
Performance Analysis of Network Coding based P2P Live

Video Streaming Systems

Bassel Saleh

A Thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements for

the Degree of Master of Applied Science at

Concordia University

Montréal, Québec, Canada

September 2013

c⃝ Bassel Saleh, 2013

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By : Bassel Saleh

Entitled : Performance Analysis of Network Coding based P2P Live Video

Streaming Systems

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science - Electrical and Computer Engineering

complies with the regulations of the University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining committee :

Dr. M. Zahangir Kabir Chair

Dr. Mustafa K. Mehmet Ali Examiner

Dr. Amr M. Youssef Examiner

Dr. Dongyu Qiu Thesis Supervisor

Approved by

Chair of Department or Graduate Program Director

Dean of Faculty

Date August 29, 2013

ABSTRACT

Performance Analysis of Network Coding based P2P Live Video

Streaming Systems

Bassel Saleh

Peer-to-peer (P2P) video streaming is a scalable and cost-effective technology to

stream video content to a large population of users and has attracted a lot of research

for over a decade now. Recently, network coding has been introduced to improve the

efficiency of these systems and to simplify the protocol design. There are already

some successful commercial applications that utilize network coding. However, previ-

ous analytical studies of network-coding based P2P streaming systems mainly focused

on fundamental properties of the system and ignored the influence of the protocol de-

tails. In this study, a unique stochastic model is developed to reveal how segments of

the video stream evolve over their lifetime in the buffer before they go into playback.

Different strategies for segment selection have been studied with the model and their

performance has been compared. A new approximation of the probability of linear

independency of coded blocks has been proposed to study the redundancy of network

coding. Finally, extensive numerical results and simulations have been provided to

validate our model. From these results, in-depth insights into how system parame-

ters and segment selection strategies affect the performance of the system have been

obtained.

iii

Acknowledgements

I would like to thank my supervisor Dr. Dongyu Qiu for all the help he offered

throughout the thesis process. His input and feedback have made significant impact

on my work. I also really appreciate his patience, guidance, and encouragement

whenever I faced a new challenge.

I am also very grateful to my family who was nothing but supportive throughout

the last year in spite of all the difficulties they went through.

iv

Contents

List of Figures viii

List of Tables x

1 Introduction & Literature Review 1

1.1 P2P Networks . 2

1.1.1 P2P file sharing . 3

1.1.2 P2P video streaming . 5

1.1.3 Tree-based Approach . 6

1.1.4 Random mesh based streaming 8

1.2 Network Coding based P2P streaming 11

1.2.1 Design principles with network coding 13

1.3 Related Work . 15

1.4 Thesis Objective . 17

1.5 Thesis Organization . 18

2 System Model and Analysis 20

2.1 System overview . 20

2.1.1 How Network Coding is Performed 20

2.1.2 Buffer organization . 25

2.1.3 Server algorithm . 26

v

2.1.4 Block Scheduling . 27

2.2 System Model . 28

2.2.1 Number of blocks at age 0, X0 32

2.2.2 Number of blocks Xn for n > 0 35

2.2.3 Rn the number of blocks received from neighbors to sBn 37

2.2.4 βn, probability a neighbor pushes a useful block to sBn 38

2.2.5 Efficiency η . 54

2.2.6 Releasing the upload bandwidth of the peers: the case of het-

erogeneous upload bandwidth 60

2.2.7 Efficiency for the case of heterogeneous upload bandwidth . . 68

3 Numerical Results and Analysis of the Protocol Performance 72

3.1 Video streaming parameters . 75

3.1.1 Peer upload bandwidth Up . 75

3.1.2 Comparison of the Uniform and Most Urgent strategies 77

3.1.3 Server Capacity Us . 81

3.1.4 Overlay Size Z . 83

3.1.5 Number of Neighbors H . 84

3.1.6 Buffer Length L . 84

3.2 Network coding parameters . 86

3.2.1 Effect of the number of blocks m 86

3.2.2 Aggressiveness a . 88

3.2.3 Galois Field Size q . 89

3.3 Efficiency η . 90

4 Conclusion and Future Work 95

4.1 Conclusion . 96

4.2 Thesis Contribution . 98

vi

4.3 Limitations and Future work . 99

References 101

vii

List of Figures

1.1 Application-layer multiple multicast trees 7

1.2 The division of the video stream into segments 9

1.3 Multiple neighbors collaborate to serve segments in network coding . 14

1.4 Playback buffer organization in R2 15

2.1 playback buffer . 26

2.2 Segment lifetime and age slots . 30

2.3 Transition probability from Xn−1 to Xn depends on Rn 36

3.1 Performance for the standard configuration when E[Up]

Rs
= 1.0203 . . . 74

3.2 Continuity performance as a function of E[Up]−Rs 76

3.3 Performance sensitivity when the supply is close to the demand . . . 78

3.4 Performance comparison of Uniform and Most Urgent strategies . . . 79

3.5 Performance sensitivity to the mean E[Up] not the distribution 81

3.6 Server capacity effect . 82

3.7 Overlay size Z effect . 83

3.8 Effect of the number of neighbors H 85

3.9 Buffer Length L effect . 86

3.10 Number of blocks m effect . 87

3.11 Aggressiveness a effect . 88

3.12 Field size q effect . 89

viii

3.13 Efficiency of both strategies when E[Up]

Rs
= 1.0203 91

3.14 Efficiency of both strategies when E[Up] = Rs 93

ix

List of Tables

2.1 system parameters and notations . 28

3.1 Standard parameter configuration . 73

x

Chapter 1

Introduction & Literature Review

In recent years, the internet has become one of the most popular platforms for content

distribution to end users with content types ranging from music, photos, books and

software programs to online gaming and video and audio streaming. This was facili-

tated first by the increase of broadband deployment over the past decade. However,

the recent years have witnessed a rapid growth of internet traffic beyond the expec-

tations. According to Cisco’s Visual Networking Index [1] released in 2012, global

IP traffic has increased more than fourfold in the past 5 years, and will continue to

increase threefold over the next 5 years at a compound annual growth rate (CAGR)

of 23 percent from 2012 to 2017. The lion’s share of the traffic type goes to video.

Cisco reports that consumer Internet video traffic will be 69 percent of all consumer

Internet traffic in 2017, up from 57 percent in 2012. They also add that the sum of

all forms of video (TV, video on demand [VoD], Internet, and P2P) will be in the

range of 80 to 90 percent of global consumer traffic by 2017.

More efficient architectures have been and are still being developed to meet the

current and future bandwidth demand. Content Delivery Networks (CDN) and Peer-

to-Peer (P2P) networks have emerged as possible solutions with totally different de-

sign philosophies. CDNs takes the load off the core of the network by placing the

1

servers on the edge of the network in multiple geographic locations closer to the

users. Load balancing and request routing techniques such as DNS-based routing

could then be used to direct requests from users to the server that is best able to

satisfy the request. CDNs provide a centralized architecture that builds on the tradi-

tional client-server model to offer high availability and performance for distributing

static and streaming content to the users. However, CDNs do not fully address the

challenge of explosive content growth in a cost-effective manner especially for large-

scale user populations.

In contrast, P2P networks employ different design principles and promise high

scalability at low cost. The scalability is achieved by utilizing user resources such as

the computing power, storage space, or network bandwidth to help other users on the

network. This essentially alleviates the load on the server and turns the users into

contributors and not just receivers. As more users join the network in this case, more

resources will become available without additional cost for the dedicated server(s). In

the next section, we describe the major milestones in the evolution of P2P systems

from file sharing to video streaming.

1.1 P2P Networks

P2P networks are a type of distributed systems that are decentralized, self-organized,

scalable and symmetric. Users in P2P networks, called peers, organize themselves in

application-layer topologies called overlays so that each peer connects to and main-

tains a limited number of other peers called its neighbors. Based on the type of the

overlay topology constructed such as a mesh or tree, P2P networks are classified into

structured and unstructured networks. We discuss this more later in this chapter. All

peers are symmetric in the sense that all perform the same functions and there is no

special peers such as dedicated servers in the overlay. This, in addition to removing

2

the single points of failure, allows peers to depart gracefully or due to failure without

taking the whole network down. Moreover, since peers contribute their resources to

help each other achieve a common objective, more resources will be available as more

peers join the overlay which enables the network to scale to millions of peers without

generally incurring additional cost.

1.1.1 P2P file sharing

Napster was the first successful attempt at realizing the P2P concept that triggered

the academic interest in P2P networks. Napster [2] was released in 1999 aiming to fa-

cilitate sharing of mp3 music files among users. Napster was not a pure P2P network

and could be instead described as a hybrid network. Files are stored on the peers’

local disks instead of central server(s). However, Napster used a central directory

to keep track of where each file is hosted in the network. Peers would connect to

the computer hosting the central directory to search for available files and obtain the

address of their hosting peer. Once that is done, the file could be transferred directly

between the peers. Napster was marred by copyrights issues [3] and it was argued

that maintaining a central directory could enable the operators to detect distribution

of pirated materials and take them off the network. Due to failure of Napster to deal

with copyright infringement issues, it was shut down in 2001 by a court order [2].

To address the single point of failure in Napster, Gnutella [4] was developed in the

2000. Gnutella is basically a search and discovery protocol that allows peers to orga-

nize in an unstructured overlay topology [5]. There is no central directory in Gnutella,

instead peers issue search requests that are flooded to their neighbors. The neighbors

would continue to forward the requests to their neighbors in a way similar to expanded

ring. The radius of the ring would usually be between 4 to 7 levels. Neighbors that

have the content matching the search parameters would reply with a request hit mes-

sage. The gnutella network has survived till today and gone through some changes to

3

its architecture such as the the introduction of ultrapeers. In addition, many studies

were conducted to enhance the efficiency of its search mechanism, and to understand

how its topology and peering algorithm affect its performance.

The massive popular success of Napster and Gnutella have sparked the interest of

the research community in P2P networks. The early focus was on distributed search

algorithm for content lookup. This led to the introduction of the structured overlays

and the concept of distributed index. In this concept, the index is not stored in a cen-

tral machine but rather distributed on the peers using a technique called Distributed

Hash Tables (DHTs).

DHTs provide a mechanism for distributed index storage and efficient content lookup.

They allow peers to search for the content and obtain deterministic results such that

a search query would certainly return a result if the content exists in the overlay

which is not guaranteed by the flooding search in Gnutella.

Structured Overlays

The overlay topology is structured when the geometry of the topology, .i.e the way

the peers are connected to each other, is governed by some rules. In other words,

the neighbors each peer maintains are selected and maintained according to rules

and procedures dictated by the design of the DHT scheme. This is in contrast to

unstructured topologies where the neighbors of a peer are chosen randomly from the

set of all peers in the overlay.

The basic idea of DHTs is to distribute the responsibility of storing the data index

among all the peers in the overlay so that each peer stores a partition of the index.

The data index usually consists of entries in the form of < key, value > pairs where

the key could be a file name or meta data and the value could be the IP address

and port of the peer hosting the file. A hash function would then take a key k as

an input to generate a hash that corresponds to a unique element in a space that

4

could be a coordinate virtual space as in CAN [6] or a number in a bit space as in

Chord [7] depending on the design. The DHT design defines what subspace each

peer is responsible for storing the keys hashed in it. Neighbors to a peer would

be other peers that are responsible for the adjacent or close subspaces with some

notion of closeness defined in the design. Furthermore, DHT designs perform a basic

set of operations such as insertion, deletion, or lookup of a < key, value > pair

with procedures to construct and maintain the overlay as peers join and depart all

without any sort of central control. The main operation though is the lookup where

a lookup request is routed through neighbors so that it gets closer and closer to the

target node. There are many different designs of DHTs such as CAN [6], which

was the first proposed design of a DHT that defines the key space as a d-dimensional

virtual cartesian coordinate space with the notion of closeness defined as the cartesian

distance. Other well-known designs are Chord [7] which organizes the key space as a

ring and Kademlia [8] in which the key space is organized as a binary tree with the

distance defined by the XOR operation.

1.1.2 P2P video streaming

Peer-to-peer video streaming technology was introduced almost a decode ago following

the popular success of p2p file sharing systems. Contrary to traditional server-client

streaming systems, it takes the load off the server(s) by allowing clients to contribute

their upload bandwidth to assist each other. By doing so, the system can scale to a

large number of users at a low cost for the server bandwidth.

Since its inception, P2P video streaming has attracted a lot of attention from

both the research community and the industry. However, research efforts before the

introduction of P2P streaming formulated the problem of disseminating the video

stream from the server to the clients as a multicast problem with a source located

at the server and multiple receivers represented by the clients. Earlier architectures

5

proposed to optimize the data dissemination by building an IP multicast tree on the

network layer [9]. These kind of architectures require changes in the internet routers

and switches which limited its deployment. Moreover, IP multicast did not scale well

and lacked support for higher layers functionality.

To address these problems, it has been suggested to implement the multicast

functionality in the application layer of the end hosts. This would allow more flex-

ibility in the design because no changes to the internet infrastructure are required.

Application-layer multicast was first proposed in [10] and reported to offer acceptable

delay with limited bandwidth penalty compared to IP multicast. Currently a whole

family of streaming protocols exist that employ a tree topology so that they could be

classified into their own category. Subsequent designs of the P2P streaming protocols

opted for a random mesh topology because of its resilience against peer dynamics

and ease of implementation. Next we are going to discuss the main concepts and

advantages and disadvantages of each topology which led to the creation of hybrid

topologies and then the introduction of network coding to video streaming.

1.1.3 Tree-based Approach

In this approach, peers would organize themselves in an application-layer multicast

tree with the source of the stream placed at the root of the tree. Each peer would then

receive the stream from its parent and forward it (copy it) to its children. One of the

first designs of an overlay multicast system was End System Multicast (EMS) [10].

The protocol of EMS called Narada functions in the application layer of end hosts to

form small-scale multicast groups with the ability of having multiple sources geared to-

wards video-conferencing applications. Later Overcast [11] was introduced to support

large-scale single-source multicast groups formed using an overlay network. Overcast

builds a bandwidth-efficient application layer mutlicast tree by letting peers join near

the root, then moving them down the tree subject to the bandwidth available.

6

First designs like Overcast used a single tree for each stream which has a major draw-

back. Peers that have no children i.e. are leaves in the tree would not contribute their

upload bandwidth which is nor efficient neither fair to other internal peers in the over-

lay. One other drawback of single trees is the sensitivity to peer churn. Peer churn

occurs when peers fail or depart the overlay, which would cause the whole subtree

rooted at the departing peer to be cut off from rest of the tree. Consequently, every

time a peer departs, the tree structure has to be repaired which results in a higher

maintenance overhead and longer delays. To utilize the bandwidth of leaf peers and

improve the resiliency to peer churn, multiple trees for a single stream were intro-

duced in 2003 [12]. In [12] a ”forest” is created out of multiple interior-node-disjoint

multicast trees. The multiple trees are formed such that most of the leaf peers in one

tree are interior peers in another tree to solve the problem of bandwidth efficiency

of leaf peers. Furthermore, the video stream is divided into multiple substreams or

stripes such that every substream would be distributed over a different tree. There-

fore, a peer would be part of multiple trees and receive a different substream of the

video from its parent in each tree. This design is depicted in Figure 1.1

Source S

C

D
B

A

EF

Figure 1.1: Application-layer multiple multicast trees [13]

Since peers in the multicast tree can push the video stream to their children with-

out worrying about children receiving redundant data or having to receive requests

from the children, the delay experienced by the peers might be low generally. However,

7

the lack of robustness to peer dynamics and the resulting overhead to maintain the

tree structure may significantly hurt the performance. This made subsequent designs

favor an easier-to-implement random mesh topology that we will discuss next.

1.1.4 Random mesh based streaming

Peers in this approach organize themselves in an unstructured topology such that

each peer connects to a number of neighbors randomly selected from the peers in

the overlay, hence the random mesh topology. This makes the topology more robust

and resilient to peer churn. If a few neighbors depart or fail, the peer could still

communicate to other functioning neighbors. Different approaches could be used to

construct the mesh. One example could be using a gossip-like protocol by which peers

exchange neighbor information with each other and then a peer would select some of

the peers it has received and connect to them. Another approach is to use a service

called the tracker which maintains a list of all the peers in the overlay. When a peer

first joins the overlay, it registers with the tracker and obtains a subset of the peers

in the overlay that it uses as neighbors. The mechanism of a tracker is borrowed

from the BitTorrent file sharing protocol that gained massive popularity after a short

period of its release. In fact, the success and simplicity of BitTorrent led to studies

that investigated if this success could be replicated for P2P video streaming. Shortly

after that, new P2P live video streaming designs emerged such as Chainsaw [14] and

CoolStreaming [15] with design clues inspired by BitTorrent. CoolStreaming was the

first experiment that demonstrated the practicality of implementing P2P live video

streaming in a real-world setting.

Although the general design principles of these protocols bear a lot of similarities to

BitTorrent, they also cater for the rigorous timing requirements of live streaming.

The delay from the source to a peer has to be kept at minimum such that video data

has to be received in time before their playback deadline. If some video data arrived

8

late at a peer, they will be discarded and the user experience will suffer. Just as in

BitTorrent where a file is divided into pieces, the video stream is divided into chunks

of data of the same size called segments as shown in Figure 1.2. The segment duration

s
Most Recent Segment (MRS)

Video stream s - 1

Figure 1.2: The division of the video stream into segments

or playback time could be one to few seconds e.g. one second in CoolStreaming. Peers

would usually have buffers to store the segments before playback and are also used

as caches to serve other peers. The buffer length in CoolStreaming is 120 segments

which amounts to 2 minutes. Each peer exchanges with its neighbors periodically

buffer maps messages which contain information about what segments are currently

available in its buffer. This enables the peer to determine what neighbors currently

have the segments that are missing from its buffer. The peer can then send requests

to its neighbors to retrieve its missing segments. The details of which missing seg-

ments to download from which peers are dictated by what is called the scheduling

algorithm. The peer also receive requests from its neighbors and works on satisfying

them in a way that saturates its upload bandwidth.

If a segment is still missing at the time of its playback, a peer in a live streaming

session has two options to deal with this situation: i) either skips the segment and

causes an interruption or discontinuity in the video playback until the next available

segment is up for playback, or ii) give the segment some time and wait for it to get

downloaded. This would cause the video playback to pause for a little time but if the

segment gets downloaded the user would not miss the equivalent part of the video.

However, peers have to maintain a maximum delay between their current playback

time and the time a live event occurs on the server.

The mechanism of sending requests to download missing segments is known as the

Pull-based approach as opposed to the Push-based approach used on the tree topolo-

9

gies. The pull-based method has been found to cause delays in retrieving the segments

which is not desirable in streaming applications. This has led to investigating whether

the benefits of a mesh topology could be combined with the advantages of the Push

mechanism to get the best of both worlds. From research on this matter, hybrid

approaches has emerged.

