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Abstract: Robust and lane-level positioning is essential for autonomous vehicles. As an irreplaceable

sensor, Light detection and ranging (LiDAR) can provide continuous and high-frequency pose

estimation by means of mapping, on condition that enough environment features are available.

The error of mapping can accumulate over time. Therefore, LiDAR is usually integrated with

other sensors. In diverse urban scenarios, the environment feature availability relies heavily on

the traffic (moving and static objects) and the degree of urbanization. Common LiDAR-based

simultaneous localization and mapping (SLAM) demonstrations tend to be studied in light traffic and

less urbanized area. However, its performance can be severely challenged in deep urbanized cities,

such as Hong Kong, Tokyo, and New York with dense traffic and tall buildings. This paper proposes

to analyze the performance of standalone NDT-based graph SLAM and its reliability estimation in

diverse urban scenarios to further evaluate the relationship between the performance of LiDAR-based

SLAM and scenario conditions. The normal distribution transform (NDT) is employed to calculate

the transformation between frames of point clouds. Then, the LiDAR odometry is performed based

on the calculated continuous transformation. The state-of-the-art graph-based optimization is used

to integrate the LiDAR odometry measurements to implement optimization. The 3D building

models are generated and the definition of the degree of urbanization based on Skyplot is proposed.

Experiments are implemented in different scenarios with different degrees of urbanization and traffic

conditions. The results show that the performance of the LiDAR-based SLAM using NDT is strongly

related to the traffic condition and degree of urbanization. The best performance is achieved in the

sparse area with normal traffic and the worse performance is obtained in dense urban area with

3D positioning error (summation of horizontal and vertical) gradients of 0.024 m/s and 0.189 m/s,

respectively. The analyzed results can be a comprehensive benchmark for evaluating the performance

of standalone NDT-based graph SLAM in diverse scenarios which is significant for multi-sensor

fusion of autonomous vehicle.
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1. Introduction

The autonomous vehicle [1,2] is well believed to be the next revolutionary technology changing

people’s lives in many ways. For fully autonomous vehicles, localization is one of the key parts because

accurate and robust positioning is the basics of further perception and path planning missions for

autonomous driving. The most promising solution to provide globally referenced positioning is sensor
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integration of global navigation satellites system (GNSS), light detection and ranging (LiDAR), inertial

measurement unit (IMU) and high definition map (HD map). Currently, this solution can provide

satisfactory performance in suburban areas [3–9]. However, the performance of the integration solution

can be severely challenged in the deep urbanized area, such as Hong Kong, Tokyo, and New York.

Firstly, the accuracy of GNSS positioning can be decreased to 50 m [10,11], due to the blockage,

reflection, and diffraction from buildings and moving objects. Moreover, the uncertainty of GNSS

positioning, which is significant for sensor fusion, is difficult to model. The IMU can drift over

time due to the dense traffic congestions. The matching between the real-time point clouds from

LiDAR and offline point clouds from HD Map can also be challenged due to the excessive moving

objects, changeable city structures, and environment feature availability. Simultaneous localization

and mapping (SLAM) [12,13] is a significant method to provide positioning service based on mapping

of point clouds. The accuracy of SLAM-based positioning relies heavily on the mapping between point

clouds. In other words, the performance of SLAM is strongly related to the environment. Thus, this

paper proposes to evaluate the performance of NDT-based graph SLAM in diverse urban scenarios to

further study the relationship, between the performance of SLAM and environment conditions.

Numerous studies [13–18] are conducted in the past decades on the LiDAR-based SLAM. The main

principle of LiDAR-based SLAM is to continuously track the transformation between successive

frames of point clouds. In this case, the performance of SLAM relies heavily on the accuracy of the

mapping-based transformation. The LiDAR odometry and mapping (LOAM) [18] can obtain low

drift positioning when satisfactory environment features are available, such as the planes and edges.

However, the performance of this algorithm can be severely degraded in dense urban areas, due to

the excessive moving objects. On one hand, the positioning accuracy cannot be guaranteed with too

much dynamic plane features from traffic. On the other hand, the LOAM algorithm did not propose

an effective method to model the uncertainty of LiDAR-based positioning. The submap concept is

proposed in [13] and the real-time loop closure detection is achieved. However, the uncertainty is not

well modeled, and the performance of this algorithm relies heavily on the additional sensors, such as

the IMU. The mapping solution, normal distribution transform (NDT), based on the normal distribution

transform is proposed in [19]. This method innovatively employs the normal distribution transform

to transfer the mapping process into probabilistic continuous functions. However, this method also

cannot effectively model the positioning uncertainty caused by moving objects. According to the

previous research, the uncertainty caused by the moving objects are not well modeled [20]. To reduce

the drift of LiDAR-based positioning, the loop closure detection [14] algorithm is proposed to mitigate

the global positioning error. The main idea for loop detection is to identify the two similar poses that

the vehicle has gone through. Then, the overall correction of the poses is obtained based on the loop

closure to improve accuracy. However, the loop closure is subjected to the availability of closed loop.

Both the LOAM and the NDT can be used to calculate the transformation between the

consecutive frames of point clouds. The LiDAR odometry can be obtained by tracking the continuous

transformations. To integrate the LiDAR odometry and other sensors, a sensor fusion framework is

needed. Based on the principle of the sensor integration, the sensor integration methods can be divided

into two groups, the filtering-based and the smoothing-based integration. The symbolic filtering-based

sensor integration method is the Bayes filter, including Kalman filter [21,22], information filter [16,23,24]

and particle filter [17,25,26]. The Bayes filter-based sensor integration estimates the current state only

based on current observation and the previous state estimation, abandoning all the states before the

previous states [27]. This is because of the assumption of the first order of the Markov model which is

one of the key assumptions of the Bayes filter. Conversely, the smoothing approaches [28–31] estimate

the pose and map by considering the full sets of measurements between the first epoch and the current

epoch. The most well-known smoothing method is the graph-based SLAM [12]. However, no matter

which mapping method is chosen, the accuracy of LiDAR-based positioning is significant for final

sensor integration.
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Our team aims to develop autonomous driving vehicles to facilitate the next generation of the

intelligent transportation system of Hong Kong. An accurate and robust localization service is the basis.

