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Abstract—This paper investigates the performance of cooper-
ative relay networks in the presence of hybrid automatic repeat
request (ARQ) with delay constraint. It analyzes the scenarios
where the relay channels are asymmetric (i.e., the links of
the wireless relay network follow different fading distributions)
due to relaying position and/or due to time varying channel
fading. The analytical expressions for the outage probability and
throughput are derived for different asymmetric fading channels.
The benefit of combined implementation of relaying and hybrid-
ARQ is illustrated. Our results show that the performance in
terms of outage probability and delay-limited throughput is
better when the relay node is in line-of-sight (LoS) with respect
to the source node compared to being close to the destination
node. This performance difference is quantified and can be as
large as several dB depending on the specific configuration. This
difference in performance narrows when the maximum hybrid-
ARQ transmission rounds increase or when the information
transmission rate decreases.

Index Terms—Hybrid automatic repeat request (ARQ), chase
combining, cooperative network, relaying channels, asymmetric
channels, outage probability, throughput analysis.

I. INTRODUCTION

Over the last decades, wireless relay network has attracted
huge interests from both the academia and industry thanks
to its numerous benefits. By implementing intermediate relay
nodes to support the data transmission from a source to a
destination, it has been shown that a substantial increase in the
multiplexing gain and spatial diversity of the communication
systems can be achieved, which leads to improved network
coverage and enhanced system throughput [1]. Depending on
the nature and complexity of the relaying technique, relay
strategies can be generally classified into two categories,
namely decode-and-forward (DF) and amplify-and-forward
(AF) [2, pp. 412–416].

The performance of relay-aided wireless network can be
further improved by the combined implementation of the
cooperative relaying technique in the physical layer and the
hybrid automatic repeat request (hybrid-ARQ) scheme in the
link layer [3]. The hybrid-ARQ is a well-established retrans-
mission mechanism which has been employed in virtually
all modern communication systems. It is usually categorized
into Chase combining (CC) and incremental redundancy (IR),
depending on whether the retransmission is identical to the
original transmission or it consists of new redundancy bits
from the channel encoder [2, pp. 96–101]. The ARQ systems

can be interpreted as channels with sequential feedback, where
the system performance can be improved by retransmitting
data that has been impaired by unfavorable channel conditions
through the use of both error correction and error detection
codes. Therefore, the combination of the relaying and ARQ
improves the system performance as the ARQ makes it pos-
sible to use the relay nodes only when it is needed [4]. This
motives to study the performance of hybrid-ARQ technique in
wireless relay networks [3]–[7].

In [3] and [4], outage probability and throughput analysis
is conducted for an ARQ-enabled relay network. The authors
assume a quasi-static block-fading channel condition, where
the channel coefficients are assumed to remain fixed within all
ARQ rounds of a data packet. This assumption only represents
the limited scenarios with slow-moving or stationary nodes.
In [5], the throughput and outage probability of a three-
node relay network with hybrid-ARQ and long-run sum power
constraint is analyzed. It is assumed that the source will stop
transmission once the relay correctly decodes the data. While
this eases the requirement on synchronization and interference
management, the destination node cannot benefit from the
diversity gain resulting from the cooperative transmission of
both source and relay. The authors in [6] investigated the
performance of multiple-input-multiple-output (MIMO) with
ARQ and showed that the performance of ARQ with CC and
IR are the same at low/moderate SNRs. The performance of
an ARQ-enabled relay network with cooperation mode switch
is analyzed in [7].

