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Performance evaluation of modern cloud data centers has attracted considerable research attention among both cloud providers
and cloud customers. In this paper, we investigate the heterogeneity of modern data centers and the service process used in these
heterogeneous data centers. Using queuing theory, we construct a complex queuing model composed of two concatenated queuing
systems and present this as an analyticalmodel for evaluating the performance of heterogeneous data centers. Based on this complex
queuing model, we analyze the mean response time, the mean waiting time, and other important performance indicators. We also
conduct simulation experiments to con
rm the validity of the complex queuingmodel.We further conduct numerical experiments
to demonstrate that the tra�c intensity (or utilization) of each execution server, as well as the con
guration of server clusters, in a
heterogeneous data center will impact the performance of the system. Our results indicate that our analytical model is e�ective in
accurately estimating the performance of the heterogeneous data center.

1. Introduction

Cloud computing is a popular paradigm for providing ser-
vices to users via three fundamental models: Infrastructure
as a service (IaaS), Platform as a service (PaaS), and Soware
as a service (SaaS) [1, 2]. Cloud computing providers o�er
computing resources (e.g., servers, storage, networks, devel-
opment platforms, and applications) to users either elastically
or dynamically, according to user-demand and form of
payment (e.g., pay-as-you-go) [3]. A modern data center is
considered a heterogeneous environment because it contains
many generations of servers with hardware con
gurations
that may di�er, especially in terms of the speed and capacity
of the processors. Generally, these servers have been added
to the data center gradually and provisioned to replace the
existing (or “legacy”) machines already in the data center’s
infrastructure [4, 5].	eheterogeneity of thismix ofmachine
platforms a�ects the performance of data centers and the
execution of cloud computing applications.

	e ability to ensure the desired Quality of Service (QoS),
which is a standard element of the Service Level Agreement
(SLA) established between consumers and cloud providers, is

one the most important business considerations for a cloud
computing provider [6, 7]. A typical QoS outlines a set of
critical performance indicators: mean response time, mean
task queuing length,meanwaiting time,mean task number of
throughput, task capacity of the system, blocking probability,
and probability of immediate service of the system. All of
these indicators can be analyzed and described using queuing
theory [8].

A task completed by the cloud computing center follows
several steps: (1) a customer’s request is transformed into a
cloud computing task and sent to the task queue (the 
rst
level queue) maintained by the main scheduler server; (2)
the scheduler allocates computing resources for the task and
dispatches it to a node (execution server) to execute; (3)
the node takes the task from the second level queue and
allocates space in a CPU core (the main computing resource)
to complete it; (4) the system outputs the result, and the
task leaves the system. In this process, blocking will occur
if a task leaves the system without having been executed (or
the task may have been abandoned by the system) because
of capacity constraint at the 
rst level queue. A queuing
model for a cloud computing heterogeneous data center can
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analyze the relationship among three factors: the arrival rate
of tasks, the core utilization, and the probability of a node
(execution server) being dispatched. Cloud providers can
utilize this information to analyze their systems’management
and optimize their allocation of computing resources [9]. As
we show in Section 2, much existing research has discussed
the problem of how to analyze data center performance.
However, these studies have not considered the following
important issues:

(i) A cloud center can include a large number of servers
of di�erent generations with di�erent CPU speeds
and processor capacities. Existing research rarely
considers cloud center heterogeneity; rather, studies
generally assume that every node operates at the same
speed.

(ii) A cloud system has at least two levels of scheduling
processes (service processes): the main scheduler,
which allocates computing resources, and the second
scheduler (a node/execution server), which executes
tasks. 	e arrival rate of a task to the main scheduler
versus to a node is di�erent, and this must be taken
into account in the queuing analysis.

(iii) A node server with more than one speed and proces-
sor capacity will have di�erent probabilities of being
dispatched, depending on the situation. Each node
has its own task queue to maintain, which is tracked
by a separate queuing model that is included in the
overall system queuing model.

(iv) A state-of-the-art resource allocation scheme based
on the utilization threshold [��, �ℎ] controls nodes
that are to be added to a cloud system or removed
from it [10].

To 
ll these gaps, in this paper, we employ a complex
queuing model to investigate the performance of a cloud
center and the relationship among various performance
indicators in a heterogeneous data center. We aim to make
the following contributions with this paper:

(1) Wemodel the heterogeneous data center as a complex
queuing system to characterize the service process.
Two concatenated queuing systems compose the
complex queuingmodel.	e 
rst is the 
nite capacity
scheduler queuing system, which is used to study the
main scheduling server. 	e second is the execution
queuing system, which has multiple servers for each
multicore server processor.

(2) Based on this complex queuing model, and using
queuing theory, we analyze the real output rate of
the main scheduling server—that is to say, the real
arrival rate of the execution queuing systems, the
mean response time of the system, the blocking
probability, and other performance indicators—and
use this analysis to evaluate the performance of, and
the relationships among, these indicators in a cloud
center.

(3) We conduct extensive discrete event simulations to
evaluate and validate the results of using the complex

queuing model to analyze the performance of hetero-
geneous data centers in cloud computing.

	e remainder of this paper is organized as follows.
Section 2 reviews and discusses the related scholarship on
queuing models for cloud centers. Section 3 discusses our
analytical model in detail. All of the performance metrics
obtained by using this complex queuing model are presented
in Section 4. In Section 5, we show the simulation results and
compare them with our analytical results to evaluate and val-
idate the applicability of the complex queuing model. Finally,
conclusions and future work are presented in Section 6.

2. Related Work

Although much scholarship has been conducted on the per-
formance analysis of a cloud center based on queuing models
[11–16], factors including the loosely coupled architectures
of cloud computing and the heterogeneity and dynamic
infrastructure of a cloud center have not been considered.

