
Performance Analysis of Free-Space Optical Links Over
Malaga (M) Turbulence Channels with Pointing Errors

Item Type Article

Authors Ansari, Imran Shafique; Yilmaz, Ferkan; Alouini, Mohamed-Slim

Citation Performance Analysis of Free-Space Optical Links Over Malaga
(M) Turbulence Channels with Pointing Errors 2015:1 IEEE
Transactions on Wireless Communications

Eprint version Post-print

DOI 10.1109/TWC.2015.2467386

Publisher Institute of Electrical and Electronics Engineers (IEEE)

Journal IEEE Transactions on Wireless Communications

Rights (c) 2015 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other users,
including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale
or redistribution to servers or lists, or reuse of any copyrighted
components of this work in other works.

Download date 04/08/2022 18:49:39

Link to Item http://hdl.handle.net/10754/575257

http://dx.doi.org/10.1109/TWC.2015.2467386
http://hdl.handle.net/10754/575257


1

Performance Analysis of Free-Space Optical

Links Over Málaga (M) Turbulence Channels

with Pointing Errors

Imran Shafique Ansari, Student Member, IEEE, Ferkan Yilmaz, Member, IEEE,

and Mohamed-Slim Alouini, Fellow, IEEE

Abstract

In this work, we present a unified performance analysis of a free-space optical (FSO) link that

accounts for pointing errors and both types of detection techniques (i.e. intensity modulation/direct

detection (IM/DD) as well as heterodyne detection). More specifically, we present unified exact closed-

form expressions for the cumulative distribution function, the probability density function, the moment

generating function, and the moments of the end-to-end signal-to-noise ratio (SNR) of a single link

FSO transmission system, all in terms of the Meijer’s G function except for the moments that is in

terms of simple elementary functions. We then capitalize on these unified results to offer unified exact

closed-form expressions for various performance metrics of FSO link transmission systems, such as, the

outage probability, the scintillation index (SI), the average error rate for binary and M -ary modulation

schemes, and the ergodic capacity (except for IM/DD technique, where we present closed-form lower

bound results), all in terms of Meijer’s G functions except for the SI that is in terms of simple elementary

functions. Additionally, we derive the asymptotic results for all the expressions derived earlier in terms

of Meijer’s G function in the high SNR regime in terms of simple elementary functions via an asymptotic

expansion of the Meijer’s G function. We also derive new asymptotic expressions for the ergodic capacity
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in the low as well as high SNR regimes in terms of simple elementary functions via utilizing moments.

All the presented results are verified via computer-based Monte-Carlo simulations.

Index Terms

Free-space optical (FSO) communications, optical wireless communications, pointing errors, Log-

normal turbulence channels, Gamma-Gamma turbulence channels, Málaga (M) turbulence channels,

outage probability (OP), binary modulation schemes, bit-error rate (BER), symbol error rate (SER),

scintillation index (SI), ergodic capacity, Meijer’s G function.

I. INTRODUCTION

A. Background

In recent times, free-space optical (FSO) or optical wireless communication systems have

gained an increasing interest due to its advantages including higher bandwidth and higher capacity

compared to the traditional RF communication systems. In addition, FSO links are license-free

and hence are cost-effective relative to the traditional RF links. It is a promising technology as it

offers full-duplex Gigabit Ethernet throughput in certain applications and environment offering

a huge license-free spectrum, immunity to interference, and high security [1]. These features of

FSO communication systems potentially enable solving the issues that the RF communication

systems face due to the expensive and scarce spectrum [1]–[10]. Additionally, FSO communi-

cations does offer bandwidth as the world record stands at 1.2 Tbps or 1200 Gbps [11]. Besides

these nice characteristic features of FSO communication systems, they span over long distances

of 1Km or longer. However, the atmospheric turbulence may lead to a significant degradation in

the performance of the FSO communication systems [1].

Thermal expansion, dynamic wind loads, and weak earthquakes result in the building sway

phenomenon that causes vibration of the transmitter beam leading to a misalignment between

transmitter and receiver known as pointing error. These pointing errors may lead to significant

performance degradation and are a serious issue in urban areas, where the FSO equipments are

placed on high-rise buildings [12]–[14]. It is worthy to learn that intensity modulation/direct

detection (IM/DD) is the main mode of detection in FSO systems but coherent communications

have also been proposed as an alternative detection mode. Among these, heterodyne detection

is a more complicated detection method but has the ability to better overcome the thermal noise

effects (see [12], [13], [15], [16] and references cited therein).
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B. Motivation

Up until recent past, many irradiance probability density function (PDF) models have been

utilized with different degrees of success out of which the most commonly utilized models are

the lognormal and the Gamma-Gamma. The scope of lognormal model is restricted to weak

turbulences whereas Gamma-Gamma PDF was suggested by Andrews et. al. as a reasonable

choice because of its much more tractable mathematical model [17]. Recently, a new and

generalized statistical model, Málaga (M) distribution, was proposed in [17] to model the

irradiance fluctuation of an unbounded optical wavefront (plane or spherical waves) propagating

through a turbulent medium under all irradiance conditions in homogeneous, isotropic turbulence

[18]. This M distribution unifies most of the proposed statistical models derived until now in

the bibliography in a closed-form expression providing an excellent agreement with published

simulation data over a wide range of turbulence conditions (weak to strong) [17]. Hence, both

lognormal 1 and Gamma-Gamma models are a special case of this newly proposed general model.

Over the past couple of years, some performance study of a FSO link operating over Málaga

(M) turbulent channels with and without pointing errors in the presence of IM/DD technique

has been conducted. Namely, in [18], the authors have derived closed-form expressions for the

moments and the error rate of the M turbulent channel operating under the IM/DD technique in

presence of pointing errors whereas in [19], the authors have derived the error rate in a series form

for the coherent differential phase-shift keying in the absence of pointing errors. Additionally,

in [20], [21], the authors have derived the average BER expression for M distribution under

the IM/DD technique with on-off keying (OOK) signaling technique. However as per authors

best knowledge, there are no further analysis available in the literature on the M turbulent FSO

channel. Hence, this motivates this work in analyzing and presenting most of the other applicable

results as shared in the following subsection.

C. Contributions

The main contributions of this work are:

1The relation between the M distribution and the lognormal distribution is not an exact relation instead the lognormal

distribution is an approximate special case of M distribution. Similarly, the corresponding relation between the asymptotic

results in the two cases are also approximately related to each other (i.e. the asymptotic results applicable for the lornormal

distribution as a special case of the M distribution are actually approximate asymptotic results) rather being exact asymtptotic

results.
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• We present the performance analysis for the M turbulence channel under the heterodyne

detection technique in presence of the pointing errors. To the best of our knowledge, these

results are new in the literature.