However, the aforementioned work, as well as the vast ma-
jority of related literature, limit their study of relay networks
with hybrid-ARQ to symmetric fading channel conditions, i.e.,
all links follow the same distribution. In reality, an asymmetric
fading channel is regarded as a more general and realistic
assumption to describe the actual wireless relay channels
considering the spatial variability of node locations as well as
spatio-temporal dynamics of the propagation channel [8]–[10].
To this end, there have been some recent papers focusing on
the performance of wireless network over asymmetric fading
channels [8]–[10]. A dual-hop AF relaying system has been
studied for asymmetric Rayleigh-Rician fading channels in
[8] and for Rician-Nakagami-m case in [9]. The authors of
[10] have investigated a dual-hop DF relaying network over
mixed Rayleigh and generalized Gamma fading channels. The



analysis of wireless relay network over mixed fading chan-
nels is mathematically much more complicated for analysis
compared to the scenario where all fading channels follow
the same distribution. From the above up-to-dated reported
works, it is fairly evident that the performance of relay network
with hybrid-ARQ over asymmetric fading channels is still
unexplored. In this paper, we intend to fill this gap.

In this paper, we study the performance of hybrid-ARQ with
CC over a cooperative relay network with mixed Rayleigh and
Rician fading channels. The closed-form expressions for the
outage probability at each hybrid-ARQ round are derived and
the delay-limited (DL) throughput of the network is analyzed.
Fast-fading channel condition is adopted such that the channel
coefficients change in each (re)transmission round based on
their probability density functions (PDFs). The relay node
employs the DF relaying strategy.

The remainder of the paper is organized as follows. In
Section II, we describe the relay channel model with the
hybrid-ARQ protocol. Performance analysis, including the
outage probability is conducted in Section III, and throughput
analysis in Section IV. The analytical and simulation results
are presented in Section V. Section VI concludes the paper.

II. RELAY-ARQ PROTOCOL AND CHANNEL MODEL

We consider a cooperative communication setup consisting
of a source node, a relay node and a destination node as
shown in Fig. 1. The relay-ARQ protocol works as follows:
during the first hybrid-ARQ round of each packet period, the
source broadcasts the data to the destination node, which is
also overheard by the relay node. At the end of transmission,
the destination node feedbacks its decoding result to both the
source and the relay using the acknowledgement (ACK) or
non-acknowledgement (NACK) messages, which are assumed
to be received error-free. If retransmissions are required and
the relay correctly decodes the data before the destination, the
relay and the source will cooperatively transmit the data to the
destination. The space-time codes (STCs) such as Alamouti
code are used to transmit the source and relay symbols in order
to avoid interference. It should be noted that the decoding at
both the relay and the destination benefits from the hybrid-
ARQ mechanism. In addition, the decoding at the destination
also benefits from the potential cooperative transmission of
the source and the relay. Furthermore, we also assume a
delay-limited network with maximum number of hybrid-ARQ
transmission rounds M , representing the delay constraint.

Fig. 1: The system model with asymmetric fading channels

The channel fading coefficients for the source-destination,
source-relay, and relay-destination links are denoted as hsd,
hsr, and hrd, respectively. The corresponding fading distri-
butions of each link are shown in Fig. 1 for the investigated
asymmetric channels. For a wireless relay network (e.g. wire-
less sensor network), the positions of the transmitter (source
node) and the receiver (destination node) are often fixed while
the position of the relay is flexible. We assume that there is
no line-of-sight (LoS) between source and destination. The
relay may be placed close to either the destination or the
source to have a LoS. In the former case, the source-relay link
follows Rayleigh fading and the relay-destination link follows
Rician fading. In the latter case, the source-relay link follows
Rician fading and the relay-destination link follows Rayleigh
fading. The two Rayleigh fading channels are independent but
not necessarily identical. It is evident that the scenario of all
links following Rayleigh distribution is a special case of our
analysis. Let the transmission power of the source and the
relay be Ps and Pr, respectively. The instantaneous SNRs
for the three links are expressed as γsd = (Ps|hsd|2)/N0,
γsr = (Ps|hsr|2)/N0, and γrd = (Pr|hrd|2)/N0, where N0 is
the noise power. Their mean values are denoted as γsd, γsr,
and γrd, respectively. The input SNR of the system is defined
as γ′ = (Ps + Pr)/N0.