In [11], the authors used an�/�/�/�+� queuing system
to evaluate a cloud computing center and obtained a complete
probability distribution of response time, number of tasks in
the system, and other important performance metrics. 	ey
also considered the di�erent mean waiting times between
heterogeneous services and homogeneous services under the
same conditions in the system. Based on queuing theory
and open Jackson’s networks, a combination of �/�/1 and�/�/� was presented to model the cloud platform for
QoS requirements in [12]. In [13], the authors presented an�/�/� queuing system and proposed a synthesis opti-
mization of model, function, and strategy to optimize the
performance of services in the cloud center. In [14, 15], the
authors introduced a queuing model consisting of three con-
catenated queuing systems (the schedule queue, �/�/1, the
computation queue, �/�/�, and the transmission queue,�/�/1) to characterize the service process in a multimedia
cloud and to investigate the resource optimization problems
of multimedia cloud computing. In [16], a cloud center was

modeled as a ���/�/�/	 queuing model to discuss cloud
service performance related to fault recovery.

In many existing methodologies [17–20], queuing theory
has been used to analyze or optimize factors such as power
allocation, load distribution, and pro
t control.

In [17], the authors presented an energy proportional
model—which treats a server as an�/�/1 queuing system—
as a strategy to improve performance e�ciency. In [18],
an �/�/� queuing model, which considers factors such
as the requirement 
 of a service and the con
guration
of a multiserver system, is used to optimize multiserver
con
guration for pro
t maximization in cloud computing.
In [19], the authors presented an �/�/�/� queuing system
to model a cloud server farm provided with 
nite capacity
for pro
t optimization. Another study presents a queuing
model for a group of heterogeneous multicore servers with
di�erent sizes and speeds to optimize power allocation and
load distribution in a cloud computing environment [20].
In [17], the authors used the �/�/�/� queuing system to
model a cloud center with di�erent priority classes to analyze
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Figure 1: Cloud center architecture and the service model.

the general problem of resource deployment within cloud
computing.

However, none of the above literature considers that the
main scheduler and the execution servers have their own
task queuing, that an execution server with di�erent speeds
will have di�erent processing times, and that each execution
server has a di�erent probability of being dispatched given
di�erent arrival rates of tasks. As a result, a queuing model
used to model a heterogeneous data center for performance
analysis should characterize the service process within the
cloud center as well as the infrastructural architecture of a
data center.

3. Queuing Model for Performance Analysis

In this section, we present a complex queuingmodel with two
concatenated queuing systems to characterize the service pro-
cess and the heterogeneity of the infrastructural architecture
in order to analyze the performance of a heterogeneous data
center.

3.1. Cloud Center Architecture and the Service Model. In the
cloud computing environment, a cloud computing provider
builds a data center as the infrastructure to provide service
for customers [21]. Figure 1 illustrates the architecture of
a heterogeneous data center and its service model. 	e
heterogeneous data center consists of large-scale servers of
di�erent generations. It includes the master server, which
works as amain scheduler to allocate computing resources for
a task or to dispatch a node to execute a task, and large-scale
computing nodes, which are multicore servers with di�erent
speeds that work as execution servers.

All customers submit requests to the data center for
services through the Internet, which has been deployed by
the users or supplied by the cloud providers. When the tasks
(user requests) arrive at the data center, the main scheduler
allocates resources for the task or dispatches nodes; the task
is then distributed to the execution servers to be executed.
	emain scheduler has a waiting bu�er with a 
nite capacity,
in which it saves waiting tasks that cannot be scheduled
immediately. 	e bu�er’s 
nite capacity means that some
requests cannot enter the waiting bu�er andwill instead leave

the system immediately aer arriving. Each execution server
receives all requests from the main scheduler and maintains
its own task queue.

Aer a task has been completed, it leaves the system and
the result is sent back to the customer.

3.2. Other Queuing Models for Reference

3.2.1. Multiple-Server Queue with the Same Service Rate. A
queuing model containing multiple servers with the same
service rate is shown in Figure 2(a). Using this queuing
model, the authors treated a cloud computing data center as
an �/�/�/� + � queuing system in [11], as an �/�/�/�
queuing system in [19], and as an �/�/� queuing system
in [12, 13, 18]. Because each server has the same service rate,
this queuing model treats each server in the data center the
same and assigns it the same dispatching probability  = 1/�.

	is queuingmodel simpli
es analysis andmakes it easier
to deduce an equation for the important performancemetrics
(e.g., the mean response time, mean number of tasks in
the system, and mean waiting time). However, the process
presented in this model does not apply to the service process
in a cloud data center. It ignores the scheduling activity of the
main server and the di�erent speeds of execution servers of
di�erent generations.

3.2.2. Multiple-Server Queue with Di�erent Service Rates.
A queuing model including multiple servers with di�erent
service rates is shown in Figure 2(b).We can use this queuing
system to model a heterogeneous data center that includes
multicore serverswith di�erent speeds. Each execution server
in the data center has a di�erent service rate �� and dis-
patching probability �. We assume that the conditions are	 = 2 and task arrival rate �.	e state-transition-probability
diagram for 	 = 2 is shown in Figure 3.

When a task arrives and there are two servers that are
idle, the scheduler will select one of them to execute the task.
	e selection probability of the number 1 server is 1 and
that of the number 2 server is 2 (2 = 1 − 1). 	e state
of �0 indicates that there is no task in the queuing system;�10 indicates that the task has been distributed to the number
1 server, and the number 2 server is idle; �01 indicates that
the task has been distributed to the number 2 server, and
the number 1 server is idle; �2 indicates that there are two
tasks in the system, and each has been distributed to one of
the two servers. �3, �4, . . . , �� indicate that there are 3, 4, . . . , �
tasks in the system, and two of them are in the two execution
servers. Let �1 and �2 denote the service rates of the number
1 and number 2 servers, respectively.	e system’s service rate

is � = ∑2�=1 ��. Figure 3 shows how this model calculates
probability when � = �/� and � = �2/�1 [22]:

�01 = �
1 + 2� ⋅ 1 + �� (� + 2) �0, (�1)

�10 = �1 + 2� ⋅ (1 + �) (� + 1) �0, (�2)
�0 = 1 − �

1 + � [1 + (1 + �2) � − (1 − �2) 1] /� (1 + 2�) . (�3)
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Figure 2: Other queuing models for reference.