• Some analysis has been presented in [18] for the M turbulence channel under the IM/DD

technique. Hence, we complement the work presented in [18]. To the best of our knowledge,

these complemented results are new in the open literature.

• Specifically, we derive the PDF, the cumulative distribution function (CDF), and the moment

generating function (MGF) of a single M turbulent FSO link in exact closed-form in terms

of Meijer’s G function, and the moments in terms of simple elementary functions for both

heterodyne and IM/DD detection techniques. Then, we present the outage probability (OP),

the bit-error rate (BER) of binary modulation schemes, the symbol error rate (SER) of M -ary

amplitude modulation (M-AM), M -ary phase shift keying (M-PSK) and M -ary quadrature

amplitude modulation (M-QAM), and the ergodic capacity in terms of Meijer’s G functions,

and the scintillation index (SI) in terms of simple elementary functions.

• We derive the asymptotic expressions for all the expressions mentioned above in terms of

simple elementary functions via Meijer’s G function expansion, and additionally, we derive

the ergodic capacity at low and high SNR regimes in terms of simple elementary functions

by utilizing moments. With the help of these simple results, one can easily derive useful

insights. Additionally, these simple results are easily tractable. To the best of our knowledge,

these results are new in the open literature.

• We derive the diversity order and the coding gain for M turbulence model under con-

sideration applicable to both the detection techniques under the presence of pointing error

effects. To the best of our knowledge, these results are new in the open literature.

• Interestingly enough, we are able to unify all the above mentioned results in a unified

form i.e. the results for any statistical characteristic or any performance metric applicable

to both the detection techniques are presented in a single unified expression. To the best of

our knowledge, such unified results are new in the open literature. It must be noted here

that the study was not straightforward to obtain such novel unified results. After multiple

trials, fortunately we were able to derive novel unified expression for the PDF that prove

to be simple and straightforward. More importantly, it was not obvious that this unified

PDF expression will allow for further analysis but this PDF expression did lead to exact

closed-form novel unified expressions for various statistical characteristics and performance
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metrics.

• Finally, we also derive the mapping between the lognormal distribution parameter and the

M distribution parameters demonstrating the tightness of the approximation of lognormal

distribution as a special case of M distribution.

D. Structure

The remainder of the paper is organized as follows. Sections II and III present a single unified

FSO link system and channel model for the M turbulence distribution accounting for pointing

errors with both types of detection techniques (IM/DD and heterodyne) followed by exact closed

form expressions and the asymptotic expressions for the statistical characteristics of a single

unified FSO link including the CDF and the MGF, and the moments in terms of Meijer’s G

functions and simple elementary functions, respectively. Subsequently, the performance metrics

under consideration, namely, the OP, the SI, the BER, the SER, and the ergodic capacity are

also presented in terms of unified expressions and asymptotic expressions in Section IV. Finally,

Section V presents some simulation results to validate these analytical results followed by

concluding remarks in Section VI.

II. CHANNEL AND SYSTEM MODELS

A. M Atmospheric Turbulence Model

The M turbulence model [17] is based on a physical model that involves a line-of-sight (LOS)

contribution, UL, a component that is quasi-forward scattered by the eddies on the propagation

axis and coupled to the LOS contribution, UC
S , and another component, UG

S , due to energy that

is scattered to the receiver by off-axis eddies. UC
S and UG

S are statistically independent random

processes and UL and UG
S are also independent random processes. The M turbulence model

can be visually understood via [17, Fig. 1]. One of the main motivation to study this turbulence

model is its generality i.e. M represents various other turbulence models as its special case as

can be seen from [17, Table 1]. Hence, we employ an FSO link that experiences M turbulence

for which the PDF of the irradiance Ia is given by [17, Eq. (24)]

fa(Ia) = A

β
∑

m=1

am IaKα−m

(

2

√

αβ Ia
g β + Ω′

)

, Ia > 0, (1)
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where

A ,
2αα/2

g1+α/2Γ(α)

(

g β

g β + Ω′

)β+α/2

,

am ,

(

β − 1

m− 1

)

(

g β + Ω
′
)1−m/2

(m− 1)!

(

Ω
′

g

)m−1(
α

β

)m/2

,

(2)

α is a positive parameter related to the effective number of large-scale cells of the scattering

process, β is the amount of fading parameter and is a natural number 2, g = E
[

|UG
S |2
]

=

2 b0 (1− ρ) denotes the average power of the scattering component received by off-axis eddies,

2 b0 = E
[

|UC
S |2 + |UG

S |2
]

is the average power of the total scatter components, the parameter

0 ≤ ρ ≤ 1 represents the amount of scattering power coupled to the LOS component, Ω
′

=

Ω+2 b0 ρ+2
√
2 b0 ρΩcos(φA−φB) represents the average power from the coherent contributions,

Ω = E [|UL|2] is the average power of the LOS component, φA and φB are the deterministic

phases of the LOS and the coupled-to-LOS scatter terms, respectively, Γ(.) is the Gamma function

as defined in [22, Eq. (8.310)], and Kv(.) is the vth-order modified Bessel function of the second

kind [22, Sec. (8.432)]. It is interesting to know here that E
[

|UC
S |2
]

= 2 b0 ρ denotes the average

power of the coupled-to-LOS scattering component and E [Ia] = Ω + 2 b0.
3

B. Pointing Error Model

We assume presence of the pointing error impairments for which the PDF of the irradiance

Ip is given by 4 [23, Eq. (11)]

fp(Ip) =
ξ2

Aξ2

0

Iξ
2−1

p , 0 ≤ Ip ≤ A0, (3)

where ξ is the ratio between the equivalent beam radius at the receiver and the pointing error

displacement standard deviation (jitter) at the receiver [13], [14] (i.e. when ξ → ∞, eq. (5)

converges to the non-pointing errors case), A0 is a constant term that defines the pointing loss

given by A0 = [erf (v)]2, erf (.) is the error function [24, Eq. (7.1.1)], v =
√
π a/

(√
2wz

)

, a is

the radius of the detection aperture, and wz is the beam waist.

2The expression utilized here is applicable to β being a natural number and this allows for this expression to have a finite

summation whereas there is a generalized expression of (1) given in [17, Eq. (22)] for β being a real number though it is less

interesting due to the high degree of freedom of the proposed distribution (Sec. III of [17]) and has an infinite summation.

3Detailed information on the M distribution, its formation, and its random generation can be extracted from [17, Eqs.

