' Aalto University
|

Jung, Minchae; Saad, Walid; Jang, Youngrok; Kong, Gyuyeol; Choi, Sooyong
Performance Analysis of Large Intelligent Surfaces (LISs)

Published in:
IEEE Transactions on Wireless Communications

DOI:
10.1109/TWC.2019.2961990

Published: 01/03/2020

Document Version
Peer reviewed version

Please cite the original version:

Jung, M., Saad, W., Jang, Y., Kong, G., & Choi, S. (2020). Performance Analysis of Large Intelligent Surfaces
(LISs): Asymptotic Data Rate and Channel Hardening Effects. IEEE Transactions on Wireless Communications,
19(3), 2052-2065. [8948323]. https://doi.org/10.1109/TWC.2019.2961990

This material is protected by colpyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by ?/ou for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.


https://doi.org/10.1109/TWC.2019.2961990
https://doi.org/10.1109/TWC.2019.2961990

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS

Performance Analysis of Large Intelligent Surfaces
(LISs): Asymptotic Data Rate and Channel
Hardening Effects
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Youngrok Jang, Gyuyeol Kong, Member, IEEE, and Sooyong Choi, Member, IEEE

Abstract—The concept of a large intelligent surface (LIS)
has recently emerged as a promising wireless communication
paradigm that can exploit the entire surface of man-made
structures for transmitting and receiving information. An LIS
is expected to go beyond massive multiple-input multiple-output
(MIMO) system, insofar as the desired channel can be modeled
as a perfect line-of-sight. To understand the fundamental per-
formance benefits, it is imperative to analyze its achievable data
rate, under practical LIS environments and limitations. In this
paper, an asymptotic analysis of the uplink data rate in an LIS-
based large antenna-array system is presented. In particular, the
asymptotic LIS rate is derived in a practical wireless environment
where the estimated channel on LIS is subject to estimation
errors, interference channels are spatially correlated Rician
fading channels, and the LIS experiences hardware impairments.
Moreover, the occurrence of the channel hardening effect is
analyzed and the performance bound is asymptotically derived
for the considered LIS system. The analytical asymptotic results
are then shown to be in close agreement with the exact mutual
information as the number of antennas and devices increase
without bounds. Moreover, the derived ergodic rates show that
hardware impairments, noise, and interference from estimation
errors and the non-line-of-sight path become negligible as the
number of antennas increases. Simulation results show that an
LIS can achieve a performance that is comparable to conventional
massive MIMO with improved reliability and a significantly
reduced area for antenna deployment.

Index Terms—Ilarge intelligent surface (LIS), large system
analysis, channel estimation, ergodic rate, channel hardening
effect.

I. INTRODUCTION

UTURE man-made structures, such as buildings, roads,
and walls, are expected to be electromagnetically active
[2]-[5]. As such, these structures can be leveraged to provide
wireless connectivity to emerging services, such as Internet of
Things (IoT) applications [6]-[11], via the emerging concept
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of a large intelligent surface (LIS) [2]-[4]. If properly operated
and deployed, LISs are expected to provide wireless connec-
tivity to a plethora of IoT devices, such as sensors, vehicles,
and surveillance cameras, through man-made structures. The
LIS concept can be essentially viewed as a scaled-up version
of conventional massive multiple-input and multiple-output
(MIMO) systems. However, an LIS exhibits several key differ-
ences from massive MIMO systems. First, unlike conventional
massive MIMO systems where transmission and reception are
carried out via a base station (BS), an LIS can transmit and
receive signals through all surfaces of man-made structures.
This allows users in close proximity to communicate with
an LIS and their transmission power levels can be set to
values that are lower than those resulting from massive MIMO.
This results in battery savings at the device and reduced
interference levels in an LIS. Hence, higher data rates can be
achieved because of the reduced interference levels, compared
to massive MIMO systems. Second, LISs will be densely
located in both indoor and outdoor spaces, making it possible
to perform near-field communications through a line-of-sight
(LOS) path [2]-[4]. Since an LOS path is highly correlated to
the channel components between antennas, antenna spacing
of greater than half a wavelength is meaningless in order to
obtain full diversity gain. Consequently, an LIS can enable
dense antenna arrays'. Finally, an LIS enables simpler channel
estimation and feedback, compared to conventional massive
MIMO systems that typically require channel state information
(CSI) for hundreds of antennas. Since an extensive overhead
for CSI acquisition resulting from pilot training and CSI feed-
back can be caused by the massive number of antennas, this
overhead can seriously degrade the performance of massive
MIMO systems [15], [16]. However, the desired channel of an
LIS-based large antenna-array system is highly correlated with
the LOS path, facilitating accuracy and simplicity in terms of
channel estimation and feedback.

For these reasons, the use of an LIS has recently attracted
attention in the wireless literature [2]—[5]. These recent works
focus on addressing a number of LIS challenges that in-
clude performance analysis, estimating user location, user
assignment, and power allocation. For instance, in [2], the

Indeed, distortions in radiation patterns can occur due to mutual cou-
pling. However, we envision an LIS that can correct the distortions in the
radiation patterns of any array with any antenna spacing, as in [12] and [13].
More practically, we consider hardware impairments which include residual
coupling loss after decoupling of antenna-RF chains as in [14].
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authors derived the data rates of the optimal receiver and the
matched filter (MF) in the uplink of an LIS-based system.
Meanwhile, in [3], the authors obtained the Fisher-information
and Cramer-Rao lower bound for user positions using the
uplink signal for an LIS. In [4], the authors proposed optimal
user assignments to select LIS units that maximize the sum
rate and minimum individual rate. The authors in [5] proposed
the use of LIS as a relay station for a massive MIMO system
and developed a power allocation scheme to maximize energy
efficiency. However, these previous studies have not consid-
ered practical LIS environments and their limitations, such
as imperfect channel estimations and a user-specific channel
model. For instance, both [2] and [3] assumed an LIS with an
infinite surface area and considered that a single infinite LIS
performs the MF over all devices. Moreover, [2]-[5] assumed
perfect channel estimations for an LIS. Finally, all of the
interference channels in [2]-[4] were assumed as following
a LOS path, and [5] considered independent Rayleigh fading
both in desired and interference channels. Given that LISs
are densely located and devices are reasonably close to their
target LISs, desired channels can be modeled as a LOS path
whereas interference channels must be modeled depending
on the distances between interfering devices and the target
LISs. Therefore, the interference channel can be composed of
a deterministic LOS path and spatially correlated non-line-
of-sight (NLOS) path describing a device-specific spatially
correlated multipath environment.

The main contribution of this paper is a rigorous asymptotic
analysis of the uplink rate of an LIS-based large antenna-
array system that considers a practical LIS environment and its
limitations. In this regard, we assume that each device uses as
desired surface that maps to a limited area of the entire LIS that
we refer to as an LIS unit. Further, the MF procedure across
the surface is assumed to be performed under realistic channel
estimation errors and hardware impairments, such as analog
imperfectness, quantization errors, and residual coupling loss,
are also considered. The interference channels are modeled
as spatially correlated Rician fading channels, composed of a
deterministic LOS path and stochastic NLOS path according to
the distance between the interfering device and the target LIS
unit. We then analyze the uplink ergodic rate of each device in
presence of a large number of antennas and devices, and derive
an asymptotic ergodic rate of LIS. This approximation allows
the estimation of the uplink ergodic rate accurately without the
need for extensive simulations, and then it enables to obtain
optimal operating parameters such as an optimal size of an LIS
unit. The asymptotic variance of the uplink rate is also derived
in order to verify the occurrence of channel hardening effect
theoretically, that is a particularly important phenomenon in
large antenna-array systems such as massive MIMO and LIS
[17]. Given that the channel hardening determines several
practical implications such as system reliability, latency, and
scheduling diversity, we analyze the occurrence of the channel
hardening effect in an LIS-based system and compare it to
a massive MIMO system. On the basis of the asymptotic
ergodic rate and variance, the performance bound of an LIS-
based system is obtained by using a scaling law for the uplink
signal-to-interference-plus-noise ratio (SINR). We then show a
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Fig. 1. Illustrative system model of the considered uplink LIS having multiple
LIS units and serving K users.

particular operating characteristic of LIS whereby noise, esti-
mation errors, hardware impairments, and NLOS interference
become negligible compared to LOS interference from other
devices. Our simulations show that LIS can be a promising
technology beyond massive MIMO given that LIS can provide
a comparable rate to massive MIMO, with improved reliability
and a significantly reduced area for antenna deployment.

