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Abstract: The studied system contains a photovoltaic conversion chain with a total power of 7.2 

kW, a wind conversion chain (5.1 kW), two-level inverter related to the electrical grid through 

an RL filter. The control systems of the simulation model include the Model Predictive 

Controller (MPC), which is mainly applied for both DC/DC converters and three-phase inverter. 

The MPC strategy uses the mathematical model of the considered power converters in order to 

predict the possible future behaviors of the different controlled variables. It permits selecting the 

optimal voltage vector, which is able to ensure a minimization of the specified cost function. 

Modeling and simulation are achieved using PSIM software in order to verify the system’s 

performances, highlighting many scenarios of varying meteorological conditions. The 

simulation responses prove that the proposed MPC algorithm can offer a fast transient response, 

an accurate reference tracking, a high-injected power quality with a low current THD (less than 

1% in the steady state). 
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1. Introduction

Photovoltaic and Wind energies have considered the most promising energy solutions on a

global scale. They have been strongly developed in recent years due to increasing electricity 

demand, rising oil prices and harmful environmental impacts caused by the non-renewable 

energy resources [1]. Especially, PV-wind power systems have improved their use in a hybrid 

configuration. The major key features of this hybrid renewable energy structure is to work in an 

isolated area or connected to the utility grid. This development is done through the growing 

interest of power electronic converters and renewable energy device’s effectiveness. To ensure 

the world's energy needs, an increasing attention is being paid to the integration of renewable 

energy conversion systems into the electrical grid. These systems have led scientists and 

researchers to investigate several control strategies. The grid integration process introduced 

many issues such as power quality, efficiency, current waveforms and reliability. The PV-Wind 

hybrid system consists of DC/DC converters in order to extract the maximum power from the 

photovoltaic fields and the variable-speed wind turbines. The generated power from the hybrid 

system is fed into grid through a three-phase inverter by keeping average DC-link voltage as a 

fixed value. In literature, different PV-Wind hybrid system architectures have been studied and 

analyzed. In [2], a hybrid system combined of wind turbine, Solid Oxide Fuel Cell and battery 

is studied. Several DC/DC configurations are applied to connect all the renewable energy 

resources and storage devices to a common DC bus. The output of DC bus is injected to the grid 

via three-phase DC/AC converter in order to ensure the power procurement. In [3], the proposed 

hybrid power system consists of photovoltaic array, hydrogen technology and battery bank have 

been controlled using a management system. In [4], a grid connected Wind-PV hybrid system 

performances have been analyzed under grid perturbations such as polluted grid voltages, 

unbalanced grid voltages and the balanced voltage dip. [5] Presents the divers operating modes 

of a small hybrid AC/DC micro-grid in order to control the energy transmission between AC and 

DC bus. In addition to that, it guarantees a regulated system operation under different production 

and load conditions. [6] Discussed an isolated Hybrid PV-wind-diesel and battery storage system 

to supply a residential area or small business buildings. A Maximum power point tracking 

(MPPT) methods are  estimated as  one of  the important parts in photovoltaic conversion chain 
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design to extract the optimum output power from a PV panel. Researchers have applied various 

MPPT techniques, Perturb and Observe (P&O) is commonly employed due to its lower cost and 

easy hardware implementation [7]. Incremental conductance ((InCond)) and hill climbing have 

been reviewed in [8]. The Optimized Steepest Gradient Method (OSGM) is an independent 

MPPT technique developed in [9], which is adopted in order to track the maximum power 

production by updating the photovoltaic voltage. The advantage of both MPPT algorithms is 

their simplicity of implementation. While the drawbacks of these methods are the high 

fluctuations that occur around the maximum power point (MPP), the system’s inability to track 

the maximum power during rapidly climatic condition variations. [10] Depicts another MPPT 

method based on Fuzzy Logic (FL) that allows improving of MPPT algorithm performances in 

terms of low oscillations around of MPP. A modified gray wolf optimization (MGWO) is studied 

to enhance MPPT capability for PV in partial shade conditions as presented in [11]. The main 

issues of these techniques are the drift problem arises from the fact that the climatic condition is 

non-uniform and the implementation part are complex. Adding a model predictive controller to 

the conventional InCond algorithm has been reviewed, studied and applied in this work. The 

considered algorithm can offer several benefits such as: suitable performance for extraction 

correctly the maximum power under different irradiation levels and reduce oscillations around 

MPP. 

 Three-phase grid connected converters are mostly applied for a wide sector, such as electrical 

drive systems, loads fed through AC-DC converters and distributed power generations including 

renewable energy field. The grid-side inverter control is generally divided into three steps:  

• The DC-link voltage control step: it is intended to determinate the direct-axis current

trajectory using the conventional PI controller.

• Current control step: it is usually designed to control the injected current into the grid.