(13-21)].

4For detailed information on the pointing error model and its subsequent derivation, one may refer to [23].
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C. Composite Atmospheric Turbulence-Pointing Error Model

The joint distribution of I = Il Ia Ip, where Il is the path loss that is a constant in a given

weather condition and link distance, can be derived by utilizing

fI(I) =

∫ ∞

I/(Il A0)

fa(Ia) fI|Ia(I|Ia) dIa

=

∫ ∞

I/(Il A0)

fa(Ia)
I

Ia Il
fp

(

I

Ia Il

)

dIa.

(4)

Hence, applying simple random variable transformation on (3) and using (4), we get the PDF of

the receiver irradiance I experiencing M turbulence in presence of pointing error impairments

given by [18, Eq. (21)]

fI(I) =
ξ2A

2 I

β
∑

m=1

bm G3,0
1,3

[

αβ

(g β + Ω′)

I

IlA0

∣

∣

∣

∣

ξ2 + 1

ξ2, α,m

]

, (5)

where bm = am
[

αβ/
(

g β + Ω
′
)]−(α+m)/2

and G[.] is the Meijer’s G function as defined in [22,

Eq. (9.301)].

For the heterodyne detection technique case, the average SNR develops as µheterdoyne =

ηe EI [I]/N0 = IlA0 ηe ξ
2(g + Ω

′

)/ [(1 + ξ2)N0],
5 where ηe is the effective photoelectric con-

version ratio and N0 symbolizes the additive white Gaussian noise (AWGN) sample. Alongside,

with γ = ηe I/N0, we get I = IlA0 ξ
2(g + Ω

′

) γ/ [µheterodyne (ξ
2 + 1)]. On utilizing this simple

random variable transformation, the resulting SNR PDF under the heterodyne detection technique

is given as

fγheterodyne(γ) =
ξ2A

2 γ

β
∑

m=1

bm G3,0
1,3

[

B
γ

µheterodyne

∣

∣

∣

∣

ξ2 + 1

ξ2, α,m

]

, (6)

where B = ξ2αβ (g + Ω
′

)/[(ξ2 + 1) (g β + Ω
′

)] and µheterodyne = Eγheterodyne [γ] = γheterodyne is

the average SNR of (6).

Similarly, for the IM/DD detection technique case, the electrical SNR develops as µIM/DD =

η2e E
2
I [I]/N0 = I2l A

2
0 η

2
e ξ

4
(

g + Ω
′
)2
/
[

(1 + ξ2)
2
N0

]

. With γ = η2e I
2/N0, we get I = ξ2 (g +

Ω
′

) IlA0/ (ξ
2 + 1)

√

γ/µIM/DD. On utilizing this simple random variable transformation, the

resulting SNR PDF under the IM/DD technique is given as

fγIM/DD
(γ) =

ξ2A

4 γ

β
∑

m=1

bm G3,0
1,3

[

B

√

γ

µIM/DD

∣

∣

∣

∣

ξ2 + 1

ξ2, α,m

]

, (7)

5
EI [I

n] can be easily derived directly utilizing (5) though the derived EI [I
n] comes out to be as a summation as expected.

Hence to avoid the summation, EI [I
n] has been derived in simpler terms in [18, Eq. (34)] that is utilized here.
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where

µIM/DD = EγIM/DD
[γ]E2

I [I]/EI [I
2]

=
ξ2 (ξ2 + 1)

−2
(ξ2 + 2)

(

g + Ω
′
)

α−1 (α + 1) [2 g (g + 2Ω′) + Ω′2 (1 + 1/β)]
γIM/DD,

(8)

is the electrical SNR of (7). When ξ2 (g + Ω
′

)/ (ξ2 + 1) = 1, this PDF given in (7) comes in

agreement with [25, Eq. (19)].

D. Unification

Both these PDFs in (6) and (7) can be easily combined yielding the unified expression for

the M turbulence as

fγ(γ) =
ξ2A

2r γ

β
∑

m=1

bm G3,0
1,3

[

B

(

γ

µr

)
1
r
∣

∣

∣

∣

ξ2 + 1

ξ2, α,m

]

, (9)

where r is the parameter defining the type of detection technique (i.e. r = 1 represents heterodyne

detection and r = 2 represents IM/DD). More specifically, for µr, when r = 1, µ1 = µheterodyne

and when r = 2, µ2 = µIM/DD. Now, as a special case, when ρ = 1 and Ω
′

= 1 [17, Table 1],

this PDF in (9) reduces to

fγ(γ) =
ξ2

r γ Γ(α)Γ(β)
G3,0

1,3

[

ξ2 αβ

ξ2 + 1

(

γ

µr

)
1
r
∣

∣

∣

∣

ξ2 + 1

ξ2, α, β

]

. (10)

This expression in (10) represents the unified PDF for the Gamma-Gamma turbulence and for

ξ2 >> 1, eq. (10) reduces to [26, Eq. (4)]. Additionally, for negligible pointing errors case under

IM/DD technique (i.e. ξ → ∞ and r = 2) and ξ2 >> 1, eq. (10) reduces to [14, Eq. (9)].

E. Important Outcomes

• It is important to note here that one may easily derive a PDF corresponding to a certain

detection technique from the PDF of the other corresponding detection technique via simple

random variable transformation. For instance, eq. (7) can be easily derived from (6) by

transforming the random variable, γ, in (6) to γ2 µIM/DD/µ
2
heterodyne wherein this updated

γ will represent the random variable of (7).

• For readers clarification, there are two different expressions for the two different cases

dependent on the type of receiver detection and these differ in various aspects though we

would like to share that this unification presented in this work is ’unified’ in a rather

notational point of view. We classify this unification in terms of having, inclusive within
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a single expression as in (9), the parameters that characterize the effects of turbulence i.e.

α and β, the parameter that characterizes the effect of pointing errors i.e. ξ, the µr, and

the ultimate unifying parameter (notationally speaking) r wherein when we place r = 1, it

gives us the PDF applicable to the heterodyne detection technique with its subsequent µ1

and when we place r = 2, it gives us the PDF applicable to the IM/DD technique with its

subsequent µ2.

• Emphasizing on the notational importance of this unified expression, we would like to clarify

that for r = 1 case, µ1 represents the average SNR for the heterodyne detection technique

whereas for r = 2 case, µ2 represents the electrical SNR for the IM/DD technique for which

its relation with the average SNR is shared in (8).

