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Abstract: In this paper we study multi-server tandem queues with finite buffers and blocking after

service. The service times are generally distributed. We develop an efficient approximation method to

determine performance characteristics such as the throughput and mean sojourn times. The method

is based on decomposition into two-station subsystems, the parameters of which are determined by

iteration. For the analysis of the subsystems we developed a spectral expansion method. Comparison

with simulation shows that the approximation method produces accurate results. So it is useful for the

design and analysis of production lines.

Key words: approximation, blocking, decomposition, finite buffers, multi-server tandem queues, pro-

duction lines, spectral expansion.

1 Introduction

Queueing networks with finite buffers have been studied extensively in the literature; see, e.g., Dallery

and Gershwin [3] and Perros [11] and the references therein. Most studies, however, consider single-

server models. The few references dealing with multi-server models typically assume exponential

service times. In this paper we focus on multi-server tandem queues with general service times, finite

buffers and Blocking After Service (BAS).

We develop an efficient method to approximate performance characteristics such as the throughput

and the mean sojourn time. The method only needs the first two moments of the service time and

it decomposes the tandem queue into subsystems with one buffer. Each multi-server subsystem is

approximated by a single (super) server system with state dependent arrival and departure rates, the

queue length distribution of which can be efficiently computed by a spectral expansion method. The

parameters of the inter-arrival and service times of each subsystem are determined by an iterative

algorithm. Numerical results show that this method produces accurate estimates for important perfor-

mance characteristics as the throughput and the mean sojourn time.

Decomposition techniques have also been used by, e.g., Perros [11] and Kerbache and MacGregor

Smith [5]. Their methods deal with single-server queueing networks. To the best of our knowledge,

the only methods for multi-server queueing networks with finite buffers available in the literature are

presented by Tahilramani et al. [13] and Jain and MacGregor Smith [4]. These methods, however,

assume exponential service times. An excellent survey on the analysis of manufacturing flow lines

with finite buffers is presented by Dallery and Gershwin [3].

In the analysis of queueing networks with blocking three basic approaches can be distinguished. The
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first approach decomposes the network into subsystems and the parameters of the inter-arrival and

service times of the subsystems are determined iteratively. This approach involves three steps:

1. Characterize the subsystems;

2. Derive a set of equations that determine the unknown parameters of each subsystem;

3. Develop an iterative algorithm to solve these equations.

This approach is treated in Perros’ book [11] and in the survey of Dallery and Gershwin [3]. Our

approximation method follows this approach.

The second approach is also based on decomposition of the network, but instead of iteratively deter-

mining the parameters of the inter-arrival and service times of the subsystems, holding nodes are added

to represent blocking. This so-called expansion method has been introduced by Kerbache and Smith

[5]. The expansion method has been successfully used to model tandem queues with the following

kinds of nodes: M/G/1/K [12], M/M/C/K [4] and M/G/C/C [2].

The expansion method consist of the following three stages:

1. Network reconfiguration;

2. Parameter estimation;

3. Feedback elimination.

This method is very efficient; it produces accurate results when the buffers are large.

The third approach has been introduced by Kouvatsos and Xenios [6]. They developed a method based

on the maximum entropy method (MEM) to analyze single-server networks. Here, holding nodes are

also used and the characteristics of the queues are determined iteratively. For each subsystem in

the network the queue-length distribution is determined by using a maximum entropy method. This

algorithm is a linear program where the entropy of the queue-length distribution is maximized subject

to a number of constraints. For more information we refer the reader to [6]. This method has been

implemented in QNAT by Tahilramani et al. [13]; they also extended the method to multi-server

networks. This method works reasonably well; the average error in the throughput is typically around

5%.

2 Model and Decomposition

We consider a tandem queue (L) with M server-groups and M − 1 buffers Bi, i = 1, . . . ,M − 1,

of size bi in between. The server-groups are labeled Mi, i = 0, . . . ,M − 1; server-group Mi has mi

parallel identical servers. The random variable Pi denotes the service time of a server in group Mi;

Pi is generally distributed with rate µp,i (and thus with mean 1/µp,i) and coefficient of variation cp,i.

Each server can serve one customer at a time and the customers are served in order of arrival. The

servers of M0 are never starved and we consider the BAS blocking protocol. Figure 1 shows a tandem

queue with four server groups.
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The tandem queue L is decomposed into M−1 subsystems L1, L2, . . . , LM−1. Subsystem Li consists

of a finite buffer of size bi, mi−1 so-called arrival servers in front of the buffer, and mi so-called

departure servers after the buffer. The decomposition of L is shown in Figure 1.

Figure 1: The tandem queue L and its decomposition into three subsystems L1, L2 and L3.

The random variable Ai denotes the service time of an arrival-server in subsystem Li, i = 1, . . . ,M−

1. This random variable represents the service time of a server in server-group Mi−1 including possi-

ble starvation of this server. The random variable Di denotes the service time of a departure-server in

subsystem Li; it represents the service time of a server in server-group Mi including possible block-

ing of this server. Let us indicate the rates of Ai and Di by µa,i and µd,i and their coefficients of

variation by ca,i and cd,i, respectively. If these characteristics are known, we are able to approximate

the queue-length distribution of each subsystem. Then, by using the queue-length distribution, also

characteristics of the complete tandem queue, such as the throughput and mean sojourn time, can be

approximated.

3 Service Times of Arrival and Departure Servers

In this section we describe how the service times of the arrival and departure servers in subsystem Li

are modelled.

The service-time Di of a departure-server in subsystem Li is approximated as follows. We define bi,j

as the probability that just after service completion of a server in server-group Mi, exactly j servers
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of server-group Mi are blocked. This means that, with probability bi,j , a server in server-group Mi

has to wait for one residual inter-departure time and j−1 full inter-departure times of the next server-

group Mi+1 before the customer can leave the server. The inter-departure times of server-group Mi+1

are assumed to be independent and distributed as the inter-departure times of the superposition of

mi+1 independent service processes, each with service times Di+1; the residual inter-departure time

is approximated by the equilibrium residual inter-departure time of the superposition of these service

processes. Let the random variable SDi+1 denote the inter-departure time of server-group Mi+1 and

RSDi+1 the residual inter-departure time. Figure 2 displays a representation of the service time of a

departure-server of subsystem Li.