• The Phased Locked Loop (PLL) is a popular technique used for grid synchronization in order

to estimate the phase angle of the grid voltage.

Recently, researchers have focused on the three-phase grid connected inverter control,

especially the grid current control that is considered the major key tasks in the grid-connected 

systems part. In fact, several current control techniques have been investigated in the literature. 

The classical linear control methods based on proportional-integral (PI) was presented by [12], 

[13] and [14]. They show that the Voltage-Oriented Control (VOC) strategy is applied to the

voltage source inverter (VSI) due to its simple structure with a constant frequency switching; but

the most important issues are their significant dependence on system parameters change. Both

[15] and [16] have focused on the non-linear hysteresis control of a grid-connected system. The

Direct Power Control (DPC) employed in this study is consisting to select the inverter switching

states from a switching table. This operation is based on the measured errors between the grid-

transferred powers and their corresponding reference signals. However, the high current

harmonic distortion caused by the switching frequency variation is the main problems with this

method. Two studies given by [17] and [18] have shown two internal current loops, which use

sliding mode controller (SMC) due to its robustness against parameters variation but the high

current THD is the major drawbacks of this technique. Actually, the Model predictive control

(MPC) is considered the most promising grid-inverter techniques [19], [20], [21], [22], [23] due

to their high performances.

In this context, MPC technique is adopted to extract the maximum power from renewable 

resources and transfer a high-quality power into the grid under variable and transient 

meteorological conditions. The idea behind MPC is to minimize the error between the predicted 

variable behaviors and their desired values by optimizing the defined cost function. After that, 

MPC-based scheme allows to choose and employ the optimal voltage vector. A computer 

simulation is carried out using PSIM software to validate the proposed MPC algorithm 

performances.  
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Thus, this work is organized as follows; the PV-Wind system structure and its component 

modeling are introduced in the first step. Then, the DC/DC converter as well as the grid-

connected converter controllers are illustrated. Simulation results and discussions are carried out 

in the last section in order to present the validity and the effectiveness of the proposed MPC 

algorithm. 

 

2. The proposed hybrid PV-Wind configuration 

 Figure 1 presents the proposed grid-connected hybrid PV-Wind power system. Two parallel 

PV-wind chains are linked via common DC bus. The first one contains a PV panel as DC power 

source related to DC/DC converter structure. While the second power block includes the wind 

turbine with its Permanent Magnet Synchronous Generator (PMSG) associated to uncontrolled 

rectifier and boost circuit. The maximum power extracted from these blocks is transferred to the 

utility grid through three phase inverter and RL filter. The proposed MPC algorithm controls all 

these used electronic converters in order to inject a high-quality power into the grid.  
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Figure 1. Photovoltaic-wind hybrid system configuration 

 

3. Photovoltaic chain modelling 

 A. Photovoltaic Generator model 

 According to the photoelectric effect, the solar cell is able to transform directly the sun's 

radiation into electricity. These cells are associated in series or in parallel to form a solar panel. 

Various equivalent electric models of a solar cell are available in the literature. Figure 2 presents 

a basic circuit comprising a single-diode, which is applied to generate the current-voltage curves 

of the PV cell, a current source that is proportional to solar irradiation, a parallel resistance Rp 

and series resistance Rs [24].   
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Figure 2. Photovoltaic cell model 

 

The output current is represented by the following equations: 

 𝐼𝐼𝐼𝐼𝐼𝐼 = 𝐼𝐼𝑠𝑠𝑠𝑠 − 𝐼𝐼𝑑𝑑 −  
𝑉𝑉𝑑𝑑𝑅𝑅𝑝𝑝 (1) 𝐼𝐼𝑑𝑑 = 𝐼𝐼𝑆𝑆 �𝑒𝑒𝑉𝑉𝑑𝑑𝑉𝑉𝑡𝑡 − 1� (2) 𝑉𝑉𝑡𝑡 =  

𝑛𝑛𝑛𝑛𝑛𝑛𝑞𝑞  (3) 𝑉𝑉𝑑𝑑 = 𝑉𝑉𝐼𝐼𝐼𝐼 + 𝐼𝐼𝐼𝐼𝐼𝐼.𝑅𝑅𝑆𝑆 (4) 

 

 Where q is the elementary electron charge, k is the Boltzmann constant, T is the operating 

temperature in Kelvin, 𝐼𝐼𝑆𝑆 is the diode saturation current (A) and 𝑛𝑛 is the diode factor. 