For AWGN channel, if a link undergoes Rayleigh fading, the
corresponding instantaneous SNR γ follows the exponential
distribution. The PDF of the SNR is expressed as

fγ(γ) =
1

γ
e−

γ
γ , (1)

where γ is the average SNR of the corresponding link.
If a link experiences Rician fading, the instantaneous SNR

γ follows noncentral-χ2 distribution with PDF given as

fγ(γ) =
1 +K

γ
exp
[
−K− (1 +K)γ

γ

]
I0

(
2

√
K(1 +K)γ

γ

)
,

(2)
where γ is the average SNR of the corresponding link, K is
the Rician K-factor, and I0(·) is the zero-order modified Bessel
function of the first kind.

III. OUTAGE PROBABILITY ANALYSIS

We assume that m (m = 1, . . . ,M) hybrid-ARQ rounds are
used to transmit the data successfully and the correct decoding
of the data at the relay node occurs at round k. Therefore, if
k < m, it indicates that the relay correctly decodes the data
before the destination node, and the relay has contributed to
the cooperative transmission together with the the source node
for ARQ rounds (k+1, . . . ,m). Otherwise, k ≥ m implies that
only the source node contributes to the successful transmission
of the information for this data packet round.

For hybrid-ARQ with CC scheme, the mutual information
is obtained by combining received SNR over the m rounds.



The accumulated SNR γ(m,k) at the destination node after m
ARQ rounds can be expressed as

γ(m,k) =

m∑
i=0

[
γsd,i + γrd,i · 1(i > k)

]
, (3)

where γsd,i and γrd,i are the SNRs of the source-destination
and the relay-destination links at the i-th round, respectively;
and 1(i > k) is the indicator function.

The total mutual information, I(m,k), after m-th round can
be written according to Shannon’s theorem as

I(m,k) = log2(1 + γ(m,k))

= log2

(
1 +

m∑
i=0

[
γsd,i + γrd,i · 1(i > k)

])
. (4)

An outage after m hybrid-ARQ rounds means that the
accumulated total mutual information I(m,k) is still less than
the transmission rate R. Let Tr denote the earliest ARQ round
after which the relay contributes the information conveyed to
the destination. The outage probability Pout(m) after m ARQ
transmission rounds can be expressed as [11]

Pout(m) =

M∑
k=1

Pr(I(m,k) < R) · Pr(Tr = k) (5)

=

[m−1∑
k=1

Pr
(

log2

(
1 +

m∑
i=1

γsd,i +

m∑
i=k+1

γrd,i
)
< R

)
︸ ︷︷ ︸

PA
out(m)

+

M∑
k=m

Pr
(

log2

(
1 +

m∑
i=1

γsd,i
)
< R

)
︸ ︷︷ ︸

PB
out(m)

]
· Pr(Tr = k). (6)

To obtain the expression for Pout(m), we need to derive
the solutions of PA

out(m), PB
out(m), and Pr(Tr = k).

A. Outage Probability for Asymmetric Channel I
1) Derivation of PA

out(m)

We denote the function PA
out(m) in (6) for the asymmetric

channel I as PA
out,I(m). It can be further expressed as follows

PA
out,I(m) = Pr

( m∑
i=1

γsd,i +

m∑
i=k+1

γrd,i < 2R − 1
)

= Pr
(
Y(m) + Z(m,k) < 2R − 1

)
= Pr

(
X (m,k) < 2R − 1

)
= FX (m,k)(2R − 1), (7)

where the auxiliary variables are defined as follows: Y(m) =∑m
i=1 γsd,i, Z(m,k) =

∑m
i=k+1 γrd,i, and X (m,k) = Y(m) +

Z(m,k); and FX (m,k)(·) is the cumulative distribution function
(CDF) of the random variable (RV) X (m,k).