λ

λ λ λ λ λ

λ

S0

S10

S2

S01

S3 Sn Sn+1

�1

�1

�2 �2

� � � � �
p1�

p2�

· · · · · ·

Figure 3: State-transition-probability diagram for 	 = 2.

From (�1)–(�3), we can see that if 	 ≥ 3, it can use �� =���−1 to calculate the probability of each state in Figure 3.	e
state-transition-probability diagram for 	 ≥ 3 will be more
complex.

Although it considers the heterogeneity of data centers,
this model still does not accurately describe the service
process in the cloud center; also, if 	 ≥ 3, the performance
analysis will be more di�cult.

3.3. Queuing Model for Performance Analysis. A queuing
model of heterogeneous data centers with a large number
of execution servers with multiple cores of di�erent gener-
ations is shown in Figure 4. 	e two concatenated queuing
systems—the scheduler queuing system and the execution
queuing system—make up the complex queuing model that
characterizes the heterogeneity of the data center and of the
service processes involved in cloud computing. 	is model
uses amonitor to obtain performancemetrics—including the
task number in the queuing, ��, the mean waiting time of a
task, ��, and the utilization of the execution server, �. 	e
model then sends this information to the balance controller
and optimizes performance by proposing an optimal strategy
based on these metrics. 	is is a project we will consider
doing in future.

	e complex queuing model is presented as follows.
	e master server works as the main scheduler and

maintains scheduler queuing for all requests from all users.
Since the process of allocating resources for tasks in the cloud
computing environment should consider all resources in the
data center, the master server is treated as an �/�/1/�
queuing system with 
nite capacity �.

Each node in a data center works as an execution server,
which is a multicore server that has �� identical cores
with the core execution speed �� (GIPS, measured by giga
instructions per second). Since each multicore execution
server can parallel-process multiple tasks, it is treated as an�/�/� queuing system.

	e stream of tasks is a Poisson process with arrival rate� (the task interarrival times are independent and identically
distributed exponential random variables with a rate of 1/�).
	e related notations of the system parameters are listed in
the Notations.

Since arrivals are independent of the queuing state and
the scheduler queuing system is a 
nite capacity queuing
model, the blocking probability of the scheduling system �
will be greater than or equal to 0 (� ≥ 0) and � ≥ �	, to yield
the following equations:

�	 = � (1− �) , (1)

�� = �	�, 1 ≤  ≤ �, ∑ � = 1, (2)

�� = 1

(�/��) = ��� , (3)

�� = ��($���) = (���)
($���) , �� ∈ [�1, �ℎ] . (4)

4. Performance Metrics of the Queuing Model

In this section, we will use the complex queuing model
with the two concatenated queuing systems proposed in
Section 3.3 to analyze the performance problems of a het-
erogeneous data center in cloud computing. We consider the
performance metrics of the scheduler queuing system, the
execution queuing systems, and the entire queuing system.

4.1. 
e Scheduler Queuing System. Since management of
computing resources and scheduling tasks across entire
data center and cloud environments are done by a uni-

ed resources management platform (e.g., Mesos [23] and
YARN [24]) and the system should be accompanied by

nite capacity, the master server is treated as an �/�/1/�
queuing system with 
nite capacity �. 	e state-transition-
probability diagram for the scheduler queuing model is
shown in Figure 5.

If the scheduler utilization �
 = �/�
 and �
 < 1, then the

probability that  tasks are in the queuing system �(
)� is [22]

�(
)
0

= 1 − �

1 − ��+1
 ,

�(
)� = 1 − �

1 − ��+1
 ��
,  = 1, 2, . . . , �.

(5)
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Figure 4: Queuing model of heterogeneous data centers.
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If  ≥ �, the task request could not enter the queuing
system. 	e blocking probability � is

&� = �(
)� = 1 − �

1 − ��+1
 ��
 . (6)

From (1) and (6), the master server throughput rate (the
e�ective arrival rate of the execution queuing systems) �	 is

�	 = � (1− �) = � 1 − ��

1 − ��+1
 . (7)

	e tasks waiting in the queue $(
)� and the tasks sched-

uled by the main scheduler $(
)
sch

are, respectively,

$(
)� = �−1∑
�=0

��(
)�+1 = �2


 �(
)0 �−1∑
�=1

���−1
 ,

$(
)sch = (1− �(
)
0

) = �
 − ��+1

1 − ��+1
 .

(8)

From (8), the mean task number (including the tasks
waiting in the queue and the tasks scheduled by the main

scheduler) in the scheduler queuing system $(
)
total

is

$(
)total = $(
)� + $(
)sch = �

1 − �
 −

(� + 1) ��+1

1 − ��+1
 . (9)

Using (7) and (9), �
 = �/�
; applying Little’s formulas
(the response time ' = the tasks number in the system/

the tasks arrival rate), the mean task response time of the

scheduler queuing system *(
) is
*(
) = $(
)total�	 = 1 − (� + 1) ��
 + ���+1
�
 (1 − �
) (1 − ��
 )

= 1�
 − � − �����+1
 − �� .
(10)

4.2. 
e Execution Queuing Systems. Assume that there are �
execution servers in the data center. Each execution server
has $� cores and can be treated as an �/�/$� queuing
system.

	e utilization of one core in the  th execution server ��0
is

��0 = ���� = ����� . (11)

From the state-transition-probability diagram for an�/�/$� queuing system [22], let�(	)�, indicate the probability
that there are � task requests (including waiting in the queue
and being executed) in the execution queuing system of the
execution server ��:

�(	)�, =
{{{{{{{{{{{

�(	)�,0 ⋅ ��0�! = �(	)�,0 ⋅ $��! �� , 0 ≤ � < $�
�(	)�,0 ⋅ ��0$�!$−��� = �(	)�,0 ⋅ $���$�! �� , � ≥ $�.

(12)

Under the stability condition, there are constraints as
follows:

(1) ∑∞=0 �(	)�, = {∑��−1=0 (1/�!)��0 + ($�/$�!)���−1�0 (��/(1 −��))}��,0 = 1.