The rest of this paper is organized as follows. Section II
presents the LIS-based system model. Section III describes
the asymptotic analysis of the uplink data rate and Section IV
describes the channel hardening effect and performance bound.
Simulation results are provided in Section V to support and
verify the analyses, and Section VI concludes the paper.

Notations: Throughout this paper, boldface upper- and
lower-case symbols represent matrices and vectors respec-
tively, and I,; denotes a size-M identity matrix. The conju-
gate, transpose, and Hermitian transpose operators are denoted
by ()%, ()", and (-)", respectively. The norm of a vector a is
denoted by |a|. E[-], Var[-], and Cov [-] denote expectation,
variance, and covariance operators, respectively. uy = E [X]
and 0% = Var[X] denote the mean and variance of a
random variable X, respectively. O (-), ®, and o denote the
big O notation, the Kronecker product, and the Hadamard
product, respectively. The operators Re (-) take the real part.
CN (m, 02) and X% denote a complex Gaussian distribution
with mean m and variance o2, and a chi-square distribution
with k£ degrees of freedom, respectively.

II. SYSTEM MODEL

We consider an uplink LIS-based large antenna-array system
that serves K single-antenna devices, as shown in Fig. 1. The
LIS is located in a two-dimensional space along the zy-plane
at z = 0 in Cartesian coordinates. We define the notion of an
LIS unit which corresponds to a subarea of the entire LIS
and has a square shape with an area limited to 2L x 2L
centered on the (x,y) coordinates of the corresponding device.
Each LIS unit has a large number of antennas, M, distributed
on its surface with antenna spacing of AL in a rectangular
lattice form. We assume that each LIS unit has its own signal
processing unit for estimating the channel and detecting any
data signal, as in [2]-[4], [18], and [19]. Each user device
communicates with its corresponding LIS unit and controls the
transmission power toward the center of the LIS unit according
to target signal-to-noise-ratio (SNR), in order to avoid the near-
far problem. We define the location of device k as (x, Yk, 2k )-
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Then, antenna m of LIS unit & will be located at (x215 yL1S ()
where 7218 € [z}, — L,z + L] and y=25 € [y, — L,y + L.
In contrast to the works in [2] and [3], that consider an infinite
L, we consider a finite L which is a more practical assumption.

Depending on the location of the device, LIS units may
overlap which, in turn, can seriously degrade the performance.
To overcome this problem, we assume that the LIS allocates
orthogonal resources among devices with similar (x, y) coordi-
nates using an appropriate resource allocation and scheduling
scheme. Therefore, we assume that each device communicates

with a non-overlapping LIS unit.

A. Wireless Channel Model

The desired channel hjy, € CM between device k and
LIS unit k is assumed to be a LOS path. Then, hg; can be
given by hkk = [615k1h/f7€17 RN ,ﬁ]%thkkM]T, where ﬁ]%km =
aky 1k denotes a LOS channel gain between device k
and antenna m of LIS unit k. Here, a%km = +v/cosOrrm,
denotes the antenna gain and Oy, is the azimuth angle-
of-arrival between device k and antenna m of LIS unit k.
Given that the antennas on each LIS unit are placed at
different locations within the 2L x 2L square-shaped area,
Oxrm has different values for different m considering the
non-isotropic characteristic of an LIS. Since device k has
a distance of z, from the center of its target LIS unit, we
obtain cos Ok = 2k /dkkm, where dgk.,, denotes the distance
between device k£ and antenna m of LIS unit k, given by

dkkm = \/ .’L‘k - x%}s (yk y]%}y?) + ZI% AISO’ l%km =
1/4 /471'cl,€km is the free space path loss attenuation, and Ay,
is the LOS channel state between device k£ and antenna m of
LIS unit &, obtained as Ak, = exp (—j27dgrm /), where A
denotes the wavelength of a signal [20]. In fact, the desired
channel can be generated by Rician fading composed of a
deterministic LOS path and spatially correlated NLOS path.
However, the signal from the NLOS path becomes negligible
compared to the one from the LOS path as M increases, as
will be proved in Section IV. Therefore, the desired channels
are modeled as a perfect LOS path in the considered LIS as
assumed in many prior works [2]-[4]. Further, hj;, € CM
is the interference channel between device j and LIS unit &,
expressed as a combination of LOS and NLOS:
Kjk 5L

[ 1
hi + +1hf,}, (1)

Iijk-i-l J

hj;, =

where k5, is the Rician factor between device j and LIS
unit k. Here, h;“k € CM is the deterministic LOS com-
ponent from device j to LIS unit k& given by h?k =

T

Bihjkr, - Biahjear] > where g5 = ok s and
hjkm are LOS channel gain and state, respectively, be-
tween device j and antenna m of LIS unit &. h?lkL

is the correlated NLOS component defined as h?lkL =
hNL

E‘h?]kLl, N Y = R]l,ézgjk, where R;, € CM*P js
e deterministic correlation matrix f;rom device j to LIS
unit k and g, = [gjr1,---,95kp] ~ CN(0,Ip) is
an independent fast-fading channel vector. Here, P repre-
sents the number of dominant paths among all NLOS paths

and is related to the amount of scattering in the wireless
channel environment [21]. Since we consider an LIS lo-
cated in a two-dimensional space along the zy-plane, it
can be modeled as a uniform planar array (UPA) [22].
Given a UPA model, R;; is obtained as R1 /2 lNLD]k,
where Dji = [ajiid(¢%1, &), - jde(¢]kP’¢]kP>]
and lll;lkL = diag(l}\%l e l?kLM) is a dlagonal matrix including

_ d—ﬁPL/2

the path loss attenuation factors ZNL ikem

with a path

loss exponent [py,. Here, d(éykp,qukp) € CM represents
NLOS path p at given angles of (qukp,qukp) By using a
UPA model, d (d)jkp, <Z)jk,p) will be given by:

1
d (¢Jkp7¢7kp) = Wd ( Jkp) ® dp (d)Jkp) 2)

d, ((b}’kp) [1 e’ é%(m—l)@myp, (3)

.o T
d (#,) = {1 I ERE, 76J%(W*1)¢?w] e

27rAL

¢35
Jl\,p7...,

where gb}’,?p = sinf}, and qukp = smﬂjkp cos 0%, when
the elevation and azimuth angles of path p between dev1ce
J and LIS unit k£ are 07, and 9;,@, respectively [23]. ajkp
indicates the antenna galn of path p which can be obtained

[-%,%] and

byOé = 279

Jkp
h
it € { O3 O |-

B. Uplink Data Rate

The instantaneous uplink data rate of device k£ will be given
by Ry = log (1 + %), where 7 is the instantaneous SINR
of device k received at LIS unit k. The uplink signal received
from all devices at LIS unit k is expressed as follows:

K
Yr. = VPehiray + Z#

where x;, and x; are uplink transmit signals of devices k and
j, respectively, assumed as independent Gaussian variables
with zero means and unit variances. Further, p, and p; are
the uplink transmit SNRs of devices k£ and j, respectively,
and n, € CM ~ CN (0, I,y) is the noise vector. Moreover,
wy, € CM represents the residual noise caused by hardware
impairments, as given by

K
Wy, = Cj © <\/thkk$k + Z#k \//Tjhjkxj> , (6

LAV . ph .
cos 07, cosO,  where 0i, €

L VPihkT) + wp £ g, (5)

where ¢, = [ey,. .. 7cM]T represents hardware impairments
at LIS unit & which can be modeled using a Gaussian
distribution such that ¢, ~ CN (0,61,) [14], [24]. There-
fore, in (5), \/ﬁhkkzk is uplink desired signal of device
k, Zf; x v/Piljrxj is the aggregate uplink interference from
other devices, and w+mny, is the sum of the noise components.
We consider a linear receiver fl,:I for signal detection. Then,
the received signal at LIS unit £ is obtained as

K

Feye = Vorf L hire+ Y /o fi kg + Filwi+ Fim.
i#k

(7)
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pr. (1= 72) [Py *

Ve =

Wk‘ekhkk| +Zpﬂ’\/ Tkhkkhak+7kek yk‘ +’fkwk‘

- ®)
/ H H
‘ 1—Tk%hkk+7—k:ek‘

We consider an MF receiver defined by f, = ﬁkk where ﬁkk
is the estimated channel of hyy. In the case of perfect channel
estimation, f;, = hg. Under the imperfect CSI results from
an least square estimator, we have f, = hy, + 72 e,
where parameter 7, € [0,1] represents the 1mperfectness
of hyy. er = [Brient, ...,BII;MekM}T € CM denotes the
estimation error vector uncorrelated with hgy and m,. The
elements of the estimation error vector has independent ran-
dom variables of ey, ~ CN (0,1). Using (7), we can write
the received SINR of device k at LIS unit k as (8) on the top of
this page, where wj, = [wy,. .. ,QEM]T =cj 0 Zfil Vil
Then, (8) can be simplified to

oSk (1 —72)

pu— 9
Vi I ) &)
where
Si = |hii|*, VE (10)
K
I = puritXic+ ) Yo+ Z, Wk (1)
i#k
and
2
Xy, = |egh| ", Vk (12)
2
Y}'k = ‘\/1—T,§hgkhjk+7keghjk Vi k (13)
2
Zy = ZZV + Z;Cl = '\/ 1— T,fhl,jk@k -I-Tkezl’lﬂk
2
+ ’,/1 — 72hyy, + el | VE. (14)

In fact, the considered LIS system is significantly different
from a classical massive MIMO because of a key difference
in the SINR expression. In the considered LIS system, the
desired signal power, |hkk|4, is calculated by the squared
sum of the squared LOS channel gains over all antennas, i.e.,
(Z%:1(5ll€km)2)2’ and this is a deterministic value known
at the LIS by measuring the signal strength of the reference
signals. However, in a conventional massive MIMO system,
this desired signal power, |hkk|4, is not a deterministic value
and cannot be known at the BS accurately because of an
NLOS fading. Therefore, the BS can detect the desired signal

using only the estlmated CSL Ay, resulting in S = |hkk|

and X}, = |hk,€ek| as most prior studies on massive MIMO
systems have considered (e.g., see [21], [25], and references
therein). Given the uplink data rate I%j, we will analyze the
moments of mutual information asymptotically as M and K
increase without bounds.

III. ASYMPTOTIC RATE ANALYSIS

We consider an LIS-based large antenna-array system com-
posed of a large number of discrete antennas that are densely
distributed on a contiguous LIS and each LIS unit occupies a
subarea of the LIS with M antennas. Given a massive number
of IoT devices will be connected via wireless communication
systems in the near future [7], we present an asymptotic
analysis of the data rate in an LIS-based system as M and
K increase. In conventional massive MIMO systems, there
is a relationship between M and K such that M/K > 1
and M/K is constant as in [21] and [26]. In contrast, LIS
enables wireless communications without any constraint on
the relationship between M and K.

From (10), we can describe the desired signal power, Sk,
as

M , 2 M , 2
sl = (S ) = (3 (8)")
SM(BE,,)" is the summation of the desired signal power
received at LIS unit k, and this is equivalent to the summation
of the power received within the ranges of —L < z < L and
—L <y < L when the signal is transmitted from the location
of (0,0, z;k) in Cartesian coordinates [2]. Then, Sj converges
as Sy — S} —— 0 where we define

2k

S = // S
47TAL2 L<(@y)<L (22 4+ y2 + 2 )
_ 1 ZkL

= — dy
2rAL? /L<y<L (y2 + Z%) L2+ y2 + Z]%
1 L?
= — tan"! = vk (16
wAL? an (Zk’/QLQ'i_Z]%) 71'A.[/27 (16)

L Th
—~=—|. Then, we have
ZiA/ 2L2+zi > ’

— P ———
Sk Pk M—oo 07

—dady

where p, = tan™! (
a17)

where p, = %. (17) shows that Si, converges to a constant
value, p, depending on z; and L, and the total captured
energy by the LIS can increase as M increases within the
constrained physical area of LIS unit (i.e., AL? decreases).
In fact, the work in [27] showed that the total captured
energy is limited by the product of the physical area used
for deploying antennas and the channel’s solid angle, and it
remains unchanged as M increases within the constrained
physical area. However, since the authors in [27] assumed
perfect NLOS channels and obtained the array response by
using the far-field approximation, [27] does not directly apply
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to our LIS system. In the considered LIS system, the increase
of M indicates an increase of the number of LOS paths and
this results in an increase in the number of spatial channels
and the channel’s solid angle. Then, the total captured energy
by an LIS can increase as M increases within the constrained
physical area of the LIS unit. Therefore, the mean and variance
of Ry can be readily derived, as follows.

Corollary 1. The mean and variance of Rj, can be respec-
tively approximated as follows:

2

o
‘ 21+ )
2 4
2 O—'Yk 0%
op, ~ — , (19)
i (1 +N7k)2 4(1 +U’vk)4

where i, and agk represent the mean and variance of the
uplink SINR, respectively, which are likewise approximated
as

2 1 o7
P = oSk (L—=75) | — + 55|, (20)
Yk ( k) [r, N?k
2 4
2 g7, g
o2 =~ ppSi(l—17) ( e _ ék> ; (2D
I, M1,

Proof: From [28], the mean of a function f for a random
variable X using Taylor expansions can be approximated by

1" (MX)Jz

B (O~ f ) + 405 @)

The variance of a function f for a random variable X can be
approximated as

Var [f (X)) & (' (nx)) 0% ~ %

Since Sy is constant, (20) and (21) can be obtained when
f k) = prSk (1 — T,f) /I, from (9). Similarly, (18) and (19)
can be obtained when f (v;) = log (1 + v«). [ |

Corollary 1 shows that both the mean and variance of the
uplink rate are determined exclusively by a random variable
I;. Based on the results from Corollary 1, the mean and
variance of [; will be analyzed asymptotically.