III. CLOSED-FORM STATISTICAL CHARACTERISTICS

A. Cumulative Distribution Function

1) Exact Analysis: Using [27, Eq. (07.34.21.0084.01)] and some simple algebraic manipula-

tions, the CDF for the M turbulence can be shown to be given by

Fγ(γ) =

∫ γ

0

fγ(t) dt = D

β
∑

m=1

cm G3r,1
r+1,3r+1

[

E
γ

µr

∣

∣

∣

∣

1, κ1
κ2, 0

]

, (11)

where D = ξ2A/ [2r(2 π)r−1], cm = bm r
α+m−1, E = B r/r2 r, κ1 =

ξ2+1
r
, . . . , ξ

2+r
r

comprises of

r terms, and κ2 =
ξ2

r
, . . . , ξ

2+r−1
r

, α
r
, . . . , α+r−1

r
, m

r
, . . . , m+r−1

r
comprises of 3r terms. The above

CDF in (11) reduces to the CDF of Gamma-Gamma turbulence as

Fγ(γ) = J G3r,1
r+1,3r+1

[

K
γ

µr

∣

∣

∣

∣

1, κ1
κ3, 0

]

, (12)

where J = rα+β−2 ξ2/ [(2 π)r−1Γ(α)Γ(β)], K = (ξ2αβ)r/
[

(ξ2 + 1)
r
r2 r
]

, and κ3 =
ξ2

r
, . . . , ξ

2+r−1
r

, α
r
, . . . , α+r−

r

comprises of 3r terms. This unified expression for the CDF of a single unified FSO link in (12)

is in agreement (for ξ2 >> 1) with the individual results presented in [28, Eq. (15)] (for ξ → ∞
and r = 2), [13, Eq. (15)] and [29, Eq. (17)] (for r = 1), [30, Eq. (16)] and [15, Eq. (7)] (for

ξ → ∞ and r = 1), and references cited therein. Mathematically, eq. (12) can be easily derived

from (11) by simply setting ρ = 1 and Ω
′

= 1 in (11). Among all the sum terms in (11), all

terms become 0 except for the term when m = β [25]. Hence, with this and with some simple

algebraic manipulations, we can easily obtain (12) from (11).
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2) Asymptotic Analysis: Using [31, Eq. (6.2.2)] to invert the argument in the Meijer’s G

function in (11) and then applying (41) from the Appendix, the CDF for the M turbulence in

(11) can be given asymptotically, at high SNR, in a simpler form in terms of basic elementary

functions as

Fγ(γ) ≅
µr >>1

D

β
∑

m=1

cm

3r
∑

k=1

(

µr

E γ

)−κ2,k

×
∏3r

l=1; l 6=k Γ(κ2,l − κ2,k)

κ2,k
∏r+1

l=2 Γ(κ1,l − κ2,k)
,

(13)

where κu,v represents the vth-term of κu. The asymptotic expression for the CDF in (13) is

dominated by the min(ξ, α, β) where ξ represents the 1st-term, α represents the (r + 1)th-term,

and β represents the (2 r + 1)th-term in κ2 i.e. when the difference between the parameters is

greater than 1 then the asymptotic expression for the CDF in (13) is dominated by a single term

that has the least value among the above three parameters i.e. ξ, α, and β. On the other hand, if

the difference between any two parameters is less than 1 then the asymptotic expression for the

CDF in (13) is dominated by the summation of the two terms that have the least value among

the above three parameters with a difference less than 1 and so on and so forth. As a special

case, we can have the asymptotic CDF of the Gamma-Gamma turbulence as

Fγ(γ) ≅
µr >>1

J

3r
∑

k=1

(

µr

K γ

)−κ3,k
∏3r

l=1; l 6=k Γ(κ3,l − κ3,k)

κ3,k
∏r+1

l=2 Γ(κ1,l − κ3,k)
. (14)

B. Moment Generating Function

1) Exact Analysis: The MGF defined as Mγ(s) , E [e−γs], can be expressed, using integration

by parts, in terms of CDF as

Mγ(s) = s

∫ ∞

0

e−γsFγ(γ)dγ. (15)

By placing (11) into (15) and utilizing [22, Eq. (7.813.1)], we get after some manipulations the

MGF for the M turbulence as

Mγ(s) = D

β
∑

m=1

cm G3r,2
r+2,3r+1

[

E

µr s

∣

∣

∣

∣

0, 1, κ1
κ2, 0

]

. (16)

As a special case, the MGF for the Gamma-Gamma turbulence is derived as

Mγ(s) = J G3r,2
r+2,3r+1

[

K

µr s

∣

∣

∣

∣

0, 1, κ1
κ3, 0

]

. (17)

This unified expression for the MGF of a single unified FSO link in (17) is in agreement (for

ξ2 >> 1) with the individual result presented in [32, Eq. (3)] (for ξ → ∞ and r = 2), and
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references cited therein. Additionally, it is very important to note here that these results for the

MGF are very much beneficial and handy as they can be utilized for MGF-based analysis and

this can be seen from a very recent work in [33] and references cited therein.

2) Asymptotic Analysis: Similar to the CDF, the MGF for the M turbulence can be expressed

asymptotically, at high SNR, as

Mγ(s) ≅
µr >>1

D

β
∑

m=1

cm

3r
∑

k=1

( s

E
µr

)−κ2,k

×
Γ(κ2,k)

∏3r
l=1; l 6=k Γ(κ2,l − κ2,k)

∏r+2
l=3 Γ(κ1,l − κ2,k)

,

(18)

for the Gamma-Gamma turbulence as

Mγ(s) ≅
µr >>1

J
3r
∑

k=1

( s

K
µr

)−κ3,k

×
Γ(κ3,k)

∏3r
l=1; l 6=k Γ(κ3,l − κ3,k)

∏r+2
l=3 Γ(κ1,l − κ3,k)

,

(19)

and can be further expressed via only the dominant term(s) based on a similar explanation to

the one given for the CDF case earlier.

C. Moments

The moments are defined as E [γn]. Placing (1) into the definition and utilizing [22, Eq.

(7.811.4)], we derive, to the best of our knowledge, a new expression for the moments of the

M turbulence in exact closed-form and in terms of simple elementary functions as

E [γn] =
r ξ2AΓ(r n+ α)

2r (r n+ ξ2) Br n

β
∑

m=1

bm Γ(r n+m)µn
r , (20)

and of the Gamma-Gamma turbulence as

E [γn] =
ξ2 (ξ2 + 1)

r n
Γ(r n+ α)Γ(r n+ β)

(ξ2αβ)r n (r n+ ξ2) Γ(α)Γ(β)
µn
r . (21)

It is worthy to note that this simple result for the moments is particularly useful to conduct

asymptotic analysis of the ergodic capacity in the later part of this work.