This paper extensively analyzes the performance of NDT-based graph SLAM in diverse urban scenarios.

This paper firstly employs the NDT to calculate the transformation between two consecutive frames.

Then, graph optimization is used to optimize all the LiDAR odometry measurements from the first

epoch to current epoch. Moreover, this paper estimates the uncertainty of the LiDAR odometry in terms

of the degree of matching, number of iterations and time used for NDT optimization. This covariance

estimation solution is available in the point cloud library (PCL).

The main contributions of this paper are listed as follows:

(1) This paper proposes to generate the 3D building models of the tested area to define the degree

of urbanization of the given scenario. The Skyplot is generated as an indicator of the degree of

urbanization and the corresponding definition is presented. The classification criteria of different

urban scenarios are proposed using Skyplot features.

(2) The multi-sensor integrated localization solution [7,8] tend to evaluate the performance in sparse

scenarios with friendly traffic. This paper evaluates the performance of NDT-based graph SLAM

in diverse urban scenarios, with different traffic conditions and degree of urbanization.

(3) This paper qualitatively analyzes the relationship between the performance of NDT-based

graph SLAM and the traffic conditions and degree of urbanization. The evaluated results

related to the traffic and performance of LiDAR-based positioning can be a useful basic work

for further mitigating the effects of traffic and urbanization to improve the performance of

LiDAR-based positioning.

The rest of the paper is structured as follows. The transformation calculation based on LiDAR

is presented in Section 2. The graph-based SLAM is introduced in Section 3 before the experiment

evaluation is given in Section 4. Finally, the conclusion and future work are presented in Section 5.

2. The Transformation from LiDAR-based Mapping

2.1. Transformation Calculation

The principle of LiDAR odometry [18] is to track the transformation between two successive

frames of point clouds by matching the two frames of point clouds called reference point cloud

and input point cloud in this paper. The matching process is also called point cloud registration.

The objective of point cloud registration is to obtain the optimal transformation matrix to match or

align the reference and the input point clouds. The most well-known and conventional method of

point cloud registration is the iterative closest point (ICP) [32] method. The ICP is a straightforward

method to calculate the transformation between two consecutive scans by iteratively searching pairs

of nearby points in the two scans and minimizing the sum of all point-to-point distances. The objective

function can be expressed as follow [33]:

C(
^
R,

^
T) = argmin

N

∑
i=1

||(Rpi + T)− qi||
2 (1)

where the N indicates the number of points in one scan. R and T indicates the rotation and

translation matrix respectively, to transform the input point cloud (pi) into the reference point cloud (qi).

Objective function C(
^
R,

^
T) indicates the transformation error.

The NDT, modeling the points based on Gaussian distribution, is another method to align two

consecutive scans. The NDT innovatively divides the point cloud space into cells and each cell is

continuously modeled by a Gaussian distribution. In this case, the discrete point clouds are transformed

into successive continuous functions. In this paper, the NDT is chosen as the point cloud registration

method for LiDAR odometry. Assuming that the transformation between two consecutive frames



Sensors 2018, 18, 3928 4 of 21

of point clouds can be expressed as M =
[

Tx Ty Tz Rx Ry Rz

]T
. The process of calculating the

relative pose between the reference and the input point clouds is listed as follows:

(1) Normal distribution transform: fetch all the points xi=1...n cotained in 3D the cell. Calculate the

mean among all the points, q = 1
n ∑ ixi. Calculate the covariance matrix µ,

µ =
1

n ∑ i(xi − q)(xi − q)T (2)

(2) The matching score is modeled as:

f(p) = −score(p) = ∑ i exp (−
(xi

′ − qi)
T

µi
−1(xi

′ − qi)

2
) (3)

where xi indicates the points in the current frame of the scan. xi
′ denotes the point in the previous

scan mapped from the current frame using the M. qi and µi indicate the mean and the covariance

of the corresponding normal distribution to point xi
′ in the NDT of the previous scan.

(3) Update the pose using the Quasi-Newton method using the objective function to minimize the

score f(p).

(4) Repeat the steps (2) and (3) until the convergence is achieved.

With all the points in one frame of point clouds being modeled as cells, the objective of the

optimization for NDT is to match current cells into the previous cells with the highest probability.

The optimization function f(p) can be found in [15]. For each cell containing several points,

the corresponding covariance matrix can be calculated and represented by Σ. The shape (circle, plane or

linear) of the cell is indicated by the relations between the three eigenvalues of the covariance matrix.

2.2. Uncertainty Estimation of Transformation

As the transformation calculation is not always accurate, the uncertainty is a significant parameter

to model the possible error range of the transformation. The uncertainty is modeled as the covariance.

The associated covariance is significant for further sensor integration. During the NDT process,

the covariance of the transformation calculation is related to the environment condition and the

similarity between the consecutive frames of point clouds. In the graph-based optimization which

will be presented in Section 3, the covariance is indicated as the inverse of the information matrix Ωij.

This means the weight of constraint between node i and j.

In this paper, we propose to use the method in [34] to calculate the covariance of transformation

calculation based on the following three items:

(1) The degree of matching between the two consecutive frames of point clouds.

(2) The used time to complete the transformation calculation.

(3) The iteration number used to make the Quasi-Newton method converge.