In the hybrid approach, the neighbors of a peer would act as parents and push video

segments to the peer. To avoid sending redundant data and be more robust against

peer dynamics, the video stream would be divided into multiple substreams. For

example, if the stream is divided into K substreams in total, then the ith substream

would include segments with IDs i + nK for n = 0, 1, 2, A peer would then sub-

scribe to K of its neighbors to have each push a different substream. In addition, Pull

may still be used to retrieve lost segments. The scheduling algorithm that controls

which neighbors Pull-based to subscribe to for which substreams could be designed

to minimize the delay.

Although hybrid designs may actually reduce the source-to-peer delay, they intro-

duced more complexity in the scheduling algorithm. Moreover, they are still not

quite resilient to peer dynamics. For instance, if a neighbor that is pushing a sub-

stream to a peer fails, the peer has to switch to a different neighbor or even re-run

the scheduling algorithm again which may result in the loss of a few segments.

Fortunately, the introduction of network coding to P2P live video streaming around

2006 offered a much more simplified design while maximizing the positives of the push

approach. In the next section, we introduce network coding and give an overview of

how it works withing the context of live P2P video streaming.

10

1.2 Network Coding based P2P streaming

Network coding was originally proposed in information theory [16, 17] as an ap-

proach to achieve max-flow min-cut capacity in multicast sessions over certain network

topologies. In normal networks, the nodes use the store and forward approach to for-

ward received packets out their output links. In this approach, the messages would

just be copied from the input links to any subset of the output links. In contrast,

network coding allows intermediate notes in the network to perform operations on,

or i.e. encode, the incoming data before forwarding it. Later it was shown that the

linear coding scheme is sufficient to achieve the max-flow from the sender to the re-

ceiver [18]. With linear coding, a node can encode received packets by simply forming

a linear combination of them to produce a coded packet. Later it was proposed in [19]

that the coding coefficients used to form the linear combination of incoming packets

could be chosen randomly from a finite field of size q. Moreover, the coding efficients

could be carried with coded packet itself. This would enable a receiving node to de-

code the original packets after it receives enough number of coded packets with their

coefficients.

Therefore, it has been established that network coding is resilient to random packet

loss and delay and to variations in network capacity and topology, and, furthermore,

it can utilize the bandwidth efficiently to achieve near-optimal performance.

This prompted research on the practicality of replicating the theoretical results of

random linear network coding in P2P content distribution systems. The benefits of

network coding in P2P BitTorrent-like content distribution systems was first inves-

tigated in [20]. The argument here is that if peers encode all the blocks they have

received so far of a file and serve coded blocks to other peers, the download time of

a large file could be reduced. It has been found in [20] through simulations that the

download time could be improved by 2-3 times compared to traditional approaches

without network coding. However, since network coding requires more computation

11

complexity for the encoding and decoding processes than the simple store and for-

ward approach, it was of practical importance to evaluate the performance of network

coding with a real implementation. In [21], a prototype was in implemented in C#

of a P2P content distribution system to measure the performance of network coding.

It has been reported in [21] that network coding provides fast and smooth downloads

with little overhead in terms of CPU cycles and I/O activity. In addition, since all

coded pieces are equally useful, there is no need to distribute the rarest piece of the

file first which would solve the ”end-game” problem.

Once again the history repeats itself, the promising results of network coding in P2P

file sharing encouraged researchers to find out whether the potential benefits of net-

work coding could be harnessed in the context of live P2P video streaming systems

that has strict timing requirements.

The first systematic attempt to explore the practicality of network coding in live

streaming setting was done in [22] where an experimental testbed called Lava was built

to test the performance of network coding against traditional pull-based streaming.

It has been found that network coding offers a better performance especially when

the bandwidth supply barely exceeds the demand while incurring a low computation

overhead.

With these reported performance gains, they believed in [23] that in order to take

full advantage of the network coding, a complete redesign of the streaming protocol

was needed. Therefore, R2 was introduced as the first P2P network-coding based live

streaming protocol [23].

After that, the first production deployment of a p2p video streaming system designed

from the scratch with network coding in mind was launched by UUSee and reported to

offer superior real-world perforamce during Summer Olympics in China in 2008 [24].

Next we will state the most important design principles of R2.

12

1.2.1 Design principles with network coding

Each segment in the video stream in network coding is divided into a number of

blocks, let it be m, of the same size. The segment duration of playback time is typi-

cally between one and a few seconds (e.g. 4 seconds), and the the number of blocks

in live streaming is roughly between 50-200 blocks.

To reduce the computation complexity of network coding, chunked codes were in-

troduced in [25]. The idea has partly inspired the design of R2 which states that

coding should occur only within the boundaries of a segment and independently for

each segment as opposed to encoding the blocks through multiple segments. Random

linear coding is used to form a linear combination of the blocks the segment has so

far and generate a coded block with the coefficients chosen uniformly at random and

independently from the Galois finite field of size q i.e. GF(q). The coefficients are

embedded with the coded block and sent to the neighbors. Therefore, in a sense, a

peer serves a linear equation to its neighbors with the unknowns being the original

blocks of the segment.

Once a peer receives m linearly independent equations (i.e. coded blocks) for a seg-

ment, it can recover the original blocks of the segment by solving the system of the

received linear equations. However, the decoding process could be performed pro-

gressively as each coded block is received using Gauss-Jordan elimination method

and thus save time. If a received coded block is tested to be linearly dependent with

the existing blocks of a segment, it would be discarded.

Contrary to the hybrid models we discussed earlier, network coding simplifies the

design and allows for the Push approach to be used more easily and be much more

robust to peer dynamics. In R2, peers push coded blocks to their neighbors without

having to receive explicit requests. Moreover, since all the coded blocks of a segment

are equally useful, the neighbors of a downstream peer can push coded blocks to the

same segment on that peer without worrying about redundancy and without having

13

seeds of

peer p

on peer p

downstream

peers served

by peer p

Figure 1.3: Multiple neighbors (seeds) collaborate to serve segments on a peer p
without coordination. reprinted from [23]

to coordinate among each other. Consequently, neighbors can collaborate to serve a

segment on a downstream peer without exchanging any protocol messages as shown

in Figure 1.3. This makes the protocol much more robust to peer churn since loosing

a few neighbors would not stop downloading a segment completely as other neighbors

would continue to serve coded blocks to the segment.

In order for the push approach to work properly, peers have to know what segments

are still not complete in the buffers of their downstream neighbors. Otherwise, they

would risk sending coded blocks to segments that had already received enough linearly

independent blocks and gotten decoded. Therefore, each peer sends a buffer map

message to all of its neighbors that contains whether each segment in the buffer is

complete or not. In addition, buffer maps updates are sent immediately every time

the state of the buffer changes, or in other words, every time a segment gets complete

or gets played out of the buffer. Furthermore, buffer maps do not include the number

of blocks each segment currently has which has many upsides. This would keep the

design simpler and reduce the size of the messages as well as their sending frequency.

It is also worth mentioning that network coding uses shorter buffer lengths with larger

segments which would also contribute to reducing the size of buffer map messages.

14

current playback
point

playback buffer
size

priority region

Figure 1.4: Playback buffer organization in R2. reprinted from [23]

Therefore, the overhead of buffer maps would be very low compared to traditional

Pull-based streaming.

Finally, peers decide which segments on which peers to serve coded blocks to on

a random basis, hence the name R2. Whenever a peer can push a coded block, it

consults the buffer maps received from its neighbors and randomly chooses one of

its neighbors that has some missing segments. Then it randomly chooses a missing

segment on that neighbor. R2 divides the buffer into two regions and calls the one

that has segments closer to their playback deadlines the priority region as shown in

Figure 1.4. Missing segments in the priority region take priority over segments in

the other region and are chosen with uniform distribution. Missing segments in the

other region have the chance to receive blocks only when the priority region is full and

could be sampled with any distribution that favors segments closer to their playback

deadline.

1.3 Related Work

Significant amount of research was done in the field of P2P live video streaming. After

introducing network coding as an information theoretic approach that can achieve

min-cut capacity in multicast sessions on certain network topologies [16] [17] [18]

[19], studies were conducted to investigate the feasibility of using network coding to

improve performance in p2p content distribution [20, 21] and p2p video streaming

15

systems [22, 23]. Network coding was found to improve downloading time in p2p file

sharing and also get rid of the ”rarest piece” problem. In the context of live video

streaming, it was shown that it is practical to implement network coding within

P2P live streaming systems and it offers significant improvements of the performance

compared to traditional streaming [22]. After that, the first production deployment

of a p2p video streaming system designed from the scratch with network coding in

mind was launched by UUSee and reported to offer superior real-world perforamce

during Summer Olympics in China in 2008 [24].

In the early P2P live streaming systems, peers used the pull approach to send

requests for missing segments to neighbors. While pull does not suffer from the

redundancy problem, it led to a large delay in fetching the segments and was less

resilient to neighbor departures or failures. Hybrid Pull/Push was introduced later

to reduce the delay but led to more complex scheduling. In the hybrid design the

video stream would be divided into several substreams. A peer then would subscribe

to different neighbors that would act as parents and push different substreams to the

peer. On the other hand, network coding allows push scheduling to be used in a much

simpler way. This is due to the fact that coded blocks of the same segment from any

peer are equally useful, which allows multiple neighbors to cooperate and serve coded

blocks to the same segment on a peer without worrying about the redundancy and

without exchanging any messages to coordinate among each other.

The push approach for network coding along with other design principles was

introduced in R2 in [23] which is a complete redesign of the streaming protocol to

take full advantage of network coding. Following that, a mathematical study to model

these design principles was presented in [26] to understand the fundamental properties

of the system and identify sufficient condition for perfect playback. However, the

influence of the protocol details or other design options was ignored. Other studies as

in [27] that investigated the influence of the system parameters focused on a limited

16

set of them such as the block size and aggressiveness only and did not provide much

insights into their influence on the system. Therefore, we believe that there exists a

need to reveal what effects some design options like the segment selection strategies

may have on the performance. In addition, we think more in-depth insights into the

effect of the system parameters are needed in order to understand the unique nature

of network coding.

1.4 Thesis Objective

The aim of this thesis is to study the performance of push-based network coding P2P

live video streaming systems and obtain important performance metrics such as the

probability of continuity and efficiency. Our purpose is to investigate the influence

of the system parameters and design options on the performance. To that end, we

develop a unique stochastic model that reveals how the number of blocks in a segment

evolve over the time the segment spends in the buffer. Through the model, we provide

analysis for the most urgent and uniform segment selection strategies and compare

their performance which has not been done before in the literature to the best of our

knowledge.

We pick only the main design principles from R2 to analyze in our study such as the

Push approach. We do not model the relatively complex segment selection strategy

used by R2 in which the buffer is divided into two regions. Instead, we opt for simpler

design options for the segment selection strategy that treat the buffer as one region.

Unfortunately, the benefits of network coding comes with a price. A peer may

receive coded blocks that may be linearly dependent with the existing blocks and thus

would provide no useful information and would be discarded. Linearly dependent

blocks lead to waste of bandwidth and thus it would be of great interest to study

their effect on the efficiency of the protocol. Previous research [26, 28] provided

17

only a relatively loose lower bound of the probability that a received coded block is

linearly independent. We propose a much better approximation of this probability

and investigate the toll it takes on the performance. Finally, we do simulations to

verify the model results.

1.5 Thesis Organization

The rest of this thesis is organized as follows:

In chapter 2, we start by presenting a system overview that provides a high-

level view of how the system works as well as the specifics of how network coding

is performed. After that, we present a description of the system model along with

system parameters and notations. Then, we start our analysis of the protocol. We

first treat the case of homogeneous peer upload bandwidth and obtain the distribution

of the number of blocks the segment accumulates throughout its stay in the buffer

for both the most urgent and uniform segment selection strategies. Next, we relax

the assumption of homogeneous bandwidth and investigate the case of heterogeneous

peer upload bandwidth. We conclude the chapter by presenting the analysis for the

efficiency under homogeneous and heterogeneous upload capacity.

In chapter 3, we present the numerical and simulation results. Next we in-

vestigate the effect of the bandwidth supply from the peers and the server on the

performance of both strategies. We also provide a comparison of both the uniform

and most urgent strategies and explain why one performs better than the other. Then

we study the effect of most of the system parameters related both to video streaming

and network coding. We also provide in-depth insights into the influence of each of

the parameters on the performance of both strategies.

In chapter 4, we summarize our work and provide highlights of our findings. We

then conclude by stating possible improvements and additional work the could be

18

done to extend our model.

19

Chapter 2

System Model and Analysis

2.1 System overview

The peers form an application layer overlay network with mesh topology. Unlike [26]

where they assume a fully connected mesh (graph), we study the case where each

peer connects to only a subset of the overlay consisting of H randomly selected peers

called the neighbors. This allows us to investigate the effect of a limited neighborhood

on the performance. There is only one source of the video in the overlay and we call

it the server. We elaborate on how the server works later in this section.

2.1.1 How Network Coding is Performed

Just as in traditional p2p streaming systems, the video stream is divided into small

chunks of data of equal length called segments. The segment duration of playback

time, denoted as S, could be about a few seconds, typically 1 to 4 seconds. However,

in network coding, each segment is further subdivided into m blocks [b1, b2, . . . , bm] of

the same size Bs. Moreover, peers do not exchange raw segments but instead encode

the segments before uploading them to their neighbors. The coding is performed on

the blocks within the boundaries of a segment and separately for each segment to

20

generate a coded block as opposed to coding for multiple segments. This is to reduce

the computation complexity of network coding.

Encoding

From a sending perspective, to generate a coded block x for a segment, a peer cal-

culates a linear combination of the original blocks of the segment [b1, b2, . . . , bm] as

follows:

x = c1b1 + c2b2 + . . .+ cmbm (2.1)

where each of the coefficients ci’s is chosen independently and uniformly at random

from the characteristic-two Galois field of size q = 2d i.e. GF(2d). The exponent d is

a positive integer that represents the number of bits required to store each coefficient.

Furthermore, the addition and multiplication operations in equation (2.1) are all done

over the characteristic-two finite field GF(q = 2d) which makes the coded block x

always have the same size as the original blocks. Moreover, to perform the operations

over GF(2d), the video blocks bi’s are treated as vectors over GF(2d) such that each

consecutive d bits in a block bi is interpreted as a symbol bi,j over GF(2d) [29].

Therefore, the summation has to occur for every symbol position to generate the

corresponding coded symbol xj i.e. xj =


i cibi,j. The coded block x would then be

given as:


x1 x2 · · · xg


=


c1 c2 · · · cm






b1,1 b1,2 · · · b1,g

b2,1 b2,2 · · · b2,g
...

...
. . .

...

bm,1 bm,2 · · · bm,g




(2.2)

where g is the number of symbols in a block.

To serve a segment to a neighbor, the peer sends a coded block x of the segment

21

along with the coefficients vector [c1 c2 · · · cm] to the neighbor. Consequently, in a

sense, the peer is sending a linear equation to the neighbor with the unknowns being

the original blocks of the segment. This makes each pushed coded block incur a

communication overhead resulting from the carried coefficients. We denote by O

the size of the coefficient overhead and study its effect later.

In network coding, coded blocks could be generated from other coded blocks. We

mean by this that a peer can serve coded blocks from segments that are not decoded

yet. This can be done be re-coding the existing blocks of a segment to generate a

new coded blocks. We denote by (a) the minimum number of coded blocks a segment

should have before a peer can start to serve coded blocks from it to neighbors. a is

known as the aggressiveness parameter because it indicates how aggressive a peer is

to start serving a segment. A trade-off associated with a exists between how likely a

pushed block is linearly independent and the delay before starting to serve a segment.

We discuss this trade-off in chapter 3. We call segments with at least a coded blocks

as Ready-to-be-Served (RtbS).

When a segment has a ≤ f < m coded blocks x1, . . . , xf with corresponding m-

dim. coefficients vectors c1, . . . , cf , a coded block x′ could be generated by randomly

and independently choosing f coefficients [k1, . . . , kf] from GF(2d) to calculate x′ =
f

i=1 kix
i. However, the coefficient vector sent with x′ is not [k1, · · · , kf], instead the

equations of the coded blocks xi are substituted into the linear combination to obtain

a global coefficients vector [c′1, · · · , c
′
m] that multiplies the original blocks as follows:

x′ = k1x
1 + . . .+ kfx

f

= k1(c
1
1b1 + . . .+ c1mbm) + . . .+ kf (c

f
1b1 + . . .+ cfmbm)

= (k1c
1
1 + k2c

2
1 + . . .+ kfc

f
1)b1 + . . .+ (k1c

1
m + k2c

2
m + . . .+ kfc

f
m)bm

= c′1b1 + . . .+ c′mbm

22

where

[c′1 · · · c
′
m] = [k1 · · · kf]




c11 · · · c1m
...

. . .
...

cf1 . . . cfm




(2.3)

The resulting m-component vector [c′1 · · · c
′
m] is sent with x′ to the neighbor. There-

fore, coded blocks are always linear combinations of the original blocks whether they

are formed from the original blocks of a complete segment or from the coded blocks

of non-complete segment.

Decoding

From a receiving perspective, once a peer receives m linearly independent equations

i.e. coded blocks for a segment, it can fully recover the segment by solving the

following system of equations for b:

x = Cb



x1

x2

...

xm



=




c11 c12 · · · c1m

c21 c22 · · · c2m
...

...
. . .

...

cm1 cm2 . . . cmm







b1

b2
...

bm




(2.4)

were each row of the coefficient matrix C is the coefficient vector received with each

incoming coded block.

If a received coded block is tested to be linearly dependent with the existing blocks

of a segment, it will not be innovative or i.e. will not provide any useful information

and thus will be discarded.

Therefore, a segment is complete only when it has accumulated m Linearly indepen-

dent coded blocks.

To solve the system of equation in (2.4), a peer can calculate the inverse of the ma-

23

trix C using Gaussian Elimination over GF(2d) and then obtain the original blocks

from b = C−1x. In this case, the peer has to wait until it receives all the m coded

blocks to start the decoding process. A better approach to avoid the waiting is to use

Gauss-Jordan method that reduces the coefficients matrix to Reduced Row Echelon

Form (RREF). It enables the peer to start the decoding process progressively as each

coded block is received, and it will produce a row of zeros if a received coded block

is linearly dependent which removes the need for explicit dependency checks.

Implementation of Random Linear Network Coding

As we have previously mentioned, all the operations in the encoding and decoding

processes are performed over the characteristic-two finite field GF(2d). This field is

known as a binary extension field and its elements are the integers from 0 to 2d − 1

that could be represented as a d-bit binary numbers. In addition, each element could

also be represented as a polynomial with a degree of at most d − 1 and coefficients

from the field GF(2). For example, the 4-bit field element u = 0101 is represented by

the polynomial u(x) = x2 + 1. The polynomial representation is used to define how

the operations are performed. To add two elements, the corresponding polynomials

are added with the addition of the coefficients is done modulo 2 since the coefficients

belong to GF(2). This makes the addition equivalent to the inexpensive bitwise-XOR

operation. On the other hand, the multiplication is also done as polynomial multi-

plication. However, since it may results in a polynomial of degree 2d − 2 at most,

the resulting polynomial is divided by an irreducible polynomial of degree d to reduce

its degree to at most d − 1. Each field GF(2d) is characterized by an irreducible

polynomial of degree d with binary coefficients from GF(2). Irreducible means the

polynomial can not be factorized into the product of two or more polynomials of

degrees less than d. Such irreducible polynomial exists for each d and could be found

efficiently. For example, x8 + x4 + x3 + x+1 is one of the irreducible polynomials for

24

GF(28).