May 11, 2018 DRAFT



12

IV. APPLICATIONS

A. Outage Probability

When the instantaneous output SNR γ falls below a given threshold γth, we encounter a

situation labeled as outage and it is an important feature to study OP of a system. Hence, another

important fact worth stating here is that the expressions derived in (11) and (13) also serve the

purpose for the expressions of OP for a FSO channel or in other words, the probability that the

SNR falls below a predetermined protection ratio γth can be simply expressed by replacing γ

with γth in (11) and (13) as Pout(γth) = Fγ(γth). With γth = e2R− 1, it must be noted here that

the OP may be defined as the event that the capacity does not exceed the operating rate R [34].

B. Scintillation Index

The SI is an important measure for the performance of optical wireless communication

systems. In particular, the SI is defined as σ2
I = EI [I

2]/E2
I [I] − 1 [1], [35, Eq. (6)]. Now,

substituting (20) appropriately into this definition, we can easily get the exact closed-form

expression for the SI.

C. Average BER

1) Exact Analysis: Substituting (11) into [36, Eq. (12)] and utilizing [22, Eq. (7.813.1)], we

get the average BER P b of a variety of binary modulations for the M turbulence as

P b =
D

2 Γ(p)

β
∑

m=1

cm G3r,2
r+2,3r+1

[

E

µr q

∣

∣

∣

∣

1− p, 1, κ1
κ2, 0

]

, (22)

and for the Gamma-Gamma turbulence as

P b =
J

2 Γ(p)
G3r,2

r+2,3r+1

[

K

µr q

∣

∣

∣

∣

1− p, 1, κ1
κ3, 0

]

, (23)

where the parameters p and q account for different modulation schemes. For an extensive list of

modulation schemes represented by these parameters, one may look into [36]–[39] or refer to

Table I. This unified expression for the BER of a single unified FSO link in (23) is in agreement

(for ξ2 >> 1) with the individual results presented in [40, Eq. (5)] (for r = 2), [13, Eq. (24)]

(for r = 1), [15, Eq. (10)] and [41, Eq. (7)] (for ξ → ∞ and r = 1), and references cited therein.
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TABLE I

BER PARAMETERS OF BINARY MODULATIONS

Modulation p q

Coherent Binary Frequency Shift Keying (CBFSK) 0.5 0.5

Coherent Binary Phase Shift Keying (CBPSK) 0.5 1

Non-Coherent Binary Frequency Shift Keying (NBFSK) 1 0.5

Differential Binary Phase Shift Keying (DBPSK) 1 1

2) Asymptotic Analysis: Similar to the CDF, the BER can be expressed asymptotically for

the M turbulence, at high SNR, as

P b ≅
µr >>1

D

2 Γ(p)

β
∑

m=1

cm

3r
∑

k=1

( q

E
µr

)−κ2,k

×
Γ(κ2,k + p)

∏3r
l=1; l 6=k Γ(κ2,l − κ2,k)

κ2,k
∏r+2

l=3 Γ(κ1,l − κ2,k)
,

(24)

for the Gamma-Gamma turbulence as

P b ≅
µr >>1

J

2 Γ(p)

3r
∑

k=1

( q

K
µr

)−κ3,k

×
Γ(κ3,k + p)

∏3r
l=1; l 6=k Γ(κ3,l − κ3,k)

κ3,k
∏r+2

l=3 Γ(κ1,l − κ3,k)
,

(25)

and can be further expressed via only the dominant term(s) based on a similar explanation to

the one given for the CDF case earlier.

3) Diversity Order and Coding Gain: Utilizing P b ≈ (Gc µr)
−Gd [42, Eq. (1)], we can easily

share for the M turbulence, the diversity order is Gd = min(ξ2/r, α/r, β/r) =
α>β

min(ξ2/r, β/r)

and the coding gain is

Gc = q/E

(

D/ (2 Γ(p))

β
∑

m=1

cm

×
Γ(κ2,k + p)

∏3r
l=1; l 6=k Γ(κ2,l − κ2,k)

κ2,k
∏r+2

l=3 Γ(κ1,l − κ2,k)

)− 1
κ2,k

.

(26)
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Similarly, for the Gamma-Gamma turbulence, we have diversity order as Gd = min(ξ2/r, α/r, β/r) =
α>β

min(ξ2/r, β/r) and the coding gain as

Gc = q/K (J/ (2 Γ(p))

×
Γ(κ3,k + p)

∏3r
l=1; l 6=k Γ(κ3,l − κ3,k)

κ3,k
∏r+2

l=3 Γ(κ1,l − κ3,k)

)− 1
κ3,k

.

(27)

The authors in [43, Eqs. (18) and (19)] have also derived the diversity order and the coding

gain for the Gamma-Gamma turbulent FSO channels though applicable to the IM/DD technique

under negligible pointing errors. Hence, the results for the coding gain and the diversity order in

this work are applicable to even the heterodyne detection technique and also for non-negligible

pointing error effects for both types of detection techniques.

D. Average SER

In [44], the conditional SER has been presented in a desirable form and utilized to obtain the

average SER of M-AM, M-PSK, and M-QAM. For example, for M-PSK the average SER P s

over generalized fading channels is given by [44, Eq. (41)]. Similarly, for M-AM and M-QAM,

the average SER P s over generalized fading channels is given by [44, Eq. (45)] and [44, Eq.

(48)] respectively. On substituting (16) into [44, Eq. (41)], [44, Eq. (45)], and [44, Eq. (48)], we

can get the SER of M-PSK, M-AM, and M-QAM, respectively. The analytical SER performance

expressions obtained via the above substitutions are exact and can be easily estimated accurately

by utilizing the Gauss-Chebyshev Quadrature (GCQ) formula [24, Eq. (25.4.39)] that converges

rapidly, requiring only few terms for an accurate result [45].

E. Ergodic Capacity

It is well known that the atmospheric turbulence over FSO links is slow in fading. Since the

coherence time of the channel is in the order of milliseconds (ms), turbulence induced fading

remains constant over a large number of transmitted bits [23], [46]–[48]. In addition, the use of

very long inter-leavers in order to achieve independent fading samples in consecutive symbol

intervals is not practical in FSO channel [23]. Moreover, in this study we are including the effects

of the pointing error that makes the signal fluctuate at a very high rate. Because the coherence

time of the FSO fading channel is in the order of milliseconds, a single fade can obliterate

millions of bits at Gbits/s (Gbps) data rates and therefore, the average (i.e. ergodic) capacity of
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the channel, represents the best achievable capacity of an optical wireless link. Hence, our aim

is to examine the best possible ergodic performance. Therefore, our ergodic capacity analysis is

valid under the presence of the pointing errors and under the assumption that the information

symbol is long enough to ensure the long-term ergodic properties of the turbulence process [47],

[48].