(23)

A. Asymptotic Analysis of Ry,

We provide an asymptotic analysis of uplink data rate, Ry,
by following three steps. Given that I?; exclusively depends on
a random variable [, we first analyze the moments of random
variables Xy, Y}, and Z;, from (11). We then asymptotically
obtain the asymptotic moments of I; given the covariances
between X, Y, and Z;. We finally derive asymptotic
moments of Ry from Corollary 1 using the derived asymptotic
moments of I.

In order to obtain the moments of [, we first derive the
following lemmas from the asymptotic analyses.

Lemma 1. The mean and variance of X, follow pux, =

2
S (5115m)4 and 0%, = (Z% (B,];m)4) , respectively.
Proof: The detailed proof is presented in Appendix A. H

Lemma 2. The mean and variance of Y} follow uy,, —

- 2 _2 .
———0and o3 — ——— 0, respectively, where
Ao 25 © Vi "0V oo O TeSP Y

_ 2
Ay, = sii + sii + 55+ |l (24)
_ 2
O—%/jk = ( Sy, T Syk + s;\lkz) + 2‘#?k| (S?k + S?Ikl + 5?113) ;
(25)
and
L Kk (1 — )
5 = 7h h 26
lugk ij +1 Jk> ( )
L "ﬂjka
o 27
Sjk H]k+1 (ﬁkm Jm,) ) ( )
$N1
= hi 28
Sjk ij+12‘ kkrﬂvp ) (28)
2 M,P )
N2 k
]k - Kjk +1 mzp ( ]kpﬂkmljkm) /M (29)

Proof: The detailed proof is presented in Appendix B. B

Lemma 3. The mean and variance of Z; follow pz, —

fizy — 0 and 0}, — 3% —— 0, respectively, where
M —o00 k' M—oco

iz, = Yon (Bh) Fhzy. 0%, =12 (2— ) SN (BE,) "+
0%y, and
M
IL’LZ;‘CV = Z ( ;:’L -+ O' wR + 2Re(kaT%R)) B (30)

M 2
0% = (Z (03% +oZun + 2Re(kanI;R))> . (3D

m

2 WLR

The terms o o crin, and w} are given in (70), (71), and

(76), respectlvely o
Proof: The detailed proof is presented in Appendix C. B
Z% (B,%m)Q in Lemma 3 can be asymptotically obtained
by +/Pr using (17). Similarly, nyvf (ﬁ,%m)4 in Lemma 1 and

3 can be obtained by YV (51157,1)4 — @ ——— 0, where
— 00

Tk = 1457z and gy is given by

22
= e T
L2
(L2 +22) (2L? 4 23)
L (217 +327)
(22 (L2 + 22))°/?

_ L
an ! <\/m> . 32)

Next, we asymptotically derive the covariances between X,
Yk, and Zj, and then the asymptotic mean and variance of
I, are obtained by the following lemma.

Lemma 4. The mean and variance of I; follow pj, —

i;, — 0 and 02 /M? — 52 /M? ——— 0, respec-
22/ Moo Ik/ Ik./ MK oo p
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tively, where 7, and 6?k are given as

_ 2 _ K _ —
B, = PrTidr + Z#k pilyy. + VPrthzy (33)
K
7=t v (2 - )+ 3, o,
K
T 2
+ Zi,ﬁsk:i;ﬁj PiPjWijk Oz (34)
where
— * M *
gk = 2Re (oo 02, Y HaHag | 35)
kg (1 — T/?) H L
=4/ ——F h;, h 36
ey, Ko + 1 kk"%tk> ( )
ThRktk oL Al
Hasmi = Foin + 1ﬁkmﬂtmhtkm' (37)

Proof: The detailed proof is presented in Appendix D. B
Lemma 4 shows that iy, and cﬁk are deterministic values
depending on locations of the devices and the correlation ma-
trices. Therefore, we can approximate the mean and variance
of Ry as follows.
Theorem 1. The mean and variance of R follow up, —

fir, ——— 0 and 0%, — 0%, —— 0, where ig, and
—00 " o

M,K 00
51%&- are
_9
o
fir, = 10g (1 + fiyy,) — ————, (38)
2(1 + fiy,)
_9 _4
_2 Ty Ty,
ORp, = - — - . 39
Ayt A+ )

Proof: By respectively replacing (7, and a%k in (20) and
(21) with zy, and 6?k from Lemma 4, we obtain the mean
and variance of the asymptotic uplink SINR. Let us define the
mean and variance of the asymptotic uplink SINR of device
k as [iy, and &2 , respectively, then fi,, and 2 are also

Yk
deterministic values, as follows:

i pr (1 —17) L + i, (40)
My = PkPr (L — T, — T =3 |
Tk k fir, U?k
=2 —4
_ 2 o Or.
52 =pir(1—72)" | = — =&+ (41)
Ky, K,

V\;e can obtain fir, and .6}2% by respciCQtively .replacing fi~,, and
oy, in (18) and (19) with ji,, and T3, which completes the
proof. ]

We refer to fig, and 612% as the asymptotic mean and
variance of Ry, respectively. Given deterministic values of
fi~,, and &2, Theorem 1 shows that the mean and variance of
uplink data rate in an LIS-based large antenna-array system
can be obtained based on deterministic values such as the
locations of the devices and the correlation matrices. Then, we
can evaluate the performance of an LIS-based system in terms
of ergodic rate, reliability, and scheduling diversity, without
extensive simulations. In particular, we can easily estimate the
ergodic rate from (38), and verify system reliability and the
scheduling diversity gain from (39). Furthermore, the results
from Theorem 1 will be in close agreement with the moments

of mutual information resulting from an actual LIS-based
system as the number of devices and antennas increase.

IV. CHANNEL HARDENING EFFECT AND PERFORMANCE
BOUND

The channel hardening effect is an important feature in
large antenna-array systems whereby the variance of mutual
information shrinks as the number of antennas grows [17].
Since a wireless system’s reliability and scheduling diversity
depend on the fluctuations of the mutual information, it is
important to estimate the fluctuations that can be expected in
a given large antenna-array systems such as an LIS. Given the
importance of the channel hardening effect, next, we verify
its occurrence in an LIS-based large antenna-array system and
we then derive the performance bound of the ergodic rate.

Since M = (2L/AL)2, (9) is given by using (17) as

2
e (1-7}) 11
16, /M2

where 7, denotes the asymptotic value of ~y; and I, denotes
a random variable with a mean and variance of fi;, and 61

from Lemma 4, respectively. With M = (2L/AL)?, ji;, and

=2
o7, are represented by

(42)

Mpyptiqe ~ Mpy K

mr, = 6472 2 + A L2 +Zj7$k pJ/U‘ng+MZ;:’a (43)
52 _ M2pi7"§qz MT,?qk (2 — 7']3) n ZK p25'2
Te ™ 409674 L4 642 L2 gk 197 Yk
K
+ Zi’#k:i# PP Qi+, (44)

We can observe in (42) that the mean and variance of 7, are
determined by jiz, /M? and 57 /M*, respectively. Lemma 5
is used to determine the scaling laws of fiz, /M? and 7, /M*
according to M.

Lemma 5. According to the scaling laws for M,
the mean and variance of I,/M? follow fis, /M? —
fr, — 0 and 57 /M* —— 0, respectively, where

© M—oo 2’; Moo
A K pikje(1-T H L
N’lk:Zj;ﬁk ijﬂécl(+nj:) b b,

Proof: From (44), c‘rfk /M* is obtained as follows:
_ 2
Oh _ _ mimiai | TRk (2—72) Iz
M4 409674 LAM?2 6472 L2 M3 M4
K _ K _
. Dk P3OV, + i iy PiPIPigh

T (45)
4
From the scaling laws for M, as discussed in [25], %

2 2
Tka(2_7'k) .
and 5 o7z7 in (45) converge to zero as M goes to

infinity. a%kw in (45) is calculated by the squared sum of M
elements from (31), and then J%Z_v increases with O(M?) as M
increases based on the scaling law. Hence, aQZI? /M* converges
to zero as M — cc. Also, 63, /M* in (45) is given by using
(25) as follows:

2
_ 2 L L N1 N2
o8, (bt s\ 2k (shor 4 R)
M4 M? + M4 ’

(46)
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In order to verify the scaling law of (46),2 we determine the

N2

. L N1 L :
scaling laws of S5 Siks Sik and ‘ujk,‘ according to M.