Figure 2: Representation of the service time Di of a departure-server of subsystem Li.

In the appendix it is explained how the rates and coefficients of variation of SDi+1 and RSDi+1 can

be determined. If also the blocking probabilities bi,j are known, then we can determine the rate µd,i

and coefficient of variation cd,i of the service time Di of a departure-server of subsystem Li. The

distribution of Di is approximated by fitting an Erlangk−1,k or Coxian2 distribution on µd,i and cd,i,

depending on whether c2
d,i is less or greater than 1/2. More specifically, if c2

d,i > 1/2, then the rate

and coefficient of variation of the Coxian2 distribution with density

f(t) = (1 − q)µ1e
−µ1t + q

µ1µ2

µ1 − µ2

(

e−µ2t
− e−µ1t

)

, t ≥ 0,

matches with µd,i and cd,i, provided the parameters µ1, µ2 and q are chosen as (cf. Marie [7]):

µ1 = 2µd,i, q =
1

2c2
d,i

, µ2 = µ1q. (1)

If 1/k ≤ c2
d,i ≤ 1/(k−1) for some k > 2, then the rate and coefficient of variation of the Erlangk−1,k

with density

f(t) = pµk−1 tk−2

(k − 2)!
e−µt + (1 − p)µk tk−1

(k − 1)!
e−µt, t ≥ 0,
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matches with µd,i and cd,i if the parameters µ and p are chosen as (cf. Tijms [14]):

p =
kc2

d,i −

√

k(1 + c2
d,i) − k2c2

d,i

1 + c2
d,i

, µ = (k − p)µd,i. (2)

Of course, also other distributions may be fitted to the rate and coefficient of variation of Di, but

numerical experiments suggest that other distributions do not affect the quality of our approximation

method.

The service times Ai of the arrival-servers in subsystem Li are modelled similarly. Instead of bi,j we

now use si,j defined as the probability that just after service completion of a server in server-group Mi,

exactly j servers of Mi are starved. This means that, with probability si,j , a server in server-group Mi

has to wait one residual inter-departure time and j − 1 full inter-departure times from the preceding

server-group Mi−1.

4 Spectral Analysis of a Subsystem

By fitting Coxian or Erlang distributions on the service times Ai and Di, subsystem Li can be modeled

as a finite state Markov process; below we describe this Markov process in more detail for a subsystem

with ma arrival servers, md departure servers and a buffer of size b.

To reduce the state space we replace the arrival and departure servers by super servers with state-

dependent service times. The service time of the super arrival server is the inter-departure time of

the service processes of the non-blocked arrival servers. If the buffer is not full, all arrival servers

are working. In this case, the inter-departure time (or super service time) is assumed to be Coxianl

distributed, where phase j (j = 1, . . . , l) has parameter λj and pj is the probability to proceed to the

next phase (note that Erlang distributions are a special case of Coxian distributions). If the buffer is

full, one or more arrival servers may be blocked. Then the super service time is Coxian distributed,

the parameters of which depend on the number of active servers (and follow from the inter-departure

time distribution of the active service processes). The service time of the super departure server is

defined similarly. In particular, if none of the departure servers is starved, the super service time is

the inter-departure time of the service processes of all md arrival servers. This inter-departure time is

assumed to be Coxiann distributed with parameters µj and qj (j = 1, . . . , n).

Now the subsystem can be described by a Markov process with states (i, j, k). The state variable i
denotes the total number of customers in the subsystem. Clearly, i is at most equal to md + b + ma.

Note that, if i > md + b, then i − md − b actually indicates the number of blocked arrival servers.

The state variable j (k) indicates the phase of the service time of the super arrival (departure) server.

If i ≤ md + b, then the service time of the super arrival server consists of l phases; the number of

phases depends on i for i > md + b. Similarly, the number of phases of the service time of the super

departure server is n for i ≥ md, and it depends on i for i < md.

The steady-state distribution of this Markov process can be determined efficiently by using the spectral

expansion method, see e.g. Mitrani [9]. Using the spectral expansion method, Bertsimas [1] analysed

a multi-server system with an infinite buffer; we will adapt this method for finite buffer systems. The

advantage of the spectral expansion method is that the time to solve a subsystem is independent of the
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size of the buffer.

Below we formulate the equilibrium equations for the equilibrium probabilities P (i, j, k). Only the

equilibrium equations in the states (i, j, k) with md < i < md + b are given; the other ones are of

minor importance to the analysis. For md < i < md + b we have:

P (i, 1, 1)(λ1 + µ1) =
l
∑

j=1

(1 − pj)λjP (i − 1, j, 1) +
n
∑

k=1

(1 − qk)µkP (i + 1, 1, k) (3)

P (i, j, 1)(λj + µ1) = pj−1λj−1P (i, j − 1, 1) +
n
∑

k=1

(1 − qk)µkP (i + 1, j, k),

j = 2, . . . , l (4)

P (i, 1, k)(λ1 + µk) = qk−1µk−1P (i, 1, k − 1) +
l
∑

j=1

(1 − pj)λjP (i − 1, j, k),

k = 2, . . . , n (5)

P (i, j, k)(λj + µk) = pj−1λj−1P (i, j − 1, k) + qk−1µk−1P (i, j, k − 1),

j = 2, . . . , l, k = 2, . . . , n. (6)

We are going to use the separation of variables technique presented in Mickens [8], by assuming that

the equilibrium probabilities P (i, j, k) are of the form

P (i, j, k) = DjRkw
i, md ≤ i ≤ md + b, 2 ≤ j ≤ l, 2 ≤ k ≤ n. (7)

Substituting (7) in the equilibrium equations (3)-(6) and dividing by common powers of w yields:

D1R1(λ1 + µ1) =
1

w

l
∑

j=1

(1 − pj)λjDjR1 + w

n
∑

k=1

(1 − qk)µkD1Rk (8)

DjR1(λj + µ1) = pj−1λj−1Dj−1R1 + w
n
∑

k=1

(1 − qk)µkDjRk, 2 ≤ j ≤ l (9)

D1Rk(λ1 + µk) =
1

w

l
∑

j=1

(1 − pj)λjDjRk + qk−1µk−1D1Rk−1, 2 ≤ k ≤ n (10)

DjRk(λj + µk) = pj−1λj−1Dj−1Rk + qk−1µk−1DjRk−1, 2 ≤ j ≤ l, 2 ≤ k ≤ n(11)

We can rewrite (11) as:

λjDj − pj−1λj−1Dj−1

Dj
=

−µkRk + qk−1µk−1Rk−1

Rk

, 2 ≤ j ≤ l, 2 ≤ k ≤ n. (12)

Since (12) holds for each combination of j and k, the left-hand side of (12) is independent of j and

the right-hand side of (12) is independent of k. Hence, there exists a constant x, depending on w, such

that

−xDj = λjDj − pj−1λj−1Dj−1, 2 ≤ j ≤ l, (13)

−xRk = −µkRk + qk−1µk−1Rk−1, 2 ≤ k ≤ n. (14)
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Solving equation (13) gives

Dj = D1

l−1
∏

r=1

prλr

x + λr+1
(15)

Substituting (15) in (10) and using equation (14) we find the following relationship between x and w,

w =

l
∑

j=1

(1 − pj)λj

x + λj

j−1
∏

r=1

prλr

x + λr
. (16)

Note that w is equal to the Laplace Stieltjes transform fA(s) of the service time of the super arrival

server, evaluated at s = x. Now we now do the same for (9) yielding another relationship between x
and w,

1

w
=

n
∑

k=1

(1 − qk)µk

−x + µk

k−1
∏

r=1

qrµr

−x + µr
. (17)

Clearly, 1/w is equal to the Laplace Stieltjes transform fD(s) of the service time of the super departure

server, evaluated at s = −x. Substituting (16) and (17) in (8) and using (13) and (14) we find that

1 = fA(x)fD(−x).

This is a polynomial equation of degree l + n; the roots are labeled xt, t = 1, . . . , l + n, and they

are assumed to be distinct. Note that these roots may be complex-valued. Using equation (17) we can

find the corresponding l + n values for wt for t = 1, . . . , l + n. Summarizing, for each t, we obtain

the following solution of (3)-(6),

P (i, j, k) = Bt

(

j−1
∏

r=1

prλr

xt + λr+1

)(

k−1
∏

r=1

qrµr

−xt + µr+1

)

wi
t,

mb ≤ i ≤ md + b, 1 ≤ j ≤ l, 1 ≤ k ≤ n,

where Bt = D1,tR1,t is some constant. Since the equilibrium equations are linear, any linear combi-

nation of the above solutions satisfies (3)-(6). Hence, the general solution of (3)-(6) is given by

P (i, j, k) =
l+n
∑

t=1

Bt

(

j−1
∏

r=1

prλr

x(wt) + λr+1

)(

k−1
∏

r=1

qrµr

−x(wt) + µr+1

)

wi
t,

mb ≤ i ≤ md + b, 1 ≤ j ≤ l, 1 ≤ k ≤ n.

Finally, the unknown coefficients Bt and the unknown equilibrium probabilities P (i, j, k) for i < md

and i > md + b can be determined from the equilibrium equations for i ≤ md and i ≥ md + b and

the normalization equation.

5 Iterative Algorithm

We now describe the iterative algorithm for approximating the performance characteristics of tandem

queue L. The algorithm is based on the decomposition of L in M − 1 subsystems L1, L2, . . . , LM−1.

Before going into detail in Section 5.2, we present the outline of the algorithm in Section 5.1.
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5.1 Outline of the algorithm

• Step 0: Determine initial characteristics of the service times Di of the departure servers of

subsystem Li, i = M − 1, . . . , 1.

• Step 1: For subsystem Li, i = 1, . . . ,M − 1:

1. Determine the first two moments of the service time Ai of the arrival servers, given the

queue-length distribution and throughput of subsystem Li−1.

2. Determine the queue-length distribution of subsystem Li.

3. Determine the throughput Ti of subsystem Li.

• Step 2: Determine the new characteristics of the service times Di of the departure servers of

subsystem Li, i = M − 1, . . . , 1.

• Repeat Step 1 and 2 until the service time characteristics of the of the departure servers have

converged.

5.2 Details of the algorithm

Step 0: Initialization

The first step of the algorithm is to set bi,j = 0 for all i and j. This means that we initially assume

that there is no blocking. This also means that the random variables Di are initially the same as the

service times Pi.

Step 1: Evaluation of subsystems

We now know the service time characteristics of the departure servers of Li, but we also need to

know the characteristics of the service times of its arrival servers, before we are able to determine the

queue-length distribution of Li.

(a) Service times of arrival servers

For the first subsystem L1, the characteristics of A1 are the same as those of P0, because the servers

of M0 cannot be starved.

For the other subsystems we proceed as follows. By application of Little’s law to the arrival servers,

we have for the throughput Ti of subsystem Li,

Ti =



1 −

mi−1
∑

j=1

pi,mi+bi+j



mi−1µa,i +

mi−1
∑

j=1

pi,mi+bi+j(mi−1 − j)µa,i,

where pi,j denotes the probability of j customers in subsystem Li. By substituting the estimate T
(k)
i−1

for Ti and p
(k−1)
i,ni+j for pi,ni+j we get as new estimate for the service rate µa,i,

µ
(k)
a,i =

T
(k)
i−1

(1 −
∑mi−1

j=1 p
(k−1)
i,mi+bi+j)mi−1 +

∑mi−1

j=1 p
(k−1)
i,mi+bi+j(mi−1 − j)

,
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where the super scripts indicate in which iteration the quantities have been calculated.

