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Performance Analysis of Multi-ary Systems with

Iterative Linear Minimum-Mean-Square-Error

Detection

Li Ping, Jun Tong, Xiaojun Yuan and Qinghua Guo

Department of Electronic Engineering, City University of Hong Kong, Hong Kong SAR, China,

Telephone: (852) 2788-9574 E-mail: eeliping@cityu.edu.hk

Abstract—This paper is concerned with coded multi-ary sys-
tems over linear channels. Based on a semi-analytical evolution
technique, the impact of signaling schemes on the performance of
low-cost iterative linear minimum-mean-square-error (LMMSE)
detection is studied. It is shown that superposition coded
modulation (SCM) maximizes the output signal-to-noise ratio
(SNR) of LMMSE detectors. Consequently, SCM may potentially
outperform other conventional signaling schemes when LMMSE
detectors are used. Numerical examples are provided to verify
the theoretical analysis.

I. INTRODUCTION

Iteratively decoded bit-interleaved coded modulation

(BICM-ID) with multi-ary signaling is an attractive scheme

for high-rate transmissions. Its performance depends heavily

on the signaling schemes employed [1]. Signaling design for

BICM-ID has been extensively studied for memoryless scalar

channels [1]-[3], where the optimal maximum a posteriori

(MAP) detector is usually assumed. However, as we will

show below, careful study is still required when a linear

minimum-mean-square-error (LMMSE) detector [4]-[11] is

used at the receiver.

In this paper, we establish a connection between signaling

schemes and the iterative LMMSE detection performance.

Maximizing the signal-to-noise ratio (SNR) of the LMMSE

detector outputs is adopted as the criterion for designing

signaling schemes. Under this criterion, we demonstrate the

advantages of superposition coded modulation (SCM) [12],

[13] over other traditional signaling schemes. In addition, we

show that quadrature amplitude modulation (QAM) with Gray

mapping, which was regarded as a “poor” option for BICM-

ID, turns out to be advantageous under the SNR maximiza-

tion criterion. This implies that, interestingly, although Gray

mapping may results in relatively poor performance in mem-

oryless scalar channels where the high-cost MAP detection

is affordable, it may be a good option in more complicated

channels where low-cost iterative LMMSE detection has to be

used, since other options (such as the modified set-partitioning

(MSP) signaling [1]) may not function well in the latter case.

The analytical study is confirmed by simulation examples.

In this paper, lower case letters (e.g., x) denote scalars,

bold lower case letters (e.g., x) denote column vectors, bold

upper case letters (e.g., X) denote matrices, and I denote

the identity matrix with proper size. The superscript “T”,

Fig. 1. The transmitter and receiver structure of a multi-ary system over
linear channels. Π denotes the interleaver and Π−1 the de-interleaver.

“H” and “ − 1” denote the transpose, conjugate transpose

and inverse operations, respectively.

II. ITERATIVE DETECTION

A. System Model

The transmitter scheme follows the principles of BICM-ID

[1], as shown in Fig. 1. The source data is first encoded by

the encoder (ENC) using a binary forward-error-control (FEC)

code, and permuted by a random interleaver (marked by Π)

to produce a bit sequence b. Then b is segmented into N
sub-blocks b = {b[0], b[1], · · · , b[N − 1]} where each b[n] is

a sub-block of K bits b[n] = {b1[n], b2[n], · · · , bK [n]}. The

mapper then maps each b[n] onto a signaling point x[n] in a

constellation S of size 2K . Denote by B the set of b[n] and

by Φ the mapping rule from B to S.

Let matrix H represent the multiplicative effect of the linear

channel. The received signal is given by

y = Hx + η, (1)

where x = [x[0], x[1], · · · , x[N−1]]T is the transmitted signal

vector and η is a vector of additive white Gaussian noise

(AWGN) with mean vector 0 and covariance matrix σ2I . Note

that the generic model (1) can represent several different types

of channels, such as the multipath channel, multiple-input

multiple-output (MIMO) channel, and multiple access channel

(MAC) [9]. We always assume that H is known perfectly at

the receiver.
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B. Overall Iterative Detection Principles