For each matching process between reference point cloud i and input point cloud j, we model the

degree of matching as:

Udelta,ij =
1

n ∑ n
k=1

√

(xdelta,k)
2 + (ydelta,k)

2 + (zdelta,k)
2 (4)

where the Udelta,ij represents the degree of matching between the input and the reference point clouds.

n represents the number of the points in input point cloud. xdelta,k indicates the positional difference

in x axis between an input point and a reference point after the convergence of NDT is obtained.

ydelta,k and zdelta,k indicate the positional differences in x and y axis respectively. If the time used to

make the NDT converge is tc, the uncertainty related to the time is denoted as:

Ut,ij = Cttc (5)

where the Ct is the coefficient and is heuristically determined. If the iterations number used to make

the NDT converge is Nc, the uncertainty related to Nc is represented as:
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UN,ij = CN Nc (6)

where the CN is the coefficient and is heuristically determined. Thus, for each match between a

reference point cloud and an input point cloud, the total uncertainty of the transformation calculation

is denoted as Uij:

Uij = Udelta,ij + Ut,ij + UN,ij (7)

the information matrix Ωij can be expressed as:

Ωij =

[

Ω
p
ij 0

0 Ω
r
ij

]

(8)

Ω
p
ij = I/(C2

pUij) (9)

Ω
r
ij = I/(C2

r Uij) (10)

where I is a unit matrix, C2
p and C2

r are heuristically determined coefficients for adjusting the covariance

of translation and rotation, respectively. In this case, the covariance of the transformation calculation is

correlated with the degree of matching, time used for the NDT convergence and times of iteration.

3. Graph-based SLAM

This section presents the graph optimization. Pose graph optimization is to construct all the

measurements into a graph as constraints and calculate the best set of poses by solving a non-linear

optimization problem [12]. In this paper, the constraints are provided by the continuous LiDAR

odometry. To implement the graph-based integration optimization, two steps are needed, the graph

generation and graph optimization.

3.1. Graph Generation

The graph consists of edges and vertices [12]. As shown in Figure 1, edges are indicated by

observation measurements from the LiDAR odometry. The xi represents pose estimation that include

the position and orientation; eij indicates the error function evaluating the difference between the

estimated state and the observed pose measurements; zij represents the observation and the ẑij indicates

the expected observation. The blue circles and lines represent the nodes and edges, respectively,

which are provided by LiDAR odometry.

𝑈𝑁,𝑖𝑗 = 𝐶𝑁𝑁𝑐𝐶𝑁𝑈𝑖𝑗 𝑈𝑖𝑗 = 𝑈𝑑𝑒𝑙𝑡𝑎,𝑖𝑗 + 𝑈𝑡,𝑖𝑗 + 𝑈𝑁,𝑖𝑗𝛀𝒊𝒋 𝛀𝒊𝒋 = [𝛀𝒊𝒋𝒑 00 𝛀𝒊𝒋𝒓 ]𝛀𝒊𝒋𝒑 = 𝐈/(C𝑝2𝑈𝑖𝑗)𝛀𝒊𝒋𝒓 = 𝐈/(C𝑟2𝑈𝑖𝑗)C𝑝2 C𝑟2

𝑥𝑖𝑒𝑖𝑗 𝑧𝑖𝑗�̂�𝑖𝑗

Figure 1. Demonstration of the graph generation based on LiDAR odometry.

3.2. Graph Optimization

The graph optimization takes all the constraints into a non-linear optimization problem. The main

feature of the graph-based optimization is that all the observation measurements are considered.

The optimization form is shown following [35]:

F(x) = ∑
i,j

e(xi, xj, ẑij)
T

Ωije(xi, xj, ẑij) (11)
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where F(x) is the optimization function which is the sum of errors of all edges. The Ωij is the

information matrix indicating the importance of each constraint in the global graph optimization.

The information matrix is the inverse of the covariance matrix estimated in Section 2. The final solution

of this optimization is the x∗ which satisfied the following function:

x∗ = argminF(x) (12)

Thus, the optimization lies in solving the equation above to obtain the optimal x∗. We can see from

the optimization form F(x), the covariance of the measurements from LiDAR odometry is represented

by the information matrix Ωij. If the covariance of each measurement is not properly solved, the global

optimization will be deflected resulting in the erroneous final pose sets. In other words, the covariance

is significant for the performance of the graph optimization.

4. Experimental Evaluation

To evaluate the performance of NDT-based graph SLAM in diverse urban scenarios, experiments are

conducted in three different scenarios with different traffic conditions. The environment features of three

scenes are shown as following:

(1) Sparse area: (a) Sparse area with normal traffic. (b) The sparse area with dense traffic.

(2) Sub-urban area: (a) Sub-urban area with normal traffic. (b) The sub-urban area with dense traffic.

(presented in the Appendix A)

(3) Dense urban area: (a) Dense urban area with normal traffic. (b) The dense urban area with

dense traffic.

Definition 1. The degree of urbanization: The level of urbanization increases from scenes (1) to (3). There is

almost no effective and existing way to model the degree of urbanization regarding to the autonomous vehicle.

The degree of urbanization is extensively discussed in the GNSS field, as buildings [36,37] and moving

objects [20] can have significant effects on the accuracy of GNSS solutions. The Skyplot [38] is employed

to represent satellite visibility (LOS: line-of-sight, NLOS: non-line-of-sight) by project both the 3D building

models and satellites into the Skyplot coordinate system. Inspired by this, we propose to use the mean mask

elevation angle of a Skyplot as an indicator of urbanization. As the building model information are available

in Google Maps for research purpose, we construct the 3D building models of the experiment scene shown in

Figure 2.