Unlike the inexpensive XOR bitwise addition, the multiplication and division of poly-

nomials is not efficient. Thus, many techniques and algorithms have been employed

to speed up the multiplications such as using a pre-computed multiplication table.

Since finite fields have applications in cryptography and reliable storage systems to

name a few, a substantial amount of research has been conducted to increase the

efficiency of its arithmetic and especially the multiplication and division operations.

The research focused on developing efficient software implementations [30, 31] and

hardware architectures [32] to speed up the multiplication and division operations.

As far as network coding is concerned, a parallel implementation has been intro-

duced in [33] that utilized the SSE2 instruction set and the multiple cores in modern

processors to perform the multiplication in parallel. The coding bandwidth in [33] has

reached 43 MB/s for 64 blocks with 32 KB each. Later implementations of network

coding [34,35] have taken advantage of the massive parallel structures in the current

video cards (GPUs). The combined CPU-GPU encoding scheme in [35] is able to

achieve a coding bandwidth of up to 116 MB/s which is enough to saturate Gigabit

network interfaces.

Finally, our model does not depend on how network coding is implemented. What

matters in our analysis is that the addition and multiplication operations used in

forming the linear combination and inverting the coefficients matrix are all done over

the finite field GF(2d). How these operations are implemented has no effect on our

analysis.

2.1.2 Buffer organization

Each peer maintains a buffer to store video segments before they are played back.

The buffer is used also as a cache from which peers serve segments to their neighbors.

Buffer positions are numbered from 1 to L as shown in figure 2.1. The first position

25

is for the most recent segment s. The second position holds segment s− 1. The last

position L holds the segment that is being currently played back s − L + 1. Each

playback
position

1iL - 1L 2i - 1i + 1

Most Recent Segment (MRS)playback deadline

Figure 2.1: playback buffer

segment starts its life in the buffer in position 1, and then every S seconds moves

to the next position. It has a chance to receive coded blocks until it reaches its

playback deadline when it moves into the last position. At that point, the segment

would cease to receive any blocks and would be played back only if it is complete (has

accumulated m blocks). If a segment reaches the playback position and yet still not

complete, it would not be given any more time and would be skipped. This would

cause an interruption in the video playback for the user for the segment duration.

All the peers are synchronized in the sense that all are playing the same video instant

at approximately the same time. This assumption is in line with [23], the original

design of the first network coding live streaming protocol R2. The reason for this

is to allow the buffers to overlap as much as possible making each segment have as

many neighbors able to serve it as possible. Therefore, each peer maintains a delay

of (LS) seconds from the server throughout the streaming session.

2.1.3 Server algorithm

The server could be designed in several ways. To simplify our analysis and without

loss of generality we model the following design of the server. The server always

distributes the most recent segment which is denoted herein as MRS. Whenever a

new segment becomes available, the server chooses a subset of peers uniformly at

random among all the peers in the overlay and sends at least a linearly independent

coded blocks of the current MRS to each. The server decides on the number of peers

26

so that it best utilizes its upload bandwidth and could get the list of all neighbors from

the tracker that may be implemented on the server machine itself or on a separate

computer.

The rationale for this design is to increase the number of peers that can serve a new

segment while taking advantage of the buffering time available hoping the segment

will reach more peers more quickly. However, the implication is that peers would not

be able to assist each other for the first buffer position (that holds the MRS). And at

the end of the current MRS duration, only peers with a blocks or more can start to

serve coded blocks of the segment to their neighbors.

In fact, this kind of design is also used in [36]. The difference in our case is that we

do not restrict the server to push to its neighbors only as they did in [36], instead

the server in our case can push coded blocks to any peer in the network and does not

maintain any neighbors.

2.1.4 Block Scheduling

As we mentioned earlier, we model the push approach. In this approach, each peer

does scheduling to decide what segments on what peers it should push coded blocks

to. The scheduling algorithm is run periodically and the output is either a list of spe-

cific segments on specific neighbors or nothing. The peer then sends a coded block

of each selected segment to the selected neighbors or sits idle if there is no neighbor

it can serve at the currently. There are many strategies that can be employed for i)

neighbor selection, and ii) segment (or buffer position) selection. We choose to model

the uniform strategy for neighbor selection whereby each peer selects one neighbor

uniformly at random among the servable neighbors. The selection is repeated in-

dependently with replacement for each block the peer can send at the current time

slot. As for segment selection, we model two design options: the Uniform selection

strategy and the Most Urgent selection strategy and compare their performance.

27

2.2 System Model

For easier reference, we organize all the system parameters and notations in Table

2.1.

Parameter Description
Z Peer population size
Us Server upload bandwidth in bps
Up Peer upload bandwidth in bps
Rs Streaming rate in bps
H Number of neighbors each peer maintains
L Buffer Length in segments
S segment duration in seconds
m Number of blocks in a segment
a aggressiveness
q Galois field size
T Slot time in seconds
E Number of slots per segment duration
Bs block size in bits including the overhead
O size of the coefficients overhead in bits

Table 2.1: system parameters and notations

The network bandwidth of a connected peer is the most important resource in P2P

video streaming systems. The upload bandwidth of a peer Up dictates the maximum

data rate at which a peer can send out information to other peers and determines its

contribution in the overlay. While the download bandwidth limits the data rate at

which a peer can receive information from the network. In current home or enterprise

grade internet connections, the download bandwidth is much higher than the upload

bandwidth. Thus, we assume the download bandwidth is unlimited and the bottleneck

is only the upload bandwidth.

We first treat the case of homogeneous peer upload bandwidth Up where it is assumed

to be constant and the same on all peers. We will relax this assumption later and

treat the case of heterogeneous upload bandwidth where the upload bandwidth is a

random variable and peers may have different upload speeds.

28

The time is slotted and the slot duration T is equal to the time required to upload

one block. Therefore, peers can only upload one coded block per time slot in the

homogeneous case. Thus T is then given by:

T =
Bs

Up

, seconds (2.5)

where Bs is the the size of the coded block and could be obtained as follows. We

know each coded block carries m coefficients in addition to the value of the block

itself. We call this extra data the coefficients overhead and can be obtained as:

O = m log2 q, bits (2.6)

where each coefficient requires log2 q bits. The block size Bs could then be obtained

from:

Bs =
SRs

m
+O =

SRs

m
+m log2 q (2.7)

By substituting eq. (2.7) into (2.5), we obtain the slot duration.

Definition Segment Age: The amount of time a segment has spent so far in the

buffer which is measured from the time it has become available on the server to the

current time instant. The segment lifetime then is the total age of the segment in the

buffer before it enters the playback position.

Therefore, the segment lifetime is equal to (L− 1)S. We distinguish between two

parts of the segment lifetime as shown in Figure 2.2: a) the first S seconds where

the segment would be in the first position on all peers and would be servable only

by the server, and b) the rest of the lifetime (L − 2)S spent in positions 2 to L − 1

where it would be servable only by the peers that can assist each other to complete

the segment. We divide this part of the segment lifetime that is servable by the peers

into N slots of time equal to our system’s slot time T , and we call them age slots

29

Xn

peer B

Xn−1

X0
XN

wplayback

position
Servable-by-peers

Segment Lifetime

XE

Servable

-by-

Server

Segment

Lifetime

1iL - 1L 2i - 1i + 1

Figure 2.2: Segment lifetime and age slots

with numbers n = 0, . . . , N − 1 as shown in Figure 2.2. Thus, we have:

N =
(L− 2)× S

T
= (L− 2)× E (2.8)

where we define E as the number of age slots in a segment duration, or i.e. in the

period a segment spends in one buffer position. Thus:

E =
S

T
=

SUp

Bs

(2.9)

The segment age n indicates its current buffer position. For example, at age n = 0

the segment has just entered the second position and would be at the end of its stay

in this position at n = E−1 where it has spent almost S seconds. At the next n = E

the segment would be at the beginning of the third position as shown in Figure 2.2.

In general, the segment will be in buffer position i between age slots n = (i − 1)E

and iE − 1 where i = 1, . . . , L.

Let sBn denote the segment of age n on some peer B, and let it be in buffer position i

at time slot t. The position of sBn is then given by:

i =


n+ 1

E


+ 1 (2.10)

where the segment spends E age slots in each position and the +1 to account for the

first position.

At any time slot t, there are L segments in the buffer of each peer where each

30

segment has spent the same time in its current position as shown in Figure 2.2. We

denote the number of age slots each segment has spent in its current position at time

slot t as w. Thus w ∈ {0, . . . , E − 1}. w could be obtained from the age of the

segment such that if we know that one of the segments in the buffer is at age ni at

time slot t corresponding to position i, then w could be given as:

w = ni mod E (2.11)

The ages of the segments in the other positions k = 1, . . . , i− 1, i+1, . . . , L could be

obtained from w:

nk = w + (k − 1)E (2.12)

where the difference between the ages of two consecutive segments is E age slots.

At the next time slot t+ 1, the segment in position i will move to age slot ni + 1

and thus there would be no segment of age ni in the buffer. This would remain the

case until the segment that was in position i − 1 at t moves to position i as time

progresses and reaches age ni after S seconds at t + E. The same thing happens to

the other segments in the buffer.

This process repeats as the time advances such that every S seconds new segments

would have spent w age slots in their current positions and one of them is at age slot

ni.

We assume the system reaches a steady state where, once that happens, every

segment that reaches age n would exhibit the same behavior in terms of the number

of blocks it has accumulated regardless of what time slot t it is at age slot n. Based

on this, we denote by XB
n the random variable of the number of blocks of sBn ; the

segment of age n on some peer B. Thus, XB
n takes on values in the set {0, . . . ,m}.

We randomly select a peer B and study the block distribution ofXB
n of the segment

sBn as it grows older starting from age slot n = 0 until it enters the playback position

31

at n = N . We assume that all peers have the same behavior and protocol parameters,

and thus we assume the distributions pr[XB
n = k] for n = 0, . . . , N are the same across

all peers and independent between peers.

Except for X0, at any age slot n = 1, . . . , N , Xn would depend only on the

number of blocks at the previous age slot Xn−1 and how many blocks, denoted by

Rn, are received from neighbors during the current age slot. Rn determines how the

transition from Xn−1 to Xn would occur and depends on the buffer state plus the

system parameters and the scheduling design choices. In the rest of this section, we

obtain the distributions of Xn’s and Rn’s to form a series of equations that we solve

starting from X0 until XN . The solutions Xn’s would reveal the stochastic behavior

of a segment over its lifetime in the buffer and enable us to obtain the continuity

performance which is the most important metric for evaluating the user experience.

The continuity, denoted by PCont. could be defined as the average percentage of time

the video playback is continuous or, in other words, non-interrupted. Thus, the

continuity could be given by:

PCont. = pr[XN = m] (2.13)

where N is the age of the segment at the beginning of the playback position.

From now on, we will drop the peer B when referring to the number of blocks Xn

at age n and only mention the peer where it is necessary to make clear what peer we

are talking about.

2.2.1 Number of blocks at age 0, X0

While the segment is still in the first position, it has a chance to receive blocks only

from the server as it is still not ready-to-be-served on the peers due to our server

design. After that, at age 0, where the segment has just entered the second position,

32

it would have either received at least a linearly independent (L.I.) blocks from the

server on the peers the server selected for this segment, or received nothing on other

peers. Using this observation, we find the distribution of the number of blocks at age

0, X0.

To that end, let Es be the number of coded blocks the server can send during a

segment duration. Es could then be obtained from the equation:

Es =


UsS

Bs


blocks/Seg. (2.14)

where we take the floor of the right side to make sure Es is integer.

we state a very important condition on the upload bandwidth of the server. On

one hand, if Es < m, the server capacity would not be sufficient to put all the m

linearly independent blocks of the current segment in the network before the end of

the segment duration. This would make peers unable to recover the segment whatever

the conditions in the network are simply because some of its coded blocks may not

exist. The system would fail in this case. Therefore, the following equation should

be satisfied to have a viable system:

Es ≥ m (2.15)

which implies the server capacity has to be at least slightly greater than the streaming

rate. It is slightly greater and not equal to the streaming rate because of the extra

bandwidth taken up by the coefficients overhead carried with each coded block.

On the other hand, if Es

m
≥ Z, then the server is able to serve complete segments to

every peer in the overlay. In other words, the server is able to provide all the peers

with the full streaming rate and the system turns into a server-client network. In

this case the continuity would always be 1 under static network conditions and there

is nothing to study in this case. Therefore, from now on we assume that the server

33

bandwidth is not sufficient to provide all the peers with complete segments, and thus

peers have to assist each other to make the segments complete before their playback

deadline. Consequently, we study the system under the following condition:

Es

m
< Z (2.16)

Now we can get back to obtaining the distribution of X0. Let Zs denote the

number of peers the server can serve a linearly independent blocks to each in a

segment duration, then:

Zs =
Es

a
(2.17)

If Zs > Z, the server is able more than a L.I. blocks to some or all peers. In this case,

the server utilizes its extra bandwidth and sends

Zs

Z


a blocks to Z − (Zs mod Z)

peers and

Zs

Z


a + a blocks to the rest of the peers (Zs mod Z) if Zs is an integer.

If Zs is not an integer, there would be one more peer that would receive less than a

blocks i.e. Es mod a. The server chooses the peers to serve for each segment uniformly

at random among all the peers in the overlay as we assumed earlier, the distribution

of X0 could be expressed as:

if Zs is an integer:

pr[X0 = k] =





Z−(Zs mod Z)
Z

if k =

Zs

Z


a

Zs mod Z
Z

if k =

Zs

Z


a+ a

0 otherwise

(2.18)

34

if Zs is not an integer:

pr[X0 = k] =





Z−1−(⌊Zs⌋ mod Z)
Z

if k =

⌊Zs⌋
Z


a

⌊Zs⌋ mod Z

Z
if k =


⌊Zs⌋
Z


a+ a

1
Z

if k = Es mod a

0 otherwise

(2.19)

Equations (2.18) and (2.19) include also the case of Zs ≤ Z.

From the distribution ofX0, we can determine the average bandwidth contribution

of the server Us for each peer in the network as follows:

Us =
BsE[X0]

S
, bps (2.20)

where every S seconds, the server pushes an average of E[X0] L.I. coded blocks of the

MRS to each peer with each block of size Bs. Us is part of the bandwidth supply in

the network while the remainder comes from the peers.

2.2.2 Number of blocks Xn for n > 0

In this section we obtain the distribution of the number of blocks Xn’s throughout

the rest of the segment lifetime servable by peers i.e. for n = 1, . . . , N . To that end,

let Rn(Bj) be the Random Variable of the number of useful (linearly independent)

coded blocks received to segment sBn from B’s neighbors given XB
n−1 = j blocks. Rn

takes on values from the set {0 . . . H}.

At any age slot n, Xn depends only on the number of blocks sBn had at the previous

age slot Xn−1 and how many blocks it would receive Rn at the current age slot n as

35

shown in Figure 2.3. The transition probability from Xn−1 to Xn is then given by:

pr[Xn = k |Xn−1 = j] =





0 if k < j,

pr[Rn(Bj) = k − j] if j ≤ k < m,

pr[Rn(Bj) ≥ m− j] if k = m,

(2.21)

where if the segment had j < m blocks, the transition to m blocks would happen if it

receives m−j blocks or more. The extra blocks received over the m−j are redundant

and would be discarded.

Redundant blocks are caused by two reasons. First, the number of blocks in the

1iL - 1L 2i - 1i + 1

1iL - 1L 2i - 1i + 1

1iL - 1L 2i - 1i + 1

Xn

Rn

peer B

Xn−1

X0
XN

wplayback

position
Servable-by-peers

Segment Lifetime

XE

peer 1

peer H

peer A

t t+E
time

Servable

-by-

Server

Segment

Lifetime

1iL - 1L 2i - 1i + 1

βn−1

βn−1

βn−1

Figure 2.3: Transition probability from Xn−1 to Xn depends on Rn

servable segments on downstream neighbors is not available to the peers since buffer

maps received from neighbors indicate only whether a segment is complete or not.

This is to reduce the size of the buffer map messages and make their sending frequency

less. The second reason is that peers do not coordinate with each other when they

do the scheduling.

Redundant blocks are much more likely to be received when the segment has most

36

of its blocks and is about to turn complete. Furthermore, with the randomization in

the neighbor selection, and then the segment selection in the uniform strategy, the

probability to receive even one redundant block is very low. Therefore, redundant

blocks is not a major problem compared to the benefits gained. However, they may

start to hurt the performance noticeably when large block sizes are used. We discuss

how to mitigate their effect in chapter 3 by opting for smaller block sizes. Finally, it

is worth mentioning that this problem could be dealt with by designing schemes to

make peers, for example, start sending signals to gradually stop neighbors when the

segment is about to get complete. Such schemes are out the scope of our research.

The transition probability in eq. (2.21) is a conditional pmf with probabilities that

sum up to 1 which we verify as follows:

for any 0 ≤ j ≤ m, we have:

m

k=0

pr[Xn = k |Xn−1 = j] = 0 +
m−1

k=j

pr[Rn(Bj) = k − j] + pr[Rn(Bj) ≥ m− j]

=

m−1−j

k=0

pr[Rn(Bj) = k] + pr[Rn(Bj) ≥ m− j]

= pr[Rn(Bj) < m− j] + pr[Rn(Bj) ≥ m− j]

= 1

The distribution of Xn could be found by averaging the conditional pmf in (2.21)

over pr[Xn−1 = j]:

pr[Xn = k] =
m

j=0

pr[Xn = k|Xn−1 = j]pr[Xn−1 = j] (2.22)

2.2.3 Rn the number of blocks received from neighbors to sBn

As we mentioned previously, the number of coded blocks Rn received at age slot n

controls how the transition fromXn−1 toXn happens. Therefore, before we can obtain

37

the distributions of Xn’s, the distribution of Rn has to be found for all n = 0, . . . , N .

To that end, let βn−1(Bj) be the probability that a random neighbor of B, denoted

by A, pushes a useful (Linearly independent) coded block to sBn given XB
n−1 = j.

We assumed earlier that all the peers are identical and independent, which allows

us to view each one of the H neighbors of B as an independent Bernoulli trial with

the success probability being sending a coded block to sBn . Therefore, Rn(Bj) has a

binomial distribution with parameters (H,βn−1):

pr[Rn(Bj) = k] =


H

k


(βn−1(Bj))

k(1− βn−1(Bj))
H−k , for k = 0, . . . , H (2.23)

At any age slot n, whatever time slot t the system is at, we must find the success

probability βn in order to compute the distribution of Rn. Once that is done, we can

solve the series of equations in (2.22) starting from X0, that is given in equations

(2.18) and (2.19), to obtain X1 then X2 and so on so forth all the way to XN . The

solutions Xn’s reveal the stochastic behavior of the number of blocks in a segment

as it grows older in the buffer until it reaches its playback deadline at age N at the

beginning of the playback position. Then the segment would be played back if it is

complete with probability pr[XN = m] which is the probability of continuity defined

in eq. (2.13), or otherwise skipped if it is not complete.