As γsd,i follows the exponential distribution, its moment
generating function (MGF) is expressed as Mγsd,i(s) =
1/(1 − sγsd). Then, the MGF MY(m)(s) of the RV Y(m)

is given by

MY(m)(s) =

m∏
i=1

Mγsd,i(s) =
1

(1− sγsd)m
. (8)

Remark: The above RV Y(m) =
∑m
i=1 γsd,i is Erlang

distributed as γsd,i are independent and identically distributed
(i.i.d.) exponential RVs. This can be readily shown by com-
paring (8) with the MGF of Erlang distribution [12, p. 67].

The RV γrd,i is noncentral-χ2 distributed and its MGF
Mγrd,i(s) can be obtained from its PDF in (2) as follows

Mγrd,i(s) =
1 +K

1 +K − sγrd
· exp

( K · γrds
1 +K − sγrd

)
. (9)

The RV Z(m,k) is the sum of (m− k) i.i.d. noncentral-χ2

RVs. Its MGF MZ(m,k)(s) can be expressed as

MZ(m,k)(s) =

m∏
i=k+1

Mγrd,i(s)

=
[ 1 +K

1 +K − sγrd
· exp

( K · sγrd
1 +K − sγrd

)]m−k
. (10)

Remark: Arising from the fact that a noncentral-χ2 RV
results from the sum of squares of several independent normal-
ly distributed RVs; then the sum of several noncentral-χ2 RVs
also results in a noncentral-χ2 distributed variable. Therefore,
the above RV Z(m,k) is also noncentral-χ2 distributed.

The MGF MX (m,k)(s) of the RV X (m,k) is expressed as

MX (m,k)(s) =MY(m)(s) · MZ(m,k)(s) = (1− sγsd)−m

·
[ 1 +K

1 +K − sγrd
· exp

( K · sγrd
1 +K − sγrd

)]m−k
. (11)

The CDF FX (m,k)(·) of the RV X (m,k) can be obtained from
its MGF in (11) as follows

FX (m,k)(x) = L−1
[1

s
· MX (m,k)(−s)

]
, (12)

where L−1[·] represents the inverse Laplace transform.
To obtain an unified expression for PA

out,I(m), we apply the
Euler summation-based approach [13] to obtain an approxi-
mate solution for the inverse Laplace transform in (12). Then,
PA

out,I(m) is computed as

PA
out,I(m) = FX (m,k)(2R − 1) =

Q∑
q=0

21−Q
(
Q

q

)[W+q∑
w=0

e
P
2 (−1)w

βw

·Re

{MX (m,k)

(
− P+2πjw

2·(2R−1)

)
P + 2πjw

}]
+ ε(P ) + ε(W,Q), (13)

where Re{·} denotes the real part of the complex number, the
MGF MX (m,k)(·) is given in (11) and

βw =

{
2 if w = 0

1 if w = 1, . . . ,W + q,
(14)

and P is an arbitrary parameter controlling the discretization
error ε(P ), which is bounded by

|ε(P )| ≤ e−P , (15)



and the overall truncation error ε(W,Q) approximates to

ε(W,Q) 'eP2 ·
Q∑
q=0

21−Q(−1)W+q+1

(
Q

q

)

· Re

{MX (m,k)

(
−P+2πj(W+q+1)

2·(2R−1)

)
P + 2πj(W + q + 1)

}
. (16)

Remark: The exact closed-form solution for the inverse
Laplace transform in (12) can be obtained in terms of higher-
order derivatives from Appendix A as

FX (m,k)(x) =

∞∑
n=0

(−c)n

n!
·
{

lim
s→− 1

a

d(m−1)

ds(m−1)

[ sn−1 · esx

(1 + bs)m−k+n

]
+ lim
s→− 1

b

d(m−k+n−1)

ds(m−k+n−1)

[ sn−1 · esx

(1 + as)m

]}
+ 1, (17)

where a = γsd, b = γrd/(1+K), c = K(m−k)γrd/(1+K).
There exist no universal expressions for the higher-order
derivatives in (17), but they can be simply solved recursively
or readily evaluated with mathematical softwares such as
Mathematica and Matlab.
2) Derivation of PB

out(m)

We denote the function PB
out(m) in (6) under the asymmetric

channel I as PB
out,I(m). It can be further expressed as

PB
out,I(m) = Pr

( m∑
i=1

γsd,i < 2R−1
)

= FY(m)(2R−1), (18)

where FY(m)(·) is the CDF of the RV Y(m) =
∑m
i=1 γsd,i.