To approximate the coefficient of variation ca,i of Ai we use the representation for Ai as described in

Section 3 (which is based on si−1,j , Pi−1, RSAi−1 and SAi−1).

(b) Analysis of subsystem Li

Based on the (new) characteristics of the service times of both arrival and departure servers we can

determine the steady-state queue-length distribution of subsystem Li. To do so we first fit Coxian2

or Erlangk−1,k distributions on the first two moments of the service times of the arrival-servers and

departure-servers as described in Section 3. Then we calculate the equilibrium probabilities pi,j by

using the spectral expansion method as described in Section 4.

(c) Throughput of subsystem Li

Once the steady-state queue length distribution is known, we can determine the new throughput T
(k)
i

according to

T
(k)
i =



1 −

mi−1
∑

j=0

p
(k)
i,j



miµ
(k−1)
d,i +

mi−1
∑

j=1

p
(k)
i,j jµ

(k−1)
d,i . (18)

We also determine new estimates for the probabilities bi−1,j that j servers of server-group Mi−1 are

blocked after service completion of a server in server-group Mi−1 and the probabilities si,j that j
servers of server-group Mi are starved after service completion of a server in server-group Mi.

We perform Step 1 for every subsystem from L1 up to LM−1.

Step 2: Service times of departure servers

Now we have new information about the departure processes of the subsystems. So we can again

calculate the first two moments of the service times of the departure-servers, starting from DM−2

down to D1. Note that DM−1 is always the same as PM−1, because the servers in server-group

MM−1 can never be blocked.

A new estimate for the rate µd,i of Di is determined from

µ
(k)
d,i =

T
(k)
i+1

(1 −
∑mi−1

j=0 p
(k)
i,j )mi +

∑mi−1
j=1 p

(k)
i,j j

(19)

The calculation of a new estimate for the coefficient of variation cd,i of Di is similar to the one of Ai.

Convergence criterion

After Step 1 and 2 we check whether the iterative algorithm has converged by comparing the departure

rates in the (k−1)-th and k-th iteration. We decide to stop when the sum of the absolute values of the

differences between these rates is less than ε; otherwise we repeat Step 1 and 2. So the convergence

criterion is

M−1
∑

i=1

∣

∣

∣µ
(k)
d,i − µ

(k−1)
d,i

∣

∣

∣ < ε.
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Of course, we may use other stop-criteria as well; for example, we may consider the throughput in-

stead of the departure rates. The bottom line is that we go on until ‘nothing’ changes anymore.

Remark: Equality of throughputs.

It is easily seen that, after convergence, the throughputs in all subsystems are equal. Let us assume

that the iterative algorithm has converged, so µ
(k)
d,i = µ

(k−1)
d,i for all i = 1, . . . ,M − 1. From equations

(18) and (19) we find the following:

T
(k)
i =



1 −

mi−1
∑

j=0

p
(k)
i,j



miµ
(k−1)
d,i +

mi−1
∑

j=1

p
(k)
i,j jµ

(k−1)
d,i

=



1 −

mi−1
∑

j=0

p
(k)
i,j



miµ
(k)
d,i +

mi−1
∑

j=1

p
(k)
i,j jµ

(k)
d,i

= T
(k)
i+1.

Hence we can conclude that the throughputs in all subsystems are the same after convergence.

6 Numerical Results

In this section we present some results. To investigate the quality of our method we compare it

with discrete event simulation. After that, we compare our method with the method developed by

Tahilramani et al. [13], which is implemented in QNAT [16].

6.1 Comparison with simulation

In order to investigate the quality of our method we compare the throughput and the mean sojourn

time with the ones produced by discrete event simulation. Each simulation run is sufficiently long

such that the widths of the 95% confidence intervals of the throughput and the mean sojourn time are

smaller than 1%.

We test two different lengths M of tandem queues, namely with 4 and 8 server-groups. For each

tandem queue we vary the number of servers mi in the server-groups; we use tandems with 1 server

per server-group, 5 servers per server-group and with the sequence (4, 1, 2, 8). We also vary the level

of balance in the tandem queue; every server-group has a maximum total rate of 1 and the group right

after the middle can have a total rate of 1, 1.1, 1.2, 1.5 and 2. The coefficient of variation of the service

times varies between 0.1, 0.2, 0.5, 1, 1.5 and 2. Finally we vary the buffer sizes between 0, 2, 5 and

10. This leads to a total of 720 test-cases. The results for each category are summarized in Table 1

up to 5. Each table lists the average error in the throughput and the mean sojourn time compared with

the simulation results. Each table also gives for 4 error-ranges the percentage of the cases which fall

in that range. The results for a selection of 54 cases can be found in Table 6.
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Buffer Error in throughput Error in mean sojourn time

sizes (bi) Avg. 0-5 % 5-10 % 10-15 % > 15 % Avg. 0-5 % 5-10 % 10-15 % > 15 %

0 5.7 % 55.0 % 35.0 % 4.4 % 5.6 % 6.8 % 42.8 % 35.0 % 14.4 % 7.8 %

2 3.2 % 76.1 % 22.8 % 1.1 % 0.0 % 4.7 % 57.2 % 35.0 % 7.2 % 0.6 %

5 2.1 % 90.6 % 9.4 % 0.0 % 0.0 % 4.5 % 60.6 % 32.2 % 7.2 % 0.0 %

10 1.4 % 95.6 % 4.4 % 0.0 % 0.0 % 5.1 % 53.3 % 34.4 % 12.2 % 0.0 %

Table 1: Overall results for tandem queues with different buffer sizes.