The probability βn depends on the buffer states at n in addition to the scheduling

algorithm design choices (neighbor selection, segment selection) on the neighbors. We

obtain βn in the rest of this chapter.

2.2.4 βn, probability a neighbor pushes a useful block to sBn

As we mentioned previously, the age a segment has reached so far would imply its

current buffer position and the time it has spent in it. Suppose the segment of age

n on some peer B is in buffer position i = 2, . . . , L − 1 where it has spent w age

38

slots. i and w are given in equations (2.10) and (2.11) respectively. The ages of

the L− 3 segments in the other servable-by-peers buffer positions could be obtained

from equation (2.12). In this section, we investigate what chance sBn has, given its

position and the current time it has spent in it, to receive a useful coded block from

a neighbor.

At each age n, all H neighbors of B run the scheduling algorithm whereby each

peer decides for each block it can send what neighbor and what segment on that

neighbor to push the block to. Let A be a random neighbor of B. For sBn to receive a

useful coded block from A, A has to i) select B among all the neighbors it can serve

at age n, ii) select sBn among all the segments it can serve on B. iii) if both B and

sBn are selected, the coded block generated by A and pushed to B has to be useful i.e.

L.I. with the current coded blocks of sBn to be added to the segment. The scheduling

algorithm on A will use the buffer maps it has received from its neighbors including

B in addition to the buffer state of A to decide what neighbors are servable at n.

Therefore, given sBn has j blocks, βn(Bj) could be expressed as:

βn(Bj) = pr

Bj is selected, s

B
n is selected, useful block



When XB
n = m, βn would be 0 since sBn is complete and would not receive any blocks.

sBn has a chance to receive blocks only when it is not complete i.e. Xn < m. Thus we

can write:

βn(Bj) =





0 if j = m,

βn(Bj<m) if j < m,
(2.24)

In the rest of the section, we investigate the case when Xn−1 = j < m.

39

If we define the following notations:

αn(Bj<m) = pr [Bj<m is selected]

γn(Bj<m) = pr

sBn is selected | Bj<m is selected



λn(Bj<m) = pr[useful code | Bj<m is selected, sBn is selected]

then βn(Bj<m) could be written as:

βn(Bj<m) = αn(Bj<m) γn(Bj<m) λn(Bj<m) (2.25)

Next we find the probability components of βn.

αn, probability peer B is selected by neighbor A at age n

Here we model the neighbor selection part of the scheduling algorithm in which a

peer would select uniformly at random one of its neighbors that it can server at the

current age slot.

Peer A selects peer B, only if it is servable, uniformly at random from all the

servable neighbors at age slot n. If B is not servable at n, A will not select it.

Therefore, if we let

Qn the number of neighbors servable by A at age slot n among the H − 1 neighbors

of A that does not include peer B. Qn ∈ {0, . . . , H − 1 }

Qn(Bj) the indicator function of whether or not peer Bj is servable by A at age slot

n given XB
n−1 = j.

then we can express αn for any k = 0, . . . , H − 1 as follows:

αn(Qn(Bj<m), Qn= k) =





1

k + 1
if Qn(Bj<m) = 1

0 if Qn(Bj<m) = 0
(2.26)

40

Next we find the distributions of Qn and Qn(Bj<m). A segment of age n, sCn, on a

neighbor C of A is servable by A if it has less than m blocks at n, i.e. not complete,

on C and has a or more blocks on A i.e. Ready-to-be-Served. Therefore, if we let Vn

denote the probability that the segment sCn is servable by A at n, then:

Vn = pr[XC
n < m] pr[XA

n ≥ a] (2.27)

Let V ′
n be the probability of the complement of Vn, then:

V ′
n = 1− Vn (2.28)

A peer is servable by an upstream neighbor A at age slot n if at least one of its

L − 2 segments (2 for the first and last segments) is servable by A. Let θn be the

probability that neighbor C is servable by A at age slot n. The complement event

that C is not servable by A at age n occurs when none of C’s segments are servable

by A at n. Assuming that segment servability is independent of whether or not other

segments are servable, we have

θ′n =
L−2

i=1

V ′
(n mod E) + iE (2.29)

where the subscript (n mod E) + iE generates the age of the segments in buffer

positions 2, . . . , L − 1 at age slot n where each segment has spent (n mod E) age

slots in its current position.

θn is then given by:

θn = 1− θ′n (2.30)

The probability θn is the same for all the neighbors of A except B. Therefore,

since peers are independent, Qn would have a binomial distribution with parameters

41

(H − 1, θn):

pr[Qn = k] =


H − 1

k


(θn)

k(1− θn)
H−1−k (2.31)

On the other hand, since sBn is known to have j blocks as indicated in the con-

ditional probability in (2.21), peer B would have a slightly different probability of

being servable by A. Let Vn(Bj<m) and θn(Bj<m) and their complement probabilities

have the same definition as before except now they are conditioned on the fact that

sBn has j blocks. Then:

Vn(Bj<m) = pr[XA
n ≥ a] (2.32)

θ′n(Bj<m) = pr[XA
n < a]

L−2

i=1
i ̸=⌈n+1

E
⌉+1

V ′
(n mod E) + iE (2.33)

where the subscript i ̸= ⌈n+1
E

⌉+ 1 is to make sure the position of sBn is skipped as we

already know it is not complete j < m, and thus would not be servable only if it has

less than a blocks on A i.e. with probability pr[XA
n < a]. Consequently, probability

peer Bj<m is servable by A at n is given by:

pr[Q(Bj<m) = 1] = θn(Bj<m) = 1− θ′n(Bj<m) (2.34)

γn, probability the segment of age n on peer B is selected

Following the selection of a neighbor, the second part of the scheduling algorithm is

to select what segment is to be served a coded block among the servable segments

in the buffer of the selected neighbor. Different strategies could be employed for the

segment selection. We choose to model the most intuitive strategy i.e. the most

urgent by which the segment closest to the playback deadline that is still servable

is given priority. To find out how the most urgent compare to other strategies, we

model the uniform strategy by which segments that are still servable in the buffer

are given equal chances. Next we investigate the probability that sBn is selected by A

42

given Bj<m was selected by A.

The fact that Bj<m was selected by A implies that B is servable by A. Thus we

are after:

γn(Bj<m) = pr[sBj<m
n is selected |Qn(Bj<m) = 1] (2.35)

To find γn, we denote by 1i the state when the segment in buffer position i on

peer Bj<m is servable by A, and by 0i the state when it is not servable. Then the

buffer state of Bj<m corresponding to the event Qn(Bj<m) = 1 could be represented

by the set:

ΩA
Bj<m

=


YL−1 . . . Yi . . . Y2 |

L−1

i=2

Yi > 0, Yi = 0, 1


(2.36)

which means that at least one segment or more on B should be servable by A for peer

Bj<m to be servable by A.

Let ∆n be the event {s
Bj<m
n is selected by A}, then from equation 2.35, γn could

be written:

γn(Bj<m) = pr[∆n | Ω
A
Bj<m

] =
pr

∆n ∩ ΩA

Bj<m



pr

ΩA

Bj<m

 (2.37)

We already found pr[ΩA
Bj<m

] to be equal to θn(Bj<m) in eq. (2.34). Thus we need

to find only the probability of the numerator which depends on ∆n. The event ∆n

depends on the segment selection strategy used. Next we find its probability for

several segment selection strategies.

Using the Most Urgent Segment Selection Strategy

In this strategy peer A selects the closest segment to the playback deadline that it

can serve at age slot n. Therefore, if s
Bj<m
n is in position i, ∆n could be represented

43

by the following set for i = 1, . . . , L− 1:

∆n = {0L−1 . . . 0i+11iYi−1 . . . Y2 | Yi = 0, 1} (2.38)

which means that s
Bj<m
n is selected only if it is servable (1i) and all the older segments

(0L−1 . . . 0i+1) are not servable, whatever the state may be for all the other younger

segments.

Comparing this set with the set ΩA
Bj<m

in eq. (2.36), we can see right away that

∆n ⊂ ΩA
Bj<m

. From this relation, the formula of γn in eq. (2.37) could be written:

γn(Bj<m) =
pr [∆n]

pr

ΩA

Bj<m



=

pr[XA
n ≥ a]

L−1

k=i+1

V ′
(n mod m) + (k−1)m

θn(Bj<m)
(2.39)

Using the Uniform Segment Selection Strategy

In this strategy peer A selects a segment on B uniformly at random among only the

segments that are servable by it.

For the event ∆n = {A selects s
Bj<m
n } to take place, the segment s

Bj<m
n must be

servable while the other (L − 3) segments may or may not be servable. In addition,

pr[∆n] depends on how many of the other segments are servable at n. Therefore, let

the set ∆k
n represent the buffer state when s

Bj<m
n is servable and there are k other

servable segments. Thus for any k = 0, . . . , L− 3, ∆k
n’s could be expressed as:

∆k
n =


YL−1 . . . 1i . . . Y2 | Yi ∈ {0, 1},

L−1

j=2
j ̸=i

Yj = k


(2.40)

we notice that ∆k
n’s are partitions of Ω in eq. (2.36), and therefore, we can find the

44

pr

∆n∩ ΩA

Bj<m


as follows:

pr

∆n ∩ ΩA

Bj<m


= pr


∆n ∩


L−3

k=0

∆k
n



= pr


L−3

k=0


∆n ∩∆k

n



=

L−3

k=0

pr

∆n ∩∆k

n



=
L−3

k=0

pr

∆n |∆

k
n


pr

∆k

n



=
L−3

k=0

1

k + 1
pr[XA

n ≥ a]pr[CB
n = k] (2.41)

where we define CB
n to be the number of buffer positions on B excluding the position

of s
Bj<m
n that contain segments servable by A at age slot n. Next we find its distri-

bution. CB
n ∈ {0, . . . , L − 3}. We consider each buffer position as a Bernoulli trial

with the success being having a servable segment. Although the servability of the

segments is independent from each other as we assumed earlier, we can not use the

binomial distribution for CB
n because each position has a different success probability.

Consequently, CB
n is the sum of independent Bernoulli variables with not-all-equal

success probabilities given in eq. (2.27). The distribution of CB
n is known as the

Poisson-Binomial Distribution in the literature and could be computed in our case

from the following formula:

pr[CB
n = k] =

L−k

i1=2
i1 ̸=i

Vi1

L−k+1

i2=i1+1
i2 ̸=i

Vi2 . . .
L−1

ik=ik−1+1
ik ̸=i

Vik

L−1

j=2
j ̸=i1
...

j ̸=ik
j ̸=i

V ′
j (2.42)

where the position of sBn , i, is skipped as shown in the subscripts because CB
n does

not include it. In addition, the subscripts of V and V ′ represent the buffer position

of the segment.

45

We earlier, in equation 2.27, defined the subscript to be the age of the segment, and

here we have changed the notation just to have less clutter in the formula. Further-

more, from the position, say d, of any segment, we can find its current age at age slot

n as: n mod E + (d− 1)E.

This formula accounts for all the cases of having k servable segments in any buffer

position (except i) and L − 3 − k non-servable segments in the remaining positions

for any k = 0, . . . , L − 3. However, the problem with this formula is that the num-

ber of cases of having k successes, which is given by

L−3
k


, becomes very large even

with relatively small values of L making the calculation inefficient. Fortunately, there

are much more efficient methods to compute it. In [37], they compare the different

methods used in the literature to compute it including a recursive formula described

in [38]. They refer to that formula as RF1 in their paper and we use this same formula

here to compute the distribution of Cn. If we let C
j
n be the poisson binomial random

variable with total number of trials j with success probabilities V1, . . . , Vj, and also

let ξk,j = pr[Cj
n = k], then the recursive formula could be expressed as follows in our

case:

ξk,j = (1− Vj)ξk,j−1 + Vj ξk−1,j−1, 0 ≤ k ≤ L− 3, 0 ≤ j ≤ L− 3 (2.43)

with the boundary conditions are ξ−1,j = ξj+1,j = 0, j = 0, . . . , L− 3 and ξ0,0 = 1.

Now the probability γn(Bj<m) could be obtained by substituting eq. (2.41) into

(2.37):

γn(Bj<m) =
pr[XA

n ≥ a]

θn(Bj<m)

L−3

k=0

1

k + 1
pr[CB

n = k] (2.44)

λn, probability a received coded block is useful

Even after peer A has decided to send a coded block to the segment of age n on peer

B, the block may not be useful to B. By ”Not Useful” we mean that the received block

46

is linearly dependent on the existing blocks of sBn , in which case it will be discarded.

Therefore, not every received block to sBn is useful and we need to find the probability

that a received block is linearly independent. In [26], they estimate the probability

of a useful block based on the following lemma:

Lemma 1. (Lemma 2.1, [28]) Let SB denote the space spanned by the coded blocks on

peer B and SA denote the space spanned on one of peer B’s upstream peers, namely

peer A. Consider a coded block x sent from peer A to peer B. Then,

pr[coded block x is useful | SA ̸⊆ SB] ≥ 1−
1

q
,

where q is the size of the Galois field.

Let p denote the probability of the event {SA ⊆ SB}, then the probability the

coded block is useful, denoted by IAB could be approximated by:

IAB = pr[coded block x is useful] ≥ (1−
1

q
)(1− p) (2.45)

The problem with this approach in [26], in addition to only providing a lower

bound for IAB, is that it also gives an arbitrary constant value to p = pr[SA ⊆ SB].

This does not take care of how the number of blocks on peers A and B and the

parameters a and m affect p, and how p changes with the age of the segment. For

example, our intuition tells us that larger values of XB
n = j leads to smaller p as the

space spanned by vectors on peer B becomes larger. Next, we work on this problem.

Let sAn (the segment of age n) on the upstream neighbor A have XA
n = k blocks

denoted by V⃗Ak
= {v1, v2, . . . , vk}. These blocks are linearly independent, and each

of them has m components in the m-dimensional vector space over the Galois Field of

size q. Since they are linearly independent they span a k-dimensional subspace Sn
Ak
.

We also know that sBn on the downstream peer B has XB
n = j linearly independent

47

blocks and it is not complete i.e. j < m. Let U⃗Bj
= {u1, . . . , uj} and Sn

Bj
denote the

set of the vectors on B and their spanned j-dimensional subspace respectively.

Let xAkBj be the coded block sent from A to B. xAkBj is generated as a linear

combination of the vectors on A which makes it be in their subspace Sn
Ak
. If xAkBj

happens to fall in the subspace of the vectors on B, Sn
Bj
, it will make it linearly

dependent with U⃗Bj
and will provide no useful information. In other words, xAkBj

will not be useful if it falls in Sn
Ak

∩ Sn
Bj
. Thus for xAkBj to be useful, it should fall

outside Sn
Bj
.

Let I
AkBj
n be the indicator function of the event xAkBj falls outside Sn

Bj
. To find

pr[I
AkBj
n = 1], we need to find the probability of the relationship between Sn

Ak
and

Sn
Bj
. To that end, let K ′ denote the number of coded blocks (vectors) in V⃗Ak

on

peer A that are linearly dependent with U⃗Bj
, and also let Pn(k

′; k, j) be its pmf. K ′

could assume any value in {0, . . . , k}. For example, on one hand, if K ′ = 0, then the

intersection of Sn
Ak

and Sn
Bj

is empty, and any generated coded block falls outside Sn
Bj

and is linearly independent. On the other hand, if K ′ = k, this means Sn
Ak

⊆ Sn
Bj
,

and every generated coded block will be linearly dependent. Thus we could write:

pr[IAkBj
n = 1|K ′ = k′] =





1 if k′ = 0,

1−
1

qk−k′
if k′ > 0,

(2.46)

where for 0 < K ′ < k, the generated coded vector is in Sn
Bj

if and only if all the

k−K ′ independent of U⃗Bj
vectors are multiplied with zero coefficients when forming

the linear combination, and only the K ′ dependent vectors are multiplied with not-

all-zero coefficients. The probability to select k−K ′ zero coefficients is 1/qk−k′ since

they are chosen independently and uniformly at random from GF (q). Its complement

gives the desired probability.

Next we find the distribution of K ′. The actual range of values K ′ assumes depends

on k, j and m. The lower limit is dictated by the inequality k − k′ + j ≤ m where

48

the number of linearly independent vectors in any set cannot exceed m. Then k′ is

given by:

k′ ≥ max(k + j −m, 0)

where if k + j < m, k′ starts from 0.

For the upper limit, we distinguish between two cases. First, when k ≤ j, all of the

k vectors could be linearly dependent with the j vectors on peer B. Thus, in this

case, we have k′ ≤ k which implies k − k′ ≥ 0. In the second case, when k > j,

only a maximum of j vectors in V⃗Ak
could be linearly dependent with U⃗Bj

, and the

remaining k−j must be linearly independent with U⃗Bj
. That is because the subspace

Sn
Bj
, spanned by the set U⃗Bj

, cannot have a basis that contains more vectors than its

dimension j. Thus, in this case, we have k′ ≤ j and k − k′ ≥ k − j. Combining the

two cases together, we obtain the following upper limit of k′:

k′ ≤ min(k, j)

and also the following lower limit for the number of linearly independent vectors

(which we will use later):

k − k′ ≥ max(k − j, 0) (2.47)

from the last two inequalities for k′, we obtain the range of values k′ can assume:

max(k + j −m, 0) ≤ k′ ≤ min(k, j) (2.48)

Next, we find the distribution of k′ given k and j at age slot n, Pn(k
′; k, j). To

do that, we employ a urn model as in [39]. We imagine an urn containing all the

possible non-zero vectors in the whole m-dimensional vector space. Let’s consider

one of the vectors vi1 in V⃗Ak
. vi1 may have come from any neighbor of peer A. And

the subspace, from which vi1 was selected, could be any subspace that has a dimension

49

higher than a in the m-dim. space, because it was, in turn, formed by vectors that

could have come again from any subspace on any neighbor. Therefore, we assume

that vi1 is equally likely to be any vector in the m-dim. space.

The event that vi1 is linearly dependent with U⃗Bj
is equivalent to the event that vi1

is in the subspace Sn
Bj

spanned by U⃗Bj
. Thus, based on our earlier assumption, we

could write:

pr[vi1 ∈ Sn
Bj
] =

qj − 1

qm − 1

where the numerator and the denominator are the total number of non-zero vectors

in U⃗Bj
and the whole m-dim. space respectively. Suppose vi2 is another vector in

U⃗Bj
, then:

pr[vi1 ∈ Sn
Bj
, vi2 ∈ Sn

Bj
] = pr[vi2 ∈ Sn

Bj
|vi1 ∈ Sn

Bj
]pr[vi1 ∈ Sn

Bj
]

=
qj − 1

qm − 1

qj − 1− (q − 1)

qm − 1

=
qj − 1

qm − 1

qj − q

qm − 1

where since vi1 and vi2 are linearly independent, there are q−1 non-zero vectors, that

are multiples of vi1 , that vi2 cannot be selected from. Following the same logic, we

have:

pr[vi1 ∈ Sn
Bj
, vi2 ∈ Sn

Bj
, . . . , vid ∈ Sn

Bj
] =

qj − 1

qm − 1

qj − q

qm − 1
. . .

qj − qd−1

qm − 1

=
d−1

i=0

qj − qi

qm − 1
(2.49)

Now let vl1 be another vector that is linearly independent with the set {vi1 , . . . , vid}.

