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Abstract

Optical networks with Wavelength Division Multiplexing
(WDM), especially Optical Packet Switching (OPS) networks,
have attracted much attention in recent years. However, OPS
is still not yet ready for deployment, which is mainly because
of its high packet loss ratio at the switching nodes. Since
it is very difficult to reduce the loss ratio to an acceptable
level by only using all-optical methods, in this paper, we
propose a new type of optical switching scheme for OPS
which combines optical switching with electronic buffering.
In the proposed scheme, the arrived packets that do not cause
contentions are switched to the output fibers directly; other
packets are switched to shared receivers and converted to
electronic signals and will be stored in the buffer until being
sent out by shared transmitters. We focus on performance
analysis of the switch, and with both analytical models
and simulations, we show that to dramatically improve the
performance of the switch, for example, reducing the packet
loss ratio from 10−2 to close to 10−6, very few receivers and
transmitters are needed to be added to the switch. Therefore,
we believe that the proposed switching scheme can greatly
improve the practicability of OPS networks.

1. Introduction

Optical networks have the potential of supporting ultra
fast future communications because of the huge bandwidth
of optics. In recent years, Optical Packet Switching (OPS)
has attracted much attention since it is expected to have
better flexibility in utilizing the huge bandwidth of optics than
other types of optical networks [13], [6], [15], [14]. However,
OPS in its current form is not yet practical and appealing
enough to the service providers because typical OPS switch-
ing nodes suffer heavy packet losses due to the difficulty
in resolving packet contentions. The common methods for
contention resolution include wavelength conversion and all-
optical buffering [6], [15], where wavelength conversion is to
convert a signal on one wavelength to another wavelength,
and all-optical buffering is to use Fiber-Delay-Lines (FDL)
to delay an incoming signal for a specific amount of time
proportional to the length of the FDL. Wavelength conversion

is very effective but it alone cannot reduce the packet loss
to an acceptable level, therefore buffering has to be used.
However, FDLs are expensive and bulky and can provide only
very limited buffering capacity. Thus the main challenge in
designing an OPS switch is to find more practical methods
to buffer the packets to resolve contention.

For this reason, we propose to use electronic buffers in
OPS switches. In the proposed switch, the arrived packets
that do not cause contentions are switched to the output
fibers directly; other packets, called the “leftover packets,”
are switched to receivers and converted to electronic signals
and will be stored in an electronic buffer until being sent out
by transmitters. It is important to note that in this scheme
not all packets need be converted to electronic signals; such
conversion is needed only for packets that cause contentions.
Therefore, the advantage of this scheme is that far less high-
speed receivers and transmitters are needed compared to
switches that convert every incoming packet to electronic
signals, since if the traffic is random, it is likely that the
majority of the arrived packets can leave the switch directly
without having to be converted to electronic signals.

At a switching node in a wide area network, the arrived
packets can be categorized into two classes, namely the “to-
local packets” which are packets destined for this switching
node, and the “non-local packets” which are packets destined
for other switching nodes in the network and are only passing
by. Also, there are some packets collected by this switching
node from the attached local area networks that should
be sent into the wide area network, which can be called
the “from-local packets.” Therefore, to receive the “to-local
packets,” the switch must be equipped with some receivers
to which these packets can be routed to; similarly, to send
the “from-local packets,” the switch must be equipped with
some transmitters that can be used to send the packets to
the output fibers. (The receivers and transmitters are also
referred to as the “droppers” and the “adders” in some
optical networks, respectively.) In previous works on optical
switches, the receivers and transmitters are only used for
the to-local packets or the from-local packets. What we are
proposing in this paper is to open such resources to the
non-local packets, i.e., to allow the non-local packets to
be received by the receivers and sent by the transmitters.



We are interested in finding how many more receivers and
transmitters are needed in the switch to achieve acceptable
performance in terms of packet loss ratio, delay, etc. With
both analytical models and simulations, we will show that
the new switch needs a relatively small number of receivers
and even less number of transmitters to greatly improve the
performance.

The rest of this paper is organized as follows. Section
2 describes some related works. Section 3 describes the
operations of the switch. Section 4 studies the performance
of the switch under Bernoulli traffic. Section 5 studies the
performance of the switch under self-similar traffic. Finally,
Section 6 concludes the paper.