Rates unbalanced Error in throughput Error in mean sojourn time

server-group (miµp,i) Avg. 0-5 % 5-10 % 10-15 % > 15 % Avg. 0-5 % 5-10 % 10-15 % > 15 %

1.0 3.3 % 76.4 % 20.8 % 1.4 % 1.4 % 3.4 % 74.3 % 22.2 % 2.1 % 1.4 %

1.1 3.1 % 78.5 % 18.1 % 2.1 % 1.4 % 4.0 % 68.1 % 27.1 % 3.5 % 1.4 %

1.2 3.0 % 79.2 % 18.8 % 0.7 % 1.4 % 4.6 % 59.7 % 34.7 % 4.2 % 1.4 %

1.5 3.0 % 81.3 % 16.0 % 1.4 % 1.4 % 6.5 % 38.2 % 43.1 % 16.7 % 2.1 %

2.0 3.1 % 81.3 % 16.0 % 1.4 % 1.4 % 7.9 % 27.1 % 43.8 % 25.0 % 4.2 %

Table 2: Overall results for tandem queues with different balancing rates.

Coefficients of Error in throughput Error in mean sojourn time

variation (c2
p,i

) Avg. 0-5 % 5-10 % 10-15 % > 15 % Avg. 0-5 % 5-10 % 10-15 % > 15 %

0.1 4.4 % 54.2 % 44.2 % 1.7 % 0.0 % 3.1 % 77.5 % 21.7 % 0.8 % 0.0 %

0.2 2.6 % 88.3 % 11.7 % 0.0 % 0.0 % 3.4 % 75.8 % 22.5 % 1.7 % 0.0 %

0.5 2.2 % 90.8 % 9.2 % 0.0 % 0.0 % 4.5 % 60.8 % 32.5 % 6.7 % 0.0 %

1.0 1.5 % 93.3 % 2.5 % 4.2 % 0.0 % 4.1 % 64.2 % 30.0 % 5.0 % 0.8 %

1.5 3.0 % 82.5 % 13.3 % 0.0 % 4.2 % 7.5 % 25.8 % 54.2 % 15.0 % 5.0 %

2.0 4.8 % 66.7 % 26.7 % 2.5 % 4.2 % 9.1 % 16.7 % 44.2 % 32.5 % 6.7 %

Table 3: Overall results for tandem queues with different coefficients of variation of the service times.

Number of Error in throughput Error in mean sojourn time

servers (mi) Avg. 0-5 % 5-10 % 10-15 % > 15 % Avg. 0-5 % 5-10 % 10-15 % > 15 %

All 1 2.9 % 83.8 % 9.2 % 2.9 % 4.2 % 5.9 % 46.3 % 39.2 % 10.0 % 4.6 %

All 5 3.8 % 68.3 % 30.8 % 0.8 % 0.0 % 4.6 % 60.0 % 29.2 % 10.8 % 0.0 %

Mixed 2.6 % 85.8 % 13.8 % 0.4 % 0.0 % 5.3 % 54.2 % 34.2 % 10.0 % 1.7 %

Table 4: Overall results for tandem queues with a different number of servers per server-group.

Number of Error in throughput Error in mean sojourn time

server-groups (M ) Avg. 0-5 % 5-10 % 10-15 % > 15 % Avg. 0-5 % 5-10 % 10-15 % > 15 %

4 2.3 % 87.2 % 12.2 % 0.6 % 0.0 % 4.7 % 57.5 % 32.8 % 9.7 % 0.0 %

8 3.9 % 71.4 % 23.6 % 2.2 % 2.8 % 5.8 % 49.4 % 35.6 % 10.8 % 4.2 %

Table 5: Overall results for tandem queues with 4 and 8 server-groups.
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mi miµp,i c2
p,i

Buffers T App. T Sim. Diff. S App. S Sim. Diff.