Let us consider the probability of the event vl1 is outside Sn
Bj

given that {vi1 , . . . , vid}

50

is in Sn
Bj
:

pr[vl1 ̸∈ Sn
Bj
|{vi1 , . . . , vid} ⊆ Sn

Bj
] =

qm − 1− (qj − 1)

qm − 1

=
qm − qj

qm − 1

= pr[vl1 ̸∈ Sn
Bj
]

where the numerator in the second equation is the number of non-zero vectors outside

Sn
Bj
. The third equation comes from the observation that the event vl1 ̸∈ Sn

Bj
is

independent of {vi1 , . . . , vid} ⊆ Sn
Bj

since being outside Sn
Bj

makes vl1 automatically

linearly independent of any vectors in Sn
Bj
.

Extending the argument for a set of linearly independent vectors {vl1 , . . . , vly} that

is linearly independent with with {vi1 , . . . , vid}, we have the following probability:

pr[{vl1 , . . . , vly} ̸⊆ Sn
Bj
|{vi1 , . . . , vid} ⊆ Sn

Bj
] = pr[{vl1 , . . . , vly} ̸⊆ Sn

Bj
]

pr[{vl1 , . . . , vly} ̸⊆ Sn
Bj
] =

qm − qj

qm − 1

qm − qj − (q − 1)

qm − 1
. . .

qm − qj − (qy−1 − 1)

qm − 1

=

y−1

l=0

qm − qj − ql + 1

qm − 1
(2.50)

Now we are ready to find the distribution Pn(k
′; k, j). First, we rewrite inequality

2.48 as follows:

0 ≤ k′ −max(k + j −m, 0) ≤ min(k, j)−max(k + j −m, 0) (2.51)

if we let k′′ = k′ −max(k + j −m, 0), then:

Pn(k
′ = c; k, j) ≡ pr[k′′ = c−max(k + j −m, 0)]

51

from inequalities 2.48 and 2.47, we note the probability pr[k′′ = c−max(k+j−m, 0)]

is conditioned on having max(k + j −m, 0) vectors in Sn
Bj

and max(k − j, 0) outside

Sn
Bj

and , based on equation 2.49 and 2.50, is given by:

pr[k′′ = y] =


min(k, j)−max(k + j −m, 0)

y

 y−1

i1=0

qj − qmax(k+j−m,0)+i1

qm − 1

min(k,j)−max(k+j−m,0)−y−1

i2=0

qm − qj − qmax(k−j,0)+i2 + 1

qm − 1
(2.52)

and the distribution of k′ is then given by:

Pn(k
′; k, j) = pr[k′′ = k′ −max(k + j −m, 0)]

=


min(k, j)−max(k + j −m, 0)

k′ −max(k + j −m, 0)

 k′−1

i1=max(k+j−m,0)

qj − qi1

qm − 1

min(k,j)+max(k−j,0)−k′−1

i2=max(k−j,0)

qm − qj − qi2 + 1

qm − 1
(2.53)

To check if the sum of the probabilities for all the values of k′ given k and j would add

up to 1, we compute the distribution Pn(k
′; k, j) when m = 50, q = 28, and a = 1 for

the all the possible values of k and j. We found out that the sum is 1 in most cases

except when k = j = 49 where we got the worst value of 0.999985. This confirms

that Pn(k
′; k, j) is actually a conditional probability distribution.

The probability of the event pr[I
AkBj
n = 1] can be obtained by averaging the

conditional probability in equation 2.46 over k′ using its distribution in equation

2.53:

pr[IAkBj
n = 1] =

min(k,j)

k′=max(k+j−m,0)

pr[IAkBj
n = 1|K ′ = k′]Pn(k

′; k, j)

= Pn(0; k, j) +

min(k,j)

k′=max(k+j−m,1)

(1−
1

qk−k′
)Pn(k

′; k, j) (2.54)

52

The push of the coded block xAkBj happens only after peer A has selected the

segment of age n on peer B, sBn , which implies the segment is servable by A and thus

has more than a blocks on A at n and j < m blocks on B. Therefore, if we remove

the conditioning on k in equation (2.54) given the fact XA
n ≥ a, we obtain λn(Bj<m)

the probability the sent coded block to s
Bj<m
n is useful :

λn(Bj<m) =
m

k=0

pr[IAkBj
n = 1|XA

n ≥ a] pr[XA
n = k]

=
m

k=a

pr[I
AkBj
n = 1]

pr[XA
n ≥ a]

pr[XA
n = k]

=
1

pr[XA
n ≥ a]

m

k=a


Pn(0; k, j) +

min(k,j)

k′=max(k+j−m,1)

(1−
1

qk−k′
)Pn(k

′; k, j)


pr[XA

n = k] (2.55)

Now that we have obtained the formulas for the probability components of βn we

can go back and find βn(Bj<m).

βn depends on whether peer Bj<m is servable or not and on Qn through αn as shown

in equation 2.26. If peer B is not servable, it will not be selected by A, which makes

βn equal 0, whatever the value of Qn is, because αn is 0:

βn(Qn(Bj<m) = 0, Qn = k) = 0 (2.56)

When B is servable by A at age slot n, then α is given by equation 2.26 that we

substitute into the general equation of βn(Bj<m), 2.25, to obtain:

βn(Qn(Bj<m) = 1, Qn = k) = γn(Bj<m)αn(Qn(Bj<m) = 1, Qn = k)λn(Bj<m)

= γn(Bj<m)
1

k + 1
λn(Bj<m) (2.57)

From equations 2.56 and 2.57, the unconditional probability, βn(Bj<m) is then given

53

by:

βn(Bj<m) =
1

i=0

H−1

k=0

βn(Qn(Bj<m) = i, Qn = k)pr[Qn(Bj<m) = i, Qn = k]

=
1

i=0

H−1

k=0

βn(Qn(Bj<m) = i, Qn = k)pr[Qn(Bj<m) = i]pr[Qn = k]

=
H−1

k=0

βn(Qn(Bj<m) = 1, Qn = k)θn(Bj<m)pr[Qn = k]+

βn(Qn(Bj<m) = 0, Qn = k)pr[Qn(Bj<m) = 0]pr[Qn = k]

=
H−1

k=0

βn(Qn(Bj<m) = 1, Qn = k)θn(Bj<m)pr[Qn = k]

=
H−1

k=0

γn(Bj<m)
1

k + 1
λn(Bj<m) θn(Bj<m) pr[Qn = k]

= γn(Bj<m)λn(Bj<m) θn(Bj<m)
H−1

k=0

1

k + 1
pr[Qn = k] (2.58)

where in the second equation the variables Qn and Qn(Bj) are assumed to be inde-

pendent. Then we used equation 2.34 to substitute the value of pr[Qn(Bj<m) = 1].

We notice in the equation of βn(Bj<m) that the probability θn(Bj<m) cancels with

itself when multiplying with γn(Bj<m) as it appears in the denominator of the equa-

tions 2.39 and 2.44 of γn for the different segment selection strategies. Moreover, the

probability pr[XA
n ≥ a] also cancels when multiplying λn(Bj<m) and γn(Bj<m).

2.2.5 Efficiency η

The efficiency is an important performance metric of both p2p file sharing and p2p

video streaming systems because it quantifies how good the protocol is at utilizing the

most important resource in the system, the upload bandwidth of the peers. Therefore,

the efficiency we are referring to here is the upload efficiency, and we will study it

in the same sense it was studied in [40]. In [40], they studied the upload efficiency

54

of a BitTorrent-Like system as the probability that a peer has file pieces that are of

interest to at least one of its neighbors. Similarly, in our case, we look at the event

a peer has ready-to-be-served segments (segments with more than a block(s)) that

are still not complete on at least one of its neighbors. In other words, the efficiency

at an age slot n, ηn, is the probability a peer has at least one servable neighbor at

n. However, although in that case the peer will push a block to one of its servable

neighbors, the pushed block may be linearly dependent with the existing blocks of

the destination segment on that neighbor, i.e. not useful to that neighbor, which

means the time slot was not utilized to send useful information. Therefore, we also

need to find the probability the pushed block at age slot n is useful. Consequently, if

we slightly change the definition of Qn in 2.2.4 to include all the servable neighbors

a peer has at age slot n, the efficiency at age slot n could expressed as:

ηn = pr[at least one neighbor is servable at n, the pushed block is useful] (2.59)

= pr[Qn ≥ 1] pr[the pushed block is useful |Qn ≥ 1] (2.60)

The first probability could be easily found since the number of servable neighbors a

peer has at n has a binomial distribution with parameters (H, θn) where θn is given

in equation 2.30. Thus:

pr[Qn ≥ 1] = 1− pr[Qn = 0]

= 1− (1− θn)
H (2.61)

The usefulness of the pushed coded block does not depend on what neighbor is

selected because all the neighbors have identical distributions of the number of blocks

at n. However, it does depend on what segment is selected or, in other words, what

buffer position is selected on that neighbor at the current age slot. Furthermore, the

probability distribution to select a segment to serve depends on the segment selection

55

strategy used.

Therefore, if we Let:

λn ≡ pr[the pushed block is useful | Qn ≥ 1].

I(sn) be the indicator function that the pushed block to the segment of age n, sn, is

useful.

γ(sn) ≡ pr[sn is selected | Qn ≥ 1]

we then can obtain the probability of usefulness as follows:

λn =
L−2

i=0

pr[I(s(n mod E) + iE) = 1 | s(n mod E) + iE is selected]γ(s(n mod E) + iE) (2.62)

where i is the buffer position of the segment and (nmod E) is the time each segment

has spent in its current buffer position.

The probability the pushed block to s(nmod E) + iE is useful given it is selected can be

obtained from equation 2.55 after averaging over j as follows:

pr[I(sn) = 1 | sn is selected] =
m−1

j=0

pr[IABj
n = 1|XB

n < m,XB
n = j] pr[XB

n = j]

=
1

pr[Xn < m]

m−1

j=0

λn(Bj<m)pr[Xn = j] (2.63)

where when j = m, we have pr[I
ABj
n = 1] = 0.

For the segment selection probability γ(s(nmod E) + iE), we already have its formula

given in equations 2.44 and 2.39 for both the uniform and most urgent selection

strategies respectively. However, the formulas in these equations are conditioned on

a) the segment of age n not being complete, i.e. Xn = j < m and b) the downstream

neighbor is servable at n. Thus we need to uncondition only over the number of blocks

and keep the condition of the neighbor servability since we already knowQn ≥ 1 which

56

means a servable neighbor has been selected. As we mentioned earlier, the selected

neighbor does not affect the probability of usefulness since all the peers have identical

distributions of the number of blocks at any age slot n. Therefore, we can write:

γ(s(n mod E) + iE) = γ(n mod E) + iE(Bj<m)pr[X(n mod E) + iE < m] (2.64)

where γn = 0 when Xn = m. In addition, the probability a peer is servable in the

denominator of the equations 2.44 and 2.39 should be replaced with the unconditional

version in equation 2.30.

To obtain λn, we substitute equations 2.63 and 2.64 into equation 2.62:

λn =
L−2

i=0


γ(n mod E)+iE(Bj<m)

m−1

j=0

λ(n mod E)+iE(Bj<m)pr[X(n mod E)+iE = j]



(2.65)

Now we are ready to find the efficiency by substituting equations 2.61, 2.65 into 2.60:

ηn =

1− (1− θn)

H
λn (2.66)

The efficiency is a periodic function of n with a period of E age slots (S seconds).

This is because, once the system is in steady state, the behavior of the segments in

the buffer is the same over any period of segment duration of S seconds (E age slots)

and depends only on their time w each has spent in their current positions. Therefore,

we can define the average efficiency η over a period of E age slots as:

η =
1

E

E−1

n=0

ηn (2.67)

where E, as defined earlier, is the number of age slots in S seconds.

Next we find many important performance measures that will help us check the

stability of the system. We start with the average effective upload rate peer per Up.

57

During an age slot n, the effective upload rate is ηnUp that we can average over a

period of S seconds to get the average rate:

Up =
E−1

n=0

ηnUp

E
= ηUp (2.68)

where η is the average efficiency as defined in equation (2.67).

Up represents the average effective bandwidth contribution of a peer in the network.

It constitutes along with the average server contribution in equation (2.20) the total

effective bandwidth supply U in the network:

U = Up + Us = ηUp +
BsE[X0]

S
, bps (2.69)

Another performance measure of interest is the average number of useful coded

blocks sent by a peer in a segment duration. Let it be denoted by Bsent. It could be

found from Up as follows:

Bsent =
SUp

Bs

=
SηUp

Bs

= ηE, blocks/segment (2.70)

where E = S
T
= SUp

Bs
.

In order to show the system is stable, we need to obtain the the average effective

download rate per peer D which could be calculated through the average number of

blocks Breceived a peer receives per segment from its neighbors. First, for Breceived, the

average number of useful blocks received at an age slot n is Hβn−1 since the number

of received blocks at n, Rn, has a binomial distribution with parameters (H, βn−1) as

shown in equation 2.23. Therefore, Breceived is given by:

Breceived =
N

n=1

Hβn−1 blocks/segment (2.71)

58

where βn is given in equation 2.58 but conditioned on having j blocks in the sBn . Thus

we have first to average over j as follows:

βn =
m−1

j=0

βn(Bj<m)pr[Xn = j] (2.72)

Now, the download rate, D, could be obtained as follows:

D =
Bs × Breceived

S
bps (2.73)

For the system to be stable the following equation must be satisfied:

D = Up (2.74)

Extra bandwidth required for coefficients overhead and redundant blocks

Since the coefficients vector required to generate a coded block is embedded with the

coded block and sent to neighbors, each received coded block carries an overhead. It

would be interesting to find out how this coefficients overhead impacts the perfor-

mance. We can obtain the average overhead O received from neighbors per segment

from Breceived as follows:

O =
O × Breceived

S
bps (2.75)

where O is the overhead size carried with each coded block and is given in eq. (2.6).

We will discuss the influence of the overhead on the performance when we present

the numerical results in chapter 3.

Another type of extra data the system suffers from is redundant blocks that we

explained in eq. (2.21). The average number of redundant blocks, denoted by BRed.,

could be obtained from the difference between the average number of block received

over the segment lifetime and the actual average number of blocks the segment has

59

when it enters the playback position:

BRed. = Breceived − E[XN], blocks/segment (2.76)

The average extra bandwidth wasted on redundant blocks URed. is then given by:

URed. =
(Bs −O)BRed.

S
, bps (2.77)

where we did not include the overhead carried with the redundant blocks because it is

already calculated as part of the average total overhead from the peers O. Therefore,

the total average extra bandwidth URed wasted for both the coefficients overhead and

redundant blocks is given by:

URed = O + URed. (2.78)

Therefore, in order for the video playback to be continuous on a peer without

any interruptions, the total average bandwidth supply coming from neighbors and

the server Up +Us should be greater than the streaming rate at least by URed. If the

bandwidth supply per peer is not high enough to provide the peer with a full streaming

rate and also accommodate the extra wasted bandwidth, the video playback would

not be smooth all the time and the user will experience interruptions. We discuss

in chapter 3 how to tune up the system parameters to mitigate the effect of the

coefficients overhead and redundant blocks.

2.2.6 Releasing the upload bandwidth of the peers: the case

of heterogeneous upload bandwidth

Up until this point, we assumed all peers have the same constant upload bandwidth.

In this subsection we relax this assumption and treat the case where the upload

60

bandwidth of a peer, Up, is random, and therefore peers may have different upload

speeds.

The heterogeneous upload bandwidth requires changing the definition of the time

slot duration T of the system. We defined T previously as the time to upload one block

and had all peers run the scheduling algorithm at the same time at the beginning of

each time slot. Using the same definition in the heterogeneous case would mean peers

may run the scheduling algorithm at different times which complicates the analysis

of finding the distribution of the number of blocks at each age slot for a randomly

selected peer. Therefore, instead of basing T on the upload bandwidth of the peers,

we base it on the block playback time. This means that T is equal to the time required

to playback one block of the segment, and thus is given by:

T =
S

m
seconds (2.79)

It is not necessary to define T in this way and could be defined in any way that

makes it the same across all peers. Nonetheless, we should keep in mind that if T is

set large enough so that a peer can send many blocks during it, the buffer state of

its neighbors may change during T which may result in sending redundant blocks to

some segments. In a real-world implementation, each peer chooses the frequency to

run the scheduling algorithm separately and can minimize the side effect of sending

redundant blocks by having the algorithm schedule one block only. This means the

algorithm would run at the fastest frequency possible which would increase the time

the peer sits idle, but because the scheduling algorithm in network coding is simple,

it would be executed very fast so that the idle time would be very small and would

not be a problem compared to the time that may be wasted in sending redundant

blocks.

With this new definition of T , the number of age slots in the segment duration,

61

E, would become equal to m:

E = m (2.80)

The equations for the rest of the variables in the model such as N, . . . stay the

same.

A problem that results from the new definition of T is that the upload bandwidth

Up in bps may not translate to an integer number of blocks per time slot. For example,

for the following set of parameters’ configuration (Up = 775 kb/s,Rs = 640 kb/s,m =

50, S = 4 secs, q = 256), Up would be equivalent to 1.2016 blocks/slot. If the peer

decides to round down that number and send 1 block per slot, it then wastes some

time within each time slot.

We can work around this problem by defining the upload bandwidth in blocks/slot

like making it take on values in this set {1, 2, 3} for example, but this would restrict

the bandwidth to certain values like {645, 1290, 1935} kb/s for the above-mentioned

configuration, and remove the ability to test the performance for more fined-grained

values of Up.

To deal with this problem, we suggest that a peer, with the previous configuration of

parameters for example, sends either 1 block per slot with probability p or 2 blocks

per slot with probability 1 − p such that the mean of the sent blocks per slot would

equal 1.2016. This means with probability p ≈ 0.8 the peer sends 1 block per slot

and with probability of approximately 0.2 sends 2 blocks per slot.

Next we formalize this idea. Let Up, defined in terms of bps, take on values in this set

{u1, u2, . . . , uk} with any given probability distribution pr[Up = ui] for i = 1, . . . , k.

We can think of ui’s as classes of bandwidth. For example, if we have only u1 and

u2, they could be though of as peers with home-grade and enterprise-grade internet

speeds respectively.

Let B and Up be the equivalent in real and integer blocks/slot of Up respectively.