(2) �� < 1.
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We can derive the probability that there are 0 task requests
in the execution queuing system �(	)�,0 :

�(	)�,0 = (��−1∑
=0

��0�! + ����0$�! ⋅ 1

1 − ��)
−1

. (13)

	e probability that a newly arrived task request from the
main scheduler to the  th execution server will be executed
immediately ;� is

;� = 1− ∞∑
=��

�(	)�, = 1− ∞∑
=��

$���$�! �� �(	)�,0

= $� − ��0 − $��(	)�,��$� − ��0 .
(14)

	e mean probability of a newly arrived task request

entering the execution queuing systems ;(	) is
;(	) = �∑

�=1
�;�. (15)

In the  th execution server, the tasks waiting in the queue

$(	)� � and the tasks executed by the  th execution server $(	)exc �
are, respectively,

$(	)� � = ∞∑
=��

(� − $�) �(	)�,,

$(	)exc � =
��∑
=0

��(	)�, + $� ∞∑
=��+1

�(	)�,.
(16)

From (16), the mean task number (including the tasks
waiting in the queue and the tasks executed by the execution

server) in the  th execution server $(	)
total � is

$(	)total � = $(	)� � + $(	)exc �
= �(	)�,0 ⋅ ���+1�0($� − 1)! ($� − ��0)2 + ��0.

(17)

Applying Little’s formulas, themean task response time of

the  th execution queuing systems *(	)� and the mean waiting
time for execution of a task in the  th execution queuing

systems �(	)� are, respectively,

*(	)� = $(	)total ��� = ��� (1+ �(	)�,0 ⋅ ����0($� − 1)! ($� − ��0)2 ) ,

�(	)� = $(	)� ��� = 1��
∞∑
=��

(� − $�) �(	)�,

= �(	)�,0 ⋅ � ⋅ ����0�� ($� − 1)! ($� − ��0)2 .

(18)

	emean response time of the execution queuing systems

*(	) for a group of � execution servers in the data center is

*(	) = �∑
�=1

&�*(	)� . (19)

	e mean waiting time of the execution queuing systems

�(	) in a group of � execution servers in the data center is

�(	) = �∑
�=1

&��(	)� . (20)

4.3.
e PerformanceMetrics of the Entire Queuing System. In
order to analyze the performance of heterogeneous data cen-
ters in cloud computing, we consider the main performance
metrics of a complex queuing system, which consists of two
concatenated queuing systems, as follows.

(i) Response Time. Based on analyzing the two concatenated
queuing systems, the equilibrium response time in heteroge-
neous data centers is the sum of the response time of the two
phases. 	e response time equation can be formulated as

* = *(
) + *(	) = *(
) + �∑
�=1

&�*(	)� . (21)

(ii) Waiting Time. 	e mean waiting time for a task request is

� = �(
) + �(	) = $(
)��	 + �∑
�=1

&��(	)�
= �
�
 (

1

1 − �
 −
���−1

1 − ��
 ) + �∑

�=1
&��(	)� .

(22)

(iii) Loss (Blocking) Probability. Since the scheduler queuing
system is a 
nite capacity queuingmodel, blockingwill occur:

&1 = &�. (23)

From (6), the loss (blocking) probability of the system is
related to the 
nite capacity of the scheduler queuing system� and the scheduling rate of themain scheduler server �
.	e
parameters of � or �
 can be adjusted to obtain di�erent loss
(blocking) probabilities.

(iv) Probability of Immediate Execution. Here, the probability
of immediate execution indicates the probability of a task
request being executed immediately by an execution server
aer being scheduled by the scheduler server and sent to the
execution server:

; = ;(	). (24)

(v) Execution Server Utilization Optimization Model Based
on the Arrival Rate �	. Our analytical model can be used to
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optimize the performance for a data center. 	is is one of the
signi
cant applications of the model.

Based on the utilization threshold [��, �ℎ] of the execution
servers, we can determine the number of execution servers
and the utilization of each execution server in the system, by
using the calculation model, which is based on our analytical
model, to con
gure the execution servers in the data center

to deal with tasks with the arrival rate �	. It can minimize the
mean response time of the system.

Assume the use of FCFS as the scheduling strategy, and set
the heterogeneous data center as a group of � heterogeneous
execution servers �1, �2, . . . , �� withmulticores$1, $2, . . . , $�
and execution speeds of �1, �2, . . . , ��. 	e execution server
utilization optimization model based on arrival rate �	 can
be formulated as follows:

Min
{�� ,�,�1 ,...,�� ,�1,...,��}

�∑
�=1

@�&�*(	)�

S.T. (1) �� = {{{
0, @� = 0

∈ [��, �ℎ] , @� = 1, 1 ≤  ≤ �

(2) �� = ��$���� , 1 ≤  ≤ �
(3) �∑
�=1

�� = �	
(4) &� = ��$�����	 , 1 ≤  ≤ �
(5) �∑
�=1

&� = 1

(6) *(	)� = ��� [[
1+ (��−1∑
=0

($���)($� − 1)! + 1($� − 1)! ⋅ ($���)��
1 − �� )

−1

⋅ ($���)��−1 ��$�! (1 − ��) ]
]

, 1 ≤  ≤ �
(7) @� ∈ {0, 1} , 1 ≤  ≤ �.

(25)

	e utilization of the execution servers will determine
mean response time, occupied time, and resource capac-
ity; therefore, the execution server utilization optimization
model based on arrival rate �	 can be used to analyze the
problem of optimal resource cost or the problem of energy
e�ciency. We will accomplish this research in future work.