The generic iterative receiver structure is shown in the lower

part of Fig. 1. The elementary signal estimator (ESE) computes

the extrinsic log-likelihood ratio (LLR) λk[n] for each bk[n]

λk[n] ≡ ln

(
Pr(bk[n] = 0|y)

Pr(bk[n] = 1|y)

)
− ln

(
Pr(bk[n] = 0)

Pr(bk[n] = 1)

)
(2)

with the FEC coding constraint ignored, i.e., the ESE operates

as if bk[n] is an un-coded bit. The decoder (DEC) performs

the a posteriori probability (APP) decoding using {λk[n]} as

inputs, producing the extrinsic LLRs

γk[n] ≡ ln

(
Pr(bk[n] = 0|{λk[n]})

Pr(bk[n] = 1|{λk[n]})

)
−ln

(
Pr(bk[n] = 0)

Pr(bk[n] = 1)

)
.

(3)

After decoding, the ESE operations can be executed again

to refine the estimates {λk[n]} using the feedbacks {γk[n]}.

This process continues iteratively after a preset number of

iterations. Hard decisions are made after the final iteration

to produce the data estimates. Related discussions on such

iterative detection process can be found in [4]-[9]. Since the

APP decoding is a standard function, we focus on the ESE

function in what follows.

C. ESE Function

The optimal solution of the ESE function in (2) is usually

prohibitively high, since, after the linear transform H , the

constellation of Hx is usually significantly expanded. The

iterative LMMSE detector is a low-cost, sub-optimal alterna-

tive. The detection process in the ESE can be divided into

three steps as below.

Step 1. Soft Mapping: In this step, the means {E[x[n]]} and

variances {Var[x[n]]} of the entries of x are generated

using the feedback LLRs {γk[n]} from the DEC. This

is a preparation stage for the LMMSE estimation. We

will discuss the details involved in this step in the next

subsection.

Step 2. LMMSE Estimation: Define the mean of x as

E[x] = [E[x[0]],E[x[1]], · · · ,E[x[N − 1]]]T . (4)

Following [9], we assume that the entries of x are

independent, and the covariance matrix of x is

V = vI, (5)

where

v =
1

N

N−1∑
n=0

Var[x[n]]. (6)

The LMMSE estimate of x is [14]

x̂ ≡ E[x|y] = E[x] + V HHR−1(y − E[y]) (7)

where E[y] ≡ HE[x], and R is the covariance matrix

of y:

R ≡ E[(y − E[y])(y − E[y])H ]

= HV HH + σ2I. (8)

Step 3. Soft De-Mapping: Finally, we consider the LLR

{λk[n], ∀k} defined in (2). Following [5], [6], [9], we

can write x̂[n], the nth entry of x̂, as

x̂[n] = φ[n]x[n] + ξ[n] (9)

where ξ[n] is modeled as a Gaussian noise and φ[n]
is selected so as to ensure that x[n] and ξ[n] are

uncorrelated. Let h[n] be the nth column of H . Then

φ[n] ≡ v(h[n])HR−1h[n]. (10)

Treating (9) as a memoryless system with channel gain

φ[n] and noise ξ[n], we can evaluate (2) as [1]:

λk[n]= ln

∑
s∈S

(0)
k

exp
(
− |x̂[n]−φ[n]s−E[ξ[n]]|2

Var[ξ[n]]

)
Pr(s)

∑
s∈S

(1)
k

exp
(
− |x̂[n]−φ[n]s−E[ξ[n]]|2

Var[ξ[n]]

)
Pr(s)

−γk[n]

(11)

where S
(0)
k and S

(1)
k are the sets of constellation points

whose kth bit position carries 0 and 1, respectively,

E[ξ[n]], Var[ξ[n]] and Pr(s) are computed using the a

priori LLRs {γk[n]} [7], [9].