𝐹(x) =∑𝑒(x𝑖 , x𝑗 , �̂�𝑖𝑗)𝑇𝛀𝒊𝒋𝑒(x𝑖 , x𝑗 , �̂�𝑖𝑗)𝑖,𝑗𝐹(x) 𝛀𝒊𝒋

𝑥∗ 𝑥∗ = argmin𝐹(𝑥) 𝑥∗𝐹(x) 𝛀𝐢𝐣

 

Figure 2. 3D building models of tested area.
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For a dense urban scenario, the 3D building models generated in a street are shown on the left

side in Figure 3, assuming the vehicle is at the position shown in Figure 3 with 3D LiDAR sensor

being installed on the top. By connecting a line from the vehicle and building roof, we can denote the

mask elevation angle and azimuth angle as α and θ, respectively. Assume that at an azimuth angle θi,

the distance between the vehicle and the building is W and building height is H, we can calculate the

corresponding elevation angle αi as:

αi = atan(
H

W
) (13)

By traversing all the azimuth angles from 0◦ to 360◦ with an angular resolution of 1◦, we can obtain the

Skyplot [38] (shown in the right side of Figure 3) regarding the given vehicle position. The inner circle

indicates a different elevation angle. The “N” means north. The shaded area means blockage from

buildings. Taller buildings cause more blockage, which introduces a higher degree of urbanization.

α θ𝜃𝑖 𝛼𝑖 𝛼𝑖 = atan(𝐻𝑊)0° 360° 1°
The “N” means north. 

 

ℶ𝑢𝑟𝑏𝑎𝑛 =∑ 𝛼𝑖360𝑖=1 /360
ℶ𝑢𝑟𝑏𝑎𝑛 ℶ𝑢𝑟𝑏𝑎𝑛55.32°ℶ𝑢𝑟𝑏𝑎𝑛

ℶ𝑢𝑟𝑏𝑎𝑛
ℶ𝑢𝑟𝑏𝑎𝑛 0°~15° 15°~46° > 46°

–

–

Figure 3. Skyplot generation based on 3D building models.

Therefore, we propose to calculate the mean elevation mask angle as a quantitative indicator of

the degree of urbanization of the given scenario as follows:

iurban = ∑ 360
i=1αi/360 (14)

In this case, the degree of urbanization of a given scenario is represented by iurban. The iurban for

the scenario shown in Figure 3 is 55.32◦. We propose to define the degree of urbanization using the rules

in Table 1. Therefore, the iurban for the scenario in Figure 3 satisfies the dense urban area condition.

Table 1. Definition of the degree of urbanization based on iurban.

Sparse Area Sub-urban Area Dense Urban Area

iurban 0◦ ∼ 15◦ 15◦ ∼ 46◦ > 46◦

Definition 2. Traffic conditions: We define that the normal traffic means the common traffic condition density

in urban areas with approximately 2–5 vehicles surrounding the ego-vehicle (shown in the left of Figure 4).

The dense traffic indicates that there are numerous moving objects on the roads. For example, in rush hours with

approximately 8–12 vehicles surrounding the ego-vehicle (shown in the right of Figure 4).
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truth of vehicle’s position.

∈𝑆𝐿𝐴𝑀

Figure 4. Scenarios with different traffic conditions. The green boxes indicate the surrounding dynamic

vehicles. The left figure shows the scenario with normal traffic and right figure with dense traffic.

4.1. Experimental Setup

A 3D LiDAR sensor, Velodyne 32, is employed to provide the real-time point clouds scanned from

the surroundings. 3D LiDAR is installed on the top of a vehicle during the experiment which can be seen

in Figure 5. The LiDAR coordinate system is shown in Figure 5 with the x-axis pointing to the back of the

vehicle. The integrated navigation system (NovAtel SPAN-CPT, RTK/INS integrated navigation system

with fiber optics gyroscopes) based on local ENU [39] coordinate system is used to provide ground truth.

The coordinate system of LiDAR and SPAN-CPT is calibrated at the beginning of the tests.

 

truth of vehicle’s position.

∈𝑆𝐿𝐴𝑀
Figure 5. Sensors setup of the vehicle: 3D LiDAR sensor is installed on the top of the vehicle.

GNSS RTK/INS integrated navigation system is installed on the top of the vehicle next to 3D LiDAR.

The GNSS RTK/INS in ENU coordinate system is used to provide the ground truth of vehicle’s position.

The evaluated items in the following experiments include the positioning error of NDT-based

graph SLAM and reliability estimation error. Regarding the total positioning error ∈SLAM, it is

calculated by:

∈SLAM=
√

((Ee
slam − Ee

GT)
2 + (Nn

slam − Nn
GT)

2 + (Uu
slam − Uu

GT)
2) (15)
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where Ee
slam, Nn

slam and Uu
slam denote the estimated position in east, north and upward axes of ENU

coordinate system. The Ee
GT , En

GT and Eu
GT denote the ground truth (by GNSS RTK/INS integrated

system) in east, north and upward axes of ENU coordinate system. Assuming that the heading angle of

vehicle relative to north of the earth is denoted as RU in radian, then the positioning error ∈
longitudinal
SLAM of

a vehicle in longitudinal direction can be calculated by projecting ∈SLAM into the direction of heading

(RU). Similarly, the error in the lateral direction can also be calculated by projecting ∈SLAM into the

direction normal to heading direction (RU).

The reliability is calculated as Cp
√

Uij. The ground truth for reliability estimation is the actual

total positioning error ∈SLAM. The objective of reliability estimation is to obtain a smallest circle that

can cover ∈SLAM to represent the uncertainty of a given positioning result.

4.2. Experiment in Sparse Area

4.2.1. Experiment 1: Performance Evaluation of NDT-based Graph SLAM in Sparse Area with
Normal Traffic

In this experiment, the scenario is shown in the top panel of Figure 6. The overall drive of a

vehicle lasts about 395 s in a sparse area with normal traffic. The height of the surrounding buildings

is about 5–10 m high and the width of the streets is approximately 16 m. The iurban for the scenario

shown in Figure 6 is about 6◦–10◦ satisfying the sparse area condition.