From (27), s, is calculated by the sum of (5, ]Lm)z over
all m where m = 1,..., M. Consequently, s?k increases with

O(M) as M increases. From (28), s?lkl is calculated by the
P. Given

that 7,5, is a correlation vector normalized by v M from
(2) and h?krjkp is calculated by the sum of M elements

S?Ikl increases with O(M) as M increases. From (29), s
L ) /M for all m

Jjkp~km jkm
2 follows O(1) as M increases. From (26),

‘ ﬂjk’ is obtalned from hf kY which is calculated by the

over all p where p = 1,...,

- 2
sum of ’hkkrjkp

is calculated by the sum of (a
and p. Thus, s

2
sum of M elements. Therefore ’u?k‘ increases with O(M?)
as M increases. Hence (46) goes to zero as M — oo
and we have Zﬁék Py /M4 SYEv 02. Similarly, @;;
from (35) increases w1th O(M?) as M increases. Then,
K Ry 4
Zid#k:i# pipiwije/ M m 0 and (45) eventually con-
verges to zero as M — oo.
From (43), jir, /M? is obtained by

_ 2 0.
b, PLTi, qk Pk zy PJ/J
= 47
M?2 6472 L2 M * 47TL2M M?2 * T “7)
j
From the scaling laws for M, ; 4;;2331 and 4;]1"2' 7 in (47)

converge to zero as M — oo. p%w in (47) is calculated
by the sum of M elements from (30) and then pzy in-
creases with O(M), finally MZW /M? converges to zero as
M — oo. Also, uy,\/]\/[2 in (47) is presented by using

’_“’7% Si +SJ +S] +|H] ‘
(24) as J\I_; — k k Ve k k
sh She, and ‘,ujk

ﬁY]k/M2 -

. From the scaling laws
2

of s, according to M, we have

2
,ul;k‘ /M? Fya 0. Therefore, (47) is asymp-
—00

% _ f: Pj |]/\’L417;k ‘2
i#k

completes the proof. ]

Lemma 5 shows that I}, /M? does not converge to a random
variable, but rather to a constant without any variance as M
increases. Therefore, we can prove the following result related
to the occurrence of the channel hardening effect and the
performance bound of the uplink data rate.

Theorem 2. The asymptotic variance of R goes to zero as
M — oo, and an asymptotic mean of Ry, is given by jip, —

PrPk (1*7'13)
16 L4721

totically obtained as —— 0, which
M—o0

g, — 0, where jip, = log <1+ is an
M— o0

asymptotic bound of the uplink data rate.

Proof: From Lemma 5, I /M 2 converges on a constant
value of 17, as M — oo. Then, 7, from (42) also converges on
a constant value without any variance as M — oo, as given by

2If the number of devices that dominantly transmits interference signals
to a target LIS unit is as large as M, it will not converge to 0. However, there
are actually far fewer such devices than M because the minimum distance
of the (z,y) coordinates between adjacent devices is considered under the
assumption that the LIS units do not overlap. Therefore, we assume that this
value always converges to 0.

TABLE I
SIMULATION PARAMETERS

Parameter Value

Carrier frequency 3 GHz

Uplink target SNR 3 dB

Hardware impairments (9) 1

Channel imperfectness (772) 0.5

Length of LIS unit (2L) 0.5 m

Rician factor (k[dB]) [29] 13 — 0.03d[m]

LOS path loss model [20] 11 + 20log, yd[m]
NLOS path loss model [21] | 37log;od[m] (Bpr1, = 3.7)

,7k _ piﬂk(l_"f)
P
LA™ 4, Ao

data rate, Ry, converges in distribution to a constant value:

0. Therefore, the asymptotic uplink

— 2 2
Ry, —log (1 + ’;’%’)L’Z(;;ﬂ:’“)) ——0 Finally, the asymptotic
mean and variance of Rj converge, respectlvely, as [ig, —

IOg (1 + pkﬁk(l "'k)

L47"2N1 0 and URk F 0. |

) M —o00
Theorem 2 shows that the channel fading of an LIS-based

large antenna-array system behaves as a static channel and
its impact on the uplink data rate becomes negligible as M
increases. This shows that an LIS-based large antenna-array
system is subject to the channel hardening effect resulting in
several practical implications. First, an LIS-based system lacks
scheduling diversity given that the fluctuations of the mutual
information are small. Further, an LIS offers an improved re-
liability insofar as it has a nearly deterministic data rate. Also,
an LIS provides a low latency of having a deterministic data
rate. Furthermore, Theorem 2 shows that the ergodic rate of an
LIS converges to the asymptotic bound fir, as M increases.
We can observe that /fig, is a function of fi;, which depends

2
exclusively on ‘hlljkh?k‘ . Therefore, the asymptotic bound
is only affected by the interference signals through the LOS
path from other devices. Hardware impairments, noise, and
interference from estimation errors and the NLOS path become
negligible compared to LOS interference as M increases. If
all of the interference is generated from the NLOS path, the
asymptotic bound goes to infinity as M increases. Moreover,
Lemma 5 and Theorem 2 show that the approximation gap
resulting from the Taylor expansions in Corollary 1 goes to
zero as M — oo. As M increases, iz, and o7, follow,
respectively, O(M?) and O(M?) as proved in Lemma 5, and
thus, 57 /i, follows O(1/M) and eventually converges to
zero. Hence, since the terms of a higher order than the second
degree of the Taylor expansion become negligible compared
to the first and second-order terms, the approximation gap
resulting from Taylor expansions in (20) and (21) goes to zero
as M — oo.

Similarly, 63“ goes to zero as proved in Theorem 2 and the
gap in (18) and (19) eventually goes to zero, as M — oo.

V. SIMULATION RESULTS AND ANALYSES

In this section, simulation results for the uplink rate in an
LIS-based large antenna-array system are presented under a
practical-sized environment with finite M and K. Further,
the asymptotic analyses are compared with the numerical
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Fig. 2. Ergodic rates of an LIS-based system with LOS interference as a
function of the number of antennas on the LIS unit.
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Fig. 3. Ergodic rates of an LIS-based system with NLOS interference as a
function of the number of antennas on the LIS unit.

results obtained from Monte Carlo simulations (all simulations
are statistically averaged over a large number of independent
runs). The simulation parameters are provided in Table I and
we do not consider shadowing given that the desired channel
of LIS can be modeled as a perfect LOS. In our results,
the labels “Estimation” and “Asymptotic bound” refer to the
results obtained from Theorems 1 and 2, respectively, while the
label “Simulation” captures a practical, simulated deployment
of the considered LIS system.

In Figs. 2 and 3, Theorems 1 and 2 are verified in the
following scenario. The devices are located at z = 1 in parallel
with the LIS on a two-dimensional plane. The devices are
located in the ranges of —10 < < 10 and —10 < y <
10 (in meters). The distance between the adjacent devices is
set equally to d,,, and the target device is located at (0,0, 1).
Therefore, a total of 1681, 441, and 121 devices are located
in a two-dimensional rectangular lattice form when d,, = 2L,
dy = 4L, and d,,, = 8L, respectively.

