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Performance Analysis of Maximum Ratio
Transmission with Imperfect Channel Estimation

Yunxia Chen, Student Member, IEEE and Chintha Tellambura, Senior Member, IEEE

Abstract— Maximal ratio transmission (MRT) is designed
assuming the availability of perfect channel state information
(CSI) at both the transmitter and the receiver. However, perfect
CSI is not available in practice. This paper investigates the
impact of Gaussian estimation errors on the MRT performance
in independently and identically distributed (i.i.d.) Rayleigh
fading channels. We derive the cumulative distribution function
(cdf), the probability density function (pdf) and the moment
generating function (mgf) of the MRT output signal-to-noise
ratio (SNR) with imperfect CSI, enabling the evaluation of some
useful performance metrics such as the average error rate and
the outage performance. Numerical and simulation results are
provided to show the impact of imperfect CSI on the MRT
performance.

Index Terms— Channel state information, diversity, Gaussian
estimation error, maximal ratio transmission, MIMO systems.

I. INTRODUCTION

ANTENNA diversity has long been employed to combat
the impact of multi-path fading on wireless communica-

tion systems. While classical research in this area has focused
on single-input and multiple-output (SIMO) antenna systems,
multiple-input and multiple-output (MIMO) antenna systems
have captured considerable attention recently. In MRT [1], the
signal is transmitted along the strongest eigenmode and the
received signals are combined using maximal ratio combining.
The performance of MIMO MRT has been studied for various
fading channels [2]–[5]. However, most analytical results are
derived under the assumption that perfect CSI is available at
both the transmitter and the receiver, an assumption that is
not true in practice. For example, when pilot symbols are
used for channel estimation, Gaussian errors can arise due
to time or frequency separation between the pilot and the
signal [6]. Thus, from a theoretical and practical viewpoint, it
is important to quantify how the MRT performance degrades
due to imperfect CSI.

We denote a MIMO system by the pair (Nr, Nt) where Nr

and Nt denote the number of receive and transmit antennas,
respectively. The MRT performance with imperfect CSI for
(1, Nt) systems (i.e., multiple-input and single-output (MISO)
antenna systems) has been analyzed in the literature [7], [8].
However, no analytical results have been published for general
(Nr, Nt) MIMO MRT systems with imperfect CSI. This letter
analyzes the performance of such systems with imperfect CSI
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in i.i.d. Rayleigh fading channels. We derive the cdf, the pdf
and the mgf of the MIMO MRT output SNR, enabling the
evaluation of the MRT performance as a function of the quality
of CSI.

This letter is organized as follows. Section II describes the
system and channel models. Section III derives the output
SNR of MRT with Gaussian channel estimation errors in i.i.d.
Rayleigh fading. Section IV derives statistical distributions
of the MRT output SNR with Gaussian estimation errors.
Section V presents several numerical and simulation results
and concludes this letter. The following notations are used.
All the matrices and the vectors are denoted by boldfaced
capital letters and boldfaced small letters, respectively. The
determinant, conjugate transpose, transpose, conjugate of X
are denoted by det(X), XH , XT and X∗, respectively. The
(i, j)-th element of the matrix X is denoted by the corre-
sponding small letter with subscripts xij . The average and the
absolute value of x are denoted by E(x) and |x|, respectively.
The n×n identity matrix is In. The Kronecker delta is defined
as δii = 1 and δij = 0 for i �= j.

II. SYSTEM AND CHANNEL MODELS

Consider a (Nr, Nt) MIMO MRT system. The channel
experiences slow and frequency non-selective Rayleigh fading,
which is characterized by an Nr × Nt matrix H = [hij ] of
i.i.d. complex Gaussian random variables (CGRVs) with zero-
mean and unit variance, i.e., E(|hij |2) = 1, where hij denotes
the channel gain from the j-th transmit antenna to the i-th
receive antenna. Thus, the Nr ×1 received signal vector r can
be written as

r = Hvts + n (1)

where s is the transmitted data symbol with energy E(|s|2) =
Es, vt denotes the Nt×1 normalized transmit weighting vec-
tor and n is an Nr×1 additive white Gaussian noise (AWGN)
vector with zero-mean and covariance E(nnH) = σ2

nINr
. The

SNR of data symbols is Es

σ2
n

. In practice, the transmit weighting
factor vt is calculated at the receiver and sent to the transmitter
through a feedback channel. This feedback channel is assumed
to be perfect. Hence, the transmitter uses exactly the same
weighting factor as calculated at the receiver.