1) Exact Analysis: The ergodic channel capacity C is defined as C , E [log2(1 + c γ)] where

c is a constant term such that c = 1 for heterodyne detection and c = e/ (2 π) for IM/DD

[49, Eq. (26)], [50, Eq. (7.43)]. Utilizing this equation by placing (9) in it, using [27, Eq.

(07.34.03.0456.01)] to represent ln(1 + c γ) in terms of Meijer’s G function as G1,2
2,2

[

c γ
∣

∣

∣

1,1
1,0

]

,

and using [51, Eq. (21)], the ergodic capacity for the M turbulence can be expressed as

C =
D

ln(2)

β
∑

m=1

cm G3r+2,1
r+2,3r+2

[

E

µ∼
r

∣

∣

∣

∣

0, 1, κ1
κ2, 0, 0

]

, (28)

and for the Gamma-Gamma turbulence as

C =
J

ln(2)
G3r+2,1

r+2,3r+2

[

K

µ∼
r

∣

∣

∣

∣

0, 1, κ1
κ3, 0, 0

]

, (29)

where µ∼
r = c µr. Specifically, µ∼

1 = µ1 for the heterodyne detection technique (i.e. r = 1) and

µ∼
2 = e/ (2 π) µ2 for the IM/DD technique (i.e. r = 2). The unified expression for the ergodic

capacity of a single unified M FSO link in (28) is in agreement (for r = 2) with the individual

result presented in [52, Eq. (8)]. Also, the unified expression for the ergodic capacity of a single

unified Gamma-Gamma FSO link in (29) is in agreement (for ξ2 >> 1) with the individual

results presented in [14, Eq. (22)] (for r = 2), [28, Eq. (21)] and [14, Eq. (11)] (for ξ → ∞ and

r = 2), [53, Eq. (10)] (for r = 1), [54, Eq. (16)] and [55, Eq. (3)] (for ξ → ∞ and r = 1), and

references cited therein.

For readers clarification, the Shannon ergodic capacity given as C , E [log2(1 + c γ)] is true

as an exact expression for deriving the respective ergodic capacity for heterodyne detection

technique whereas for IM/DD technique, it acts as a lower bound as given in [49, Eq. (26)] and

[50, Eq. (7.43)]. Hence, we can safely claim that the ergodic capacity’s derived in (28) and (29)

above are an exact solution for the heterodyne detection technique (i.e. r = 1) whereas for the

IM/DD technique (i.e. r = 2), these solutions (as per above mentioned references) act as a lower

bound.
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2) Asymptotic Analysis: Similar to the CDF, the ergodic capacity for the M turbulence can be

expressed asymptotically via utilizing the Meijer’s G function expansion given in the Appendix,

at high SNR, as

C ≅
µr >>1

D

ln(2)

β
∑

m=1

cm

3r+2
∑

k=1

(

µ∼
r

E

)−κ2,k

×
Γ(1 + κ2,k)

∏3r+2
l=1; l 6=k Γ(κ2,l − κ2,k)

Γ(1− κ2,k)
∏r+2

l=3 Γ(κ1,l − κ2,k)
,

(30)

for the Gamma-Gamma turbulence as

C ≅
µr >>1

J

ln(2)

3r+2
∑

k=1

(

µ∼
r

K

)−κ3,k

×
Γ(1 + κ3,k)

∏3r+2
l=1; l 6=k Γ(κ3,l − κ3,k)

Γ(1− κ3,k)
∏r+2

l=3 Γ(κ1,l − κ3,k)
,

(31)

and can be further expressed via only the dominant term(s) based on the similar explanation as

given for the CDF case earlier except with min(ξ, α, β, 1, 1 + ǫ) instead of min(ξ, α, β), where

ǫ is a very small error introduced so as not to violate the conditions given in the Appendix,

required to utilize (41).

Alternatively, a high SNR asymptotic analysis may also be done by utilizing the moments as

[56, Eqs. (8) and (9)]

C ≅
µr >>1

log(µr) + ζ, (32)

where

ζ =
∂

∂n
AF (n)

γ

∣

∣

∣

∣

n=0

. (33)

The expression in (32) can be simplified to

C ≅
µr >>1

ln(c µr) +
∂

∂n

(

E [γn
r ]

E [γr]
n − 1

)
∣

∣

∣

∣

n=0

=
∂

∂n
E [γn

r ]

∣

∣

∣

∣

n=0

. (34)

Hence, we need to evaluate the first derivative of the moments in (20) at n = 0 for high SNR

asymptotic approximation to the ergodic capacity in (28). The first derivative of the moments is

given as

∂

∂n
E [γn] =

r ξ2AΓ(r n+ α)

2r (r n+ ξ2) Br n

β
∑

m=1

bm Γ(r n+m)

× {r [ψ(r n+ α) + ψ(r n+m)− log(B)]

+ log(µr)− r/
(

r n+ ξ2
)}

µ∼n
r ,

(35)
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where ψ(.) is the digamma (psi) function [24, Eq. (6.3.1)], [22, Eq. (8.360.1)]. Evaluating (35)

at n = 0, we obtain

C ≅
µr >>1

r AΓ(α)

2r

β
∑

m=1

bm Γ(m)

×
{

r
[

−1/ξ2 − log(B) + ψ(α) + ψ(m)
]

+ log(µ∼
r )
}

.

(36)

Hence, eq. (36) gives the required expression for C for the M turbulent channel at high SNR

in terms of simple elementary functions. Similar expression is derived for the Gamma-Gamma

turbulent channel as

C ≅
µr >>1

log(µ∼
r ) + r

[

− 1

ξ2
− log

(

ξ2

ξ2 + 1

)

− log(αβ) + ψ(α) + ψ(β)] .