2. Related Works

Optical Packet Switching has been studied extensively
in recent years and many switch architectures have been
proposed and analyzed. For example, [15], [16] considered
all-optical switches with output buffer implemented by FDLs
and gave analytical models for finding the relations between
the size of the buffer and packet loss ratio. However, the
results in [15], [16] show that to achieve an acceptable
loss ratio, the load per wavelength channel has to be quite
light if the number of FDLs is not too large. Switches with
shared all-topical buffer have been proposed, for example,
in [4], [5], in which all output fibers share a common
buffer space implemented by FDLs. However, in this type
of switches, to achieve an acceptable packet loss ratio, the
number of FDLs is still large and is often no less than the
number of input/output fibers, which increases the size of
the switching fabric. To avoid the difficulty of all-optical
buffering, the recent OSMOSIS project [1], [20], [2] proposed
an optical switch with OEO conversion for every channel. In
the OSMOSIS switch, all arriving signals are converted to
electronic forms and stored in electronic buffer, and then they
will be converted back to optical form before entering the
switching fabric. The advantage of such an approach is that
it needs no optical buffer and does not increase the size of the
switching fabric; however, the disadvantage is the expected
high cost since it needs high speed receivers, high speed
electronic memories and high speed tunable transmitters
for every channel. The switch proposed in this paper also
uses electronic buffer, however, less buffer, transmitters and
receivers are needed because they are shared by all channels.

3. Operations of the OPS Switch

3.1. Functionalities of the OPS Switch

We consider a switch with N input/output fibers where
on each fiber there are k wavelengths. The switch has R
receivers, T transmitters, and an electronic buffer of a very
large size. As in [15], [16], the switch operates in a time

slotted manner and receives packets of one time slot long at
the beginning of time slots. Suppose at one time slot, among
the packets arrived on the input fibers of the switch, V packets
are to-local packets and Hi packets are non-local packets
destined for output fiber i for 1 ≤ i ≤ N . The switch will
first send the to-local packets to the receivers. We assume the
switch is capable of sending each to-local packet to a receiver
if V ≤ R; otherwise, R of the to-local packets will be sent to
the receivers and the rest will be dropped. We also assume the
switch is capable of sending all Hi packets to output fiber i
(on some chosen wavelength) if Hi ≤ k; otherwise, k packets
will be sent. The number of packets that are leftover at output
fiber i is Li = max {Hi − k, 0}. If there are still receivers
available after receiving the to-local packets, i.e., if V ≤ R,
min

{∑N
i=1 Li, R − V

}
non-local packets will be sent to the

receivers and be converted to electronic signals to be stored
in the buffer and others will be dropped. A random algorithm
is used to determine which packets should be received and
which packets should be dropped. Note that the switch will
receive the to-local packets first because on average, the to-
local packets have traveled longer distance than the non-local
packets before reaching this node, therefore dropping to-local
packets will waste more network resources than dropping
non-local packets.

The from-local packets collected from the local area
networks will also be first sent to the electronic buffer.
There are N queues in the electronic buffer, where queue
i stores the packets destined for output fiber i, including
the leftover packets and the from-local packets. The switch
will check each queue to see if there are some packets that
can be sent to the output fibers. The number of available
wavelengths at output fiber i is Fi = max {k − Hi, 0}, thus
the number of packets in queue i that can be sent to output
fiber i is Ci = min {qi, Fi}, where qi is the length of
queue i. Therefore, the total number of packets that may
be sent out is

∑N
i=1 Ci. However, since there are only T

transmitters and one transmitter can be used to send only
one packet, the number of packets that are actually sent
out is min

{∑N
i=1 Ci, T

}
. When

∑N
i=1 Ci > T , a random

algorithm is used to select packets from the queues to ensure
fairness to all queues.