We can see from the bottom panel of Figure 6, the positioning result of SLAM can well track

the ground truth at the beginning of the test. However, due to the accumulated error over time,

the SLAM-based trajectory drifts away from the ground truth. The detailed positioning error during

the experiment is shown in Figure 7. The top panel shows the positioning error in three different

directions. The lateral direction is normal to the driving direction of the vehicle with the longitudinal

direction parallel with the driving direction. The bottom panel indicates the reliability estimation.

The reliability shown in the bottom panel is calculated based on Cp
√

Uij presented in Section 2.

We can see that the 3D positioning error (∈SLAM) almost increases over time with the final positioning

error reaching almost 10 m. The estimated reliability can track the 3D positioning error at the very

beginning of the test. The estimated reliability tends to fluctuate between 7 m over time in this

experimental scenario.

Table 2 shows the mean error and standard deviation of positioning error in three separate

directions; 3.44 m of mean error in the lateral direction is obtained with a standard deviation of 1.88 m.

The mean positioning error in the longitudinal direction is 3.19 m. Moreover, the mean positioning

error in altitude direction is just 3.05 m with a standard deviation of 1.02 m. The mean of 2D (sum of

lateral and longitudinal direction) positioning error is 6.64 m which are slightly smaller than the 3D

positioning error (9.69 m). As the positioning error accumulates over time using standalone NDT-based

graph SLAM, we propose to use the gradient of accumulated error to evaluate the performance of

SLAM. The 2D gradient indicates the rate of change of 2D mean positioning error and is obtained with

total 2D mean error divided by total epochs. Similarly, the 3D gradient indicates the rate of change

of 3D positioning error. The 2D gradient is 0.017, which means that the accumulated error of SLAM

increased by meters per second. The 3D positioning error gradient is 0.024 m per second.

Regarding the reliability estimation result (blue dots in the bottom panel of Figure 7), we can

find that the Cp
√

Uij overestimates the 3D positioning error in the majority of the situations.

Moreover, the estimated reliability fluctuates dramatically during the test (from 0 to 15 m).
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truth of the vehicle’s trajectory. The 

Figure 6. Experiment 1: the trajectory of NDT-based graph SLAM in a sparse area with normal traffic

condition. Top panel represents the snapshot in Google Maps. The black curve indicates the ground

truth of the vehicle’s trajectory. The bottom panel indicates the generated points map and trajectory

from SLAM and ground truth.

truth of the vehicle’s trajectory. The 

Figure 7. Experiment 1: positioning error and reliability estimation result. The top panel represents

the positioning error in lateral, longitudinal and altitude directions, respectively. The bottom panel

represents the estimated reliability and 3D positioning error of SLAM.

Table 2. Experiment 1: Performance of NDT-based graph SLAM in a sparse area with dense

traffic condition.

Error
Lateral

(m)
Longitudinal

(m)
Altitude

(m)
Reliability

(m)
2D
(m)

2D Gradient
(m/s)

3D
(m)

3D Gradient
(m/s)

Mean 3.44 3.19 3.05 7.52 6.64 0.017 9.69 0.024
Std 1.88 1.79 1.02 2.75 3.29 0.008 4.12 0.010
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4.2.2. Experiment 2: Performance Evaluation of NDT-based Graph SLAM in Sparse Area with
Dense Traffic

In this experiment, the scenario is shown in the top panel of Figure 8. The overall drive of the

vehicle lasts about 400 s in a sparse area with dense traffic. The height of the surrounding buildings is

about 5–10 m high and the width of the streets is approximately 16 m which are similar to experiment 1.

We can see from the bottom panel of Figure 8, that the positioning result of SLAM can track

the ground truth at the beginning of the test. However, due to the accumulated error over time,

the SLAM-based trajectory is drifting away from the ground truth. The positioning error during the

experiment is shown in Figure 9. We can see that the 3D positioning error increases over time with the

final positioning error reaching about 19 m. The estimated reliability can track the 3D positioning error

at the very beginning of the test. However, the difference between the estimated reliability of SLAM

and the 3D positioning error increases over time. The estimated reliability tends to fluctuate in the

vicinity of 5 m over time during the experiment.

Table 3 shows the mean and standard deviation of positioning error in three separate directions;

6.31 m of mean error in the lateral direction is obtained with a standard deviation of 5.26 m. The mean

positioning error in the longitudinal direction is 4.91 m. Interestingly, the mean positioning error in

altitude direction is just 0.77 m with a standard deviation of 0.84 m. The mean of 2D (sum of lateral and

longitudinal directions) positioning error is 11.21 m which are slightly smaller than the 3D positioning

error (11.99 m). The 2D gradient is 0.028, which means that the accumulated error of SLAM increased

by meters per second. The 3D positioning error gradient is 0.03 m per second.

Regarding the reliability estimation result (blue dots in the bottom panel of Figure 9), we can find

that the estimated reliability is even worse than that in experiment 1. From epoch 100 to 400, the actual

3D positioning error is larger than the estimated (reliability). The estimated mean reliability is 5.93 m

which are smaller than its ground truth (11.99 m).

The main reason for this is due to the increased traffic density, compared with experiment 1.

According to [40], the dynamic objects from traffic can cause increased uncertainty in LiDAR-based

positioning. The evaluated reliability estimation method [34] cannot model the uncertainty caused by

dynamic objects. These experimental results show that traffic has a negative effect on the performance

of NDT-based graph SLAM.

–

 

truth of the vehicle’s trajectory.