In this paper, we just consider the special case—the

condition of �	 ∈ [(��/�) ∑�=1 $���, (�ℎ/�) ∑�=1 $���]. In a
small case, we can use a numerical method to gain the values
of �� for optimal performance. Under the condition of �	 ∈[(��/�) ∑�=1 $���, (�ℎ/�) ∑�=1 $���], the parameter of@� in (25)
is @� = 1; (25) can be rewritten as follows:

Min
{�� ,�,�1,...,�� ,�1,...,��}

�∑
�=1

��$��	 [
[
1+ (��−1∑
=0

($���)($� − 1)! + 1($� − 1)! ⋅ ($���)��
1 − �� )

−1

⋅ ($���)��−1 ��$�! (1 − ��) ]
]

S.T. (1) �� ≤ �� ≤ �ℎ, 1 ≤  ≤ �
(2) �∑
�=1

��$���� = �	
(3) �∑
�=1

��$�����	 = 1.

(26)



8 Mathematical Problems in Engineering

Table 1: Hosts and VMs resources setting.

HostID (PM)
Setting: ST1 Setting: ST2

CoreNum.
(VM Num., $�) Computing

power (GIPS, ��) VMs’ setting
CoreNum.

(VM Num., $�) Computing
power (GIPS, ��) VMs’ setting

Host#1 2 2 1 Core/2G 2 2 1 Core/2G

Host#2 4 2 1 Core/2G 2 2 1 Core/2G

Host#3 6 2 1 Core/2G 2 2 1 Core/2G

Host#4 8 2 1 Core/2G 4 2 1 Core/2G

Host#5 10 2 1 Core/2G 4 2 1 Core/2G

Host#6 12 2 1 Core/2G 4 2 1 Core/2G

Host#7 14 2 1 Core/2G 8 4 1 Core/4G

Host#8 16 2 1 Core/2G 8 4 1 Core/4G

Host#9 18 2 1 Core/2G 12 5 1 Core/5G

Host#10 20 2 1 Core/2G 12 5 1 Core/5G

5. Numerical Validation

In order to validate the performance analysis equations
presented above, we built a heterogeneous cloud computing
data center farm in the CloudSim platform and a tasks
generator with using the discrete event tool MATLAB. In
the numerical examples and the simulation experiments we
present, the parameters are illustrative and can be changed to
suit the cloud computing environment.

5.1. Performance Simulation. In this section, we describe the
simulation experiments that we conducted to validate the
performance analysis equations of the performance metrics.
In all cases, the mean number of instructions of a task to be
executed by the execution server was � = 1 (giga instruc-
tions). In the CloudSim, we considered a heterogeneous data
center with a group of � = 10 multicore execution servers
Host#1, Host#2,. . ., Host#10 and a main scheduler server
Ms. 	e tra�c intensity of the main scheduler server was�
 = 0.80. 	e 
nite capacity of the scheduler � = ⌈0.1�⌉.
	e di�erent settings of the Host# (1 ≤  ≤ 10) are
shown in Table 1. 	e allocation policy of the VM-scheduler
is space-shared, which makes one task in one VM. 	e total
computing ability (computing power) of these two groups of
execution servers with di�erent settings was the same.

In Table 1, the heterogeneous data centers of ST1 and ST2
are con
gured with 10 PMs and 110VMs and 10 PMs and
58VMs, respectively. 	e total computing powers of ST1 and
ST2 are all 220 (GIPS). 	e hardware environment is 2×Dell
PowerEdge T720 (2×CPUs: Xeon 6-core E5-2630 2.3G, 12
cores in total).

	e interarrival times of task requests were independent
and followed an exponential distribution with arrival rate� (the number of task requests per second). 	e cloudlet
information is created by tasks generator, which generates
task arrival interval time, task scheduling time, and task
length.

In the experiments, we assigned eachmulticore execution
server—which had a dispatched probability according to

its core speeds or set tra�c intensity—to each multicore
execution server to control a task. 	e rule for setting the
dispatched probability and the tra�c intensity, which can be
changed by administrators, was as follows.

(i) Setting the Dispatched Probability. Consider

&� = $���∑10

�=1 $��� , 1 ≤  ≤ 10. (27)

Under this pattern, the tra�c intensity of each execution
server was the same and may have exceeded the scope of
the utilization threshold [��, �ℎ]. Using these two groups of
execution servers (ST1 and ST2), the dispatched probability
of each execution server was set using (27).

Simulation Experiments 1.We have the following:

(1) Tasks number: cloudletsNo = 100000, tasks length

(GIPS): − log(rand(1, cloudletNo))/(��/�), and �:{157.5, 160.5, 163.5, 166.5, 169.5, 172.5, 175.5, 178.5,
181.5, 184.5, 187.5}.

(2) 	e main scheduler computing power: �
 = �/�
,
hosts (PMs) and VMs setting: ST1 and St2 (shown in
Table 1), and the probability of host (PM) dispatched:&� (27).

(3) Process: simulation experiment times: 30. In every
time, we recorded the loss tasks number in the main
scheduler, the immediate execution tasks number (if
the arrival time equates to start time), the response
time, and thewaiting time of each host. Aer 30 times’
experiments, we calculated the average values of the
loss (blocking) probability &�(&�), the probability of

immediate execution ;, the mean response time *,
and themeanwaiting time�.	en, we calculated the
95% con
dence interval (95% C.I.) for each metric to
validate these metrics in the analysis model.

(4) 	e analytical results are calculated by using the
analytical model with (21)–(24). 	e settings of each
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Table 2: 	e simulations and analytical results of &�(&�).
� Host set

Simulation 95% C.I. for &�(&�) Analytical results
Mean Lower Upper

157.5
ST1 0.0058 0.005683 0.005917 0.005759

ST2 0.00573 0.005491 0.005969 0.005759

172.5
ST1 0.00452 0.004404 0.004636 0.004586

ST2 0.00462 0.004504 0.004736 0.004586

187.5
ST1 0.00295 0.002853 0.003047 0.002916

ST2 0.00296 0.002842 0.003078 0.002916

Table 3: 	e simulations and analytical results of ;.
� Host set

Simulation 95% C.I. for ;
Analytical results

Mean Lower Upper

157.5
ST1 0.80593 0.803737 0.808123 0.806097

ST2 0.72404 0.723025 0.725055 0.724773

172.5
ST1 0.6867 0.683968 0.689432 0.688503

ST2 0.60165 0.599881 0.603419 0.60225

187.5
ST1 0.526 0.524375 0.527625 0.525132

ST2 0.44677 0.445745 0.447795 0.447063

Table 4: 	e simulations and analytical results of �.