Since the variables γsd,i are i.i.d. exponential RVs, then Y(m)

follows the Erlang distribution [12, p. 67]. Then, PB
out,I(m) can

be expressed from the CDF of Erlang distribution as follows

PB
out,I(m) = FY(m)(2R − 1) = Γ̃

(
m,

2R − 1

γsd

)
= 1−

m−1∑
i=0

1

i!

(2R − 1

γsd

)i
· exp

(
−2R − 1

γsd

)
, (19)

where Γ̃(·, ·) is the normalized lower incomplete Gamma
function defined as Γ̃(τ, y) = 1

Γ(τ)

∫ y
0
tτ−1e−t dt with Γ(·)

being the Gamma function; and the last equality in (19) is
obtained through the power series expansion of incomplete
Gamma function [14, pp. 899–902].
3) Derivation of Pr(Tr = k)

Let Ak denote the event that the relay is sending data to the
destination at k-th ARQ round and Ak stands for the event that
the relay is not contributing to information transmission to the
destination at k-th round yet. Then, we have the expression of
Pr(Tr = k) for k = 1, . . . ,M − 1 as follows

Pr(Tr = k) = Pr(Ak−1 ∩Ak)

= Pr
( k∑
i=1

γsr,i ≥ 2R − 1
)
− Pr

(k−1∑
i=1

γsr,i ≥ 2R − 1
)

= FG(k)(2R − 1)− FG(k−1)(2R − 1), (20)

where FG(k)(·) is the complementary CDF of the RV G(k) =∑k
i=1 γsr,i. Since γsr,i follow exponential distribution, G(k)

is Erlang distributed [12, p. 67]. Then, we can obtain the
expression for Pr(Tr = k) (k = 1, . . . ,M − 1) as

Pr(Tr = k) = FG(k−1)(2R − 1)− FG(k)(2R − 1)

= Γ̃
(
k − 1,

2R − 1

γsr

)
− Γ̃

(
k,

2R − 1

γsr

)
. (21)

For the special case of k = M , it means that the relay
does not succeed in decoding the data in the first (M − 1)
(re)transmission rounds, regardless the decoding result for the
last ARQ round. Then, Pr(Tr = M) can be expressed as

Pr(Tr = M) = Pr
(
G(M−1) < 2R − 1

)
= FG(M−1)(2R − 1)

= Γ̃
(
M − 1,

2R − 1

γsr

)
. (22)

Finally, substituting (13), (19), (21), and (22) into (6),
we obtain the unified closed-form expression for the outage
probability Pout(m) under asymmetric channel I.

B. Outage Probability for Asymmetric Channel II

1) Derivation of PA
out(m)

We denote the function PA
out(m) for the channel II as

PA
out,II(m). The variable X (m,k) =

∑m
i=1 γsd,i+

∑m
i=k+1 γrd,i

is now the sum of two Erlang distributed RVs. Utilizing the
properties of Rieman-Stieltjes integral [14, pp. 608–618] and
the differential relationship between CDF and PDF, we obtain
the expression for PA

out,II(m) from Appendix B as

PA
out,II(m) = 1− exp

(
−2R − 1

γrd

)
·
[m−k−1∑

i=0

(2R − 1)i

Γ(i+ 1) · (γrd)i

+

m−1∑
i=0

G 1,1
2,1

(
γrd · γsd

(γrd − γsd) · (2R − 1)

∣∣∣∣ 1,m−k+i+1
i+1

)
· (2R − 1)m−k+i

Γ(i+ 1)(γrd)
m−k(γsd)

i

]
, (23)

where G ·,··,· ( ·| ·· ) is the Meijer’s G-function [14, p. 1032]. The
Meijer’s G function can be evaluated using Matlab.