(1,1,1,1) (1,1,1,1) 0.1 0 0.735 0.771 -4.7 % 4.70 4.63 1.5 %

(1,1,1,1) (1,1,1,1) 0.1 10 0.981 0.985 -0.4 % 19.22 19.03 1.0 %

(1,1,1,1) (1,1,1,1) 1.0 2 0.703 0.700 0.4 % 9.09 9.25 -1.7 %

(1,1,1,1) (1,1,1,1) 1.5 0 0.504 0.473 6.6 % 5.82 6.27 -7.2 %

(1,1,1,1) (1,1,1,1) 1.5 10 0.834 0.835 -0.1 % 22.38 22.31 0.3 %

(1,1,1,1) (1,1,1.5,1) 0.1 2 0.960 0.958 0.2 % 6.18 6.41 -3.6 %

(1,1,1,1) (1,1,1.5,1) 1.0 0 0.594 0.561 5.9 % 4.84 5.28 -8.3 %

(1,1,1,1) (1,1,1.5,1) 1.0 10 0.918 0.912 0.7 % 16.20 17.41 -7.0 %

(1,1,1,1) (1,1,1.5,1) 1.5 2 0.714 0.691 3.3 % 8.03 8.60 -6.6 %

(5,5,5,5) (1,1,1,1) 0.1 0 0.789 0.856 -7.8 % 22.48 21.78 3.2 %

(5,5,5,5) (1,1,1,1) 0.1 10 0.927 0.983 -5.7 % 36.88 35.24 4.7 %

(5,5,5,5) (1,1,1,1) 1.0 2 0.797 0.808 -1.4 % 26.37 26.17 0.8 %

(5,5,5,5) (1,1,1,1) 1.5 0 0.742 0.724 2.5 % 22.99 23.90 -3.8 %

(5,5,5,5) (1,1,1,1) 1.5 10 0.867 0.874 -0.8 % 37.97 38.86 -2.3 %

(5,5,5,5) (1,1,1.5,1) 0.1 2 0.902 0.958 -5.8 % 21.63 21.50 0.6 %

(5,5,5,5) (1,1,1.5,1) 1.0 0 0.801 0.794 0.9 % 20.79 21.13 -1.6 %

(5,5,5,5) (1,1,1.5,1) 1.0 10 0.927 0.929 -0.2 % 30.37 32.61 -6.9 %

(5,5,5,5) (1,1,1.5,1) 1.5 2 0.850 0.828 2.7 % 21.95 23.70 -7.4 %

(4,1,2,8) (1,1,1,1) 0.1 0 0.746 0.793 -5.9 % 16.19 16.28 -0.6 %

(4,1,2,8) (1,1,1,1) 0.1 10 0.956 0.984 -2.8 % 31.61 30.05 5.2 %

(4,1,2,8) (1,1,1,1) 1.0 2 0.756 0.757 -0.1 % 20.15 20.14 0.0 %

(4,1,2,8) (1,1,1,1) 1.5 0 0.633 0.619 2.3 % 16.78 18.01 -6.8 %

(4,1,2,8) (1,1,1,1) 1.5 10 0.850 0.856 -0.7 % 31.43 32.37 -2.9 %

(4,1,2,8) (1,1,1.5,1) 0.1 2 0.920 0.953 -3.5 % 16.72 17.14 -2.5 %

(4,1,2,8) (1,1,1.5,1) 1.0 0 0.714 0.702 1.7 % 16.22 16.43 -1.3 %

(4,1,2,8) (1,1,1.5,1) 1.0 10 0.926 0.919 0.8 % 25.99 27.60 -5.8 %

(4,1,2,8) (1,1,1.5,1) 1.5 2 0.787 0.773 1.8 % 17.52 18.93 -7.4 %

(1,1,1,1,1,1,1,1) (1,1,1,1,1,1,1,1) 0.1 2 0.906 0.926 -2.2 % 16.14 15.99 0.9 %

(1,1,1,1,1,1,1,1) (1,1,1,1,1,1,1,1) 1.0 0 0.488 0.443 10.2 % 11.73 13.43 -12.7 %

(1,1,1,1,1,1,1,1) (1,1,1,1,1,1,1,1) 1.0 10 0.855 0.855 0.0 % 49.52 49.81 -0.6 %

(1,1,1,1,1,1,1,1) (1,1,1,1,1,1,1,1) 1.5 2 0.607 0.581 4.5 % 21.94 23.52 -6.7 %

(1,1,1,1,1,1,1,1) (1,1,1,1,1.5,1,1,1) 0.1 0 0.718 0.751 -4.4 % 8.90 9.27 -4.0 %

(1,1,1,1,1,1,1,1) (1,1,1,1,1.5,1,1,1) 0.1 10 0.980 0.983 -0.3 % 38.45 43.22 -11.0 %

(1,1,1,1,1,1,1,1) (1,1,1,1,1.5,1,1,1) 1.0 2 0.690 0.670 3.0 % 18.81 20.31 -7.4 %

(1,1,1,1,1,1,1,1) (1,1,1,1,1.5,1,1,1) 1.5 0 0.482 0.409 17.8 % 11.26 13.79 -18.3 %

(1,1,1,1,1,1,1,1) (1,1,1,1,1.5,1,1,1) 1.5 10 0.830 0.819 1.3 % 46.75 50.16 -6.8 %

(5,5,5,5,5,5,5,5) (1,1,1,1,1,1,1,1) 0.1 2 0.827 0.926 -10.7 % 52.35 49.71 5.3 %

(5,5,5,5,5,5,5,5) (1,1,1,1,1,1,1,1) 1.0 0 0.693 0.697 -0.6 % 49.20 49.14 0.1 %

(5,5,5,5,5,5,5,5) (1,1,1,1,1,1,1,1) 1.0 10 0.867 0.882 -1.7 % 83.09 83.96 -1.0 %

(5,5,5,5,5,5,5,5) (1,1,1,1,1,1,1,1) 1.5 2 0.759 0.737 3.0 % 54.63 57.27 -4.6 %

(5,5,5,5,5,5,5,5) (1,1,1,1,1.5,1,1,1) 0.1 0 0.781 0.851 -8.2 % 43.03 42.65 0.9 %

(5,5,5,5,5,5,5,5) (1,1,1,1,1.5,1,1,1) 0.1 10 0.922 0.983 -6.2 % 71.89 73.95 -2.8 %

(5,5,5,5,5,5,5,5) (1,1,1,1,1.5,1,1,1) 1.0 2 0.789 0.787 0.3 % 51.52 53.49 -3.7 %

(5,5,5,5,5,5,5,5) (1,1,1,1,1.5,1,1,1) 1.5 0 0.730 0.692 5.5 % 44.43 47.95 -7.3 %

(5,5,5,5,5,5,5,5) (1,1,1,1,1.5,1,1,1) 1.5 10 0.864 0.862 0.2 % 74.69 81.01 -7.8 %

(4,1,2,8,4,1,2,8) (1,1,1,1,1,1,1,1) 0.1 2 0.845 0.921 -8.3 % 39.90 38.96 2.4 %

(4,1,2,8,4,1,2,8) (1,1,1,1,1,1,1,1) 1.0 0 0.619 0.604 2.5 % 37.90 38.55 -1.7 %

(4,1,2,8,4,1,2,8) (1,1,1,1,1,1,1,1) 1.0 10 0.863 0.871 -0.9 % 71.67 71.74 -0.1 %

(4,1,2,8,4,1,2,8) (1,1,1,1,1,1,1,1) 1.5 2 0.705 0.678 4.0 % 43.38 46.32 -6.3 %

(4,1,2,8,4,1,2,8) (1,1,1,1,1.5,1,1,1) 0.1 0 0.744 0.790 -5.8 % 30.96 32.41 -4.5 %

(4,1,2,8,4,1,2,8) (1,1,1,1,1.5,1,1,1) 0.1 10 0.945 0.983 -3.9 % 61.00 62.54 -2.5 %

(4,1,2,8,4,1,2,8) (1,1,1,1,1.5,1,1,1) 1.0 2 0.750 0.742 1.1 % 39.64 42.20 -6.1 %

(4,1,2,8,4,1,2,8) (1,1,1,1,1.5,1,1,1) 1.5 0 0.628 0.588 6.8 % 32.68 37.66 -13.2 %

(4,1,2,8,4,1,2,8) (1,1,1,1,1.5,1,1,1) 1.5 10 0.844 0.843 0.1 % 61.82 69.32 -10.8 %

Table 6: Detailed results for tandem queues with 4 and 8 machine-groups.