� Host set
Simulation 95% C.I. for �

Analytical results
Mean Lower Upper

157.5
ST1 0.05987 0.059035 0.060705 0.060115

ST2 0.08227 0.081676 0.082864 0.082617

172.5
ST1 0.09591 0.094468 0.097352 0.096286

ST2 0.1249 0.123706 0.126094 0.12491

187.5
ST1 0.17872 0.174778 0.182662 0.178457

ST2 0.21112 0.207124 0.215116 0.213743

Table 5: 	e simulations and analytical results of *.
� Host set

Simulation 95% C.I. for *
Analytical results

Mean Lower Upper

157.5
ST1 0.56496 0.565194 0.56374 0.56618

ST2 0.35094 0.350361 0.351519 0.351333

172.5
ST1 0.60029 0.598638 0.601942 0.600923

ST2 0.39317 0.391785 0.394555 0.393184

187.5
ST1 0.6829 0.678949 0.686851 0.682724

ST2 0.47903 0.474915 0.483145 0.481646

parameter are�: {157.5, 160.5, 163.5, 166.5, 169.5, 172.5,
175.5, 178.5, 181.5, 184.5, 187.5}, �
 = 0.80, � = ⌈0.1�⌉,� = 1, & (27), and $� and �� shown in Table 1.

	e simulations and the analytical results (�: {157.5,172.5, 187.5}) are shown in Tables 2–5.

	e comparisons between the analytical and the simula-
tions results (�: {157.5, 160.5, 163.5, 166.5, 169.5, 172.5, 175.5,
178.5, 181.5, 184.5, 187.5}) are shown in Figures 6–9.

By comparing the simulation results obtained from
CloudSim and the analytical results calculated by using the
model, we can observe that the analytical results of &�(&�),
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;, �, and * are all in the range of 95% C.I., which are
shown in Tables 2–5 and Figures 6–9. It demonstrates that
the analytical results are in agreement with the CloudSim
simulation results. It also con
rms that the metrics of &�(&�),;, �, and * in the analytical model can be trusted under the
con
dence level of 95%.

Simulation Experiments 2. Use the same dataset (task num-
ber: 100000, ST1 and ST2) as the simulation experiments 1
to complete 30 times’ experiments under the arrival rate � =187.5. From this experiment, we recorded the response and

waiting times of each host in ST1 and ST2 (*(	)� and �(	)� , 1 ≤ ≤ 10). 	en, we can get the 95% con
dence interval (95%

C.I.) of *(	)� and �(	)� to validate these metrics in the model.
	e analytical results are gotten by using (18) and (19).
In Tables 6 and 7, we demonstrate the simulation results

and the 95% C.I. of *(	)� and �(	)� (1 ≤  ≤ 10) of every host
in ST1 and ST2 with a task request arrival rate � = 187.5.
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Table 6: 	e simulations and analytical results of each host in ST1.

HostID
Simulation 95% C.I. for *(	)� Analytical results of *(	)� Simulation 95% C.I. for �(	)� Analytical results of �(	)�Mean Lower Upper Mean Lower Upper

Host#1 1.808109 1.730226 1.885993 1.79946 1.308227 1.231192 1.385263 1.29946

Host#2 1.090659 1.064057 1.117261 1.073279 0.590882 0.565038 0.616725 0.573279

Host#3 0.840732 0.82654 0.854924 0.845942 0.341209 0.327489 0.354929 0.345942

Host#4 0.737109 0.730784 0.743434 0.738017 0.237314 0.231432 0.243195 0.238017

Host#5 0.674368 0.66885 0.679887 0.676187 0.174809 0.169671 0.179947 0.176187

Host#6 0.634818 0.630513 0.639123 0.636685 0.135545 0.13165 0.139441 0.136685

Host#7 0.607036 0.603298 0.610775 0.609575 0.107477 0.104036 0.110919 0.109575

Host#8 0.589295 0.58681 0.59178 0.59 0.089395 0.087273 0.091518 0.09

Host#9 0.576559 0.572962 0.580156 0.57532 0.076586 0.073578 0.079594 0.07532

Host#10 0.565364 0.563253 0.567474 0.563981 0.065318 0.063482 0.067154 0.063981

Table 7: 	e simulations and analytical results of each host in ST2.

HostID
Simulation 95% C.I. for *(	)� Analytical results of *(	)� Simulation 95% C.I. for �(	)� Analytical results of �(	)�Mean Lower Upper Mean Lower Upper

Host#1 1.846295 1.774547 1.918044 1.79946 1.347014 1.275931 1.418096 1.29946

Host#2 1.79655 1.742504 1.850596 1.79946 1.296655 1.243793 1.349516 1.29946

Host#3 1.806673 1.742178 1.871167 1.79946 1.307555 1.244333 1.370776 1.29946

Host#4 1.082836 1.062659 1.103014 1.073279 0.582073 0.562148 0.601997 0.573279

Host#5 1.065777 1.042977 1.088577 1.073279 0.5667 0.544379 0.589021 0.573279

Host#6 1.055886 1.03763 1.074143 1.073279 0.556777 0.538945 0.574609 0.573279

Host#7 0.369245 0.367006 0.371485 0.369009 0.119423 0.117318 0.121527 0.119009

Host#8 0.368186 0.365717 0.370656 0.369009 0.118227 0.115911 0.120543 0.119009

Host#9 0.255173 0.254154 0.256191 0.254674 0.055091 0.054138 0.056044 0.054674

Host#10 0.254464 0.253357 0.255571 0.254674 0.054359 0.053383 0.055335 0.054674
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Figure 8: Simulation 95% C.I. for � versus analytical result.

	e comparisons between the analytical and the simula-
tions results of the hosts are shown in Figures 10-11.