Remark: The above RV X (m,k) is Erlang distributed only
when γsd = γrd. This can be proved by showing that (23)
will be in the form of (19) when γsd = γrd holds.

2) Derivation of PB
out(m)

We denote PB
out(m) for the channel II as PB

out,II(m). It is
straightforward to see that the RV Y(m) =

∑m
i=1 γsd,i is

Erlang distributed and PB
out,II(m) is the same as PB

out,I(m)
given in (19).

3) Derivation of Pr(Tr = k)

The RV G(k) =
∑k
i=1 γsr,i now follows the noncentral-χ2 dis-

tribution; and its MGF is equal toMZ(k,0)(s) withMZ(·,·)(·)
given in (10). Using the same rationale as in Section III-A3
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Fig. 2: System outage probability vs. input SNR for hybrid-ARQ with
and without relaying in asymmetric channel I.
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Fig. 3: System outage probability vs. input SNR for hybrid-ARQ with
relaying in asymmetric channels I and II.

and skipping the derivation details, we obtain the expression
for Pr(Tr = k) under the asymmetric channel II as

Pr(Tr = k) =


FG(k−1)(2R − 1)− FG(k)(2R − 1)

if k = 1, . . . ,M − 1

FG(M−1)(2R − 1), if k = M

(24)

where the CDF FG(k)(·) of the noncentral-χ2 RV G(k) is

FG(k)(x) = 1−Qk
(√

2kK,
√

(2(1 +K)x)/γsr
)
. (25)

with Qk(·, ·) being the Marcum Q-function [15, pp. 93–113].
Finally, substituting (23), (19), and (24) into (6), we obtain

the exact expression of Pout(m) under asymmetric channel II.

IV. DELAY-LIMITED THROUGHPUT ANALYSIS

A widely used performance metric for throughput analysis
is the DL throughput GDL, which is expressed as [4]

GDL(R,M) =

M∑
m=1

R

m

[
Pout(m− 1)− Pout(m)

]
= R ·

[
1−

M−1∑
m=1

Pout(m)

m(m+ 1)
− Pout(M)

M

]
. (26)

An advantage of the DL throughput lies in its ability to track
slow time variations in the channel, which does not resort to
the long-time behavior.

V. NUMERICAL RESULTS

In this section, the analytical expressions presented in the
previous sections are evaluated numerically and validated
using simulations. We assume the following simulation param-
eters for the results presented in this section, unless otherwise
stated: the source and the relay transmit with the same power,
i.e., Ps = Pr. The mean values of the fading taken into
account path loss and shadowing is |hsd|2 = |hsr|2 = |hrd|2 =
0.5. The transmission rate R is 2 bps/Hz unless otherwise
stated. The Rician K-factor for the LoS link is set to 2.
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Fig. 4: System outage probability vs. maximum hybrid-ARQ trans-
mission rounds M in asymmetric channels I and II.

Figure 2 shows the system outage probability Pout(M) with
different relaying and ARQ configurations in the asymmetric
channel I. It can be seen that hybrid-ARQ greatly decrease
the outage probability and hybrid-ARQ with relaying further
improves the performance. At the system outage probability
of 10−2 with M = 3, the performance difference for hybrid-
ARQ schemes with and without relaying can be as large as
around 2 dB. Also, the realized gain due to relaying increases
as the maximum number of transmission rounds, M , grows.