 

B. MPPT Controller based on InCond-MPC algorithm 

 A boost structure is adopted as a DC/DC converter to extract the maximum power available 

from the PV array. As depicted in Figure 3, the Incremental Conductance (InCond) MPPT 

method is required in order to determinate the reference current 𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟  for the MPC scheme. The 

boost circuit is defined by two operation modes; during the first interval, when the switch spv is 

closed (spv=1), the diode is turned off. Therefore, the inductor starts to charge as illustrated in 

Figure 4 (a), the characteristic equations of this boost converter can be written as follows: 

 (𝑠𝑠𝑝𝑝𝑝𝑝 =1)       
𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝𝑑𝑑𝑡𝑡 =

𝑉𝑉𝑝𝑝𝑝𝑝𝐿𝐿𝑝𝑝𝑝𝑝  (5) 
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Figure 3. Photovoltaic boost controlled by InCond-MPC algorithm 
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 The second operation modes occur when the power switch is opened (spv=0) and the diode 

is turned on as shown on Fig 4(b) [25], [26]. The corresponding equation can be written as 

follows: 

(𝑠𝑠𝑝𝑝𝑝𝑝 =0)     
𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝𝑑𝑑𝑡𝑡 =

𝑉𝑉𝑝𝑝𝑝𝑝−𝑉𝑉𝑑𝑑𝑑𝑑𝐿𝐿𝑝𝑝𝑝𝑝  (6) 

With Vdc is the DC-link voltage. 

VdcC

Lpv

Vpv
C

LpviLpv iLpv

Vdc
Vpvspv=1

spv=0

(a) (b)
 

Figure 4. Boost equivalent electrical circuits
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 Forward Euler equation as expressed by (7) is required to get a discrete-time model of the 

photovoltaic current behavior at sampling instant (k+1) as is written in (8) and (9): 

  �̇�𝑥 ≈ 𝑥𝑥(𝑘𝑘+1)−𝑥𝑥(𝑘𝑘)𝑛𝑛𝑠𝑠  (7) 

Ts is a sampling time 𝐼𝐼𝐼𝐼𝐼𝐼�𝑠𝑠𝑝𝑝𝑝𝑝=1�(𝑘𝑘 + 1) = 𝐼𝐼𝐼𝐼𝐼𝐼(𝑘𝑘) + 
𝑛𝑛𝑠𝑠𝐿𝐿𝑝𝑝𝑝𝑝 𝑉𝑉𝐼𝐼𝐼𝐼 (8) 

 𝐼𝐼𝐼𝐼𝐼𝐼�𝑠𝑠𝑝𝑝𝑝𝑝=0�(𝑘𝑘 + 1) = 𝐼𝐼𝐼𝐼𝐼𝐼(𝑘𝑘) + 
𝑛𝑛𝑠𝑠𝐿𝐿𝑝𝑝𝑝𝑝 (𝑉𝑉𝐼𝐼𝐼𝐼 − 𝑉𝑉𝑑𝑑𝑠𝑠) (9) 

 

 The key feature of this MPC algorithm consists to forecast the future behavior of the desired 

control variables basing on the discrete time model representations. It predicts the next sampling 

period error between the predicted photovoltaic current and  its reference value according to the 

predefined cost function optimization. The considered cost functions g0 and g1 will be obtained 

for both switching states and choose the optimal one that guarantees the nearest predicted value 

to the desired current trajectory as illustrated in Figure 5. 

 

4. Wind energy chain modelling 

A. Wind turbine modelling  

The captured power by the variable-speed wind turbine can be written by:  𝑃𝑃𝑡𝑡 =
1

2
.𝜌𝜌.𝜋𝜋.𝑅𝑅𝑡𝑡2𝐶𝐶𝑝𝑝𝑉𝑉𝑤𝑤3 

(10) 

Where Vw is the wind velocity, 𝜌𝜌 is the air density, Rt is the wind turbine rotor radius (m), 𝐶𝐶𝑝𝑝 is 

the power coefficient of the wind turbine, and λ is the tip-speed ratio is defined as [27] [28]:  𝜆𝜆 =
𝜔𝜔𝑔𝑔 .𝑅𝑅𝑡𝑡𝑉𝑉𝑤𝑤  (11) 

Where  𝜔𝜔𝑔𝑔   is the mechanical rotor speed (rad/s). This angular speed must be controlled to 

maintain λ at the optimum value ( λopt) and then maximize the power coefficient as 𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥. The 

produced wind turbine torque is calculated by the following equation:    𝑇𝑇𝑝𝑝 =
𝑃𝑃𝑡𝑡𝜔𝜔𝑔𝑔  

= 𝐶𝐶𝑝𝑝.
𝜌𝜌.𝑆𝑆.𝑉𝑉𝑤𝑤32 .