Figure 8. Experiment 2: the trajectory of NDT-based graph SLAM in a sparse area with dense traffic

condition. Top panel represents the snapshot in Google Maps. The black curve indicates the ground

truth of the vehicle’s trajectory. The bottom panel indicates the generated points map and trajectory

from SLAM.
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∈𝑆𝐿𝐴𝑀

Figure 9. Experiment 2: positioning error and reliability estimation result. The top panel represents

the positioning error in lateral, longitudinal and altitude directions, respectively. The bottom panel

represents the estimated reliability and 3D positioning error of SLAM.

Table 3. Experiment 2: Performance of NDT-based graph SLAM in a sparse area with dense

traffic condition.

Error
Lateral

(m)
Longitudinal

(m)
Altitude

(m)
Reliability

(m)
2D
(m)

2D Gradient
(m/s)

3D
(m)

3D Gradient
(m/s)

Mean 6.31 4.91 0.77 5.93 11.21 0.028 11.99 0.03
Std 5.26 4.36 0.84 2.87 5.18 0.013 5.60 0.014

4.3. Experiment in Dense Urban Area

4.3.1. Experiment 3: Performance Evaluation of NDT-based Graph SLAM in Dense Urban Area with
Normal Traffic

In this experiment, the scenario is shown in the top panel of Figure 10. The overall drive of vehicle

lasts about 124 s in dense urban areas with normal traffic. The height of the surrounding buildings is

about 59–105 m high and the width of the streets is approximately 16–20 m. The iurban for the scenario

shown in Figure 10 is about 50◦–63◦ satisfying the dense urban area condition.

We can see from the bottom panel of Figure 11, the positioning result of SLAM can well track

the ground truth at the beginning of the test. However, due to the accumulated error over time,

the SLAM-based trajectory is drifting away from the ground truth. The positioning error during the

experiment is shown in Figure 11. We can find that the main trend in positioning error is that the

positioning error ∈SLAM increased over time. The 3D positioning error increases over time with the

final positioning error reaching about 28 m. The estimated reliability can track the 3D positioning error

at the very beginning of the test. However, the difference between the estimated reliability of SLAM

and the 3D positioning error increases over time. The estimated reliability tends to fluctuate between

10 and 60 m over time during the experiment.

Table 4 shows the mean and standard deviation of positioning error in three separate directions;

6.73 m of mean error in the lateral direction is obtained with a standard deviation of 4.39 m. The mean

positioning error in the longitudinal direction is 4.81 m. Interestingly, the mean positioning error in

altitude direction is just 11.90 m which are significantly larger than the other two directions. The mean

of 2D (sum of lateral and longitudinal directions) positioning error is 11.54 m with the 3D positioning

error reaching 14.85 m. The 2D gradient is 0.094 and the value for the 3D gradient is 0.121.

Regarding the reliability estimation result (blue dots in the bottom panel of Figure 11), from epoch

0 to 60, the actual 3D positioning error is smaller than the estimated (reliability). The estimated mean

reliability is 18.90 m which are significantly larger than its ground truth (14.85 m).
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By comparing this with the experiments conducted in the sparse area, the mean 3D gradient

of 3D positioning error in dense urban (0.121 m/s) is significantly larger than that in the sparse

area (0.024 m/s in normal traffic and 0.03 in normal traffic). These results show that the degree of

urbanization has also an impact on the performance of NDT-based graph SLAM.

 

ground truth of the vehicle’s trajectory. The bottom panel indicates the generated points map and 

a

 

Figure 10. Experiment 3: the trajectory of NDT-based graph SLAM in a dense urban area with normal

traffic condition. Top panel represents the snapshot in Google Maps. The black curve indicates the

ground truth of the vehicle’s trajectory. The bottom panel indicates the generated points map and

trajectory from SLAM.

ground truth of the vehicle’s trajectory. The bottom panel indicates the generated points map and 

Figure 11. Experiment 3: positioning error and reliability estimation result. The top panel represents

the positioning error in lateral, longitudinal and altitude directions, respectively. The bottom panel

represents the estimated reliability and 3D positioning error of SLAM.

Table 4. Experiment 3: Performance of NDT-based graph SLAM in a dense urban area with normal

traffic condition.

Error
Lateral

(m)
Longitudinal

(m)
Altitude

(m)
Reliability

(m)
2D
(m)

2D Gradient
(m/s)

3D
(m)

3D Gradient
(m/s)

Mean 6.73 4.81 11.9 18.9 11.54 0.094 14.85 0.121
Std 4.39 2.31 9.01 9.61 6.01 0.049 9.75 0.079
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4.3.2. Experiment 4: Performance Evaluation of NDT-based Graph SLAM in Dense Urban Area with
Dense Traffic

In this experiment, the scenario is shown in the top panel of Figure 12. The overall drive of vehicle

lasts about 124 s in dense urban with dense traffic. The height of the surrounding buildings is about

50–175 m high and the width of the streets is approximately 16–20 m. The iurban for the scenario

shown in Figure 10 is about 50◦–67◦ satisfying the dense urban area condition.

We can see from the bottom panel of Figure 13, that the positioning result of SLAM can well

track the ground truth at the beginning of the test. However, due to the accumulated error over time,

the SLAM-based trajectory is drifting away from the ground truth. The positioning error (∈SLAM)

during the experiment is shown in Figure 13. The 3D positioning error increases over time with the

final positioning error reaching about 42 m. The estimated reliability can track the 3D positioning error

at the very beginning of the test. However, the difference between the estimated reliability of SLAM

and the 3D positioning error increases over time. Interestingly, we can find that altitude positioning

error in both experiment 3 and experiment 4 dominant the ∈SLAM.

Table 5 shows the mean and standard deviation of positioning error in three separate directions;

11.25 m of mean error in the lateral direction is obtained with a standard deviation of 5.09 m. The mean

positioning error in the longitudinal direction is 2.77 m. Interestingly, the mean positioning error

in altitude direction reaches 19.07 m which are significantly larger than the other two directions.