D. Details of the Soft Mapper

The following are some details of the soft mapping in Step

1. Let bk[n] be a bit related to xk[n]. Based on the DEC

feedback γk[n], the a priori probabilities of bk[n] are

Pr(bk[n] = 0) =
exp(γk[n])

1 + exp(γk[n])
, (12a)

Pr(bk[n] = 1) = 1 − Pr(bk[n] = 0). (12b)

Let s be a point in the signaling constellation. The a pri-

ori probability that s is the transmitted signal is computed

as Pr(s) =
∏K

k=1 Pr(bk[n]), where Pr(bk[n]) is either

Pr(bk[n] = 0) or Pr(bk[n] = 1), depending on the mapping

rule. Then, the mean and variance of x[n] are, respectively,

E[x[n]] =
∑
s∈S

sPr(s) (13a)

Var[x[n]] =
∑
s∈S

|s − E[x[n]]|2 Pr(s). (13b)

In this way, we generate the mean E[x] and covariance matrix V .

E. Complexity Analysis

The above LMMSE procedure is a low-cost alternative to

the more complicated MAP approach. The main problem for

the MAP method is that the signal constellation expands after

transmission over a linear channel characterized by (1). To see

this, let Qy and Qx be the constellation sizes of Hx and x in

(1), respectively. Then Qx = 2K and Qy = 2KL if there are L
non-zero entries in each row of H (since each entry in Hx is

the summation of L entries in x). In the worst case, L = N ,

where N is the number of columns of H . The complexity

of the MAP method is proportional to Qy , i.e., O(2KL) per

symbol, which is usually extremely large.

���������	
���
���
�������������
�������������
���������������

 �#



Fig. 2. Evolution model of the iterative LMMSE receiver.

On the other hand, the complexity of the LMMSE approach

is O(L2 + 2K) per symbol. (The complexity is O(2K) for

soft mapping/de-mapping since we work on the constellation

of x[n] only, and the complexity of the LMMSE estimation

in Step 2 is O(L2) per symbol.) This is greatly reduced from

the MAP approach. Furthermore, the LMMSE estimation in

Step 2 can be implemented by a fast technique based on

cyclic prefixing and fast Fourier transform (FFT). (See [10]

for details.) This approach has complexity O(log2(N)) and

thus can reduce the ESE complexity to O(log2(N) + 2K).
Later, we will show that the ESE complexity can be further

reduced to O(log2(N) + K) using SCM.

III. PERFORMANCE ANALYSIS

We now proceed to the analysis problem for the LMMSE

scheme outlined above. We employ the SNR-variance evolu-

tion technique developed in [9] that is in spirit similar to the

extrinsic information transfer (EXIT) chart method. We will

extend the discussions in [9] to multi-ary cases. Our main

finding is a design criterion that can minimize the uncertainty

introduced at the “soft mapping” stage before the LMMSE

operation. Such uncertainty stems from characterizing the

distribution of the transmitted signal by its mean and variance

only. We will show below that minimizing such uncertainty

leads to maximizing the SNR at the output of LMMSE

detection and hence performance improvement.

For illustration, we assume a single-user multipath channel

but the discussions below can be extended to more general lin-

ear channels. We first discuss the analysis technique and then

investigate the impact of signaling schemes on performance.

A. Transfer Functions

We employ the evolution model in Fig. 2 to characterize

the receiver in Fig. 1. We assume fixed H , σ2 and infinite

interleaving lengths (so, similar to the EXIT chart method

[15], the results can only approximately characterize systems

with finite codeword lengths). We now investigate the four

modules in Fig. 2 one by one. We define one transfer function

to characterize each module, similar to [9], [15].

DEC: The APP decoding algorithm is applied to the DEC.

Following [15], we can use the EXIT function

Iγ = TDEC(Iλ) (14)

to fully characterize the DEC function. Here, Iλ is defined

as the mutual information between the DEC inputs {λk[n]}
and the coded bits {bk[n]}, and Iγ is defined similarly for the

DEC outputs {γk[n]}. The bit-error-rate (BER) performance of

the DEC can also be characterized by a monotone decreasing

function g(·) as

BER = g(Iγ). (15)

Soft Mapper: The soft mapper takes the extrinsic LLRs

{γk[n]} as inputs and produces the soft estimates of x[n].
Thus, it is reasonable to characterize the soft mapper by the

variance v of its outputs, i.e.,

v = E[Var[x[n]]] = TSM(Iγ), (16)

where the expectation E[·] is with respect to the distribution of

{γk[n]} and Var[x[n]] is computed by (13). Assuming infinite

interleaving lengths, we have v = 1/N
∑N−1

n=0 Var[x[n]]. At

the beginning of the iterations, since there is no a priori

information from the DEC (i.e., Iγ = 0), v = TSM(0) = 1,

where we have assumed that the average transmitted power

E[|x[n]|2] = 1. When perfect a priori information is available,

we have Iγ = 1 and v = TSM(1) = 0.