Figs. 2 and 3 compare the ergodic rates resulting from the
simulations to the estimations from Theorem 1 as M increases.
In Fig. 2, we assume that every interference signal from the
other devices is generated entirely from the LOS path and in
Fig. 3, it is generated entirely from the NLOS path. As shown
in Figs. 2 and 3, the asymptotic mean values derived from

6.5

Ergodic rate (bps/Hz)

® Simulation
Estimation
———-Asymptotic bound

0 2000 4000 6000 8000
Number of antennas on each LIS unit (M)

10000

Fig. 4. Ergodic rates of an LIS-based system with randomly located devices
as a function of the number of antennas on the LIS unit.

Theorem 1 are close to the results of our simulations over the
entire range of M. We can also observe from Fig. 2 that the
ergodic rate converges to the asymptotic bound obtained from
Theorem 2 as M increases. However, in Fig. 3, the ergodic
rate goes to infinity as M increases without bound. As proved
in Theorem 2, we can see that only the interference stemming
from a LOS path affects the ergodic rate of an LIS-based
system.

In Figs. 4-8, we consider that the devices are uniformly dis-
tributed within a three-dimensional space. In particular, these
figures are generated for a scenario in which we randomly and
uniformly deploy the devices in a 4 mx 4 m X 2 m space.
Based on the 3GPP model in [29], the existence of a LOS path
depends on the distance from the transmitter and receiver. The
probability of LOS is then given as follows:

PI';COS _ { (dc — djk) /dc,o < djk < dc,
J 0,

dyp, > de, (48)

where d;, is the distance in meters between device j and the
center of LIS unit k, and d¢ denotes a cutoff point, which is
typically set to 300 m in a cellular environment [29]. Since
the antenna of a BS in a cellular system is located at a high
altitude, d¢ takes a large value such as 300 m. However, in
an LIS environment, a relatively smaller d¢ value is more
reasonable. In Figs. 4-8, dc = 10 m is assumed to jointly
consider the LOS and NLOS path simultaneously. If a LOS
path occurs, the Rician factor, #,, is calculated according to
d;1, as per in Table L.

Figs. 4 and 5 show the ergodic rate and variance of
the rate, respectively, as a function of M. The asymptotic
mean and variance derived from Theorem 1 are close to the
results of our simulations and the accuracy improves as M
increases. In Fig. 4, the asymptotic means closely approximate
the results of the simulations regardless of K, whereas the
asymptotic variances approach the results of the simulations
as K increases as shown in Fig. 5. Based on Theorem 1, the
gap between the actual mean and asymptotic mean approaches
zero as M increase, while the gap between the actual variance
and asymptotic variance approaches zero as both M and K
increase. Fig. 4 also shows that the ergodic rate gradually
converges to the asymptotic bound obtained from Theorem
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Fig. 5. Variances of uplink rates of an LIS-based system with randomly
located devices as a function of the number of antennas on the LIS unit.

Ergodic rate (bps/Hz)

———-Massive MIMO (ULA)

Massive MIMO (UPA)
T T

. . .
0 600 1200 1800 2400 3000 3600
Number of antennas (M)

Fig. 6. Performance comparison between the ergodic rates of an LIS-based
system and a massive MIMO system as a function of the number of antennas.

2. Given that the interference power increases as K increases,
the ergodic rate gradually decreases as K increases.

Fig. 5 shows the channel hardening effect whereby the
rate variance gradually converges to zero as M increases.
Moreover, the rate variance gradually decreases as K increases
for a fixed M. From the scaling laws of 7y, and (ﬁk in Lemma
4, fig, and 67 follow O(K) and O (K?), respectively.
Then, 6%, follows O (1/K?) from (19)=(21). Therefore, 0%,
decreases as K increases.

In Figs. 6 and 7, we compare the performances of an
LIS-based large antenna-array system and a massive MIMO
system. We consider a multi-user massive MIMO system in
which an MF is used for uplink signal detection. Since massive
MIMO systems typically operate via far-field communications,
we assume that every wireless signal is from an NLOS path
and the distance from a device to all BS antennas is taken as
equal [21]. For a massive MIMO system with a uniform linear
array (ULA), the wireless channels from the NLOS path can
be modeled using (1) with k;; = 0 and

S 2T o h
L sin ijp

1
a(th,) = = [1.¢
(49)

which is then applied to (2). Here, v is the antenna spacing of

om . T
e ej%(]\ifl) sin G?kp]

0.2
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Fig. 7. Performance comparison between variances of uplink rates resulting
from an LIS-based system and a massive MIMO system as a function of the
number of antennas.

a massive MIMO system assuming v = A\/2. We also assume
a single BS with M antennas and P = M/2, as in [21], and
the same device distribution is considered as in the case of the
LIS. For a fair comparison, we assume that the antenna gain
is always equal to 1 in both cases (i.e., with massive MIMO
and the LIS).

Fig. 6 compares the ergodic rates of an LIS-based large
antenna-array system and a massive MIMO system as M
increases. This figure shows that the ergodic rates resulting
from LIS are higher than those resulting from massive MIMO
in the range of practical-sized M, since the desired signal
power of the LIS channel (i.e., LOS channel) is higher than
that of the massive MIMO channel (i.e., NLOS channel).
The performance gap decreases as M increases because the
interference signal from the NLOS path becomes negligi-
ble, and eventually the massive MIMO system becomes an
interference-free environment. When K = 30, an LIS shows
about 2-fold increase in the ergodic rate compared to massive
MIMO with ULA at M = 100, but two systems achieve a
nearly equal ergodic rate at M = 3600. However, the increase
of M indicates an increase in the physical area for deploying
the massive antennas, whereas the physical area of the LIS
remains constant at 2L x 2L. For example, the ergodic rates
resulting from the LIS and the massive MIMO systems are
almost equal when K = 30 and M = 3600. The total physical
length of the massive MIMO antennas is equal to 180 m
under the assumption of a ULA with \/2-spacing. Even if
we consider a two-dimensional antenna deployment, a 60 x 60
antenna-array occupies an area of roughly 9 m?. However, the
LIS unit only occupies an area of 0.25 m?2. An interference-
free MIMO environment is practically impossible given that
the size of its array would have to be tremendous. This clearly
shows the advantages of an LIS for space-intensive wireless
communication.

Fig. 7 compares the variances of uplink rates resulting from
an LIS-based large antenna-array system and a massive MIMO
system as M increases. In Fig. 7, we plot the rate variance of
LIS using the estimated value obtained from Theorem 1. We
can observe that the rate variance of massive MIMO increases
as M increases and then eventually converge to constant value
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Fig. 8.  Ergodic rates of an LIS-based system as a function of L when
M = 100.

exemplifying the so-called reduced channel hardening effect
[17]. However, the rate variance of LIS converges to zero as
M increases due to the channel hardening effect. Therefore, an
LIS has improved reliability having a deterministic rate and it
results in lower latency compared to a massive MIMO system.

Fig. 8 shows the ergodic rates resulting from an LIS-based
large antenna-array system as a function of L when M = 100.
In the LIS, the maximum SINR is achieved at the central
antenna of the LIS unit and the SINR gradually decreases
as the antenna moves from the center to the edge. Thus, the
ergodic rate increases as L increases when L is small and
decreases when L exceeds some threshold point. As shown in
Fig. 8, the maximum ergodic rates can be achieved through
optimal L values. Furthermore, an optimal L can be obtained
numerically using the asymptotic analysis from Theorem 1 as
given by L = 0.35 m in Fig. 8.