(37)

Furthermore, for low SNR asymptotic analysis, it can be easily shown that the ergodic capacity

can be asymptotically approximated by the first moment. We can utilize (20) via placing n = 1 in

it and hence the ergodic capacity of a single FSO link under M turbulence can be approximated

at low SNR in closed-form in terms of simple elementary functions as

C ≅
µr <<1

E
[

γn=1
]

=
r ξ2AΓ(r + α)

2r (r + ξ2) Br

β
∑

m=1

bm Γ(r +m)µ∼
r , (38)

and under Gamma-Gamma turbulence as

C ≅
µr <<1

E
[

γn=1
]

=
ξ2 (ξ2 + 1)

r
Γ(r + α)Γ(r + β)

(ξ2αβ)r (r + ξ2) Γ(α)Γ(β)
µ∼
r . (39)

V. NUMERICAL RESULTS AND DISCUSSION

The FSO link is modeled as M turbulent channel with a link length of L = 1 km and

wavelength of λ = 785 nm that contributes in obtaining kw = 2 π/λ. The refraction structure

parameter C2
n is considered as C2

n = 1.2 × 10−13 m−2/3, C2
n = 10−11 m−2/3, and C2

n = 2.8 ×
10−14 m−2/3. These are then utilized to obtain the Rytov variance σ2

R = 1.23C2
n k

7/6
w L11/6 that

subsequently define the effects of atmosphere as (α = 2.296; β = 2), (α = 4.2; β = 3) and

(α = 8; β = 4), (Ω = 1.3265, b0 = 0.1079), ρ = 0.596, and φA − φB = π/2. 6 In MATLAB,

6It is important to note here that these values for the parameters were selected from [17], [18], [25] subject to the standards

to prove the validity of the obtained results and hence other specific values can be used to obtain the required results by design

communication engineers before deployment. Also, for all cases, 106 realizations of the random variable were generated to

perform the Monte-Carlo simulations in MATLAB.

May 11, 2018 DRAFT



18

a M turbulent channel random variable was generated via squaring the absolute value of a

Rician-shadowed random variable [17].

The OP is presented in Fig. 1 for both types of detection techniques (i.e. IM/DD and het-

erodyne) across the normalized electrical SNR with fixed effect of the pointing error (ξ = 1).

We can observe from Fig. 1 that the simulation results provide a perfect match to the analytical
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α = 2.296 and β = 2; ρ = 0.596  (Eq. (11))

α = 4.2 and β = 3; ρ = 0.596  (Eq. (11))

Monte−Carlo Simulation

α = 8 and β = 4; ρ −> 1 and Ω’ = 1 (Gamma−Gamma Special Case)  (Eq. (11))

Actual Gamma−Gamma  (Eq. (12))

Asymptotic Result (All Terms) (Eq. (13))

Asymptotic Result (Two Dominant Terms) (Eq. (13))

Asymptotic Result (Single Dominant Term) (Eq. (13))

α = 8 and β = 4; ρ = 0 and g −> 0 (Lognormal Special Case)  (Eq. (11))

Lognormal Monte−Carlo Simulation Utilizing Mapping in Eq. (40)

r = 2; IM/DD

r = 1; Heterodyne

Fig. 1. OP showing the performance of both the detection techniques (heterodyne and IM/DD) under different turbulence

conditions.

results obtained in this work. Additionally, it can be observed that as the effect of atmospheric

turbulence decreases, the performance improves. It can be seen that at high SNR, the asymptotic

expression derived in (13) (i.e. utilizing all the terms in the summation) converges quite fast to

the exact result proving this asymptotic approximation to be tight enough. Based on the effects of

the turbulent parameters and the pointing error, the appropriate dominant term(s) can be selected

as has been discussed earlier under the CDF subsection. Hence, we can see that these respective

dominant term(s) also converge though relatively slower, specially for the IM/DD technique.

More importantly, we can observe that once we apply ρ = 1 and Ω
′

= 1, the M turbulence

matches exactly the special case of Gamma-Gamma turbulence. This can be depicted from the

case wherein (α = 8; β = 4).

Furthermore, on applying ρ = 0 and g → 0 to M atmospheric turbulence, one can ob-

tain an approximation to weak lognormal atmospheric turbulence [17]. Hence, to analyze this,

we derived the mapping for the lognormal parameter σI in terms of the parameters of M
atmospheric turbulence i.e. in terms of α, β, ξ,m,Ω

′

, and g. Specifically, σI was obtained via

the moment matching method. The moments of lognormal turbulence are given as E [In]LN =
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ξ2(1−r n)

(ξ2+r n)(ξ2+1)−r n exp
{

r n σ2
I

2
(r n− 1)

}

[57, Eq. (18)] and the moments for the M turbulence can

be easily extracted from (20). On matching the second moment, we obtained the mapping for

σI as

σI =

√

√

√

√

1

r (2 r − 1)
ln

{

r ξ4 r AΓ (α+ 2 r)

2 r (ξ2 + 1)
2 r

B2 r

β
∑

m=1

bm Γ (m+ 2 r)

}

. (40)

The plot for this scenario can be easily depicted in Fig. 1 from the case wherein (α = 8;

β = 4). It must be noted that the curve signified by the second last entry in the legend depicts

the lognormal special case approximate plotted via utilizing the unified exact closed-form OP

analytical expression in (11). The last entry in the legend of Fig. 1 depicts the Monte-Carlo

simulation/generation for lognormal random variable with σI acquiring values from (40). The

values for the lognormal variance were obtained as σ2
I = 0.3409 for r = 1 (i.e. for heterodyne

FSO systems) scenario and as σ2
I = 0.3079 for r = 2 scenario (i.e. for IM/DD FSO systems),

respectively. It can be clearly observed that this approximation of M turbulence to lognormal is

quite tight. Moreover, we had obtained expressions for σI via matching the first moment as well

and it was realized that the expression derived via matching the second moment gave tighter

approximate results. Based on this, we can easily conclude that the higher moments we utilize

to derive the mapping expression for σI , the tighter approximate may be obtained.

Additionally, another important outcome must be observed that the heterodyne detection

technique, being more complex method of detection technique, performs better than the IM/DD

technique. For instance, for α = 2.296, β = 2, and ρ = 0.596, at an electrical SNR of 15 dB,

the heterodyne detection technique outperforms the IM/DD technique in terms of the OP by

1.8852 ∗ 10−1. On the other hand, for α = 8, β = 4, ρ → 1, and Ω
′

= 1, for a desired OP

i.e. lets say for Pout = 7.6 ∗ 10−3, the heterodyne detection technique outperforms the IM/DD

technique by 20 dB.

Similarly, Fig. 2 presents the OP for varying effects of pointing error (ξ = 1 and 6.7) under the

IM/DD technique. We can observe that for lower effect of the pointing error (i.e. higher value of

ξ), the respective performance gets better manifolds. Other outcomes, specially for the asymptotic

approximations, can be observed similar to Fig. 1 above except when the atmospheric effects get

weaker and weaker wherein the single dominant term of the asymptotic result converges faster

than the sum of all terms in the asymptotic result.

The average BER performance of DBPSK binary modulation scheme is presented in Fig. 3.