LMMSE Estimator: The LMMSE estimate x̂[n] in (9) can

be viewed as the output signal of an equivalent channel with

multiplicative coefficient φ[n] and additive noise ξ[n]. The

SNR based on the modeling in (9) can be computed as

Γ[n] ≡
|φ[n]|2

Var[ξ[n]]
= (h[n])H(R[n])−1h[n] (17)

where R[n] = v
∑

n′ �=n h[n′](h[n′])H +σ2I. Consider an L-

tap multipath channel with coefficients {h0, h1, · · · , hL−1}. It

is shown in [9] that Γ[n] can be approximated as follows:

Γ[n] ≈ Γ =
u

1 − vu
, ∀n (18)

where

u =
1

N

N−1∑
n=0

|g[n]|2

v|g[n]|2 + σ2
(19)

with g[n] =
∑L−1

l=0 hl exp
(
i 2πnl

N

)
being the frequency-domain

channel gain. From the above discussions, Γ is a deterministic

function of v, H and σ2, denoted by

Γ = TMMSE(v, H, σ2). (20)

When the a priori information from the DEC is perfect, v = 0
and Γ converges to the upper limit

Γ = u =
1

N

N−1∑
n=0

|g[n]|2

σ2
=

∑L−1
l=0 |hl|

2

σ2
(21)

where the last equality follows Parseval’s theorem.

Soft De-Mapper: As illustrated in Fig. 2, the soft de-mapper

performance is determined by Γ and Iγ :

Iλ = TDEM(Γ, Iγ). (22)

B. Evolution Analysis

Among the four transfer functions above, only

TMMSE(v, H, σ2) is a function of channel matrix. Fortunately,

TMMSE(v, H, σ2) has a closed-form expression in (18) and

thus it can be quickly evaluated on-the-fly (rather than
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pre-simulated). The other three transfer functions TDEC(Iλ),
TSM(Iγ) and TDEM(Γ, Iγ) are not functions of H . They

can be obtained by applying the Monte-Carlo method to

an AWGN channel and characterized by look-up tables.

Therefore, given {H, σ2}, the overall receiver performance

can be predicted by the following evolution procedures,

where TDEC(Iλ), TSM(Iγ) and TDEM(Γ, Iγ) are assumed to

be known and TMMSE(v, H, σ2) is computed on line.

Initialization: Set Iγ = 0.

Recursion: Update Iγ as

Iγ = TDEC

(
TDEM

(
TMMSE

(
TSM(Iγ),H, σ2

)
, Iγ

))
.

Termination: After a preset number of recursions, estimate

the BER by substituting the final value of Iγ into (15).

Later we will see that the above evolution method can pro-

vide quick and accurate performance prediction. We can also

find the average performance (averaged over the distribution

of H) by applying the above method to repeatedly generated

samples of H .

Note that an alternative to the above four-module approach

is to characterize the whole ESE block using a single pre-

simulated transfer function. This is feasible for a fixed channel

matrix H , but becomes intractable for random H .

C. Impact of Signaling Schemes

Given the component code, the system performance depends

heavily on the signaling scheme employed. Some common ex-

amples of signaling methods can be found in [1]-[3]. Another

example is SCM [12], [13] that generates the mapped symbol

x[n] as

x[n] =

K∑
k=1

βk(−1)bk[n], (23)

where {βk} are complex constants.

Assume that the coding and decoding methods are fixed.

Let us consider the impact of signaling schemes on system

performance. Among the four modules in Fig. 2, only the soft

mapper and soft de-mapper are dependent on the signaling

method. The analysis of the de-mapper is a complicated issue.

We will briefly return to it later in Section III-E.

We now focus on the soft-mapper performance. It can be

shown based on (18) that the output SNR of the LMMSE

estimator is a monotonously decreasing function of the vari-

ance v at the output of the soft mapper (see (16)) . Thus,

v should be minimized when the LMMSE performance is

concerned. Interestingly, some explicit results can be obtained

regarding the SNR maximization (or, equivalently, variance

minimization) criterion.