VI. CONCLUSIONS

In this paper, we have asymptotically analyzed the uplink
data rate of an LIS-based large antenna-array system. We have
derived the asymptotic moments of mutual information by
considering a practical LIS environment in which a large LIS
can be divided into smaller LIS units, each of which having
a limited area. We have studied the uplink rate in presence
of limitations such as hardware impairments, imperfect chan-
nel estimation, and interference that is generated by device-
specific spatially correlated Rician fading. We have shown that
our analyses can accurately determine the performance of an
LIS analytically, without the need for extensive simulations.
Furthermore, we have demonstrated that a channel hardening
effect will occur in an LIS-based system. We have also derived
the asymptotic bound of the uplink data rate and shown that
hardware impairments, noise, and interference from channel
estimation errors and the NLOS path become negligible as M
increases. The simulation results have shown that the results
of our asymptotic analyses agree with those resulting from
extensive simulations, and the ergodic rate and the variance of
rate respectively converge to the derived asymptotic bound and
zero as M and K increase. Moreover, we have observed that
an LIS enables reliable and space-intensive communication,

which renders it a promising technology beyond massive
MIMO systems. We expect that our asymptotic analyses will
be invaluable to predict the theoretical performance of an LIS-
based large antenna-array system when conducting system-
level simulations and developing prototypes.

APPENDIX A
PROOF OF LEMMA 1

Given the definition of X}, = |ekH hy ‘2 from (12), we have

M 2

Z (ﬁl%m)2€;;mhkkm

Let us define )Z’km = (B%m)zezmhkkm Vk, m. Then, )Z'km ~
L 4
0, (85,)")

Xy = (50)

and Xj can be described as follows:

M

Xk ~ EZ (ﬂkm) 27

m

619

where X7 denotes the chi-square distribution with k degrees
of freedom, which completes the proof.

APPENDIX B
PROOF OF LEMMA 2

2
Given the definition of Y}, = ‘\/1 T2h b Teel by
from (13), we have

Yik = |2ij|

where we define Xy, = ij + ij +Y
Rjk
K,jk +1
+ Tk Zﬂkm gmekm ka> v]a

1
N1 _ 21 H 1/2
ij = Kjn + 1 (\/ 1 —7ih R ik gjk>

1-—

= o+ 1 Z hkk;,rjk?pg]k}p7v]7 k
J

[ 1
N2 _ 1/2
ij = Kjn + 1 (TkekR ik gjk)

M,P

L * .
e + 1 > BimlitmpCimi: Vis k
J m,p

2
Y +Y121+YJ§2 ,
N2 /5 k and

(52)

L _
Yii =

Tkh h

(53)

(54)

Tk

(55)

lelé2 = [r]kla" ’I"]kp} and Tjkp
[Tikips - - - ,rjk.Mp] Vj, k,p. We first prove that YL and YN1
follow independent complex Gaussian dlstrlbutlons We then
asymptotically obtain the distribution of Y%z by using the
law of large numbers for a large M and the Lyapunov central
limit theorem (CLT). Finally, we asymptotically derive the
mean and variance of Y;. Given that ey, gjkp, and €rmGjrp
are independent of each other, YJI,; Y%l and Y%Z are
independent random variables. Further, since eg,, and g;ip
are standard complex Gaussian random variables respectively

where
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independent across m and p, we have Y} ~ CN (u?k, s?k)

and Y ~ CN (0, S?Ikl), where

Lo e (=)

H,L
Hik = P high, (56)
RinT? 2
L _ Nk L pL
S5k = o+ 1 a (BEmBim) s (57)
1_7—2 L H 2
= +k1§p: IBfr o (58)
Here, hgkh;“k in (56), ZZI (@I;m }m)z in (57), and

2
25 hgkrjkp‘ in (58) are deterministic values depending on

the locations of the devices and the correlation matrices.

In order to obtain a random variable Yjﬁz, we use the
law of large numbers to approximate (55) for a large M.
Z% BE T ikmp€imdikp in (55) is thus expressed as follows:

M M
L * _ _NL L jNL ;. _—
E Brem jkmpC€rmJikp = Qjkp E 5kmljkmdgkmpekmgakp7
m m
(59
. : v h
where djimp is element m of d(gbjkp,gbjkp). We define

v M .
}/}kp = Zm ﬂgTrLl;\Ik’I;ndjkmpyjka ij,kyp where Yjkmp =
€rmJjkp- Then, the random variable Yji, follows Corollary

Corollary 2. On the basis of the Lyapunov CLT, a random
variable Y;, asymptotically follows a complex Gaussian
distribution:

M ~
Vi ——— CN'(0,1),  (60)
ZM L lNL M—o0
m km"jkm

d s
where “ ———” denotes the convergence in distribution.
M —o00

Proof: In order to follow the Lyapunov CLT, ¥;rmp
should be independent random variable across m and the
following Lyapunov’s condition should be satisfied for some
6 >0 [30]:

1 < 2+
. L NL ol _
N}inoc s?\}ds E E [|Bkmljkmdjk'mpy]kmp /Jm| } =0,
m
(61)
M
where s3, = >, 02, and p,, and o2 are the mean

and variance of the random variable B}%ml?]]gl;ndjkmpyjkmp:
respectively. Here, yjkmp = €},,9kp 15 a random variable
product of two independent random variables. Since ey, is an
independent random variable across m and independent with
Gikp> {Yjk1p, - YjkMp} 1S a sequence of independent random
variables, each with zero mean and unit variance. Then, we

. 2
can obtain y,, = 0 and 02, = (B,I;ml?,gjn) |djkmpl” =

2
(B]I;mlykl;,g /M ¥m. We consider § = 2, such that (61) is

obtained as follows:

A L JNL 4 4
> (Bhal%.) E [lysnmsl |
m

lim 5
Moo M 2
(2 (k) )
m
Moo VA
. 4727; (ﬁkml]km> ) 4C_ij
= lim = lim —%, (62)
(a) Mmoo /M N2 Moo Mo@k
(2 (hae))

4
where we define aj; = SN (ﬂ,&ml?k];n) /M and aj, =

2
ZTA;[ (5115771[?19]77@) /M V7, k. (a) results from E “yjkmpj =
4 VYm since Yjrmp is product of two independent random
variables that follow an identical standard complex Gaussian
distribution. Given that 0 < ff,, < 1and 0 < I}j} <1, we
have 0 < & <1 and 0 < &, < 1. Therefore, (62) goes to

zero, which completes the proof. [ ]
Based on Corollary 2, we have —— YJ? 4,
Sjk M — o0
CN (0,1), where
2R 2

N2 k NL gL NL

ik =2 D (e Bimbiim) /M. (63)
Kjk + 1 .