As shown in Tables 6 and 7 and Figures 10 and 11, we can

observe that the analytical results of *(	)� and �(	)� for all

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

M
ea

n
 r

es
p

o
n

se
 t

im
e 

(s
)

0.656

0.66

184 184.5 185

0.356

0.358

0.36

160 160.5 161

0.392

0.394

172 172.5 173

155 160 165 170 175 180 185 190

95% C.I. of ST1

95% C.I. of ST2

Analy. of ST1

Analy. of ST2

Task arrival rate (�)

Figure 9: Simulation 95% C.I. for * versus analytical result.

the hosts in ST1 and ST2 are all in the range of 95% C.I.
It demonstrates that the analytical results are in agreement
with theCloudSim simulation results and the hosts’ analytical
model can be trusted under the con
dence level of 95%.
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Aer comparing the results, we also conclude that

(1) the relative errors of the simulation and the analytics
are less than 3.5%,

(2) under the same arrival rate �	, the performance
metrics will be di�erent with di�erent settings despite
having the same computing abilities.

(ii) Setting the Tra�c Intensity.	e tra�c intensity/utilization�� (1 ≤  ≤ 10) was set in the scope of [��, �ℎ] (setting�� = 0.65 and �ℎ = 0.85). Under this pattern, the scope of
the task request arrival rate of the  th execution server will be�� ∈ [��$���/�, �ℎ$���/�] (1 ≤  ≤ 10) according to (4). A
group of � (� ≤ �) multicore execution servers can handle
the e�ective arrival rate ��	:

��	 = ∑
�=1

�� K⇒ ���
∑
�=1

$��� ≤ ��	 ≤ �ℎ�
∑
�=1

$���. (28)

Simulation Experiments 3. Let us consider using the same
hosts set to deal with the same arrival rate � = 172 ((28),172 ∈ [220 × 0.65, 220 × 0.85]) at designated rates of tra�c
intensity/utilization �� (1 ≤  ≤ 10) setting. 	e di�erent�� (1 ≤  ≤ 10) sets are shown in Table 8 as TIs1 and TIs2,
respectively.

We completed 30 times with these settings to get the
mean values.	emean response time results of the execution

queuing systems *(	)� (1 ≤  ≤ 10) are shown in Table 8.

FromTable 8, we can see that the maximum relative error
between the simulation and the analysis is 0.51%. By setting
the tra�c intensity of TIs1 and TIs2 for each host in the
group of ST1, we 
nd di�erent mean response times for the

execution queuing systems. 	e *(	) in TIs1 has fallen from
0.571203 (second) to 0.5607632 (second) in TIs2—an increase
of 1.8%. It shows that the same hardware resource will have
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Figure 11: Simulation 95% C.I. for �(	)� versus analytical result.

di�erent performance with di�erent tra�c intensity setting
for each host.

We can compare the results of our analytical calculation
with the results of simulation data shown in Tables 2–8 and
Figures 6–11, and all of the analytical results’ relative errors
are less than 3.5%. 	e results also showed that all of the
analytical results are in the range of 95% C.I. for the metrics.
	is shows that our analysis agrees with our simulation
results, which con
rms the validity of our analytical model.

5.2. Numerical Examples. We demonstrate some numerical
examples to analyze the relationship among performance
metrics with using the analytical model.

(i) Numerical Example 1. We use the two groups of execution
servers (hosts in ST1 and ST2) shown in Table 1 with the same
total computing ability to handle an arrival rate � = 155. 	e
execution servers in ST1 and ST2 are sorted by computing
ability (computing power). In the experiments, we adjust
the tra�c intensity of each execution server, so that we can

analyze the mean response time* and the mean waiting time� of the system.We select 16 sets of tra�c intensity, and each
set has 10 �� (1 ≤  ≤ 10) to 
t 10 execution servers.

	e results of the experiments are shown in Figures 12 and
13. In the 16 experiments, we set similar tra�c intensity for
the  th execution server in ST1 and ST2. Although ST1 and
ST2 have the same total computing ability, themean response

time * and the mean waiting time � of the system di�er
signi
cantly from each other.

In Figures 12 and 13, we can see that adjusting the
tra�c intensity (utilization) of each execution server can
enhance the response and waiting times. In ST1, the mean

response time * is decreased from 0.707159 (second) to
0.554670 (second), and response time has been enhanced by

21.56%.	emean waiting time� is decreased from 0.201998
(second) to 0.049509 (second), and response time has been
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Table 8: 	e results of each host with di�erent tra�c intensity in ST1.

HostID
Tra�c intensity set 1 (TIs1) Tra�c intensity set 2 (TIs2)�� Simulation Analytical results Relative error �� Simulation Analytical results Relative error

Host#1 0.751 1.143158 1.146792 0.32% 0.651 0.87184 0.867756 0.47%

Host#2 0.755 0.76765 0.764214 0.45% 0.665 0.642525 0.640293 0.35%

Host#3 0.756 0.648089 0.647759 0.05% 0.686 0.580317 0.583304 0.51%

Host#4 0.759 0.595157 0.597003 0.31% 0.735 0.578816 0.577729 0.19%

Host#5 0.761 0.571153 0.572848 0.30% 0.749 0.560845 0.560706 0.02%

Host#6 0.764 0.554577 0.555183 0.11% 0.782 0.56216 0.562954 0.14%

Host#7 0.766 0.541873 0.543499 0.30% 0.786 0.551055 0.550656 0.07%

Host#8 0.771 0.534157 0.535349 0.22% 0.807 0.551097 0.551994 0.16%

Host#9 0.815 0.54695 0.547189 0.04% 0.811 0.542748 0.544765 0.37%

Host#10 0.798 0.52541 0.525306 0.02% 0.813 0.538181 0.538257 0.01%
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Figure 12: 	e mean response times of ST1 and ST2.

enhanced by 75.49%. In ST2, the mean response time *
is decreased from 0.523104 (second) to 0.333339 (second),
and response time has been enhanced by 36.27%. 	e mean

waiting time � is decreased from 0.240814 (second) to
0.067228 (second), and response time has been enhanced
by 72.08%. We can see that the tra�c intensity (utilization)
of each execution server has a signi
cant impact on the
performance of the heterogeneous data center.

	e con
guration of a server cluster in a heterogeneous
data center is an important factor that greatly impacts the
system’s performance. Again, Figures 12 and 13 show the
results of our 16 experiments, and we can see that the mean

response time * of ST2 is better than ST1 under a similar
tra�c intensity (utilization) setting. Mean response time
improves by 35.18% on average, and the maximum is 39.9%.