We may conclude the following from the above results. First, we see in Table 1 that the performance

of the approximation becomes better when the buffer sizes increase. This may be due to less depen-

dencies between the servers-groups when the buffers are large.

We also notice that the performance is better for balanced lines (Table 2); for unbalanced lines, espe-
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cially the estimate for the mean sojourn time is not as good as for balanced lines. If we look at the

coefficients of variation of the service times (Table 3), we get the best approximations for the through-

put when the coefficients of variation are 1, and the estimate for the mean sojourn time is better for

small coefficients of variation.

The quality of the results seems to be rather insensitive to the number of servers per server-group

(Table 4), in spite of the super-server approximation used for multi-server models. Finally we may

conclude from Table 5 that the results are better for shorter tandem queues.

Overall we can say that the approximation produces accurate results in most cases. In the majority of

the cases the error of the throughput is within 5% of the simulation and the error of the mean sojourn

time is within 10% of the simulation (see also Table 6). The worst performance is obtained for lines

with buffers of size zero, with server times with high coefficients of variation and very unbalanced

lines. But these cases are unlikely (and undesired) to occur in practice.

The computation times are very short. On a modern computer the computation times are much less

than a second in most cases, only in cases with service times with low coefficients of variation and 1

server per server-group the computation times increase to a few seconds. Therefore, for the design of

production lines, this is a very useful approximation method.

6.2 Comparison with QNAT

We also compare the present method with QNAT, a method developed by Tahilramani et al. [13]. We

use a tandem queue with four server-groups. It was only possible to test cases with 1 server in the first

server-group and exponential service times of that server, because the methods use slightly different

models. We varied the number of servers per server-group and the size of buffers. Table 7 shows the

results.

TP TP Our TP QNAT Soj. Soj. Our Soj. QNAT

mi bi Sim. App. error QNAT Error Sim. App. error QNAT error

(1,1,1,1) 0 0.515 0.537 -4.3 % 0.500 2.9 % 5.95 5.61 5.7 % - -

(1,1,1,1) 2 0.702 0.703 -0.1 % 0.750 -6.8 % 9.25 9.10 1.7 % 8.17 11.7 %

(1,1,1,1) 10 0.879 0.876 0.3 % 0.917 -4.3 % 21.43 21.41 0.1 % 18.55 13.5 %

(1,5,5,5) 0 0.711 0.717 -0.8 % 0.167 76.5 % 17.87 17.67 1.1 % - -

(1,5,5,5) 2 0.791 0.788 0.3 % 0.800 -1.1 % 20.53 20.45 0.4 % - -

(1,5,5,5) 10 0.898 0.884 1.6 % 0.895 0.3 % 32.27 32.59 -1.0 % 22.88 29.1 %

(1,4,2,8) 0 0.677 0.692 -2.3 % 0.200 70.5 % 16.59 16.28 1.9 % - -

(1,4,2,8) 2 0.775 0.774 0.1 % 0.800 -3.2 % 19.29 19.15 0.7 % - -

(1,4,2,8) 10 0.893 0.886 0.8 % 0.902 -1.0 % 31.03 30.86 0.6 % 23.04 25.7 %

Table 7: Comparison of our method with QNAT.

We see that the present approximation method is much more stable than QNAT and gives in almost

all cases better results. Especially the approximation of the mean sojourn time is much better; in a

number of cases QNAT is not able to produce an approximation of the mean sojourn time.
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7 Concluding remarks

In this paper we described a method for the approximate analysis of a multi-server tandem queue with

finite buffers and general service times. We decomposed the tandem queue and used an iterative algo-

rithm to approximate its perfromance characteristics. Each multi-server subsystem is approximated

by a single (super) server queue with state-dependent inter-arrival and service times, the steady-state

queue length distribution of which is determined by a spectral expansion method.

This method is robust and efficient; it provides a good and fast alternative to simulation methods. In

most cases the errors for performance characteristics as the throughput and mean sojourn time are

within 5% of the simulation results. The method can be extended in several directions: one may

think of, e.g., more general configurations (splitting, merging, feedback), unreliable machines and

assembly/disassembly (see [15]).

Appendix: Superposition of Service Processes

Let us consider m independent service processes, each of them continuously servicing customers

one at a time. The service times are assumed to be independent and identically distributed. We

are interested in the first two moments of an arbitrary inter-departure time of the superposition of

m service processes. Below we distinguish between Coxian2 service times and Erlangk−1,k service

times.

A.1 Coxian2 service times

We assume that the service times of each service process are Coxian2 distributed with the same pa-

rameters. The rate of the first phase is µ1, the rate of the second phase is µ2 and the probability that the

second phase is needed is q. The distribution of an arbitrary inter-departure time of the superposition

of m service processes can be described by a phase-type distribution with m + 1 phases, numbered

0, 1, . . . ,m. In phase i exactly i service processes are in the second phase of the service time and

m − i service processes are in the first phase. A phase diagram of the phase-type distribution of an

arbitrary inter-departure time is shown in Figure 3. The probability to start in phase i is denoted by

ai, i = 0, . . . ,m − 1. The sojourn time in phase i is exponentially distributed with rate R(i), and pi

is the probability to continue with phase i + 1 after completion of phase i. Now we explain how to

compute the parameters ai, R(i) and pi.

Figure 3: Phase diagram of an arbitrary inter-departure time.
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The probability ai can be interpreted as follows. It is the probability that i service processes are in

phase 2 just after a departure (i.e., service completion). There is at least one process in phase 1,

namely the one that generated the departure. Since the service processes are mutually independent,

the number of service processes in phase 2 is binomially distributed with m − 1 trials and success

probability p. The success probability is equal to the fraction of time a single service process is in

phase 2, so

p =
qµ1

qµ+µ2
.