Here, ayl B INL s a deterministic value depending on the

locations of the devices and the correlation matrices. Given
that Yﬁc, inl, and Y)? are independent of each other, we

d
haveiZ.—L>—>CN01.For
Totongronz \Yor T MGk ) T 0,1)

. 2 .
a random variable Y = . |X;|", where X; is a com-
plex Gaussian random variable independent across 7 such
as X; ~ CN (mi,af), the mean and variance of Y are

respectively obtained by py = >, (a? + |mi|2> and 0% =
Do (af + 2|mi|2022). Then, fiy,, and &f,j . are ultimately
obtained by

2

fivy, = sin + s5n + 850 + gl s (64)
2 2
632% = (s?,f + SE»\Ikl + S?I;f) + Q‘M?ﬂ (S?k + S?Ikl + ssz) .
(65)
APPENDIX C
PROOF OF LEMMA 3
Given the definition of Z), from (14), we have
2o M
Zi = ’\/1 = rehy el | =3 2kl (66)
2 M 2
N R LI SE A P
m

where we define 2}, = /1 — T,f ,%mhzkm + Tkﬂ,%mezm and

W 2oL px ~ L _x = — 5 .1
Zim = V1= T B egm W+ Tk € Wm = Win 2,
Then, 2}, follows a complex Gaussian distribution:

2~ CN( [y zkmmﬁ(ﬁ};mf). (68)
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M
Then, the mean and variance of Z are pzp = Z (ﬂkm)

and O’%E =7} (2 — Tk) Z (ﬁkm) respectively. Similarly, as

proved in Corollary 2, Zm 2y, follows a complex Gaussian
distribution based on the Lyapunov CLT as M — oco. From
(6), 2y, can be represented as follows:

Zimn = CmZem (VPRBEmPkkm + hiom) » (69)
( JBY g A+hNE
Where hkR — Z;;k \/’Z(\/ Jk/BJ’"Lh]k +th:'m.). We deﬁne

\/KJ]‘,—‘,-l
2L = peBY hgkmemzl, and 2R = ¢, 20 B Since
¢m 1s a zero-mean complex Gaussian random variable inpen-

dent with 2} ., the mean and variance of z,Vg;l are obtained
from [31], respectively, as Pyt = 0 and

Uiklﬁ _pk(ﬁk‘m) V&I‘ Cm (|E ka” + Var [erclm]>
= 6pk(5km) .

Similary, the mean and variance of z}'R
respectively, as P = 0 and

(70)

can be obtained,

2
zzvR = <‘E B ’ + Var [z;;mh}}m]> N GA))
Since z},, and h}%  are independent, we have
2
Pikik *
‘ kah ‘ = 1 Tk Z K;JJ j_lﬁkm kkmh’jkm
(72)

Also, Var [z,‘;mhkRm] in (71) is obtained in a manner similar
to (70), as follows:

n 2
Var [z hi] = (8502 (o +Elig, 7). 03
where
Pikjk
.uhiim Z ij_*_l ]mhjkmv (74)
(75)

U R = E g |T km ‘
hkm, K 1 J p
k:+

j#k Y

(72) and (73) respectively show that ‘E [zkmhp,‘m] ’2 and
Var [z, b, | can be calculated based on the deterministic
values such as the locations of the devices and the correlation
matrices. Since z,?i‘l and szan include a common random
variable ¢,,z,,, they are dependent of each other with the
following covariance:

wLR wL wR
Wkm = =E [ka (ka) ]

p]K’]k?

L RekmPem- (76)

Note that z}'% and z,‘g’g are independent random variables
across m. Therefore, we can finally obtain the mean and

variance of Z}' respectively as follows:

M

m

M 2
0%y = (Z (aj% + 0% + 2Re(kanI;R))> , (78)

m

which completes the proof.

APPENDIX D
PROOF OF LEMMA 4

Given the definition of [, = ka,ka + Zj;k p;iYik + Zy
from (11), we have
2

\/1— Tlghlljkhjk + Tkeghjk

2

K
Iy = pm,f{e?hkkf + ij
ot

\/1— T,?h?k + el]

Based on Lemmas 1-3, fi;, can be obtained as pij, =
PrTE +Z§;k pjlty;, ++/Dr- We can observe from (79) that
Xk, > j p;Yjk, and Zj, are function of a common random
variable vector ey. Similarly, Y, and Yj;, Vi # j also include
a common random variable vector e;. As K increases, the
sum of covariances between Y;; and Yj, Vi # j becomes
dominant and the covariances between X, > j p;Yjk, and
Zi becomes negligible. Then, the variance of Ik can be
asymptotically obtained based on Lemmas 1-3 as o2 i J/M? —

72 /M? ——— 0, where
s M,K—o00

+ (79)

K
2 _4-2 2 2\ - 2_92
07, = PxTr i + Tg (2 - Tk) qr + Z#k POy,

K

+ Zi#k:#,mpjwijk-
@i, denotes the asymptotic value of w;;;, = Cov [Yix, Y] =
MY Yy — Hyily,, Vi # j, where py,y, = E[Yy Yl
ty,, = E[Yi], and py,, = E[Yjz]. For convenience, we
use the following notations.

Ci. = \/ 1-— Tghlljkhtk

(80)

1 2
VErhiLh h
/ftk-i-l( Ktk Ny, thFZ kkrtkpgtkp>a
(81)
atmeMK +1ﬁkm (\/K/t ﬁtmhtkm+z rtkmetkp)v
(82)
for t € {i,j} and VYm,k. With atni, we have
meelhy = Z%atmkezm. Here, c¢;; and aumi are
complex Gaussian random variables independent with

€xm Such as ¢y ~ CN(#CW Ctk) and  apnp  ~

mk(l—Tk)h htk,

Kik+1

CN (/j’armkv a, k) where Hey =

2
2 1*"'k
O’Ctk T Rep+1 Zp ‘hkkrtkl) 4

2(pL )2
_Tk(ﬁkm) ZZI: |rtkmp‘2~

tmk  Kie+1

2K
"tk oL L
Kekp+1 6kmﬂtmhtknu

:u'at'mk =

2
and o
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By using the above notations, we have

Y = ‘\/1 — Tlghll;lkhtk —+ Tkeghtk

We can observe from (88) that @;;; can be obtained by a
o 5 deterministic value and the LOS component of the interference
2 . -

channel exclusively produces ;.
= |ctk + g AtmkChm, "
m

M
2
= |ew|” + 2Re (ctk Zm afmkekm>

M . M y
+ E : AtmkCrm E Atk Chkm-
m m

With a standard complex Gaussian distribution for ey,,, we
have Elegn] = 0, E[eim] = 0, E[ezm] = 0, and

E [\ekmﬂ = 1. Then, py,, and py,,y,, are obtained as

M
MY, = KOy T+ Zm KA, and

(83)

M
1Yy, = E {|Cik|2|0jk|2 + e Zm |@jmi |kl
M
Fleinl® > laimil*lexm!”
m

* M * 2
+ 2Re (Cikcjk Y Gmkajmilenn] ) + 6]
M M
= UCi My, T HCi Zm HAjme T MOk Zm HAim

* Mo
+2Re 'uc'ik‘ucjk Zm g Fagme +,U,§, (84)

where we define pc,, = E [|ctk\2} and pg,, , = E [|atmk|2

for t € {i,j} and Vm, k. Then, we have uc,, = 02, +|fic,,.|
and pia,,, =02, + |ita,,,, |*. Further, & and p are given
by

M M M M
_ * * * *
§= E Aimk€hm E @k €hm E Ajmk€hm E Q5 ko €k s
m m m m
(85)

M M
pe =B | D laimal*lenl” Y 1ajmnl’|ewmn|”
m m

M
2
> alainlernl?| . (86)

M
* 2
+ D Qimk @€k
m n#m

Then, w;;j, is obtained by

M
wijh = 2Re | Hea il D M Hagm | + He
m

M M
- E KA,k E KA -
m m

Here, fi,, is obtained from hj, hl; which is calculated by
the sum of M elements. Then, the first term of w;;; in (87)
increases with O(M3) as M — oo. Similarly, the second
and the last term of w5, increase with O(M?) as M — oc.
According to the scaling laws for M, we have w;;,/M 2 _
Wijk/M? — 0, where

87)

M

Diji = 2Re [ pre, pi > Hay (88)
m
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