Assuming the use of orthogonal pilot sequences, the pilot
symbol assisted channel estimate Ĥ differs from the actual
channel H by an independent complex Gaussian error ∆H
which is an Nr × Nt matrix of i.i.d. CGRVs with zero-mean
and variance σ2

e , i.e., Ĥ = H + ∆H. The variance of the
Gaussian estimation errors σ2

e depends on the SNR of the

pilot symbols σ2
e ∝

(
Ep

N0

)−1

[9] where Ep is the pilot symbol
energy. In general, Ep is not always equal to the data symbol
energy Es. Thus, the estimate Ĥ is an Nr×Nt matrix of i.i.d.
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CGRVs with zero-mean and variance σ̂2 = 1 + σ2
e . It can be

shown that ĥij and hij are joint complex Gaussian distributed
with the normalized correlation coefficient 1√

1+σ2
e

. The actual

channel matrix H can be written in terms of Ĥ as [10],

H = ρĤ + H̃ (2)

where ρ = 1
1+σ2

e
, H̃ = [h̃ij ] and h̃ij’s are i.i.d. CGRVs

with zero-mean and variance σ̃2 = E(|h̃ij |2) = σ2
e

1+σ2
e

and

E(h̃ij ĥ
∗
lk) = 0, E(h̃ijn

∗
k) = 0 for any i, j, k, l.

III. THE MRT OUTPUT SNR WITH

GAUSSIAN ESTIMATION ERROR

When perfect CSI is available at both the transmitter and
the receiver, in order to maximize the SNR at the receiver, the
transmit weighting vector vt is selected to be the eigenvector
u of the largest eigenvalue λmax of the Wishart matrix HHH.
Thus, the coherently combined received signal is given by
ŝ = uHHH(Hus+n). The output SNR of MRT with perfect
CSI is then given by [2]

γmrt = λmax
Es

σ2
n

. (3)

However, when the channel estimate Ĥ differs from the true
channel H, the combined received signal is given by

ŝ = ûHĤH(Hûs + n) (4)

where û is the eigenvector of the largest eigenvalue λ̂max of
the Wishart matrix ĤHĤ.

Substituting (2) into (4), we obtain the output of the
combiner as

ŝ = ûHĤHĤûρs + ûHĤHH̃ûs + ûHĤHn. (5)

Given the estimate Ĥ and the transmitted signal s, the second
term in (5) is i.i.d. Gaussian distributed. Hence, ŝ is a complex
Gaussian distributed RV with mean E(ŝ) = ûHĤHĤûρs =
λ̂maxρs and variance VAR(ŝ) = λ̂max(Esσ̃

2+σ2
n). Therefore,

the effective output SNR can be written as

γmrt =
λ̂max

(1 + σ2
e)[σ2

e + (1 + σ2
e)σ2

n/Es]
. (6)

As expected, when σ2
e = 0, (6) reduces to (3) for the perfect

CSI case.

IV. OUTPUT STATISTICS

To derive the statistics of the MRT output with Gaussian
estimation errors (6), we require the statistical distribution of
λ̂max. Fortunately, the distribution of the largest eigenvalue
of a Wishart matrix has have already been developed in the
mathematics community [11], [12]. In this section, we apply
the available results to derive the cdf, the pdf and the mgf of
the MRT output SNR with Gaussian estimation errors. These
results can be readily used to evaluate the MRT performance.

Using Khatri’s results [12, Eq. (6)], we can readily obtain
the cdf of the MRT output SNR as

Fmrt(x) = Pr(γmrt ≤ x) =
det[S(gx)]∏a

k=1(a − k)!(b − k)!
(7)

where a = min(Nr, Nt), b = max(Nr, Nt), g = σ2
e + (1 +

σ2
e)σ2

n/Es and S(x) is an a× a Hankel matrix with elements
given by sij(x) = γ(b − a + i + j − 1, x) where γ(a, x)
is the incomplete gamma function defined as [13, 8.350.1].
These notations will be used throughout this letter. Note that
the output cdf (7) only depends on the minimum and the
maximum values of Nr and Nt. Thus, when the signal energy
Es is fixed, the performance of (L,M ) MRT system is the
same as that of (M,L) MRT system with Gaussian estimation
errors. The same fact has been observed for MRT performance
with perfect CSI [2], [4].