Hence, for the initial probability ai we get

ai =

(

m − 1

i

)(

qµ1

qµ1 + µ2

)i( µ2

qµ1 + µ2

)m−1−i

(20)

To determine the rate R(i), note that in state i there are i processes in phase 2 and m − i in phase 1,

so the total rate at which one of the service processes completes a service phase is equal to

R(i) = (m − i)µ1 + iµ2 (21)

It remains to find pi, the probability that there is no departure after phase i. In phase i three things

may happen:

• Case (i): A service process completes phase 1 and immediately continues with phase 2;

• Case (ii): A service process completes phase 1 and generates a departure;

• Case (iii): A service process completes phase 2 (and thus always generates a departure).

Clearly, pi is the probability that case (i) happens, so

pi =
q(m − i)µi

R(i)
(22)

Now the parameters of the phase-type distribution are known, we can determine its first two moments.

Let Xi denote the total sojourn time, given that we start in phase i, i = 0, 1, . . . ,m. Starting with

EXm =
1

R(m)
, EX2

m =
2

R(m)2
,

the first two moments of Xi can be calculated from i = m − 1 down to i = 0 by using

EXi =
1

R(i)
+ piEXi, (23)

EX2
i =

2

R(i)2
+ pi

(

2EXi+1

R(i)
+ EX2

i+1

)

. (24)

Then the rate µs and coefficient of variation cs of an arbitrary inter-departure time of the superposition

of m service processes follow from

µ−1
s =

m
∑

i=0

aiEXi =
1

m

(

1

µ1
+

q

µ2

)

, (25)
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c2
s = µ2

s

(

m
∑

i=0

aiEX2
i

)

− 1 (26)

A.2 Erlangk−1,k service times

Now the service times of each service process are assumed to be Erlangk−1,k distributed, i.e., with

probability p (respectively 1 − p) a service time consists of k − 1 (respectively k) exponential phases

with parameter µ. Clearly, the time that elapses until one of the m service processes completes a

service phase is exponential with parameter mµ. The number of service phases completions before

one of the service processes generates a departure ranges from 1 up to m(k − 1) + 1. So the distri-

bution of an arbitrary inter-departure time of the superposition of m service processes is a mixture

of Erlang distributions; with probability pi it consists of i exponential phases with parameter mµ,

i = 1, . . . ,m(k − 1) + 1. Figure 4 depicts the phase diagram. Below we show how to determine the

probabilities pi.

Figure 4: Phase diagram of an arbitrary inder-departure time.

An arbitrary inter-departure time of the superposition of m service processes is the minimum of m−1
equilibrium residual service times and one full service time. Both residual and full service time have

a (different) mixed Erlang distribution. In particular, the residual service consists with probability ri

of i phases with parameter µ, where

ri =

{

1/(k − p), i = 1, 2, . . . , k − 1;
(1 − p)/(k − p), i = k.

The minimum of two mixed Erlang service times has again a mixed Erlang distribution; below we

indicate how the parameters of the distribution of the minimum can be determined. Then repeated

application of this procedure yields the minimum of m mixed Erlang service times.

Let X1 and X2 be two independent random variables with mixed Erlang distributions, i.e., with prob-

ability qk,i the random variable Xk (k = 1, 2) consists of i exponential phases with parameter µk,
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i = 1, . . . , nk. Then the minimum of X1 and X2 consists of at most n1 + n2 − 1 exponential phases

with parameter µ1 + µ2. To find the probability qi that the minimum consists of i phases, we pro-

ceed as follows. Define qi(j) as the probability that the minimum of X1 and X2 consists of i phases

transitions, where j(≤ i) transitions are due to X1 and i − j transitions are due to X2. Obviously we

have

qi =

min(i,n1)
∑

j=max(0,i−n2)

qi(j), i = 1, 2, . . . , n1 + n2 − 1.

To determine qi(j) note that the ith phase transition of the minimum can be due to either X1 or X2. If

X1 makes the last transition, then X1 clearly consists of exactly j phases and X2 of at least i − j + 1
phases; the probability that X2 makes i − j transitions before the jth transition of X1 is negative-

binomially distributed with parameters j and µ1/(µ1 + µ2). The result is similar if X2 instead of X1

makes the last transition. Hence, we obtain

qi(j) =

(

i − 1

j − 1

)(

µ1

µ1 + µ2

)j ( µ2

µ1 + µ2

)i−j

q1,j





n2
∑

k=i−j+1

q2,k





+

(

i − 1

j

)(

µ1

µ1 + µ2

)j ( µ2

µ1 + µ2

)i−j





n1
∑

k=j+1

q1,k



 q2,i−j ,

1 ≤ i ≤ n1 + n2 − 1, 0 ≤ j ≤ i,

where by convention, q1,0 = q2,0 = 0.

By repeated application of the above procedure we can find the probability pi that the distribution of

an arbitrary inter-departure time of the superposition of m Erlangk−1,k service processes consists of

exactly i service phases with parameter mµ, i = 1, 2, . . . ,m(k − 1) + 1. It is now easy to determine

the rate µs and coefficient of variation cs of an arbitrary inter-departure time, yielding

µ−1
s =

1

m

(

p(k − 1)

µ
+

(1 − p)k

µ

)

=
k − p

mµ
,

and, by using that the second moment of an Ek distribution with scale parameter µ is k(k + 1)/µ2,

c2
s = µ2

s

m(k−1)+1
∑

i=1

pi
i(i + 1)

(mµ)2
− 1 = −1 +

1

(k − p)2

m(k−1)+1
∑

i=1

pii(i + 1).

A.3 Equilibrium residual inter-departure time

To determine the first two moments of the equilibrium residual inter-departure time of the superposi-

tion of m independent service processes we adopt the following simple approach.

Let the random variable D denote an arbitrary inter-departure time and let R denote the equilibrium

residual inter-departure time. It is well known that

E(R) =
E(D2)

2E(D)
, E(R2) =

E(D3)

3E(D)
.

17



In the previous sections we have shown how the first two moments of D can be determined in case of

Coxian2 and Erlangk−1,k service times. Its third moment is approximated by the third moment of the

distribution fitted on the first two moments of D, according to the recipe in Section 3.
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