1𝜔𝜔𝑔𝑔  
 (12) 

 

B. Permanent Magnet Synchronous Generator (PMSG) 

 According to the synchronous (d,q) reference frame, the general PMSG model can be 

developed by the following equations [29] : 

 � 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡 = − 𝑅𝑅𝑠𝑠𝐿𝐿𝑑𝑑 . 𝑖𝑖𝑑𝑑 +
𝜔𝜔𝑒𝑒 .𝐿𝐿𝑞𝑞𝐿𝐿𝑑𝑑 . 𝑖𝑖𝑞𝑞 +

𝑉𝑉𝑑𝑑𝐿𝐿𝑑𝑑𝑑𝑑𝑑𝑑𝑞𝑞𝑑𝑑𝑡𝑡 = − 𝑅𝑅𝑠𝑠𝐿𝐿𝑞𝑞 . 𝑖𝑖𝑞𝑞 − 𝜔𝜔𝑒𝑒 .𝐿𝐿𝑑𝑑𝐿𝐿𝑞𝑞 . 𝑖𝑖𝑑𝑑 − 𝜔𝜔𝑒𝑒 .𝜙𝜙𝑓𝑓𝐿𝐿𝑞𝑞 +
𝑉𝑉𝑞𝑞𝐿𝐿𝑞𝑞 (13) 

 Where id  and iq are d-q axis components of the stator current; Vd and Vq are d-q axis 

components of the stator phase voltage in the dq synchrounous reference frame;  Rs is the stator 

resistance; Ld and Lq are d-q axis synchronous inductances ; ϕf is the permanent magnetic flux ; 𝜔𝜔𝑟𝑟  is the electrical rotor speed which depends on the mechanical speed 𝜔𝜔𝑔𝑔 (𝜔𝜔𝑟𝑟 = 𝐼𝐼𝜔𝜔𝑔𝑔 ) with 𝐼𝐼 

is a pole pair number. The active and reactive powers are given by:  

 �𝑃𝑃 =
32 �𝑉𝑉𝑑𝑑 . 𝑖𝑖𝑑𝑑 + 𝑉𝑉𝑞𝑞 . 𝑖𝑖𝑞𝑞�𝑄𝑄 =
32 �𝑉𝑉𝑞𝑞 . 𝑖𝑖𝑑𝑑 − 𝑉𝑉𝑑𝑑. 𝑖𝑖𝑞𝑞� (14) 

 

The mechanical equation is expressed as follows: 

 Tm − Tem = J .
d𝜔𝜔𝑔𝑔 dt + f.𝜔𝜔𝑔𝑔  (15) 

Where 𝑇𝑇𝑟𝑟𝑝𝑝  is the electromagnetic torque applied to the PMSG rotor; 𝑓𝑓 is the friction coefficient 

and J is the moment of inertia.  
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The PMSG electromagnetic torque is determined by: 

  Tem =
32 . p.ϕf. iq (16) 

 

C. Boost circuit controller 

 The chopper structure has two switching state operating modes, when the switch S is on 

(sw=1), the second switching state when the switch is twisted off (sw=0). The corresponding 

equations can be written as follows: 

Closed switch (sw=1): diLdt =
VinL  (17) 

Opened switch (sw=0): 𝑑𝑑𝑑𝑑𝐿𝐿𝑑𝑑𝑡𝑡 =
𝑉𝑉𝑖𝑖𝑖𝑖−𝑉𝑉𝑑𝑑𝑑𝑑𝐿𝐿  (18) 

 

 Where iL, Vin, Vdc and L are, respectively, the inductor current, the input converter voltage, 

the DC-link voltage and the boost inductance. The Model Predictive Control (MPC) block inputs 

are the calculated  reference current iL_ref, the measured inductor current iL as well as the actual 

voltages (Vin) and (Vdc). The MPC block is divided into two steps, the predicted control variable 

calculations and the cost function optimization. A discrete-time equation for the future predicted 

inductor current at sampling instant (k+1) as shown in (19) and (20):  

k is the current sampling instant and Ts is the sampling time.  

 𝑖𝑖𝐿𝐿(𝑠𝑠𝑤𝑤=1)
(𝑘𝑘 + 1) = 𝑖𝑖𝐿𝐿(𝑘𝑘)  + 

𝑛𝑛𝑠𝑠𝐿𝐿 𝑉𝑉𝑑𝑑𝑛𝑛 (19) 

 𝑖𝑖𝐿𝐿(𝑠𝑠𝑤𝑤=0)
(𝑘𝑘 + 1) = 𝑖𝑖𝐿𝐿(𝑘𝑘)  + 

𝑛𝑛𝑠𝑠𝐿𝐿 (𝑉𝑉𝑑𝑑𝑛𝑛 − 𝑉𝑉𝑑𝑑𝑠𝑠) (20) 
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 In this part, the defined cost functions g0 and g1 represent the optimized errors between the 

currents and their reference value as shown by: 

 𝑔𝑔0 =  abs(iL_ref −  𝑖𝑖𝐿𝐿(k + 1), sw=0) (21) 

 𝑔𝑔1 = abs(iL_ref − 𝑖𝑖𝐿𝐿(k + 1), sw=1) (22) 