62

Then they are given by:

B =
Up × T

Bs

blocks/slot (2.81)

Up =





⌊ B⌋ with pr. p,

⌈ B⌉ with pr. 1− p,
(2.82)

where T and Bs are given in equations 2.79 and 2.7 respectively, plus the following

condition must be satisfied:

p⌊ B⌋+ (1− p)⌈ B⌉ = B (2.83)

from which we can solve for p:

p =
⌈ B⌉ − B
⌈ B⌉ − ⌊ B⌋

(2.84)

Up is an non-negative integer random variable and a function of Up with a conditional

pmf given in equation 2.82. It takes on values in this set {0, 1, 2, . . . , umax} where

umax = ⌈max(B)⌉, and its unconditional distribution can be obtained by averaging

over Up:

pr[Up = u] =
k

i=1

pr[Up = u |Up = ui] pr[Up = ui] (2.85)

for u = 0, 1, 2, . . . , umax.

Equation 2.85 represents the distribution of the number of blocks a peer can send

per time slot, and this distribution is identical for all peers.

Let Rn be the number of blocks that the segment of age n, s
Bj
n , on our our randomly

selected peer, Bj, receives at age slot n. Next step is to find the distribution of Rn.

Once that is done, we can plug it in the transition probability matrix in equation 2.21

instead of Rn, and then obtain the distributions of the Xn’s.

63

When a peer has more than one block to send in a time slot, we assume, to make the

analysis easier, that the scheduling algorithm is repeated for each block independently,

that is, the peer selects uniformly at random a servable neighbor for each block with

replacement, then selects randomly, according to the strategy used, a servable segment

on the selected neighbor with replacement too for each block. The downside of this

kind of scheduling is that it may result in sending multiple blocks to the same segment

that could be redundant especially if other peers send blocks to the same segment

too. Nonetheless, this assumption allows us to extend the homogeneous model easily

to include the heterogeneous upload bandwidth as we will show next.

With this assumption, βn the probability that s
Bj
n receives one block from a neighbor

and which was obtained for the homogeneous model in equation 2.58, remains valid

in the heterogeneous case. This enables us to define the process of scheduling each

block as a Bernoulli trial with success probability of βn. Therefore, if we denote by

Ri
n the number of blocks pushed to s

Bj
n by neighbor i with upload bandwidthUp, then

Ri
n has a binomial distribution with following parameters:

Ri
n ∼ B(Up, βn−1) (2.86)

Therefore, Rn the number of blocks received to s
Bj
n from all neighbor is the sum of

Ri
n for i running from 1 to H:

Rn = R1
n +

R2
n + . . .+ RH

n (2.87)

Rn is the sum of iid binomial random variables and thus has a binomial distribution

with parameters (H, βn−1):

Rn ∼ B(H, βn−1) (2.88)

H = Up1 + Up2 + . . .+UpH (2.89)

64

where H is the summation of the total number of blocks that can be sent from all

the H neighbors of a peer during a time slot.

H has an interesting interpretation. Since neighbors in the homogeneous model has

only one block each to schedule per time slot, each block in the heterogeneous model

could be thought of as an independent neighbor in the homogeneous model. Therefore,

we can describe the effect of releasing the upload bandwidth as only changing the

number of neighbors from the constant H to the random H while the rest of the

model remains the same. Hence H could be interpreted as the new random number

of neighbors that we need to obtain its distribution before we can find the distribution

of Rn.

we can see that H is the sum of iid random variables with a non-standard distribution

given in equation 2.85. Hence its PGF, denoted by H(z), is given by:

H(z) =

Up(z)

H
(2.90)

where Up(z) is the PGF of Up that is given by:

Up(z) = E

z
Up



=
umax

u=0

zu pr[Up = u]

= p0 + p1z1 + . . .+ pumax
zumax (2.91)

where p0, p1, . . . , pumax
are the probabilities of u = 0, 1, 2, . . . , umax respectively.

65

Now we find the PGF of Rn, denoted by Rn(z), based on the conditional expectation:

Rn(z) = E

z
Rn



= E

E

z
Rn | H



= E

(1− βn−1 + βn−1z)

H

,Rn has bino. dist. in 2.89

= H(z)

z=1−βn−1+βn−1z

, substitute from eq. 2.90 to get:

=

Up(1− βn−1 + βn−1z)

H
(2.92)

=

p0 + p1(β′

n−1 + βn−1z) + p2(β′
n−1 + βn−1z)

2 + . . .

. . .+ pumax
(β′

n−1 + βn−1z)
umax

H

=

p0 + p1z + p2z2 + . . .+ pumax

zumax
H

(2.93)

where β′
n−1 = 1 − βn−1 and after expanding and rearranging the sixth equation we

have:

p0 =
umax

i=0

piβ′i

n−1

pj = pjβj
n−1 +

umax

k=j+1

k pk β′k−j

n−1 β
j
n−1 for j = 1, 2, . . . , umax

Equation 2.93 could be expanded using the multinomial theorem:

Rn(z) =


k1+k2+...+kumax=H


H

k1, k2, . . . , kumax


p0k1(p1z)k2(p2z2)k3 . . .

. . . (pumax
zumax)kumax

=


k1+k2+...+kumax=H


H

k1, k2, . . . , kumax


p0k1 p1k2 p2k3 . . .

. . . pkumax

umax
zk2+2k3+...+umaxkumax

= pr0 + pr1z + pr2z
2 + . . .+ prHumax

zHumax (2.94)

66

where after simplifying the second equation we arrive at equation 2.94 which is the

PGF of Rn in standard form, and thus pr0 , pr1 , pr2 , . . . , prHumax
are the probabilities

of Rn assuming values 0, 1, . . . , Humax respectively, and are given by:

pri =



k1+k2+...+kumax
=H

k2+2k3+...+umaxkumax
=i


H

k1, k2, . . . , kumax


p0k1 p1k2 p2k3 . . . pkumax

umax

=



−k1+k3+2k4+...+[umax−1]kumax
= i−H


H

k1, k2, . . . , kumax


p0k1 p1k2 p2k3 . . . pkumax

umax

, for i = 0, 1, 2, . . . , Humax (2.95)

where the subscript of the sum in the second equation results from subtracting the

first equality from the second in the subscript of the sum in the first equation.

Equation 2.95 could be solved numerically to obtain the exact pmf of Rn.

Another method to obtain the exact pmf of Rn numerically is by obtaining the

distribution of H in equation 2.89 using the inverse Discrete Fourier Transform (DFT)

method. Since H is a sum of iid random variables, the DFT method could be used

to find its exact pmf by inverting its discrete characteristic function. Fortunately, the

DFT is implemented efficiently by the Fast Fourier Transform (FFT) algorithms that

can carry it out in less operations. After obtaining the pmf of H, the distribution of

Rn could be found by averaging over H:

pr[Rn = r] =
Humax

k=0

pr[Rn = r | H = k] pr[H = k]

=
Humax

k=0


k

r


βn−1

r(1− βn−1)
k−r pr[H = k]

for r = 0, 1, . . . , Humax (2.96)

where Rn has a binomial distribution with parameters (H, βn−1).

Now that we have the unconditional distribution of Rn we can, as we mentioned

67

earlier, plug it in transition probability matrix in equation (2.21) in place of Rn, and

then obtain the distributions of the number of blocks at each age slot n, Xn’s.

2.2.7 Efficiency for the case of heterogeneous upload band-

width

Since peers in this case may be able to push multiple coded blocks during a time slot,

the definition of the efficiency introduced in equation 2.59 needs to be changed with

regard to how many of the pushed blocks are useful.

Let Buseful
n be the number of useful blocks out of the Up coded blocks a peer pushes

at age slot n, thus Buseful
n ∈ {0, . . . ,Up}. The efficiency at age slot n is a function of

Up, B
useful
n , and Qn and could be defined as:

ηn(Up, B
useful
n , Qn) =





0 if Qn = 0,

Buseful
n

Up

if Qn ≥ 1,
(2.97)

where when there is at least one servable neighbor (Qn ≥ 1), the efficiency would

increase when more useful blocks are sent and vice versa.

Next we find the distribution of Buseful
n given the peer to which each block is pushed is

servable. In fact, in section 2.2.5, we already obtained in equation 2.65 the probability

a pushed block is useful given the destination peer is servable λn. Moreover, λn is

the same for each of the Up blocks sent at n. In addition, these blocks are sent

independently as we assumed previously and all are sent at the beginning of the time

slot and received at the end of the time slot, thus the usefulness of one does not

affect the usefulness of the others. Therefore, Buseful
n has a binomial distribution

with parameters (Up,λn).

68

Now the unconditional efficiency could be found by averaging eq. (2.97) as follows:

ηn =
ûmax

û=0

û

k=0

k

û
pr[Buseful

n = k|Up = û]pr[Up = û]pr[Qn ≥ 1]

=

1− (1− θn)

H
 ûmax

û=0

E[Buseful
n |Up = û]

û
pr[Up = û]

=

1− (1− θn)

H
 ûmax

û=0

ûλn

û
pr[Up = û]

=

1− (1− θn)

H
λn (2.98)

where in the first equation Qn and Up are independent and the condition Qn ≥ 1

is already taken care of when finding the distribution of Buseful
n . In addition, the

conditional expectation is equal to ûλn since Buseful
n has a binomial distribution.

We notice that the efficiency is identical to the efficiency for the homogeneous upload

bandwidth in eq. (2.66) due to binomial distribution of Buseful
n . As we mentioned

in the homogeneous case, the efficiency here is also periodic with a period equal to a

segment duration of S seconds. The average efficiency η over any period of S seconds

(or m age slots) is given by:

η =
m−1

n=0

ηn
m

(2.99)

Next we calculate the measures that help us investigate the stability of the system.

First, we start with the average effective peer upload rate, Up.

Since ηn is the ratio of useful blocks sent during age slot n, then the average amount

of useful information that is sent during time slot T is E[Up]Tηn kb/s. Therefore,

Up could be calculated as the sum of useful information sent over all age slots in a

69

segment duration divided by the segment duration:

Up =

m−1

n=0

E[Up]Tηn

S

= E[Up]

m−1
n=0 ηn
m

= E[Up]η b/s (2.100)

where η is the average efficiency and T
S
= 1

m
.

To verify the stability of the system, we find the average download rate from peers

D. First, we calculate the average number of useful blocks Breceived a peer receives

for a segment from its neighbors. Breceived could be calculated by finding E[Rn], the

average number of useful blocks received at age slot n, then summing it over all the

age slots of the servable-by-peers segment lifetime:

Breceived =
N

n=1

E[Rn]

=
N

n=1

E[E[Rn| H]]

=
N

n=1

E[Hβn−1] ,Rn has binomial dist. w/ parameters in 2.89

=
N

n=1

βn−1E[H]

=
N

n=1

βn−1HE[Up] , H is sum of H iid Up’s in 2.89

= HE[Up]
N

n=1

βn−1 Blocks/Segment (2.101)

70

where βn is unconditioned in equation (2.72).

Now we can calculate the average download rate from neighbors, D, as follows:

D =
BreceivedBs

S

=
BsHE[Up]

N

n=1 βn−1

S
b/s (2.102)

For the system to be stable, the average download rate should be equal to the

average upload rate, thus the following equation should be satisfied:

D = Up (2.103)

The overhead rate O and average number of redundant blocks BRed. received per

segment could be obtained in the same fashion as in the homogeneous case.

The total average bandwidth supply consists of: i) the average peers contribution

of E[Up], and ii) the average server contribution Us. For a smooth playback, the

bandwidth supply should be higher enough to accommodate the streaming rate and

the extra bandwidth wasted on the coefficients overhead and useless and redundant

blocks.

71

Chapter 3

Numerical Results and Analysis of

the Protocol Performance

In the previous chapter, we developed a stochastic analytical model to reveal the

probability distribution of the number of blocks a segment accumulates at each age

throughout its lifetime in the buffer for both the Uniform and Most-Urgent segment

selection strategies. There is no closed-form expression for the model, and therefore

we solve the model numerically to obtain the performance metrics and present the re-

sults in this chapter. Specifically, we study the effects of the main system parameters

of network coding and video streaming on the continuity and efficiency performance.

This would give us insights into what parameters are most critical to the performance

and what parameters are not that critical. Furthermore, we would also understand

the main trade-offs that should be made to obtain the best performance under a

specific configuration of the parameters. We will also compare the continuity per-

formance of the two segment selection strategies and find out which one performs

better. Moreover, we will compare the theoretical results to the simulation results to

validate the model. As we will see later, both the model and simulation exhibit the

same behavior for both strategies for different streaming scenarios.

72

First of all, we define a standard configuration of the system parameters as shown

in table 3.1 with two scenarios for E[Up]; the mean peer upload bandwidth: i) E[Up] =

653 kb/s which is equivalent to 1.0203 times higher than the streaming rate i.e.

E[Up]

Rs
= 1.0203, ii) E[Up] is equal to the streaming rate. After that, we present the

performance graph for this configuration in figure 3.1 and explain how to read the

graph. In the rest of the chapter, we investigate the effect of most of the parameters

under both the uniform (Uni.) and most urgent (M.U.) segment selection strategies

with the scenario of E[Up] for which the effect is most noticeable. We vary only the

value of the studied parameter while the rest of the standard configuration remains

the same.

Parameter Value
Z 100 peers
Us 1 Mb/s

i)E[Up] 653 kb/s ≡ 1.0124 blocks/slot
ii)E[Up] 640 Kb/s ≡ 0.9922 blocks/slot

Rs 640 Kb/s
H 10 neighbors
L 4 positions
S 4 seconds
m 50 blocks
a 1 block
q 28 = 256

Table 3.1: Standard parameter configuration

The lines in Figure 3.1 represent the probability of a complete segment pr[Xn = m]

as a function of the age slot n for both strategies. The age range in the graph covers

only the part of the segment lifetime during which it is servable by peers, or, in other

words, the range does not include the time spent in the first or last buffer positions.

The reason is that the segment, during its time spent in the first position, will not

have any blocks on all peers until it reaches the end of its stay in the first position

where it will have received a linearly independent blocks from the server but only on

the peers the server selected. Thus, pr[Xn = m] would be equal to 0 throughout the

73

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

age slot n

p
r[

X
n
 =

 m
]

 pr[X
n
 = m] − Uniform

 pr[X
n
 = m] − Most Urgent

Figure 3.1: Performance of both strategies for the standard configuration when
E[Up]

Rs
= 1.0203

first position, and it suffices to only show pr[Xn = m] at the beginning of the stay

in the second position shown as age slot n = 0 in the graph. For the last position,

the segment will not receive any blocks either once it enters this position and will be

either played back or skipped depending on the number of blocks it had at the end

of its stay in the previous position.

Therefore, pr[Xn = m] at the end of the second to last position i.e. at age slot n = N ,

or n = 100 in figure 3.1, is the probability of continuity Pcont.. Moreover, figure 3.1

reveals how the segment develops, in terms of how likely it will be complete, over

the time it spends in each buffer position. For example, since E = m = 50 in the

standard configuration, the segment is highly unlikely to be complete while in the

second position that corresponds to the range n = 0, . . . , 49 in the graph, whereas it

is certainly complete during most of its time in the third position that corresponds

to the range n = 50, . . . , 99 and enters the playback position with probability of

continuity pr[X100 = m] ≈ 1 for both strategies.

Other quantities of interest could also be plotted against the segment age such as the

efficiency and the average number of blocks the segment has at each age slot, as we

74

will show later.

Next we investigate the effects of the system parameters and start with the most

important parameter; the upload bandwidth Up.

3.1 Video streaming parameters

3.1.1 Peer upload bandwidth Up

The expected value E[Up] of Up is the mean upload bandwidth available to a peer

through its neighbors. E[Up] plus the average server contribution per peer BsE[X0]
S

constitutes the bandwidth supply per peer. The server contribution per peer is 9.933

kb/s for the standard configuration which is equivalent to only 0.0155 of Rs. This

would make the bandwidth supply per peer be 1.0155 and 1.0358 of the streaming rate

or 649.933 kb/s and 662.933 kb/s for the two scenarios E[Up] = Rs and
E[Up]

Rs
= 1.0203

respectively.

We have observed that the performance depends only on the mean of Up such that

different sets of values and distributions of Up that have the same mean E[Up] would

lead to almost the same performance. We state the reason for this later. Therefore,

we will not show the figures with different distributions of Up and will only use E[Up]

for the following figures.

We plot in Figure 3.2 the probability of continuity PCont. as a function of the

difference of the mean upload bandwidth and the streaming rate E[Up]−Rs to show

the lowest E[Up] from which upward perfect continuity is achieved.

As we see in Figure 3.2, with an average server contribution of only about 9.9 kb/s

per peer, the rest of the bandwidth supply coming from the neighbors i.e. E[Up] is

sufficient to be as low as the streaming rate i.e. E[Up] = Rs for the uniform strategy

to start achieving almost perfect continuity for both the model and the simulation.

This is because the bandwidth supply per peer, which is 649.9 kb/s, is sufficient to

75

−38 −36 −34 −32 −30 −28 −26 −24 −22 −20 −18 −16 −14 −12 −10 −8 −6 −4 −2 0 2 4 6 8 10 12
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

E[U
p
] − R

s

P
C

o
n
t.

sim − Uniform

sim − MostUrgent

model − MostUrgent

model − Uniform

E[U
p
] = 602:2:653 kb/s

Figure 3.2: Continuity performance as a function of E[Up] − Rs for the standard
configuration for both strategies.

accommodate the extra bandwidth wasted by the coefficients overhead and redundant

blocks, that we calculated to be 9.87 kb/s, and provide a streaming rate of 640 kb/s

to the peer.

On the other hand, the most urgent strategy requires E[Up] to be 2 and 4 kb/s above

Rs for the model and the simulation respectively to start achieving continuity close

to 1. This is caused by the extra bandwidth wasted per peer which is 10.67 kb/s that

makes a streaming rate of 640 kb/s not possible when E[Up] = Rs.

Figure 3.2 also shows that, for the uniform strategy the simulation matches the

model nicely when E[Up] is greater than Rs while it starts to deviate just a little bit

from the theoretical results when E[Up] is lower than Rs which is anyway not a case

of interest. As for the most urgent strategy, the deviation is most noticeable when

E[Up] is within 2 kb/s around Rs but still less than 0.05.

While this small difference between the simulation and the model could be in general

attributed to the independence assumptions we made in the model, the most notice-

able difference around the streaming rate, especially for the most urgent strategy,

76

could be further explained.

We have observed that the performance is very sensitive to small changes in the mean

upload bandwidth when the average bandwidth supply is close to the demand while

it becomes much less sensitive when the supply is greater than the demand by an

enough margin. Furthermore, the uniform strategy is less sensitive than the most

urgent strategy to these kind of changes. This sensitivity may make any errors that

might have been made in the model or the simulation have greater effect when the

demand is close to the supply than what they would have otherwise which may ex-

plain the small difference in their performance when the bandwidth supply is close to

the demand.

Figure 3.3 shows this behavior for both the most urgent and uniform strategy

respectively. We see in this figure 3.3b that increasing the mean upload bandwidth

when it is equal to Rs = 640 kb/s by two successive increments of only 1 kb/s leads

to relatively big jumps in the performance of the most urgent strategy compared to

much smaller improvements when E[Up] is increased from 644 kb/s to 650 kb/s in

increments of 2 kb/s.

