the “full service” [13]
with the capacity equal to the bandwidth of the FlexRay
bus.

For the highest priority message m1, βt
1 = β, where β is

the total service offered by the unloaded DYN segment.
To obtain βl

i, we apply the following procedure.

1. Nullify the communication cycles of βtl
i containing less

than ku
i minislots. Extract ku

i minislots from the re-
maining communication cycles. The resulting curve is
βtl

i,1. See Figure 10(a).

2. For each increasing segment of the curve βtl
i,1, discretize

that segment at the point where it starts increasing.
The resulting curve is βtl

i,2. See Figure 10(a).

3. Shift the curve βtl
i,2 by d time units to obtain βl

i. See
Figure 10(b).

∆

m

in
is

lo
ts

ms.k
1
l d p p+ms.k

1
l p+d 2p

k
1
l

2k
1
l
k

3k
1
l

2k
βtu

1

step1

step2

Figure 11: Steps 1 and 2 to obtain βu
1 according to

our method

To obtain βu
i , we apply the following procedure.

1. Nullify the communication cycles of βtu
i containing less

than kl
i minislots. Extract kl

i minislots from the re-
maining communication cycles. The resulting curve is
βtu

i,1. See Figure 11.

2. For each increasing segment of the curve βtu
i,1, discretize

that segment at the point where it starts increasing.
The resulting curve is βu

i . See Figure 11.

Now, the worst case response time of the message is cal-
culated using Eq. 7 with the service curves βl

i and βl
F , and

the arrival curve αi.
The service unutilized by mi, β′i = [β′ui , β′li] is obtained

using Eq. 3 and 4. But this service is specific to message mi

[5]. So we apply inverse of steps 2 (make the discrete curve

10 14 20 21 24

4

8

∆

m

in
is

lo
ts

αu

1

βl

1

βl

1
(DAC07)

Figure 12: Upper arrival curve for m1 and lower
service curves (revised and that of DAC07)

13 23 33 37 43 4717 27

4

8

∆

m

in
is

lo
ts

β′l
1,x

β′l
1,x(DAC07)

Figure 13: Comparison between unutilized service

sloped) and step 3 (shift the curve by d time units in the
reverse direction) to β′li to give β′li,x. We apply inverse of
step 2 (make the discrete curve sloped) to β′ui to give β′ui,x.

To take into account the property of one empty minislot,
we subtract one minislot from each communication cycle of
β′i,x (offering > 0 service) to give β′i,y. (If the service is from
∆ =13 to 17, then service would be from 14 to 17 for the
lower curve and it would be from 13 to 16 for the upper
curve).

The service unavailable to mi [5] is βn
i = [βnu

i , βnl
i] where

βnu
i (∆) = sup0≤λ≤∆{βtu

i (λ)− βtu
i,1(λ)} and βnl

i (∆) =

sup0≤λ≤∆{βtl
i (λ) − βtl

i,1(λ)} (adjust one minislot from the

cycles of βt
i which could not offer required service).

Now the total service available to the next highest priority
message mi+1 is βt

i+1 = βn
i + β′i,y.

Discussion on the lower service offered to the mes-
sage: Again consider the system shown in Figure 4. Figure
12 shows the upper arrival curve for m1 and the lower ser-
vice curve which we derive and that of [5] (note that DAC07
in the figure indicates that the curve is obtained using the
analysis of [5]). It can be seen from this figure that, when
calculating β′l1 (21), the value of βl

1(20) − αu
1 (20) will be 4,

but βl
1(20)(DAC07) − αu

1 (20) will be 0. This value of β′1
will be used in computing β′l1,x. Figure 13 shows β′l1,x (the
service unutilized by m1 after applying the inverse of step 2
and 3) and also its counterpart obtained using the model of
[5]. It can be shown that m1 can not be present during any
two consecutive cycles. We can see from the Figure 13 that
the unutilized service given by [5] is pessimistic as it shows
that during any two consecutive cycles, m1 could have been
present.

6. CONCLUSIONS
In this paper, we revised the analysis of the FlexRay DYN

segment given by [5]. The revised analysis also supports
variable length messages. Our technique of separately con-
sidering “waiting time” and “transmission time” of the mes-
sage can be used in the analysis of other similar protocols.

7. REFERENCES
[1] J.-Y. L. Boudec and P. Thiran. Network Calculus: A

Theory of Deterministic Queuing Systems for the
Internet. LNCS 2050, Springer-Verlag, 2001.

[2] CAN specification, ver 2.0, Robert Bosch GmbH, 1991.

[3] S. Chakraborty, S. Künzli, and L. Thiele. A general
framework for analysing system properties in
platform-based embedded system designs. In Proc. 6th
Design Automation and Test in Europe (DATE),
pages 190–195. IEEE Press, 2003.

[4] FlexRay Communications System Protocol
Specification, Ver 2.1, Revision A. Available from
http://www.flexray.com/.

[5] A. Hagiescu, U. D. Bordoloi, S. Chakraborty,
P. Sampath, P. V. V. Ganesan, and S. Ramesh.
Performance analysis of FlexRay-based ECU
networks. In Proceedings of the 44th ACM/IEEE
Design automation conference (DAC 2007), pages
284–289. ACM, 2007.

[6] W. Haid and L. Thiele. Complex task activation
schemes in system level performance analysis. In Proc.
5th Intl. Conf. on Hardware/Software Codesign and
System Synthesis (CODES+ISSS), pages 173–178.
ACM Press, 2007.

[7] M. P. J. Berwanger and R. Griessbach. A new high
performance data bus system for safety-related
applications, 2000. Available from
http://www.byteflight.de.

[8] H. Kopetz and G. Bauer. The time-triggered
architecture. Proc IEEE, 91(1):112 – 126, 2003.

[9] G. Leen and D. Heffernan. TTCAN: a new
time-triggered controller area network.
Microprocessors and Microsystems, 26(2):77–94, 2002.

[10] Local Interconnect Network Specification, LIN
Consortium. Available from
http://www.lin-subbus.de.

[11] T. Pop, P. Pop, P. Eles, Z. Peng, and A. Andrei.
Timing analysis of the flexray communication
protocol. Real-Time Systems, 39(1-3):205–235, 2008.

[12] L. Thiele, S. Chakraborty, and M. Naedele. Real-time
calculus for scheduling hard real-time systems. In
International Symposium on Circuits and Systems
(ISCAS 2000), volume 4, pages 101–104, Geneva,
Switzerland, Mar. 2000.

[13] E. Wandeler, L. Thiele, M. Verhoef, and P. Lieverse.
System architecture evaluation using modular
performance analysis - a case study. Software Tools for
Technology Transfer, 8(6):649 – 667, Oct. 2006.