 

 The MPC scheme is given by Figure 6, the cost function is determined for both sampling 

switches, it ensures an accurate tracking of the measured inductor current iL to its desired current 

trajectory  iL_ref controlled by the proposed method based on an MPC algorithm (Figure 7). 
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5. Grid side inverter controller 

The MPC algorithm applied for two-level grid-connected inverter is described in Figure 8. As 

illustrated in this configuration, two cascade control loops are intended: the outer-voltage control 

loop and the inner-current control loop. Initially, the outer-voltage loop based on the linear PI-

controller is applied to regulate the DC-link voltage Vdc. After that, the MPC based internal loop 

is designed in order to control the three-phase grid currents. 
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A. DC-link voltage control loop 

 To control the external loop, the DC-link voltage reference (Vdc_ref) is compared with the 

measured DC voltage (Vdc) and the error signal is fed to a PI controller (with proportional gain 

Gi(dc) and integral time constant τi(dc)) as shown in Figure 9. 
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Figure 9. DC-link voltage loop 

 

By neglecting Iinv current effect, the closed-loop transfer function is given by the following 

relation: 𝐹𝐹𝑇𝑇𝐹𝐹𝐹𝐹𝑑𝑑𝑠𝑠(𝑠𝑠) =
𝑉𝑉𝑑𝑑𝑑𝑑𝑉𝑉𝑑𝑑𝑑𝑑_𝑟𝑟𝑒𝑒𝑓𝑓 =

�1+𝑠𝑠.𝜏𝜏𝑖𝑖(𝑑𝑑𝑑𝑑)�𝜏𝜏𝑖𝑖(𝑑𝑑𝑑𝑑).𝐶𝐶𝑑𝑑𝑑𝑑𝐺𝐺𝑖𝑖(𝑑𝑑𝑑𝑑)
.𝑠𝑠2+𝜏𝜏𝑖𝑖(𝑑𝑑𝑑𝑑).𝑠𝑠+1 (23) 

We can deduce the PI controller parameters by choosing the desired damping ratio ζ(dc) and the 

natural oscillation frequency ωn(dc).  

Gi(dc) = 2. ζ(dc). Cdc.ωn(dc))   (24) 

 τi(dc) =
2.ζ(dc)ωn(dc)

   (25) 

 

B. Grid current controller 

 The MPC scheme applied for three-phase two-level power inverter uses the mathematical 

model in order to predict future behaviors of the controlled converter outputs for possible 

switching states. Then the optimal switching sequence that minimizes the predefined cost function 

is selected. This cost function is defined as a sum of the absolute values of the controlled variable 

errors. Thus, in each sampling period, the MPC controller ensures a minimal error between the 

considered variables and their desired values. Therefore, the desired current components  igα_ref 
and igβ_ref are obtained through the application of the αβ transformation block. The three-phase 

grid currents (iga, igb, igc ) are also transformed into igα and igβ components by applying Clarke 

Transformation. 

     𝑖𝑖𝑔𝑔𝑔𝑔 =
23 (𝑖𝑖𝑔𝑔𝑝𝑝 − 0.5𝑖𝑖𝑔𝑔𝑔𝑔 − 0.5𝑖𝑖𝑔𝑔𝑠𝑠) (26) 

    𝑖𝑖𝑔𝑔𝑔𝑔 =
23 (0.5√3𝑖𝑖𝑔𝑔𝑔𝑔 − 0.5√3𝑖𝑖𝑔𝑔𝑠𝑠 (27) 

 

 The predictive process outputs are the future grid current behaviors igαj (k + 1) and 

igβj (k + 1) at the (k+1) sampling time, which obtained by using Euler-forward equation [30]. 

 igαj (k + 1) = �1− Ts RfLf� igα(k) +
TsLf (Vinvαj − 𝑉𝑉𝑔𝑔𝑔𝑔 ) with (j = 0 … 7) (28) 

 igβj (k + 1) = �1 − Ts RfLf� igβ(k) +
TsLf (𝑉𝑉𝑑𝑑𝑛𝑛𝑝𝑝𝑔𝑔𝑗𝑗 − 𝑉𝑉𝑔𝑔𝑔𝑔)  with (j = 0 … 7) (29) 
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Apply S(jopt)

Read igα(k),iβg(k), 

Vdc(k), igα_ref, igβ_ref

g=abs(igα_ref-igα(k+1)+abs(igβref-igβ(k+1)

 

gopt=∞

For j=0:7

Vinv(j)=S(j)Vd

c

Predictive 

Functions (28,29)

If (g(j)<gopt)
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NoYes

 
Figure 10. Flow diagram of MPC-based algorithm 

 