The mean of 2D (sum of lateral and longitudinal directions) positioning error is 14.02 m with the 3D

positioning error reaching 23.22 m. The 2D gradient is 0.114 and the value for the 3D gradient is 0.189.

Regarding the reliability estimation result (blue dots in the bottom panel of Figure 13), from epoch

20 to 120, the actual 3D positioning error is larger than estimated (reliability). The estimated mean

reliability is 14.38 m which are significantly smaller than its ground truth (23.22 m). Interestingly,

we can find that it tends to overestimate the uncertainty of SLAM in normal traffic scenario and

underestimate that in dense traffic scene. The main reason for this is that the used reliability estimation

method cannot model the effects of traffic (dynamic objects). In other words, the dense traffic scenes

introduce larger uncertainty. This result again shows that traffic has a bad impact on the performance

of NDT-based graph SLAM.

– – ℶ𝑢𝑟𝑏𝑎𝑛50°– 67°
∈𝑆𝐿𝐴𝑀

∈𝑆𝐿𝐴𝑀

 

ground truth of the vehicle’s 

Figure 12. Experiment 4: the trajectory of NDT-based graph SLAM in a dense urban area with dense

traffic condition. Top panel represents the snapshot in Google Maps. The black curve indicates the

ground truth of the vehicle’s trajectory. The bottom panel indicates the generated points map and

trajectory from SLAM.
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Figure 13. Experiment 4: positioning error and reliability estimation result. The top panel represents

the positioning error in lateral, longitudinal and altitude directions, respectively. The bottom panel

represents the estimated reliability and 3D positioning error of SLAM.

Table 5. Experiment 4: Performance of NDT-based graph SLAM in dense urban area with dense

traffic condition.

Error
Lateral

(m)
Longitudinal

(m)
Altitude

(m)
Reliability

(m)
2D
(m)

2D Gradient
(m/s)

3D
(m)

3D Gradient
(m/s)

Mean 11.25 2.77 19.07 14.38 14.02 0.114 23.22 0.189
Std 5.09 2.06 9.60 10.25 4.80 0.039 10.25 0.083

5. Discussion, Conclusion and Future Work

(1) The relationship between the traffic conditions and the performance of NDT-based graph

SLAM positioning:

Traffic condition and accuracy of NDT-based graph SLAM: The detailed analysis of the

relationship between the traffic conditions and the accuracy of LiDAR-based positioning is shown

in Figure 14, which shows the results in two different degrees of traffic conditions. According to the

presented six experiments (including two experiments presented in the Appendix A); the accuracy

of the SLAM is degraded with increased traffic density. For example, the mean 3D positioning error

increased from 1.58 m (experiment 5 with normal traffic) to 1.91 m (experiment 6 with dense traffic).

This phenomenon is also the same in the sparse area and dense urban areas. The main reason causing

this degradation in SLAM performance is the moving objects in traffic, such as the double-decker

bus, cars, and trucks. Our previous research [20] shows that the height of the double-decker bus

can go up to 4.5 m in Hong Kong and, thus, it takes up the majority of the field of view (FOV)

of 3D LiDAR. The double-decker bus is a moving object on the roads. In this case, the majority

of the 3D point clouds are scanned from the moving objects. The points from moving objects can

distort the mapping between two consecutive frames of point clouds, thus impairing the accuracy

of SLAM. We can also see that the positioning error gradient increases with enhanced traffic density.

Overall, traffic conditions have negative effects on the accuracy of NDT-based SLAM. In other words,

more dynamic environments with more moving objects introduce more degradation in the positioning

accuracy of NDT-based graph SLAM. The evaluated results related to the traffic and accuracy of

NDT-based SLAM can be a good benchmark for further mitigating the effects of traffic to improve the

accuracy of LiDAR-based positioning.
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Figure 14. The relationship between the traffic conditions and the performance of NDT-based graph

SLAM. The x-axis indicates the traffic condition (including normal traffic and dense traffic). The y-axis

on the left side represents the value of positioning error and the y-axis on the right side indicates the

positioning error gradient.

Traffic condition and reliability estimation: As presented in Experiment 4, it tends to overestimate

the uncertainty of SLAM in a normal traffic scenario and underestimate that in dense traffic scene. In other

words, the dense traffic scenes introduce larger uncertainty. This result again shows that the traffic has a

bad impact on the performance of NDT-based graph SLAM. Proper methods to cope with the dynamic

objects are needed to effectively estimate the uncertainty caused by dense traffic.

(2) The relationship between the degree of urbanization and the performance of

LiDAR-based positioning:

The degree of urbanization and accuracy of NDT-based graph SLAM: The detailed analysis of

the relationship between the degree of urbanization and the accuracy of NDT-based graph SLAM is

shown in Figure 15. According to the six experiments, three levels of areas classified based on the degree

of urbanization are presented. We can see from Figure 15, the 3D gradient in sub-urban is similar to

that in the sparse area. However, the 3D gradient in dense urban is significantly larger than that in both

sparse areas and sub-urban. The main reason for this result is the environment features availability.

In the sub-urban and sparse areas experiments, the main features are buildings, moving objects,

and some trees, which means that abundant features are available. In the dense urban area, the main

features are tall buildings and moving objects, which means less feature availability. Moreover, we can

find that the 3D positioning error in altitude direction increases dramatically with an increased degree

of urbanization which can be seen by comparing with Experiment 1 and 3. In total, the increased

density of urbanization can degrade the accuracy of SLAM-based positioning, especially in the

altitude direction. To effectively model the uncertainty of LiDAR-based positioning, the surrounding

environment features are needed to be considered, for example, the degree of urbanization. The 3D

building model generated in Figure 2 is a potential resource which contains the models of buildings

to improve the accuracy of NDT-based graph SLAM. Inspired by this, we are going to employ

the 3D building model to facilitate the effects estimation of urbanization on the performance of

LiDAR-based positioning.