However, the mean waiting time � of ST2 is worse than ST1.
Mean waiting time is decreased by 24.95% on average and
the maximum is 29%. It is important for a cloud provider
to con
gure the server cluster into a reasonable structure to
provide services for the customer. 	is conclusion will be
con
rmed in numerical example 2.
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Figure 13: 	e mean waiting times of ST1 and ST2.

(ii) Numerical Example 2. Let us consider the third group of
execution servers, named ST3, that includes 10 servers, each
of which is con
gured as$� = 4 and�� = 5.5 (1 ≤  ≤ 10).	e
other conditions are the same as the conditions in simulation
experiments 1. Assume that the arrival rate � is set from 150 to
187.5, which means that the tra�c intensity of each execution
server would be in the threshold [��, �ℎ].

	e performance results (*,�, and ;) of the three groups
(ST1, ST2, and ST3) of execution servers are shown in Figures
14–16. Di�erent con
gurations of server clusters will have
di�erent performance results. 	e best performance of the
mean response time is group ST3, and the worst is ST1, as
shown in Figure 14. 	e best performance of mean waiting
time is group ST1, and the worst is ST3, as shown in Figure 15.
In Figure 16, ST1 has the maximum immediate execution
probability, while the ST3 has theminimumvalue.We can use
this queuing model to estimate the performance results of a
server cluster with a certain con
guration under di�erent �.
In order to enhance the performance of mean response time,
con
guring the server cluster in a reasonable structure is an
e�cient method.
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Figure 14: 	e mean response times of ST1, ST2, and ST3.

In practice, users will present some constraints when they
ask cloud computing providers for services.	ey will present
constraints as follows:

(1) 	e task request arrival rate ��� ∈ [��, �ℎ].
(2) 	e mean response time M� ≤ *�.
(3) 	e mean wasting time M� ≤ �� or the immediate

execution probability N ≥ ;�.
Cloud computing providers could con
gure the server

cluster to serve customers under certain constraints by using
our queuing model. In our future work, we will use the
complex queuing model to further research dynamic cluster
technology in a heterogeneous data center to learn how
it handles di�erent tasks with di�erent arrival rates under
various constraints.

(iii) Numerical Example 3. One application of our analytical
model is to use this model for optimal system performance
by 
nding a reasonable tra�c intensity setting for each
execution server. Numerical example 3 shows the optimiza-

tion under the condition of (��/�) ∑�=1 $��� ≤ �	 ≤(�ℎ/�) ∑�=1 $��� to get the values of ��.
Assume using three execution servers �1 ($1 = 4,�1 = 4),�2 ($2 = 4, �2 = 3), and �3 ($3 = 6, �3 = 4) to handle

the arrival rate �	 = 38.3 ([(16 + 12 + 24) × 0.65, (16 +
12 + 24) × 0.85]). Equations (25) and (26)—the execution
server utilization optimization model based on the arrival
rate �	—can use a numerical method to get the minimum
mean response time of this system under the condition of�	 = 38.3. As Figure 17 shows, we can see that the minimum

mean response time *min = 0.36317 when �1 = 0.72712,�2 = 0.67627, and �3 = 0.77295. Controlling the tra�c
intensity (or utilization) of each execution server allows for
the control of the dispatched probability of each execution
server and the optimization of system performance.
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Figure 15: 	e mean waiting times of ST1, ST2, and ST3.
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Figure 16: Immediate execution probability of ST1, ST2, and ST3.

	e tra�c intensity (or utilization) of each execution
server will impact the response time, computing resource
allocation, and energy usage of the system; therefore, we will
further optimize the execution server utilization optimiza-
tion model in future work.

6. Conclusions and Future Work

Performance analysis of heterogeneous data centers is a
crucial aspect of cloud computing for both cloud providers
and cloud service customers. Based on an analysis of the
characteristics of heterogeneous data centers and their service
processes, we propose a complex queuing model composed
of two concatenated queuing systems—the main schedule
queue and the execution queue—to evaluate the performance
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Figure 17: 	e mean response time with di�erent tra�c intensity
settings.

of heterogeneous data centers. We theoretically analyzed
mean response time, mean waiting time, and other impor-
tant performance indicators. We also conducted simulation
experiments to validate the complex queuing model. 	e
simulation results and the calculated values demonstrate that
the complex queuing model provides results with a high
degree of accuracy for each performance metric and allows
for a sophisticated analysis of heterogeneous data centers.

We have further conducted some numerical examples to
analyze factors such as the tra�c intensity (or utilization)
of each execution server and the con
guration of server
clusters in a heterogeneous data center; these are factors that
signi
cantly impact the performance of the system. Based on
this complex queuingmodel, we plan to extend our analytical
model to the study of dynamic cluster technology in a
heterogeneous data center. In doing so, we aim to help service
providers optimize resource allocation using the execution
server utilization optimization model.

Notations

�: 	e 
nite capacity of the scheduler queuing system�
: 	e scheduling rate of the master server�	: 	e master server throughput rate/the e�ective
arrival rate of the execution queuing systems�: 	e probability that execution server �� has been
dispatched to execute a task/the probability of a task
request sent to the execution server ����: 	e arrival rate of the task request distributed to the
execution server ����: 	e  th node/the  th execution server$�: 	e number of cores in the  th execution server ����: 	e execution rate of the core in the  th execution
server ����: 	e core execution speed of the  th execution server�� (measured by giga instructions per second (GIPS))

�: 	e mean number of instructions in a task to
be executed in the execution server (giga)��: 	e utilization/tra�c intensity of the  th
execution server ���: 	e number of execution servers in the data
center.
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