 Where (Vinvαj
,𝑉𝑉𝑑𝑑𝑛𝑛𝑝𝑝𝑔𝑔𝑗𝑗

 ) are the space vector voltage of inverter, (𝑉𝑉𝑔𝑔𝑔𝑔 ,𝑉𝑉𝑔𝑔𝑔𝑔 ) are the grid vector 

voltage. The predicted currents and their references are compared via a cost function as written 

in equation (30). The optimal voltage vector which ensures the predefined cost function 

optimization is chosen and the appropriate switching signals (Sa, Sb, Sc) are employed in the 

next sampling time. 

 g = �igα_ref − igαj (k + 1)� + �igβ_ref − igβj (k + 1)� (30) 

 

Table 1. Inverter switching states and their voltage vectors 

V𝑑𝑑𝑛𝑛𝑝𝑝j (SaSbSc) 𝑉𝑉𝑑𝑑𝑛𝑛𝑝𝑝𝑔𝑔𝑗𝑗
 𝑉𝑉𝑑𝑑𝑛𝑛𝑝𝑝𝑔𝑔𝑗𝑗

 𝑉𝑉0(0 0 0) 0 0 𝑉𝑉1(1 0 0) 2/3𝑉𝑉𝑑𝑑𝑠𝑠 0 𝑉𝑉2(1 1 0) 1/3𝑉𝑉𝑑𝑑𝑠𝑠 1/√3𝑉𝑉𝑑𝑑𝑠𝑠 𝑉𝑉3(0 1 0) −1/3𝑉𝑉𝑑𝑑𝑠𝑠 1/√3𝑉𝑉𝑑𝑑𝑠𝑠 𝑉𝑉4(0 1 1) −2/3𝑉𝑉𝑑𝑑𝑠𝑠 0 𝑉𝑉5(0 0 1) −1/3𝑉𝑉𝑑𝑑𝑠𝑠 −1/√3𝑉𝑉𝑑𝑑𝑠𝑠 𝑉𝑉6(1 0 1) 1/3𝑉𝑉𝑑𝑑𝑠𝑠 −1/√3𝑉𝑉𝑑𝑑𝑠𝑠 𝑉𝑉7(1 1 1) 0 0 

    

 The proposed MPC concept is based on eight possible different switching voltage vectors of 

the grid-connected inverter, as illustrated in Table. 1. Two combinations of them behave as zero 
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voltage vectors, and six others present two values, which are either positive or negative Vdc. So, 

only 7 switching possibilities are considered. 

 The predictive function g is required in order to select an optimal switching state that make 

the predicted grid current behaviors at next period close to their reference trajectories as shown 

in Figure 10. 

 

6. Simulation results 

 The proposed MPC scheme performances for grid connected PV-wind hybrid system is 

demonstrated by means of computer simulation using PSIM package. The various parameters 

considered for simulation tests, are listed in Table 2. 

 

Table 2. Parameters of PV-Wind hybrid system 

Grid side converter parameters 

DC-link voltage Vdc 750 V 

DC-link capacitor C 2000 μF 

Filter resistance Rf 0.3 Ω 

Filter inductance Lf 5mH 

Grid frequency 50H 

 

 

 

 

 

 

 

 

 

 

Wind turbine parameters 

Nominal Output Power Pt 5.1 KW 

Blade radius Rt 1.8m 

Rated Wind Speed Vw 12m/s 

Air Density ρ 1.22 kg/m3 

Optimal tip speed ratio λopt 8.1 

PMSG parameters 

Pole pairs number P 5 

Stator resistance Rs 0.425Ω 

D-axis inductance Ld 8.35 mH 

Q-axis inductance Lq 8.35 mH 

Moment of inertia J 0.01197 kg. m2 

Flux linkage Φ 0.433Wb 

 

A. Case 1: The photovoltaic chain response 

 In this part, the PV array performances are studied during solar irradiance variation. While 

the temperature T is kept constant at 25°C during the overall simulation period. Figure 11 (a) 

illustrates the different solar irradiance levels.  The proposed PV chain structure is fed through 

36 PV panels arranged as twelve panels in series and three lines in parallel with a total power of 

7.2 kW. As presented in the Figure 11(b), the proposed InCond-MPC algorithm ensure a setting 

time around 0.003s in order to reach the maximum PV power (3.1kW) according of solar 

irradiance variation, which is firstly equal to 400 W/m2. At 0.25 s the solar irradiance increases 

to the 650 W/m2 and the output PV power is about 5 kW. After 0.5s the solar irradiance changes  

Photovoltaic module parameters 

Maximum power rating  Pmpp 200W 

Maximum Power Point Voltage Vmpp 26.3V 

Maximum Power Point Current Impp 7.61A 

Open Circuit Voltage Voc 32.9V 

Short Circuit Current Isc 8.21A 
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(a). Solar irradiance profile 
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(b). Output PV power 

 
(c). Output PV voltage 

 