Compared to the most urgent strategy, the uniform strategy is less sensitive to

small changes in E[Up] around Rs as shown in figure 3.3a. Moreover, the significant

changes in the performance happen when E[Up] is less than Rs = 640 kb/s by a small

margin. As we see in the figure 3.3a, performance drops more significantly when

E[Up] is lower than Rs by 2 and 4 kb/s whereas much less performance drop happen

when E[Up] drops from 646 to 640 kb/s in decrements of 2 kb/s.

3.1.2 Comparison of the Uniform and Most Urgent strategies

The most interesting observation in Figure 3.2 is that both the model and simulation

show that the uniform strategy (Uni.) performs better than the most urgent (M.U.)

strategy when E[Up] is less or slightly higher than Rs while both strategies are able

77

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

age slot n

p
r[

X
n
 =

 m
]

Model − Uniform − E[U
p
]=634

Model − Uniform − E[U
p
]=636

Model − Uniform − E[U
p
]=638

Model − Uniform − E[U
p
]=640

Model − Uniform − E[U
p
]=642

Model − Uniform − E[U
p
]=644

Model − Uniform − E[U
p
]=646

(a) Uniform

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

age slot n

p
r[

X
n
 =

 m
]

Model − MostUrgent − E[U
p
]=640

Model − MostUrgent − E[U
p
]=638

Model − MostUrgent − E[U
p
]=641

Model − MostUrgent − E[U
p
]=642

Model − MostUrgent − E[U
p
]=644

Model − MostUrgent − E[U
p
]=646

Model − MostUrgent − E[U
p
]=648

(b) Most Urgent

Figure 3.3: Sensitivity of the performance of both strategies when the bandwidth
supply is close to the demand

to achieve a continuity of 1 when E[Up] is even slightly greater than Rs. Having

said that, the difference in the continuity performance shown in figure 3.2 is less

than 0.05 which seems to be not that significant. To reveal more about how the

segment develops over its lifetime in the buffer, we present Figure 3.4 that shows the

probability that the segment is complete as a function of its age when E[Up] = Rs.

Both the model and simulation in this figure clearly show that a segment in the Uni.

strategy is much more likely to be complete at an earlier age compared to the M.U.

78

strategy. Furthermore, the Uni. strategy is able to achieve almost perfect continuity

even when E[Up] is as low as Rs.

U - sim MU - sim MU - model U - model Xn - MU Xn - U

0 25 50 75 100
0

10

20

30

40

50

age slot n

X
n

0

0.2

0.4

0.6

0.8

1

p
r[
X

n
=

m
]

Figure 3.4: Comparison of performance (red & blue lines) on the right axis and average
number of blocks (black lines) on the left axis of both strategies when E[Up] = Rs

This may seem counter intuitive for the first glance as we would expect the M.U.

strategy to perform better since the focus would be on the segment closest to the

playback deadline. However, we can explain this behavior by realizing that in the Uni.

strategy servable segments in the buffer have equal chances to receive coded blocks

regardless of their positions. This makes the segment start accumulating blocks early

in its lifetime and essentially gives it more time to become complete before it reaches

its playback deadline.

By contrast, the segment in the M.U. strategy starts to receive blocks only when it

is the closest to its playback deadline among the other servable segments which gives

it less time to become complete. Moreover, if the most urgent segment has received

a large number of its blocks, then blocks received from neighbors are more likely to

be linearly dependent since the existing blocks of the segment would span a larger

subspace. Thus focusing the efforts of all neighbors on this segment would make the

79

M.U. strategy waste a little bit more bandwidth than the Uni. strategy. In fact,

we have found in our standard config. with E[Up] = Rs that the extra bandwidth

to be around 9.87 and 10.67 kb/s for the Uni. and M.U. strategies respectively.

Therefore, when the bandwidth supply is not high enough to make the most urgent

segment complete before its playback deadline, the segment would start to receive

blocks only when it enters the second to last buffer position by which time it is too

late to get complete before the deadline. However, if the the bandwidth supply gets

higher enough than the streaming rate, the segment starts to receive blocks earlier

and the performance of the M.U. strategy will be similar to the Uni. strategy.

To help us see this behavior we plot the average number of blocks X = E[Xn]

a segment has at each age slot for both strategies when E[Up] = Rs in the same

Figure 3.4. We clearly notice that a segment in the Uni. strategy starts receiving

blocks as soon as it becomes servable at the beginning of its stay in the first position

and enters the second position with more than 90% of its blocks received. On the

other hand, a segment in the M.U. strategy starts to accumulate blocks only at the

end of the first position and enters the next position with only just under 30% of its

blocks received.

Performance sensitivity to the mean upload bandwidth E[Up]

As we mentioned earlier, the performance of both strategies depends only on the

mean of the peer upload bandwidth Up and not on the specific set of values and

the corresponding distributions as long as these distributions have the same mean.

Figure 3.5 shows that each of the strategies has exactly the same performance for the

set of values {510, 620, 650, 700, 800} and {600, 640, 650, 700} of Up with probability

distributions of {.2, .3, .1, .2, .2} and {.1, .2, .5, .2} respectively with the mean of 653

kb/s for both distributions. Same thing happens when the mean is 640 kb/s.

This behavior is caused by the assumption we made when we studied the case of

80

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

age slot n

p
r[

X
n
 =

 m
]

model − Uniform − {640} − pr[U
p
] = {1} −

E[U
p
] = 640

model − MostUrgent − {640} − pr[U
p
] = {1} −

E[U
p
] = 640

model − Uniform − {500, 600, 650, 700} −
pr[U

p
] = {.1, .2, .4, .3} − E[U

p
] = 640

model − MostUrgent − {500, 600, 650, 700} −
pr[U

p
] = {.1, .2, .4, .3} − E[U

p
] = 640

model − Uniform − {510, 620, 650, 700, 800} −
pr[U

p
] = {.2, .3, .1, .2, .2} − E[U

p
] = 653

model − MostUrgent − {510, 620, 650, 700, 800} −
pr[U

p
] = {.2, .3, .1, .2, .2} − E[U

p
] = 653

model − Uniform − {600, 640, 650 700} −
pr[U

p
] = {.1, .2, .5, .2} − E[U

p
] = 653

model − MostUrgent − {600, 640, 650 700} −
pr[U

p
] = {.1, .2, .5, .2} − E[U

p
] = 653

Figure 3.5: Performance of each strategy is identical for distributions of Up that have
the same mean E[Up] when the value of Up may change at each time slot.

heterogeneous upload bandwidth. We assumed there that peers select the value of Up

randomly at each time slot according to its giving distribution. This is in contrast

to what may happen in the real world where a peer would have a random upload

speed when it first joins the overlay but its speed remains constant throughout the

streaming session. We made this assumption to make modeling the system easier as

peers would be identical in this case. Nonetheless, it could still have some realistic

interpretation. We can argue that having the upload bandwidth remain constant

throughout the streaming session may not be that realistic as the bandwidth may

fluctuate because of the user behavior on his computer or the network congestion.

In this sense changing the bandwidth at each age slot may reflect fluctuations in the

available bandwidth.

3.1.3 Server Capacity Us

For our standard configuration when E[Up] = Rs, the average server contribution per

peer has to be at least 6.45 kb/s, equivalent to a server capacity of 1.0078 times larger

than the streaming rate (i.e. Us = 645 kb/s), for the server to be able to push all the

81

15.625 3.1250 1.0078 1.5625 1.0063 1.875

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

age slot n

p
r[

X
n
]

=
 m

(a) Uniform Strategy

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

age slot n

p
r[

X
n
 =

 m
]

(b) Most Urgent Strategy

Figure 3.6: Performance w.r.t. the server capacity normalized by the streaming rate
Us

Rs
when E[Up] = Rs

m blocks of the segment to the peers as shown in Figure 3.6. If the server capacity

drops below that, the system would fail regardless of E[Up]. Moreover, when the mean

peer bandwidth supply is close to the streaming rate the uniform strategy would

require less server bandwidth than the most urgent to achieve a continuity higher

than 99.99%. This is again because the uniform strategy takes a better advantage of

the buffering time. We have found that when E[Up] = Rs increasing Us from 1 Mb/s

to just 1.2 Mb/s (1.875 times of Rs) would be sufficient for the most urgent strategy

to catch up with the uniform strategy and achieve a continuity higher than 99.99%.

Finally, when the bandwidth supply becomes higher enough than the demand, both

82

strategies would exhibit the same performance.

3.1.4 Overlay Size Z

As shown in Figure 3.7, the uniform strategy can scale up to 105 peers with a rel-

atively small decline in the performance even though the bandwidth supply exceeds

the demand by only about 23 kb/s (E[Up] − Rs = 13 kb/s + 9.9 kb/s server contri-

bution). On the other hand, the most urgent strategy would witness a much more

dramatic decline in the performance starting from a smaller scale of 104 users with

Z=10
5

Z=10
4

Z=10
3

Z=10
2

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

age slot n

p
r[

X
n
 =

 m
]

(a) Uniform Strategy

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

age slot n

p
r[

X
n
=

m
]

(b) Most Urgent Strategy

Figure 3.7: Effect of the populations size Z on the performance of both strategies
when E[Up]

Rs
= 1.0203

83

the continuity dropping below 1. This is because the server contribution per peer

would drop as Z increases and there would be much fewer peers able to serve the

segment at age slot 0 due to our server design. We have found that in order for the

most urgent strategy to achieve a continuity higher than 99.99% when the scale is

Z = 105, it would require either the server capacity to be increased 40 times from 1

Mb/s to around 40 Mb/s, or the mean peer upload speed to be increased by only 12

kb/s from 653 to 665 kb/s.

3.1.5 Number of Neighbors H

We have found that increasing the number of neighbors would lead to a better per-

formance for both strategies up to a certain value after which having more neighbors

would not yield any more gains in the performance as shown in Figure 3.8. In the

standard configuration when the bandwidth supply exceeds the demand, we found

that maintaining 10 neighbors is sufficient to achieve the best performance. While

maintaining a very small number of neighbors would also give a good performance,

it would not be resilient to peer churn. On the other hand, having a large number of

neighbors such as 50 or more would increase the overhead required to maintain them.

3.1.6 Buffer Length L

Increasing the buffering time by increasing the buffer positions would not help the

most urgent strategy improve its performance when the bandwidth supply is close to

the demand as shown in Figure 3.9. As we explained earlier, the bandwidth supply is

not high enough keeping the focus only on the segment in the second to last position

where there would not be enough time for the segment to turn complete. On the

other hand, the uniform strategy would benefit from increasing the buffering time as

shown in Figure 3.9 when increasing L from 3, where there is only 1 servable-by-peers

84

H=2 − model H=5 − model H=50 − model H=2 − sim H=5 − sim H=50 − sim

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

age slot n

p
r[

X
n
]

=
 m

(a) Uniform Strategy

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

age slot n

p
r[

X
n
]
=

 m

(b) Most Urgent Strategy

Figure 3.8: Effect of the number of neighbors H on the performance of both strategies
when E[Up]

Rs
= 1.0203

position, to 4 where the segment gets complete around the middle of its stay in the

third position. If the segment turns complete before its playback deadline, increasing

L would not change the performance and would just increase the delay before the

playback.

85

L=5, N=150 L=3, N=50 L=6, N=200 L=4, N=100

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

age slot n

p
r[

X
n
 =

 m
]

(a) Uniform Strategy

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

age slot n

p
r[

X
n
 =

 m
]

(b) Most Urgent Strategy

Figure 3.9: Buffer Length L effect on the performance of both strategies when E[Up] =
Rs

3.2 Network coding parameters

3.2.1 Effect of the number of blocks m

The number of blocks the segment is divided into is one of the most important pa-

rameters in the network coding p2p streaming protocols and plays a significant role

in determining the performance of the protocol. It is directly related to the block size

as shown in (2.7) such that increasing m leads to smaller block sizes and vice verse.

Figure 3.10 shows that increasing m leads to a better performance for both strategies

up until a certain value after which the performance starts to degrade. This can be

86

explained as, on one hand, as m gets smaller for a given segment duration, the block

size gets larger making the amount of bandwidth wasted due to linear dependency

become much larger than what it would be for smaller block sizes. On the other hand,

increasing m after a certain value would kick in the effect of the coefficients overhead

that would get larger with larger m as shown in (2.6). Therefore, there is a sweet

spot for m per S for which the extra bandwidth for redundant blocks and overhead

is minimal. For our standard configuration, we have found the extra bandwidth re-

quired ranges from 35.7 kb/s for m = 10 to around 23 kb/s for m = 100 with the

lowest 19.4 kb/s happening at m = 50 at which we got the best performance.

m=100, N=200 m=10, N=20 m=20, N=40 m=60, N=120 m=50, N=100

0

0.2

0.4

0.6

0.8

1

age slot n (different for each m)

p
r[

X
n
 =

 m
]

(a) Uniform

0

0.2

0.4

0.6

0.8

1

age slot n (different for each m)

p
r[

X
n
 =

 m
]

(b) Most Urgent

Figure 3.10: Effect of the number of blocks m per segment on the performance of
both strategies when E[Up]

Rs
= 1.0203

87

a=5 a=15 a=25 a=1

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

age slot n

p
r[

X
n
 =

 m
]

(a) Uniform Strategy

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

age slot n

p
r[

X
n
 =

 m
]

(b) Most Urgent Strategy

Figure 3.11: Effect of the aggressiveness a on the performance of both strategies when
E[Up]

Rs
= 1.0203

3.2.2 Aggressiveness a

We have found that setting a to as low as 1 coded block would give the best per-

formance for both strategies as shown in Figure 3.11. This is because it makes the

segment Ready-to-be-Served as early as possible while the linear dependency of the

sent coded blocks does not constitute a major hurdle. Increasing a would lead to not

only having fewer peers able to serve the segments early at age 0 but also making

other peers take more time to start serving the segment that would especially have

much worse effect on the most urgent strategy as shown for a = 5 in Figure 3.11.

88

With low values of a, much shorter buffer lengths could be used that would make the

overhead of exchanging buffer maps even smaller.

3.2.3 Galois Field Size q

The coefficients used to form a linear combination of the existing blocks of a segment

and generate a coded block are chosen uniformly at random and independently from

the Galois field of size q. The larger the field size is the more randomization occurs

when generating a coded block which increases its chances to be linearly independent.

However, the coefficients overhead would increase with larger field sizes as shown in

q=2
8
 − model q=2

8
 − sim q=2

3
 − model q=2

3
 − sim

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

age slot n

p
r[

X
n
 =

 m
]

(a) Uniform Strategy

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

age slot n

p
r[

X
n
 =

 m
]

(b) Most Urgent Strategy

Figure 3.12: Effect of the field size q on the performance of both strategies when
E[Up]

Rs
= 1.0203

89

eq. (2.6). Having said that, we have found out that as long as q is not very small,

the opposite effects of linear independence and coefficients overhead will balance each

other out such that the total amount of wasted bandwidth would almost be the

same when varying q between 23 to 28. This would lead to having almost the same

performance for different values of q as shown in Figure 3.12 making the choice of the

field size be not that critical. For our standard configuration when E[Up]

Rs
= 1.0203,

we have found in the uniform strategy that the coefficients overhead increases from

1.9139 kb/s for q = 8 to 5.1108 for q = 256 while the bandwidth wasted on linearly

dependent blocks decreases from 7.7086 kb/s to 3.6422 kb/s for q = 8 and q = 256

respectively. In addition the total extra bandwidth needed that includes redundant

blocks is 22.89 kb/s and 22.93 kb/s for q = 8 and q = 256 respectively. The numbers

for the most urgent strategy are very close to the uniform’s.

3.3 Efficiency η

Network coding has been found to increase the efficiency of multicast sessions on

certain network topologies as we mentioned in the first chapter. This also holds true

for P2P live video streaming systems. We have found that when system parameters

are tuned up properly, network coding achieves an average efficiency of more than

95% in most cases.

Figure 3.13 shows the efficiency ηn as a function of the age slot for both strategies

when the mean peer upload bandwidth is greater than the streaming rate. In this

case, the total average bandwidth supply available per peer is 662.933 kb/s which

is the sum of the average peer capacity E[Up] of 653 kb/s and the average server

contribution per peer of about 9.933 kb/s calculated from equation (2.20).

As we discussed previously, we can observe that the efficiency is periodic over any

period that is equal to segment duration. We can also observe that in both strategies,

90

0 10 20 30 40 50 60 70 80 90 100
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

age slot n

pr[X
n
 = m]

η
n

(a) Uniform Strategy

0 10 20 30 40 50 60 70 80 90 100
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

age slot n

pr[X
n
 = m]

η
n

(b) Most Urgent Strategy

Figure 3.13: Efficiency of both strategies when E[Up]

Rs
= 1.0203

the efficiency starts to decline towards the last few age slots in the period until it drops

just under 80% at the end of the period. This decline could be explained easily. As the

segment in the third position is complete with high probability throughout almost

all of its stay in this position, both strategies will select the only other remaining

servable segment in the second buffer position. However, as this segment gets closer

to its stay in the second position, its probability to be complete increases to above

50% making it less servable and causing the efficiency to drop at that time.

The average efficiency for both strategies in Figure 3.13 as calculated from equation

(2.67) is almost 99.44%. However, this efficiency only accounts for linearly dependent

blocks and does not include the effect of the overhead and redundant blocks. We

91

have calculated the extra bandwidth taken up by the overhead and redundant blocks

using equations (2.75) and (2.76) and found it to be approximately 5.11 kb/s and

14.2 kb/s for the overhead and redundant blocks respectively for both strategies in

Figure 3.13. If we include this extra wasted bandwidth, we get an average efficiency

of approximately 96.54% for both strategies.

For the system to be stable, 96.54% of the total bandwidth supply per peer (662.933

kb/s) which amounts to 639.99 kb/s should be equal to the actual consumption rate

per peer. Since the continuity is almost 1 in Figure 3.13, the actual amount of useful

data consumed per second on a peer is equal to the full streaming rate of 640 kb/s

which verifies the system is stable.

For the case of E[Up] = Rs, we present the efficiency in Figure 3.14 for both

strategies. The total average bandwidth supply per peer in this case is E[Up] + server

contribution = 640 + 9.933 = 649.933 kb/s. To achieve continuity of 1, the demand

per peer should be equal to the streaming rate (640 kb/s) plus the extra bandwidth

wasted on linearly dependent and redundant blocks and coefficients overhead.

As we see from Figure 3.14, both strategies achieve an efficiency close to 1 through-

out the period of a segment duration with an average efficiency of about 99.99 for

both. This proves the linear independence is a minor downside in this case. There is

no drop in the efficiency towards the end of the period here compared to Figure 3.13.

This is because in the most urgent strategy, the most urgent segment towards the

end of the period is most likely the one in the second position which is certainly not

complete yet. As for the uniform strategy, there is an extremely slight drop towards

the end of the period since the segment in the third position is certainly complete but

it is not noticeable since the segment in the end of the second position is less than

50% complete.