We first make the following assumptions.

Assumption 1: The mapping Φ : B → S is unbiased and

with unit average power:∑
s∈S

s = 0, 2−K
∑
s∈S

|s|2 = 1. (24)

Assumption 2: The elements of {γk[n]} are independent,

identically distributed (i.i.d.). The statistics of the a priori

probabilities are symmetric, which implies that

E [Pr(bk[n] = 0)] = E [Pr(bk[n] = 1)] = 1/2,∀k, (25)

there is a constant η such that

η = E[Pr2(bk[n] = 0)] = E[Pr2(bk[n] = 1)],∀k, (26)

and the elements in S have equal occurrence probabilities:

E[Pr[s]] = 2−K ,∀s ∈ S. (27)

Based on these two assumptions, we have the following

theorems. (Due to space limitations, we omit the proof. )

Theorem 1: Under Assumptions 1 and 2, the minimum

variance

min
S,Φ

v = 2 − 4η (28)

where the minimization is over all possible selections of signal

constellation S and mapping rule Φ.

Proof: See [16].

Theorem 2: Under Assumptions 1 and 2, for arbitrary

K and arbitrary {βk}, the SCM signaling defined by (23)

achieves the minimum variance.

Proof: See [16].

Theorems 1 and 2 show that SCM yields SNR optimization

for the LMMSE estimator and potentially improved perfor-

mance. In this respect, many commonly known signaling

schemes (such as QAM with the MSP mapping [1]) are sub-

optimal. It will be shown later that QAM with the Gray

mapping yields performance close to that of SCM.

D. Complexity of SCM

An additional advantage of SCM is its low complexity. To

see this, let x[n] be constructed using (23). Then we can

rewrite the LMMSE estimator output in (9) as

x̂[n] = φ[n]
K∑

k=1

βk(−1)bk[n] + ξ[n] (29a)

= φ[n]βk(−1)bk[n] + ζk[n] + ξ[n] (29b)

where ζk[n] = φ[n]
∑

m�=k βm(−1)bm[n].
Instead of (11),we can adopt a fast technique in computing

the LLR for bk[n] by approximately treating (29) as a binary-

input system (since (−1)bk[n] ∈ {+1,−1}) with Gaussian

noise ζk[n] + ξ[n]. This basically follows the detection prin-

ciples of interleave-division multiple-access systems [11] and

the related de-mapping complexity is O(1) per bit and O(K)
per symbol. From the linear nature of (23), the complexity

of the soft mapper operations (outlined in Section II-D) is

also O(K). Thus, the overall ESE complexity with SCM is

O(log2(N)+K) if the FFT-based fast technique [9] is applied .

This is very low compared with the complexity related to (11).

We observed by simulation that, for SCM, the performance

difference is marginal between the detection techniques based

on (11) and (29). Note that, in general, (11) has to be used for

other signaling schemes involving non-linear mapping rules.
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Fig. 3. Comparison of the variance achieved by SCM and four 16-QAM
schemes with the Gray, Mixed, MSP [1] and M16a mappings [2].

E. Soft De-Mapper Again

As mentioned earlier, the signaling scheme also affects

the soft de-mapper performance, but the related analysis is

a complicated issue. There are different criteria for soft de-

mapper design, e.g., those based on the distance or mutual

information measurements. We are still studying this issue and,

in this paper, we rely on simulation results.

An interesting property for SCM is that it can maximize

mutual information (between the channel inputs and outputs)

when K → ∞, but we will omit the related discussions

for space limitation. We would like to comment here that

maximizing mutual information is not necessarily an optimal

option for systems with limited code lengths.

IV. NUMERICAL RESULTS

In this section, we present simulation results to verify the

above analysis. We first show the impact of signaling schemes

on the variance v. Following [15], we model {γk[n]} as

the output LLRs from a binary-input AWGN channel and

characterize their distribution by the mutual information Iγ .

Fig. 3 compares the results of five different 16-ary signaling

schemes. Clearly, SCM has the smallest v among all options.