0 0.5 1 1.5 2

Time (s)

0

-10

-20

-30

10

20

30

Ipv_PandO Ipv_IC Ipv_IC_MPC

0.8 0.85 0.9 0.95

Time (s)

23

23.5

24

24.5

Ipv_PandO Ipv_IC Ipv_IC_MPC

 
(d). Output PV current 

Figure 11. PV system performances under varying solar irradiance 

 

to 850 W/m2 and the produced PV power is equal to 6.46 kW. It can be also seen that the PV 

array is able to deliver a maximum power of 7.2kW at 1000W/m2. Figure 11 (c) depicts that the 

PV array voltage successfully tracks the voltage at maximum power (Vpv=315V) in order to 
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extract the maximum power from PV array under the solar irradiance change. Figure 11 (d) 

indicates that the output current from PV array is highly dependent on solar irradiance variations.  

When the solar irradiance is increased from 400 W/m2 to 1000 W/m2. The MPPT controller 

based on MPC algorithm respectively increases the  Ipv array current from (9.8A) to (24.5A) to 

reach the maximum power from the PV array. Compared to other popular MPPT methods (P&O 

and InCond). Curves of green, blue and red colors are selected to show the response of P&O, 

InCond and InCond-MPC algorithms. The simulation test with the same PV array parameters is 

revealed that the proposed InCond-MPC algorithm presents an accurate tracking performance, a 

minimum oscillation around MPP and the ability to reach MPP due to its simple design. 

 

B. Case 2: The wind chain response 
  

 
(a). Wind speed profile 
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(b). Rotor speed and its reference 

 
(c). Mechanical torque 

 
(d). Inductor current and its reference 

 
(e). Output wind turbine power 

Figure 12. Wind system performances under wind speed variations 
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(a). Random wind speed profile 

 
(b). Rotor speed and its reference 

 
(c). Inductor current and its reference 

 
(d). PMSG mechanical torque

 
(e). Wind turbine power 

Figure 13. Wind system performances under under random wind speed profile 
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 In this subsection, the wind-chain performances corresponding to a linear wind speed profile 

is discussed.  Figure 12 (a) presents the different wind speed levels. The wind speed decreases 

from 12 m/s to 5 m/s during the period from t=0.75 s to t=2 s. Figure 12 (b) depicts that the 

mechanical rotor speed 𝜔𝜔𝑔𝑔 reflects the variation of wind speed profile. It can be observed that an 

excellent rotor speed tracking to its reference trajectory 𝜔𝜔𝑔𝑔_𝑟𝑟𝑟𝑟𝑟𝑟   is appeared using a linear PI 

controller. As shown in the Figure 12 (c), the mechanical torque drops from 92.5 N.m to 16 N.m 

in response to the wind speed varies from 12 m/s to 5 m/s in order to extract the maximum power 

from a variable-speed wind turbine. It can be also seen in the Figure 12 (d) that the inductor 

current presents an accurate and a good following to its reference current under wind speed 

levels. At the initial condition, the wind conversion chain generates a maximum wind power 

equal to 5 kW according to the rated wind speed profile (12m/s). At 1.25 s the wind speed drops 

to 10 m/s and the wind generator produces 2.84 kW. After 1.5 s the wind velocity decreases to 8 

m/s and the wind conversion chain can deliver 1.45 kW. Finally, the wind speed changes to 5 

m/s and the generated power is estimated to 350W as depicted in Fig 12(e). 

 The simulation model as presented in the Figure 13 (a) has adopted the generated random 

wind speed profile.  The reference of the generator speed (wg_ref ) varies according to the wind 

speed as depicted in Figure 13(b). The red rotational rotor speed is well monitored and controlled 

in response to the captured wind speed. Figure 13(c) indicates the profile of the generated 

inductor current and its reference; it is shown that the inductor current fluctuates around its 
desired value according of the wind speed variation. The Figure 13(d) depicts that the mechanical 

torque applied to PMSG generator reflects the same scenario for the variation of the 

meteorological conditions. The Figure 13(e) presents the simulation curve of the maximum wind 

power extracted from the wind turbine. An excellent and correct wind power trajectory is 

achieved accordingly as the wind velocity fluctuates.  