The degree of urbanization and reliability estimation of NDT-based graph SLAM: as discussed

in experiment 4, the reliability estimation of NDT-based SLAM is highly related to the traffic condition.

However, there are no obvious relationships between the reliability estimation and the degree of

urbanization according to the presented experiments. In total, the sub-urban area has the smallest

mean uncertainty and the dense urban area possesses the largest estimated uncertainty.
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ℶ𝑢𝑟𝑏𝑎𝑛20°~41°

Figure 15. The relationship between the degree of urbanization and the performance of LiDAR-based

positioning. The x-axis indicates the degree of urbanization. The y-axis on the left side represents the

value of positioning error and the y-axis on the right side indicates the positioning error gradient.

Insufficient positioning accuracy and robustness is one of the main technical problems that

prevent the arrival of autonomous vehicles in the super-urbanized areas, such as Hong Kong, Tokyo,

and New York. According to our previous localization experiments conducted in Hong Kong using

multi-sensor fusion (GNSS/IMU/LiDAR/HD Map) method [34] using Kalman filter, we find that

the method (GNSS/IMU/LiDAR/HD Map) can obtain satisfactory performance in the sparse area.

However, the solution usually fails in a deep urban area with dense traffic. Therefore, we propose

to conduct experiments in diverse urban scenarios to find out the effects of traffic and degree of

urbanization on LiDAR-based positioning. This is also the main contribution of this paper. Coping with

the effects from both traffic and urbanization on the LiDAR-based positioning is significant for the

GNSS/INS/LiDAR/HD Map-based localization solution for an autonomous vehicle. We believe

that this paper can be a useful basic work to improving the LiDAR-based positioning in dense

urban scenarios.

(3) Future work: we aim to employ moving objects detection and 3D building models to improve

the performance of NDT-based graph SLAM. Moreover, the uncertainty estimation of LiDAR-based

SLAM will be conducted by considering both the traffic conditions and 3D building models.
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Science and Technology Innovation Committee (Project No. JCYJ20170818103653507).
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Appendix A

Appendix A.1. Experiment in Sub-Urban Area

Appendix A.1.1. Experiment 5: Performance Evaluation of NDT-Based Graph SLAM in Sub-Urban
Area with Normal Traffic

In this experiment, the scenario is shown in the right panel of Figure A1. The overall drive of

vehicle lasts about 64 s in sub-urban with dense traffic. The height of the surrounding buildings is

about 10~25 m high and the width of the streets is approximately 16~20 m. The iurban for the scenario

shown in Figure A1 is about 20◦ ∼ 41◦ satisfying the dense urban area condition. The detailed results

for this experiment are shown in Figure A2 and Table A1.
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vehicle’s trajectory.

ℶ𝑢𝑟𝑏𝑎𝑛

Figure A1. Experiment 5: the trajectory of NDT-based graph SLAM in a sub-urban area with normal

traffic condition. The left panel indicates the generated points map and trajectory from SLAM. Right

panel represents the snapshot in Google Maps. The black curve indicates the ground truth of the

vehicle’s trajectory.
vehicle’s trajectory.

ℶ𝑢𝑟𝑏𝑎𝑛

Figure A2. Experiment 5: positioning error and reliability estimation result. The top panel represents

the positioning error in lateral, longitudinal and altitude directions, respectively. The bottom panel

represents the estimated reliability and 3D positioning error of SLAM.

Table A1. Experiment 5: Performance of NDT-based graph SLAM in a sub-urban area with normal

traffic condition.

Error
Lateral

(m)
Longitudinal

(m)
Altitude

(m)
Reliability

(m)
2D
(m)

2D Gradient
(m/s)

3D
(m)

3D Gradient
(m/s)

Mean 0.91 0.54 0.15 4.69 1.44 0.023 1.58 0.025
Std 0.79 0.48 0.11 6.09 1.05 0.016 1.11 0.016

Appendix A.1.2. Experiment 6: Performance Evaluation of NDT-Based Graph SLAM in Sub-Urban
Area with Dense Traffic

In this experiment, the scenario is shown in the right panel of Figure A3. The overall drive of

vehicle lasts about 64 s in sub-urban with dense traffic. The height of the surrounding buildings is

about 10~25 m high and the width of the streets is approximately 16~20 m. The iurban for the scenario

shown in Figure A3 is about 20◦ ∼ 41◦ satisfying the dense urban area condition. The only difference
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between experiment 5 and experiment 6 is the density of traffic. The detailed results for this experiment

are shown in Figure A4 and Table A2.

20°~41°

 

vehicle’s trajectory.

Figure A3. Experiment 6: the trajectory of NDT-based graph SLAM in a sub-urban area with dense

traffic condition. The left panel indicates the generated points map and trajectory from SLAM. Top

panel represents the snapshot in Google Maps. The black curve indicates the ground truth of the

vehicle’s trajectory.

20°~41°

vehicle’s trajectory.

Figure A4. Experiment 6: positioning error and reliability estimation result. The top panel represents

the positioning error in lateral, longitudinal and altitude directions separately. The bottom panel

represents the estimated reliability and 3D positioning error of SLAM.

Table A2. Experiment 4: Performance of NDT-based graph SLAM in a sub-urban area with dense

traffic condition.

Error
Lateral

(m)
Longitudinal

(m)
Altitude

(m)
Reliability

(m)
2D
(m)

2D Gradient
(m/s)

3D
(m)

3D Gradient
(m/s)

Mean 0.85 0.694 0.367 5.26 1.54 0.024 1.91 0.029
Std 0.59 0.537 0.25 5.05 0.94 0.015 1.01 0.016
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