Figures 3, 4 and 5 compare the system outage performance
of the investigated asymmetric channels. It is found that the
asymmetric channel II has better outage performance than
that of the channel I. This difference is explained by the
fact that the presence of LoS for the source-relay link in
channel II ensures that statistically the relay correctly decodes
the data faster than in scenario I; therefore, greater gain can
be achieved from the cooperative transmission of both source
and relay under the same delay constraint. This potentially
implies that while there is no direct link between the source
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Fig. 6: Delay-limited throughput vs. input SNR in asymmetric chan-
nels I and II for different values of M and R.

and destination, the relay should be placed closer to the
source to achieve better outage performance. However, this
performance difference between the two asymmetric channels
narrows as the maximum transmission rounds M increases or
the transmission rate R decreases, as can be seen from Fig. 4
and Fig. 5.

Figure 6 on the next page depicts the DL throughput
versus SNR for varying maximum transmission rounds M
and transmission rate R. For low SNR values, it is found that
the DL throughput decreases as the maximum transmission
rounds M increases, this is the cost of achieving lower outage
probability. However, the difference is negligible for large
SNR values, which implies that the current R is small for the
value of M and the SNR such that it becomes a limit factor for
achieving greater throughput. Meanwhile, for the same value
of M , the throughput decreases as the rate increases for low
SNR values, while the opposite is true for large SNR values.
Optimization of the transmission rate has been investigated
for other scenarios in [3], [5] and is without the scope of this
paper.

VI. CONCLUSION

In this paper, we studied the performance of relay-ARQ net-
works with delay constraint over asymmetric fading channels.
We consider a fast-fading channel, where the fading varies
independently from one hybrid-ARQ round to another. The
delay-limited throughput and the system outage probability
were derived and analyzed. Supported by our results, we
can reconfirm that the system with combined deployment of
relaying and hybrid-ARQ outperforms those with only one
of the above techniques or none of them implemented also
in the investigated asymmetric fading channels. Significan-
t performance improvement is achieved by increasing the
number of ARQ-based retransmissions. The results show that
the performance is significantly better when the relay is in
LoS condition with respect to the source rather than to the
destination. The derived results are validated by Monte Carlo
simulations.

APPENDIX A
DERIVATION OF THE SOLUTION (17) IN SECTION III-A1

To obtain the exact solution for PA
out,I(m) in (17), we first

express the exponential function in (11) in series using ex =∑∞
n=0 x

n/n! and make the following change of variables for
the sake of notational simplicity: γsd → a, γrd/(1 +K)→ b,
K(m−k)γrd/(1+K)→ c, then the inverse Laplace transform
(12) can be written as

FX (m,k)(x) =

∞∑
n=1

(−c)n

n!
L−1

[ sn−1

(1 + as)m(1 + bs)m−k+n

]
︸ ︷︷ ︸

I1(x;n)

+ L−1
[ 1

s(1 + as)m(1 + bs)m−k

]
︸ ︷︷ ︸

I2(x)

. (27)

Next, we express the inverse Laplace transform term I1 with
the contour integral and Bromwich’s integral [16, pp. 42–45]
as follows

I1(x;n) =
1

2πj

∮ c+∞j

c−∞j

sn−1 · esx

(1 + as)m(1 + bs)m−k+n︸ ︷︷ ︸
Fs(s)

ds

=
1

2πj

∮
C

Fs(s) ds−
∫
CR

Fs(s) ds, (28)

where CR is a semicircle of infinite circle in the left half of
the s-plane and C is the closed contour including CR and
Bromwich’s contour. With this choice of the closed contour
and using Jordan’s lemma [16, pp. 29–30], the second integral
in (28) is forced to zero, and I1(x;n) simply equals the
integral along the closed contour. Within the closed contour
in the left half-plane, there exists a pole of m-th order at
s = −1/a and a pole of (m − k + n)-th order at s = −1/b.
Next, using Cauchy’s residue theorem [16, pp. 9–12], we can
obtain

I1(x;n) = Res
[
Fs(s);−

1

a

]
+ Res

[
Fs(s);−

1

b

]
, (29)



where the residues are calculated as follows

Res
[
Fs(s);−

1

a

]
= lim
s→− 1

a

d(m−1)

ds(m−1)