Applying (7) and [13, 8.352.1], we can readily obtain the
pdf and the mgf of the MRT output SNR with imperfect CSI
respectively as [2]

pmrt(x) =
dFmrt(x)

dx
= D

d

dx
det[S(gx)]

= gD

a∑
i=1

(a+b)i−2i2∑
j=b−a

cije
−igx(gx)j and

(8)

φmrt(s) = E(e−sγmrt)

= D

a∑
i=1

(a+b)i−2i2∑
j=b−a

j! cij

[
g

s + ig

]j+1 (9)

where D = [
∏a

k=1(a − k)!(b − k)!]−1, cij is the coefficient
of the term e−ixxj in the expansion of d

dx det[S(x)]. The co-
efficients cij’s can be readily determined using mathematical
softwares such as MAPLE.

Let us consider two special cases of the mgf (9). For MISO
or SIMO systems (a = 1), the Hankel matrix S(gx) only
has one element γ(b, gx). Noticing that d

dxγ(b, x) = xb−1ex,
we can readily obtain c1,b−1 = 1 and the mgf (9) reduces to

φmrt(s) =
(

g
g+s

)b

, which is equivalent to the previous result
for SIMO MRT systems [8].

For two receive antennas and more transmit antennas (or
two transmit antennas and more receive antennas) system (a =
2), the Hankel matrix S(gx) is given by

S(gx) =
[
γ(b − 1, gx) γ(b, gx)

γ(b, gx) γ(b + 1, gx)

]
. (10)

Thus, the mgf (9) can be reduced to closed-form

φmrt(s) =
(

g

g + s

)b [
bg

g + s
+

b(g + s)
g

+ 2(b − 1)
]

−
b−2∑
k=0

(b + k)!ηb+k+1

k! (b − 1)!
−

b∑
k=0

(b + k − 2)!ηb+k−1

k! (b − 2)!

− 2
b−1∑
k=0

(b + k − 1)!ηb+k

k! (b − 2)!
(11)

where η = g
2g+s . Applying the mgf approach with (9), we can

obtain the average BER of a wide class of digital modulations.

V. NUMERICAL RESULTS

Numerical results are provided to show how Gaussian esti-
mation errors impact the MRT performance in i.i.d. Rayleigh
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Fig. 1. The BER of BPSK with imperfect MRT and Alamouti’s scheme in
i.i.d. Rayleigh fading channel. Nr = 3, Nt = 2.

fading channels. Simulation results are provided as an inde-
pendent check of our analytical results. For brevity, we provide
only BPSK results.

Fig. 1 compares the average BERs of MRT(3, 2) and
Alamouti (3, 2) [15] employing BPSK modulation versus SNR
(Es/σ2

n) for different levels of estimation error variance σ2
e .

For a fair comparison, we allocate Es

2 to each symbol in
Alamouti’s scheme so that the total power from two transmit
antennas is Es, which is the same as that in the MRT system.
Alamouti’s scheme does not require CSI at the transmitter
while MRT requires the feedback of CSI from the receiver to
the transmitter. However, Alamouti’s scheme performs worse
than MRT. As σ2

e increases, both MRT and Alamouti’s scheme
perform worse and the performance loss of Alamouti’s scheme
compared to MRT increases. For example, to achieve an
average BER of 10−3, the performance loss of Alamouti’s
scheme to MRT is 2dB when σ2

e = 0 and more than 3dB
when σ2

e = 0.2. Observe that the imperfect CSI results in
degradation of the diversity order (the negative slope of the
average BER curves) and the coding gain (the gap between
the imperfect curves and the perfect curves) of both MRT and
Alamouti’s scheme. Error floors can be clearly seen when σ2

e

is fixed. Observe that no error floor exist when σ2
e =

(
Es

N0

)−1

,
i.e., the variance of the Gaussian estimation errors decreases
as the SNR of the data symbols increases (the pilot symbols
have the same energy as the data symbols).

Fig. 2 compares the BER performance of MRT with
BPSK versus the variance of Gaussian estimation error σ2

e

at Es/σ2
n = 5dB. We consider three MRT systems each with

a total of six antennas. The MRT(3, 3) system outperforms
the MRT(2, 4) and the MRT(1, 5) systems. Hence, for a
fixed number of antennas, better performance is obtained by
evenly distributing the antennas between the transmitter and
the receiver. This observation agrees with those in [2], [4].
However, as σ2

e increases, the performance gain of MRT(3, 3)
system over the other two systems diminishes. The MRT(3, 3)
system is more sensitive to the estimation error.