The effect of pointing error is fixed at ξ = 1. Similar results can be observed as were observed
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Fig. 2. OP showing the performance of IM/DD technique under different turbulence conditions with varying effects of pointing

error.
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α = 2.296 and β = 2; ρ = 0.596 (Eq. (22))

α = 4.2 and β = 3; ρ = 0.596 (Eq. (22))

Monte−Carlo Simulation

α = 8 and β = 4; ρ −> 1 and Ω’ = 1 (Gamma−Gamma Special Case) (Eq. (22))
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Fig. 3. Average BER of DBPSK binary modulation scheme showing the performance of both the detection techniques (heterodyne

and IM/DD) under different turbulence conditions.

for Fig. 1. Similarly, Fig. 4 presents the average BER for varying effects of pointing error

(ξ = 1 and 6.7) under the IM/DD technique. We can observe that for lower effect of the

pointing error (ξ → ∞), the respective performance gets better. Other outcomes, specially for

the asymptotic approximations, can be observed similar to Fig. 2 above.

In Fig. 5 and Fig. 6, the lower bound ergodic capacity of FSO channel in operation under

IM/DD technique is demonstrated with varying effects of pointing error, ξ = 1 and 6.7, for

strong atmospheric turbulence and weak atmospheric turbulence, respectively. Expectedly, as

the atmospheric turbulence conditions get severe and/or as the pointing error gets severe, the

ergodic capacity starts decreasing (i.e. the higher the values of α and β, and/or ξ, the higher
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Fig. 4. Average BER of DBPSK binary modulation scheme showing the performance of IM/DD technique under different

turbulence conditions for varying effects of pointing error.
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ξ = 6.7 (Eq. (28))

ξ = 1 (Eq. (28))

Monte−Carlo Simulation

Asymptotic Result (via Meijer G Expansion (Eq. (30))) (All Terms)

Asymptotic Result (via Meijer G Expansion (Eq. (30))) (Two Dominant Terms)

Asymptotic Result (via Moments Method) (Eq. (36))

α = 2.296 and β = 2; ρ = 0.596

Fig. 5. Ergodic capacity results for the IM/DD technique with varying pointing errors along with the asymptotic results in high

SNR regime for strong atmospheric turbulence.

will be the ergodic capacity). One of the most important outcomes of Fig. 5 and Fig. 6 are

the asymptotic results for the ergodic capacity via two different methods. It can be seen that at

high SNR, the asymptotic expression, via Meijer’s G function expansion, derived in (30) (i.e.

utilizing all the terms in the summation) converges rather slowly. Based on the effects of the

turbulent parameters and the pointing error, the appropriate dominant term(s) are selected and

we can see that these respective dominant term(s) also converge though relatively quite faster

than the case where we employ all the terms. On the other hand, the asymptotic expression,

via utilizing moments, derived in (36) gives very tight asymptotic results in high SNR regime.
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α = 4.2 and β = 3; ρ = 0.596

Fig. 6. Ergodic capacity results for the IM/DD technique with varying pointing errors along with the asymptotic results in high

SNR regime for weak atmospheric turbulence.

Interestingly enough, it can be clearly seen that the two-dominant terms of (30) (derived via

Meijer’s G function expansion) signified by the two 1’s present in the Meijer’s G function of the

lower bound ergodic capacity results in (28) and (36) (derived via moments) overlap. Finally,

Fig. 7 presents tight asymptotic results for the ergodic capacity in low SNR regime derived in

(38). It is important to observe that non-intuitively, for low SNR regime (i.e. Fig. 7), as the
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Fig. 7. Ergodic capacity results for the IM/DD technique for varying pointing errors along with the asymptotic results in low

SNR regime.

pointing error gets severe, the ergodic capacity starts increasing (i.e. the higher the value of ξ,

the lower will be the ergodic capacity).

Finally in Fig. 8, we demonstrate the relative performance of M turbulent channels with

Gamma-Gamma turbulent channels. It is interesting to see how ρ and Ω
′

behave. It can be
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Fig. 8. Comparison of the FSO link performance with Gamma-Gamma and M turbulent channels with fixed α, β, and ξ.

observed that ρ has a significant effect on the performance though as the Ω
′

increases much

beyond 60 dB, the effect of ρ nullifies. Similar trend is observed for the variations with Ω
′

itself.

VI. CONCLUDING REMARKS

We presented unified expressions for the PDF, the CDF, the MGF, and the moments of the

average SNR of an FSO link operating over M turbulence. Capitalizing on these expressions,

we presented new unified formulas for various performance metrics including the OP, the SI,

the error rate of a variety of modulation schemes, and the ergodic capacity in terms of Meijer’s

G function except for the SI that was in terms of simple elementary functions. Further, we

derived and presented novel asymptotic expressions for the OP, the average BER, and the ergodic

capacity in terms of basic elementary functions via utilizing Meijer’s G function expansion given

in the Appendix and via utilizing moments too for the ergodic capacity asymptotes. In addition,

this work presented simulation examples to validate and illustrate the mathematical formulation

developed in this work and to show the effect of the atmospheric turbulence conditions severity

and the pointing errors severity on the system performance.

These results demonstrate the unification of various FSO turbulent scenarios into a single

expression allowing one to utilize this unified expression and derive the required expression

for one’s objective. Additionally, one can easily utilize the unified analysis over the M FSO

turbulent channels to obtain many other turbulent channels, as per need, as its special case.

Furthermore, having these unified asymptotic results opens door for simpler further analysis

over more complex systems undergoing these FSO turbulent channels.
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APPENDIX: MEIJER’S G FUNCTION EXPANSION

The Meijer’s G function can be expressed, at a very high value of its argument, in terms of

basic elementary functions via utilizing Meijer’s G function expansion in [58, Theorem 1.4.2,

Eq. (1.4.13)] and limx→0+ cFd [e; f ; x] = 1 [59] as

lim
z→∞+

Gm,n
p,q

[

z

∣

∣

∣

∣

a1, . . . , an, . . . , ap
b1, . . . , bm, . . . , bq

]

=
n
∑

k=1

zak−1

×
∏n

l=1; l 6=k Γ(ak − al)
∏m

l=1 Γ(1 + bl − ak)
∏p

l=n+1 Γ(1 + al − ak)
∏q

l=m+1 Γ(ak − bl)
,

(41)

where ak − al 6= 0,±1,±2, . . . ; (k, l = 1, . . . , n; k 6= l) and ak − bl 6= 1, 2, 3, . . . ; (k =

1, . . . , n; l = 1, . . . ,m).
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