[ sn−1 · esx

(1 + bs)m−k+n

]
, (30)

Res
[
Fs(s);−

1

b

]
= lim
s→− 1

b

d(m−k+n−1)

ds(m−k+n−1)

[ sn−1 · esx

(1 + as)m

]
. (31)

Using the same rationale, the inverse Laplace transform
I2(x) can be expressed as

I2(x) = lim
s→− 1

b

d(m−k−1)

ds(m−k−1)

[ esx

s(1 + as)m

]
+ lim
s→− 1

a

d(m−1)

ds(m−1)

[ esx

s(1 + bs)m−k

]
+ 1. (32)

By comparing (30), (31) and (32), it can be seen that the
following relationship holds: I2(x) = I1(x;n = 0) + 1.
Therefore, the CDF FX (m,k)(x) can be expressed as

FX (m,k)(x) =

∞∑
n=0

(−c)n

n!
· I1(x;n) + 1. (33)

Finally, substituting (29)–(31) into (33), we obtain the exact
expression for FX (m,k)(x) as shown in (17).

APPENDIX B
DERIVATION OF PA

out,II(m) IN SECTION III-B1

We first derive the CDF FX (m,k)(x) of the RV X (m,k) =
Y(m) + Z(m,k), where Y(m) =

∑m
i=1 γsd,i and Z(m,k) =∑m

i=k+1 γrd,i are two independent Erlang distributed RVs.
Since an Erlang distributed RV is defined only on the positive
half-axis, the CDF FX (m,k)(x) can be computed as follows

FX (m,k)(x) =

∫ x

0

fZ(m,k)(z) · FY(m)(x− z) dz =

∫ x

0

fZ(m,k)(z)

·
[
1−

m−1∑
i=0

1

i!

(x− z
γsd

)i
exp
(z − x
γsd

)]
· dz =

∫ x

0

fZ(m,k)(z) dz︸ ︷︷ ︸
Ia

−
∫ x

0

m−1∑
i=0

1

i!

(x− z
γsd

)i
exp
(
−x− z

γsd

)
· fZ(m,k)(z) dz︸ ︷︷ ︸

Ib

.

(34)

Then, Ia and Ib can be calculated as follows

Ia =FZ(m,k)(x) = 1−
m−k−1∑
i=0

1

i!

( x

γrd

)i
exp
(
− x

γrd

)
, (35)

and

Ib =

m−1∑
i=0

exp
(
− x
γsd

)
i!Γ(m− k)(γsd)

i(γrd)
m−k

·
∫ x

0

(x− z)i exp
(γrd − γsd
γsd · γrd

· z
)
· zm−k−1 dz︸ ︷︷ ︸

Ic

. (36)

The integral Ic is in the form of
∫ ω

0
tα−1eλt(ω − t)ρ−1 dt.

Employing the properties of confluent hypergeometric function

and its relationship with the Meijer’s G-function [14, pp. 347,
1023, 1035], the integral can be solved, after some algebraic
manipulations, in terms of Meijer’s G-function as∫ ω

0

tα−1eλt(ω−t)ρ−1 dt =
Γ(α) · ωα+ρ−1

e−λω
·G 1,1

2,1

(
1

λω

∣∣∣∣ 1,α+ρ
ρ

)
.

(37)
Making the following changes of random variables: ω → x,

t→ z, α→ m− k, λ→ (γrd − γsd)/(γsd · γrd), ρ→ i+ 1;
then the integral Ic in (36) can be expressed as

Ic =
Γ(m− k) · xm−k+i

exp
(

(γsd−γrd)·x
γsd·γrd

) ·G 1,1
2,1

(
γrd · γsd

(γrd − γsd) · x

∣∣∣∣ 1,m−k+i+1
i+1

)
.

(38)

Substituting (35)-(38) into (34), we obtain the expression
for FX (m,k)(x). Consequently, the expression of PA

out,II(m) =

FX (m,k)(2R − 1) can be obtained as shown in (23).
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