The bandwidth is wasted mainly on the coefficients overhead and redundant

blocks. For the uniform strategy, we have calculated them to be about 5.04 and

92

0 10 20 30 40 50 60 70 80 90 100
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

age slot n

pr[X
n
 = m]

η
n

(a) Uniform Strategy

0 10 20 30 40 50 60 70 80 90 100
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

age slot n

pr[X
n
 = m]

η
n

(b) Most Urgent Strategy

Figure 3.14: Efficiency of both strategies when E[Up] = Rs

4.833 kb/s respectively for a total of 9.87 kb/s. If we include them into the calcu-

lation of the efficiency, we get an efficiency of 98.47%. This efficiency would make

the amount of useful average bandwidth supply per peer be 639.989 kb/s which is

sufficient to provide the peer with almost the full streaming rate of 640 kb/s. This

explains the close-to-one continuity the uniform strategy is achieving in Figure 3.13.

On the other hand, in the most urgent strategy, we calculated the coefficients over-

head and redundant blocks to be 5.04 and 5.636 kb/s respectively for a total of 10.673

kb/s. If we include them into the calculation of the efficiency, we get an efficiency of

98.35% which is slightly less than the uniform strategy. This efficiency would make

the amount of useful average bandwidth supply per peer be 639.209 kb/s which is not

93

sufficient to provide the peer with the full streaming rate of 640 kb/s. This reveals

why the performance of the most urgent strategy is worse than the uniform strategy.

94

Chapter 4

Conclusion and Future Work

Numbers are confirming what we are witnessing in our everyday lives. Video traffic is

dominating the internet now. And with the advances in high quality content creation

and more video-based services are becoming standard on the internet such as video

conferencing and IPTV, video traffic growth is forecast to continue to explode over

the next few years. This will present a challenge for the current delivery architectures

to continue to meet the expected explosion in bandwidth demand. P2P video stream-

ing systems have the potential to play a significant role in meeting the anticipated

bandwidth demand. They have the ability to leverage the bandwidth resources of

end users which would have even more importance since the capacity of broadband

links available to home and enterprise users is expected to increase and also reach

more customers. Moreover, they provide large-scale capability at low cost.

We believe the introduction of network coding to P2P video streaming was a game

changer. It helped resolve some of the issues that plagued previous designs. With

proper design, network coding helps utilize the available bandwidth supply more effi-

ciently especially when the supply barely exceeds the demand. And more importantly,

it brings new levels of robustness to the P2P system that is known for its dynamic

nature and unpredictable user behavior. Above all that, it simplifies the design while

95

keeping the bandwidth redundancy in check.

However, not a lot of research has been done for the integration of network coding

with P2P video streaming and that is true especially when it comes to mathemati-

cally studying these systems. Our research attempted to fill this gap by providing a

stochastic model to analyze the performance of network coding and investigate the

influence of the system parameters and design options.

4.1 Conclusion

Our model is unique in that it reveals how the number of blocks in a segment evolve

as the segment grows older in the buffer. To do that, we divided the segment lifetime

in the buffer into age slots, then defined Xn to be the number of blocks a segment

has at age slot n. Once the system is in steady state the distribution of Xn would not

change. We have observed that the distribution of any Xn depends only the number

of blocks at the previous age slot Xn−1 and the number of useful blocks received at

the current age slot Rn. To obtain Rn, we had to find the probability βn−1 that a

neighbor at age slot n− 1 pushes a useful coded block to one of its downstream peers

at n− 1. β depends on the buffer states and neighbor and segment selection strate-

gies. We derived formulas for β for both the uniform and the most urgent segment

selection strategies.

From β, the distribution of Rn is found as a binomial distribution with success proba-

bility βn−1 and total number of trials equal to either i) H in the homogeneous upload

bandwidth case and , or equal to ii) H, which is the sum of the total number of

blocks all neighbors can push at the current time slot, in the heterogeneous band-

width case. Next, the unconditional distributions of Xn’s are obtained by solving a

series of equations starting from X0 at the beginning of the servable-by-peers segment

lifetime to XN at the beginning of the playback position where the video playback

96

would be continuous if the segment is complete. Thus the probability of continuity is

equivalent to pr[Xn = m].

The distribution of X0 depends solely on the server design. We have defined a sim-

ple server design that enabled us to characterize the server contribution in the video

streaming session and derive the distribution of X0. In this design, for each new

segment, the server selects a number of peers uniformly at random from all the peers

in the overlay and sends only a linearly independent blocks to each. Since the aggres-

siveness could be set to as low as 1 while keeping usefulness of coded blocks high, our

design maximizes the use of the capacity of the server by spreading a new segment

to as many peers as possible spread all across the overlay and are able to serve it as

quickly as possible.

We have also derived a good approximation of the probability a pushed coded

block is linearly independent through studying the relation between the subspaces

spanned by the coded blocks on the upstream and downstream peers. This allowed

us to study the effect of the linear dependency on the performance. We found out that

received coded blocks are useful with high probability even when the aggressiveness

is set to a low value.

We concluded the model by studying the efficiency of network coding. We derived

formulas for the efficiency of both the uniform and segment selection strategies. We

have also derived many performance measures that enabled us to verify the stability

of the system as well as quantify the extra bandwidth wasted on the coefficients

overhead and redundant blocks.

We extracted numerical results from the model and performed simulations to

verify the model. Our simulation results confirmed the behavior we got in the model

for all the system parameters and design options.

97

4.2 Thesis Contribution

Modeling P2P live streaming with network coding with the goal of capturing the

influence of the system parameters is a challenging task. The division of segments

into blocks and the linear dependency that may exist among these blocks introduce

more complexity into the analysis. However, we have been able to develop a unique

stochastic model that can reveal the effect of the system parameters and design op-

tions on the performance. Moreover, the model could be extended to analyze more

design options. We have also proposed a new approximation to study the effect of

linearly dependent blocks. Through this model, we have provided in-depth insights

into the influence of most of the system parameters and design options.

One of our most important findings is that some design options like the uniform

segment selection strategy empowers the protocol to achieve a better performance

than the most urgent strategy especially when the bandwidth supply marginally out-

strips the demand. Moreover, the uniform strategy takes a better advantage of the

available buffering time to enable the system to scale to hundreds of thousands of

users with relatively small drops in the performance while maintaining a continuity

close to 1.

We have also showed that there is no need to carefully tune up some system parame-

ters such as the number of neighbors H and Galois field size q. While the same could

be said about the aggressiveness a in terms of linear dependency, we have revealed

that setting it to as low as possible would unleash new levels of performance and

expedite the process of disseminating a new segment in the overlay.

We have also discussed the influence of the number of blocks per segmentm. Although

it was shown in the literature that larger m with smaller block sizes are favored, we

have identified more clearly the trade-off between m and the coefficients overhead.

We have also reported that network coding enjoys a good efficiency of more than

95% in most cases. In addition, we found out the uniform strategy is slightly more

98

efficient than the most urgent strategy which would make a huge difference in the

performance when the bandwidth supply slightly outrun the demand.

4.3 Limitations and Future work

Our model captures the effect of most of the system parameters and manages to reveal

the unique nature of network coding in which segments may receive blocks throughout

their stay in the buffer. Having said that, there is still room for improvement. There

are many aspects that could be improved and many more design options that could

be modeled. We list next some of the most important limitations that we wish to

address in the future:

• We assumed the peers are synchronized in the sense they are playing the same

video instant at approximately the same time. Although such tight synchro-

nization has its benefits in allowing the buffers of the peers to overlap as much as

possible and some protocol designs like R2 call for such synchronization, achiev-

ing this level of synchronization is difficult in a real implementation. Therefore,

it would be of great interest to investigate the effect of relaxing the synchro-

nization. It would be sufficient to relax the synchronization assumption just a

little bit such that peers playback pointers are within the same segment. This

could be easier to implement since network coding uses larger segment dura-

tions. However judging from the results we obtained for the influence of the

number of neighbors, having large enough number of neighbors would compen-

sate for the effect of the lack of synchronization as a segment is most likely to

still have a few neighbors able to serve it.

• More peer and segment selection strategies could be modeled. For instance,

for peer selection, a peer could favor neighbors that have more non-complete

segments which may be helpful for peers that have just joined the session. As

99

for the segment selection, a hybrid strategy of both the most urgent and uniform

could be modeled. For instance the strategy used in R2 divides the buffer into

two regions and uses uniform selection for one region and some form of most

urgent selection for the other region. It would be interesting to find out how

this strategy used in R2 stacks up against the pure uniform or most urgent

strategies. Our model could be easily extended to study such a strategy.

• Network coding designs are known for their robustness to peer dynamics and

random packet loss and delay. Nonetheless, it would be interesting to quantify

this in our model. We assumed a constant number of neighbors H that does not

change throughout the streaming session. We could instead model the neighbor

lifetime by some sort of distribution such the exponential distribution and then

study the effect of a random number of neighbors. However, judging from our

results, the protocol is still able to achieve a good performance even for a very

small number of neighbors which may indicate that maintaining a relatively

large number of neighbors would prepare the protocol to deal with extreme

peer churn.

• Redundant blocks that are received after the segment is complete is a downside

of network coding. Although their effect could be mitigated as we showed,

it would still be of great interest to design schemes to try to avoid receiving

redundant blocks. For instance, having the peer when a segment is about to

get complete send stop signal to gradually stop its neighbors and start with

neighbors that have lower upload bandwidth.

We hope to address these limitations in future work.

100

Bibliography

[1] “Cisco visual networking index: Forecast and methodology, 2012 – 2017,” White

Paper, Cisco, 2012.

[2] Wikipedia. Napster. [Online]. Available: https://en.wikipedia.org/wiki/Napster

[3] R. Stern, “Napster: a walking copyright infringement?” Micro, IEEE, vol. 20,

no. 6, pp. 4–5, 95, 2000.

[4] Wikipedia. Gnutella. [Online]. Available: https://en.wikipedia.org/wiki/

Gnutella

[5] C. Wang and B. Li, “Peer-to-peer overlay networks: A survey,” Tech. Rep., 2003.

[6] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A scal-

able content-addressable network,” SIGCOMM Comput. Commun. Rev., vol. 31,

no. 4, pp. 161–172, Aug. 2001.

[7] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, “Chord:

A scalable peer-to-peer lookup service for internet applications,” in Proceedings

of the 2001 conference on Applications, technologies, architectures, and protocols

for computer communications, ser. SIGCOMM ’01. New York, NY, USA: ACM,

2001, pp. 149–160.

[8] P. Maymounkov and D. Mazières, “Kademlia: A peer-to-peer information sys-

tem based on the xor metric,” in Revised Papers from the First International

101

https://en.wikipedia.org/wiki/Napster
https://en.wikipedia.org/wiki/Gnutella
https://en.wikipedia.org/wiki/Gnutella

Workshop on Peer-to-Peer Systems, ser. IPTPS ’01. London, UK, UK: Springer-

Verlag, 2002, pp. 53–65.

[9] S. E. Deering and D. R. Cheriton, “Multicast routing in datagram internetworks

and extended lans,” ACM Trans. Comput. Syst., vol. 8, no. 2, pp. 85–110, May

1990.

[10] Y.-h. Chu, S. G. Rao, and H. Zhang, “A case for end system multicast (keynote

address),” SIGMETRICS Perform. Eval. Rev., vol. 28, no. 1, pp. 1–12, Jun.

2000.

[11] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek, and J. W. O’Toole,

Jr., “Overcast: reliable multicasting with on overlay network,” in Proceedings of

the 4th conference on Symposium on Operating System Design & Implementation

- Volume 4, ser. OSDI’00. Berkeley, CA, USA: USENIX Association, 2000, pp.

14–14.

[12] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron, and A. Singh,

“Splitstream: high-bandwidth multicast in cooperative environments,” SIGOPS

Oper. Syst. Rev., vol. 37, no. 5, pp. 298–313, Oct. 2003.

[13] B. Li, Y. Feng, and B. Li, “Rise and fall of the peer-to-peer empire,” Tsinghua

Science and Technology, vol. 17, no. 1, pp. 1–16, 2012.

[14] V. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy, and A. E. Mohr, “Chain-

saw: eliminating trees from overlay multicast,” in Proceedings of the 4th interna-

tional conference on Peer-to-Peer Systems, ser. IPTPS’05. Berlin, Heidelberg:

Springer-Verlag, 2005, pp. 127–140.

[15] X. Zhang, J. Liu, B. Li, and T. Yum, “Coolstreaming/donet: a data-driven

overlay network for peer-to-peer live media streaming,” in INFOCOM 2005. 24th

102

Annual Joint Conference of the IEEE Computer and Communications Societies.

Proceedings IEEE, vol. 3, 2005, pp. 2102–2111 vol. 3.

[16] R. Ahlswede, N. Cai, S.-Y. Li, and R. Yeung, “Network information flow,” In-

formation Theory, IEEE Transactions on, vol. 46, no. 4, pp. 1204–1216, 2000.

[17] R. Koetter and M. Medard, “An algebraic approach to network coding,” Net-

working, IEEE/ACM Transactions on, vol. 11, no. 5, pp. 782–795, 2003.

[18] S.-Y. Li, R. Yeung, and N. Cai, “Linear network coding,” Information Theory,

IEEE Transactions on, vol. 49, no. 2, pp. 371–381, 2003.

[19] T. Ho, R. Koetter, M. Mdard, D. Karger, and M. Effros, “The benefits of coding

over routing in a randomized setting,” 2003, p. 442, cited By (since 1996)160.

[20] C. Gkantsidis and P. Rodriguez, “Network coding for large scale content distribu-

tion,” in INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer

and Communications Societies. Proceedings IEEE, vol. 4, 2005, pp. 2235–2245

vol. 4.

[21] C. Gkantsidis, J. Miller, and P. Rodriguez, “Anatomy of a P2P Content Distri-

bution system with Network Coding,” Feb. 2006.

[22] M. Wang and B. Li, “Lava: A reality check of network coding in peer-to-peer

live streaming,” in INFOCOM 2007. 26th IEEE International Conference on

Computer Communications. IEEE, 2007, pp. 1082–1090.

[23] M. Wang and B. Li, “R2: Random push with random network coding in live

peer-to-peer streaming,” Selected Areas in Communications, IEEE Journal on,

vol. 25, no. 9, pp. 1655–1666, 2007.

103

[24] Z. Liu, C. Wu, B. Li, and S. Zhao, “Uusee: Large-scale operational on-demand

streaming with random network coding,” in INFOCOM, 2010 Proceedings IEEE,

2010, pp. 1–9.

[25] P. Maymounkov, N. J. A. Harvey, and D. S. Lun, “Methods for Efficient Network

Coding,” 2006.

[26] C. Feng and B. Li, “On large-scale peer-to-peer streaming systems with network

coding,” in Proceedings of the 16th ACM international conference on Multimedia,

ser. MM ’08. New York, NY, USA: ACM, 2008, pp. 269–278.

[27] L. Chang and J. Pan, “On the system parameters of peer-to-peer video stream-

ing with network coding,” in Communications (ICC), 2010 IEEE International

Conference on, 2010, pp. 1–5.

[28] S. Deb, M. Medard, and C. Choute, “Algebraic gossip: a network coding ap-

proach to optimal multiple rumor mongering,” Information Theory, IEEE Trans-

actions on, vol. 52, no. 6, pp. 2486 – 2507, june 2006.

[29] C. Fragouli, J.-Y. Le Boudec, and J. Widmer, “Network coding: an instant

primer,” SIGCOMM Comput. Commun. Rev., vol. 36, no. 1, pp. 63–68, Jan.

2006.

[30] K. M. Greenan and E. L. Miller, “Analysis and construction of galois fields for

efficient storage reliability,” 2007.

[31] J. Luo, K. D. Bowers, A. Oprea, and L. Xu, “Efficient software implementations

of large finite fields gf(2n) for secure storage applications,” Trans. Storage, vol. 8,

no. 1, pp. 2:1–2:27, Feb. 2012.

104

[32] A. Nagarajan, M. Schulte, and P. Ramanathan, “Galois field hardware architec-

tures for network coding,” in Architectures for Networking and Communications

Systems (ANCS), 2010 ACM/IEEE Symposium on, 2010, pp. 1–9.

[33] H. Shojania and B. Li, “Parallelized progressive network coding with hardware

acceleration,” inQuality of Service, 2007 Fifteenth IEEE International Workshop

on, 2007, pp. 47–55.

[34] X. Chu, K. Zhao, and M. Wang, “Massively parallel network coding on gpus,” in

Performance, Computing and Communications Conference, 2008. IPCCC 2008.

IEEE International, 2008, pp. 144–151.

[35] H. Shojania, B. Li, and X. Wang, “Nuclei: Gpu-accelerated many-core network

coding,” in INFOCOM 2009, IEEE, 2009, pp. 459–467.

[36] Z. Zhang, R. Hou, H. Chen, J. Zhou, and J. Li, “Network coding based live peer-

to-peer streaming towards minimizing buffering delay,” in Computer Application

and System Modeling (ICCASM), 2010 International Conference on, vol. 4, 2010,

pp. V4–136–V4–140.

[37] Y. Hong, “On computing the distribution function for the poisson binomial dis-

tribution.” Computational Statistics & Data Analysis, vol. 59, pp. 41 – 51, 2013.

[38] R. Barlow and K. Heidtmann, “Computing k-out-of-n system reliability,” Relia-

bility, IEEE Transactions on, vol. R-33, no. 4, pp. 322–323, 1984.

[39] O. Trullols-Cruces, J. Barcelo-Ordinas, and M. Fiore, “Exact decoding prob-

ability under random linear network coding,” Communications Letters, IEEE,

vol. 15, no. 1, pp. 67 –69, january 2011.

105

[40] D. Qiu and R. Srikant, “Modeling and performance analysis of bittorrent-like

peer-to-peer networks,” SIGCOMM Comput. Commun. Rev., vol. 34, no. 4, pp.

367–378, Aug. 2004.

106

	List of Figures
	List of Tables
	Introduction & Literature Review
	P2P Networks
	P2P file sharing
	P2P video streaming
	Tree-based Approach
	Random mesh based streaming

	Network Coding based P2P streaming
	Design principles with network coding

	Related Work
	Thesis Objective
	Thesis Organization

	System Model and Analysis
	System overview
	How Network Coding is Performed
	Buffer organization
	Server algorithm
	Block Scheduling

	System Model
	Number of blocks at age 0, X0
	Number of blocks Xn for n > 0
	Rn the number of blocks received from neighbors to the segment of age n on peer B
	The , probability a neighbor pushes a useful block to the segment of age n on B
	Efficiency
	Releasing the upload bandwidth of the peers: the case of heterogeneous upload bandwidth
	Efficiency for the case of heterogeneous upload bandwidth

	Numerical Results and Analysis of the Protocol Performance
	Video streaming parameters
	Peer upload bandwidth Up
	Comparison of the Uniform and Most Urgent strategies
	Server Capacity Us
	Overlay Size Z
	Number of Neighbors H
	Buffer Length L

	Network coding parameters
	Effect of the number of blocks m
	Aggressiveness a
	Galois Field Size q

	Efficiency eta

	Conclusion and Future Work
	Conclusion
	Thesis Contribution
	Limitations and Future work

	References