Note that the 16-QAM with Gray mapping yields v close to

that of SCM, indicating its property in providing good SNR

for the LMMSE estimator.

We next compare the overall system performance. In Fig.

4, we consider single-user BICM-ID systems over a multipath

channel. The Proakis B channel is assumed. The simulated

and predicted performance for SCM and the MSP signaling

are compared. It is seen that SCM significantly outperforms

the MSP signaling in the multipath channel with iterative

LMMSE detection. (We observed that the performances of

the Mixed and Gray signaling schemes considered in Fig.

3 are in between those of SCM and the MSP signaling.)

This demonstrates that the advantage of SCM in maximizing

the output SNR of the LMMSE detector can indeed lead to

significant improvement in BER. It is also shown that the

prediction results are quite close to the simulation results.

Fig. 4. Comparison of BICM-ID with different 16-ary signaling schemes
over the Proakis B channel. A 4-state rate-1/2 convolutional code (5, 7)8
is used and the information block length is 65536. The system throughput
R = 2 bits/channel use. The Proakis B channel [a 3-tap multipath channel
with tap coefficients (0.407, 0.815, 0.407)] is normalized in simulations. For
the SCM, K = 4, β1 = iβ2 = 1, β3 = iβ4 = 1.5, where i =

√
−1.

The dashed and solid curves represent the prediction and simulation results,
respectively.

Fig. 5. EXIT chart for BICM-ID with different 16-ary signaling schemes
over the Proakis B channel. The system parameters are the same as those in
Fig. 4. Eb/N0 = 8 dB.

Note that for an AWGN channel, the ESE reduces to a

symbol-by-symbol MAP estimator, since there is no inter-

symbol-interference in this case. Then minimizing variance

has no effect on performance and the MSP signaling can

outperform SCM, as seen in Fig. 4.

The advantage of SCM can also be verified by examining

the asymptotic convergence behavior of the iterative decoding.

We apply the EXIT chart technique for this purpose and

consider the fixed Proakis B channel used in Fig. 4. The ESE

and DEC are characterized by the EXIT curves Iγ → Iλ and

Iλ → Iγ , respectively. From Fig. 5, we can see that for the

MSP signaling, the tunnel between the two curves closes at

small Iγ , resulting in poor convergence and high BER.

In the above, we have assumed a fixed multipath channel.

Next we investigate the average performance and consider a

���������	
���
���
�������������
�������������
���������������

 �"



Fig. 6. Performance of BICM-ID with different 16-ary signaling schemes
over random multipath channels. The system parameters are the same as those
in Fig. 4. For the SCM, K = 4, β1 = iβ2 = 1, β3 = iβ4 = 1.5.

Fig. 7. Performance of BICM-ID with different 16-ary signaling schemes
over random MIMO multipath channels. The rate-1/2 convolutional code
(5, 7)8 is used. The system throughput is 4 bits/channel use. The 2 × 2
channel has 4 taps with complex Gaussian coefficients. For the SCM, K = 4,
β1 = iβ2 = 1, β3 = iβ4 = 2.

16-tap random multipath channel where each tap coefficient

is a complex Gaussian random variable with variance 1/16.

The performance averaged over the distribution of the channel

realizations is presented in Fig. 6. We observe that SCM is

again advantageous in this case.

Finally, we show an example of MIMO multipath channels.

At the transmitter, a BICM encoder is applied and the mapped

symbols are multiplexed to multiple antennas in a BLAST

manner. Random 2 × 2 multipath channels with 4 taps are

assumed. The performances with the five signaling schemes

in Fig. 3 are compared in Fig. 7. It is seen that SCM yields

the best performance. The gap between the SCM and MSP

performance is large than 7 dB at BER = 10−5. The 16-

QAM Gray signaling leads to performance close to that of

SCM, which agrees well with the variance results in Fig. 3.

V. CONCLUSIONS

We have shown by variance analysis that the iterative

LMMSE detection performance of multi-ary systems is highly

related to the signaling schemes employed. We show that SCM

can maximize the output SNR of the LMMSE detector, which

is beneficial for overall system performance. Consequently,

SCM can outperform other conventional signaling schemes

over various channels such as multipath channels and MIMO

channels. The simulation results agree well with the analysis.
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