In conclusion, this letter analyzed the general (Nr, Nt)
MIMO MRT performance with Gaussian channel estimation
errors in i.i.d. Rayleigh fading channels. We derived the effec-

−20 −18 −16 −14 −12 −10 −8 −6 −4 −2 0

10−4

10−3

10−2

10−1

100

Estimation Error σe
2 (dB) 

B
it 

E
rr

or
 R

at
e

Nr = 3, Nt = 3
Nr = 2, Nt = 4
Nr = 1, Nt = 5

Fig. 2. Comparison of effects of imperfect CSI on different MRT systems
in i.i.d Rayleigh fading channel. Nr + Nt = 6, Es/σ2

n = 5dB.

tive output SNR and the related statistics. It is instructive to
compare the performance of MRT and that of the Alamouti’s
scheme, which is optimal when CSI is not available at the
transmitter. The performance gain of MRT over Alamouti’s
scheme increases as channel estimation becomes worse. Al-
though the MRT system with evenly distributed transmitter
antennas and receiver antennas provides better performance,
such a system is more sensitive to imperfect CSI.

REFERENCES

[1] Titus K. Y. Lo, “Maximum ratio transmission,” IEEE Trans. Commun.,
vol. 47, pp. 1458-1461, Oct. 1999.

[2] P. A. Dighe, R. K. Mallik, and S. S. Jamuar, “Analysis of transmit-
receive diversity in Rayleigh fading,” IEEE Trans. Commun., vol. 51,
pp. 694-703, Apr. 2003.

[3] B. D. Rao and M. Yan, “Performance of maximal ratio transmission
with two receive antennas,” IEEE Trans. Commun., vol. 51, pp. 894-895,
June 2003.

[4] M. Kang and M. S. Alouini, “Largest eigenvalue of complex Wishart
matrices and performance analysis of MIMO MRC systems,” IEEE J.
Sel. Areas. Commun., vol. 21, pp. 418-426, Apr. 2003.

[5] M. Kang and M. S. Alouini, “Impact of correlation on the capacity of
MIMO channels,” ICC ’03, vol. 4, pp. 2623-2627, 2003.

[6] M. J. Gans, “The effect of Gaussian error in maximal ratio combiners,”
IEEE Trans. Commun. Tech., vol. 19, pp. 492-500, Aug. 1971.

[7] J. K. Cavers, “Single-user and multiuser adaptive maximal ratio
transmission for Rayleigh channels,” IEEE Trans. Veh. Technol., vol.
49, pp. 2043-2050, Nov. 2000.

[8] K. Vanganuru and A. Annamalai, “Analysis of transmit diversity
schemes: impact of fade distribution, spatial correlation and channel
estimation errors,” WCNC 2003, vol. 1, pp. 247-251, Mar. 2003.

[9] H. Viswanathan and J. Balakrishnan, “Space-time signaling for high
data rates in EDGE,” IEEE Trans. Veh. Technol., vol. 51, pp. 1522-
1533, Nov. 2002.

[10] D. Gu and C. Leung, “Performance analysis of transmit diversity scheme
with imperfect channel estimation,” Elect. Lett., vol. 39, pp. 402-403,
Feb 2003.

[11] A. T. James, “Distribution of matrix variates and latent roots derived
from normal samples,” Ann. Math. Stat., vol. 35, pp. 475-501, June
1964.

[12] C. G. Khatri, “Distribution of the largest or the smallest characteristic
root under null hypothesis concerning complex multivariate normal
populations,” Ann. Math. Stat., vol. 35, pp. 1807-1810, Dec. 1964.

[13] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and
Products, 5th ed. Academic Press, Inc., 1994.

[14] M. K. Simon and M.-S. Alouini, Digital Communication over Fading
Channels, 1st ed. New York: Wiley, 2000.

[15] S. M. Alamouti, “A simple transmitter diversity scheme for wireless
communication,” IEEE J. Sel. Areas. Commun., vol. 16, pp. 1451-1458,
Oct. 1998.

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on December 21, 2009 at 19:58 from IEEE Xplore.  Restrictions apply. 