 

C. Case 3: The grid side inverter response 

 This subsection presents the grid inverter performances by using the proposed MPC 

algorithm. Both active and reactive power exchanges between the three-phase inverter to the grid 

is given in Figure 14 (a, b). It can be seen that the injected active power (Pactive) into the grid 

reflects the solar irradiance variation and the different wind speed levels. Once the solar 

irradiance is equal to 1000 W/m2 and the wind speed is estimated at 12 m/s, the PV-wind hybrid 

system provides a total active power, which is corresponding to its rated value (11.6 kW). When 

the climatic conditions change, the MPPT controller accurately extracts the maximum renewable 

power from the wind turbine and the PV generator. The Figure 14 is clearly indicates the 

difference between the generated power (Pturbine+PPV) and the injected active power (Pactive), 

which depends on the losses in different components of the power converter, including mainly 

power semi-conductor elements. Consequently, the injected active power is highly dependent on 

the wind speed profile and the solar variation with a response time equal to 0.06s. While the 

injected reactive power (Qreactive) is kept at zero to maintain the unity power factor. As it is 

observed, in Figure 15 (a, b), the three-phase grid currents have sinusoidal waveforms according 

to the grid frequency (50Hz). The proposed MPC scheme indicates that the total harmonic 

distortion (THD) is about 0.95% for the grid current, which is very low as per IEEE 512-1992 

standard. The grid-connected inverter controller keeps the DC-link voltage constant at 750V 

regardless of the wind velocity change. It reaches correctly its desired value over a set time period 

of 2s as presented in Figure 16 (a, b).In addition, it can be noted that the DC-bus voltage exhibits 

an almost negligible overshoot in transient response as well as in steady state (0.53%) with a 

settling time equal to 0.035s. 
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Figure 14. (a) Active and reactive under linear wind speed profile, (b) Active and reactive 

under random wind speed profile. 

 

 It is clearly visible, in the Figure 17 (a, b), that direct and quadrature current component 

respectively (igd and igq) evolve around their desired references with a reduced current ripple. 

Finally, the grid current and the main voltage are in phase as illustrated in Figure 18. The 

simulation results reveal that the developed model predictive control technique provides many 

advantages; A reduced fluctuation around maximum power point, an acceptable grid current 

THD compared to other conventional strategies reviewed in the literature, a pure sinusoidal 

current injected to the grid, an excellent tracking under divers operating weather conditions and 

good steady state performances. The proposed MPC algorithm is compared with the other 

previous studies in terms of settling time of PV power, settling time of rotor speed, settling time 

of DC-link voltage, response time of injected active power and Total Harmonic Distortion (THD) 

of the grid current. The comparison study with previous literature is mentioned in table 3. 
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Figure 15. (a) Grid current waveforms under linear wind speed profile, (b) Grid current 

waveforms under random wind speed profile. 
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Figure 16. (a) DC-link voltage and its reference under linear wind speed profile, (b) DC-link 

voltage and its reference under random wind speed profile 
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Figure 17. (a) qd-axis currents and their references under linear wind speed profile, (b) qd-axis 

currents and their references under random wind speed profile 

 

 
 

Figure 18. The grid current and the main voltage 
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Table 3. Comparison of the proposed MPC algorithm with ather existing method 

Paper Schemes Control strategy 

PV chain 

performance 

 

Wind chain 

performance 

Grid converter 

performance 

[31] 

Quasi-Z 

Source 

 Inverter of PV 

Grid-

connected 

- a fuzzy 

proportional 

complex integral  

control 

# # - THD: 1.36% 

[32] 

standalone 

solar-wind 

hybrid 

intelligent 

Controller 

- Settling 

time of PV 

power: 1.6s 

# - THD:1.83% 

[33] 

standalone 

hybrid PV-

wind-battery 

system 

(P&O) and PI 

 controller 
# # - THD: 1% 

[34] 

Grid-

Connected PV 

system 

- Practical 

Swarm 

 Optimization 

(PSO) 

- Model 

predictive 

 controller (FS-

MPC) 

- Settling 

time of PV 

power: 0.07s 

# 

- Settling time 

of DC-link 

voltage: 0.1s 

- Response 

time of active 

power: 0.13s 

- THD:0.66% 

[35] 
Hybrid system 

grid connected 

Predictive 

Current 

 Control 

# 

- Settling time 

of rotor speed: 

0.1s 

- THD:1.87% 

The MPC 

algorithm 

Grid 

Connected 

hybrid  system 

MPC strategy  

- Settling 

time of PV 

power: 

0.003s 

- Settling time 

of rotor speed 

according 

wind speed 

(12m/s): 

0.027s 

- Settling time 

of DC-link 

voltage: 0.035s 

- Response 

time of  

active power: 

0.06s 

- THD:0.95% 

 

7. Conclusions 

 In this paper, a grid-connected hybrid energy system under solar and wind natural resources 

is properly designed. To validate the proposed control scheme performances under varying 

weather conditions, several computer simulations, using PSIM software, are carried out to verify 

the effectiveness of the adopted control technique. MPPT controller based on the MPC algorithm 

is applied for both photovoltaic and wind conversion chains. It has been tested under variable 

solar irradiance and wind velocity in order to track the maximum power from the renewable 

sources. The proposed MPC scheme for the grid-connected inverter has strongly enhanced the 

energy quality as per the standard in terms of a lower power fluctuation and reduced current 

THD. 
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