3.2. A Realization of the OPS Switch

A possible realization of the switch is shown in Fig. 1.
The composite signal coming from one input fiber will first
be sent to a demultiplexer, in which signals on different
wavelengths are separated from one another. The separated
signal on one wavelength will then be sent to a wavelength
converter to be converted to another wavelength if needed.
The wavelength converters are full range, i.e., capable of
converting a wavelength to any other wavelength. With full
range wavelength converters, an incoming packet can be sent
to any wavelength channel by converting the wavelength of
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Figure 1. An OPS switch enhanced with electronic buffer.

the packet to the desired wavelength. After the wavelength
conversion, the signal is then sent to a switching fabric, which
is capable of sending the signal to one of the output fibers
or to one of the receiver fibers shown in the right of the
figure. Signals sent to the output fibers are combined into
one composite signal by the multiplexer and then leave the
switch. Signals sent to the receiver fibers are first combined
by the multiplexer and then be demultiplexed into signals on
separate wavelengths, and each of the demultiplexed signal
will be sent to a receiver to be converted to electronic signals.
Note that after each receiver fiber there can be at most k
receivers, therefore if there are R receivers, there should be
[R/k]+ receiver fibers, where [x]+ denotes the minimum
integer greater than x. The to-local packets are all sent to
the receivers. The non-local packets are sent to the output
fibers whenever possible and the leftover ones are sent to
the receivers and then to the electronic buffers. The packets
stored in the buffer can be sent back to the switching fabric
by the transmitters, which are fast tunable lasers that can
be tuned to any wavelength. The switching fabric should be
able to send any of the Nk signals from the input fibers
to any of the N + [R/k]+ output fibers, and receiver fibers
should also be able to send any of the T signals from the
transmitters to any of the N output fibers. Note that a simpler
way seems to be sending the signals directly to the receivers
without sending them to the receiver fibers to go through
the multiplex/demultiplex process. However, there are several
reasons for the current design choice and the most important
one is that otherwise the switching fabric must be much
larger, since it must be able to send an arriving packet to
N + R fibers instead of only N + [R/k]+ fibers.

4. The Performance of the OPS Switch under
Bernoulli Traffic

As mentioned earlier, we are interested in finding the num-
ber of receivers and transmitters needed for the switch to have
acceptable performance measured by packet loss ratio and
packet delay. In this section we will study the performance
of the switch under Bernoulli traffic. Both analytical models
and simulations will be used, and in our simulations, each
point is obtained by running the program for 1,000,000 time
slots. Analytical models are used in addition to simulations
because they are usually much faster than simulations and
can be more accurate when evaluating the likelihood of rare
events such as packet loss with ratio under 10−6. Analytical
models and simulations can also be used to verify each other:
if they match, it is likely that they are both correct since it is
highly unlikely that they both went wrong in the same way.

We first introduce some notations and assumptions that
will be used throughout this section. Under Bernoulli traffic,
the probability that there is a packet arriving at an input
wavelength channel in a time slot is the traffic load ρ and is
independent of other time slots and other input wavelength
channels. Let ρl and ρn be the arrival rate of to-local packets
and non-local packets, respectively, where ρ = ρl +ρn. With
probability ρn/ρ, an arrived packet is a non-local packet and
with probability ρl/ρ, an arrived packet is a to-local packet.
The destination of an arrived non-local packet is random.
We assume that there are Q local ports that can send the
from-local packets to the buffer, and the arrival rate of the
from-local packets at a local port is ρfl where Qρfl = Nkρl,
that is, the total arrival rate of the to-local packets and the
from-local packets are the same.

For convenience, we will use B(m,σ) to denote a Bi-
nomial distribution, that is, if a random variable X follows
distribution B(m,σ),

P (X = x) =
(

m
x

)
σx(1 − σ)m−x,

where 0 ≤ x ≤ m. We will also use M(m,α, β) to denote a
multinomial distribution, that is, if two random variables X
and Y follow distribution M(m,α, β),

P (X = x, Y = y) =
m!

x!y!(m − x − y)!
αxβy(1 − α − β)(m−x−y)

where x and y are non-negative integers and x + y ≤ m.

4.1. The Minimum Number of Transmitters

We will first determine the minimum number transmitters
needed to send the packets in the buffers. Regarding the
buffer as a queuing system, the service rate should be no
less than the arrival rate. The arrival rate to the system is
E(L)+Qρfl, where E(L) is the average number of leftover
packets and Qρfl is the average number of arrived from-local



packets. The service rate, on the other hand, is no more than
the number of transmitters, T . Therefore a lower bound of T
is E(L) + Qρfl. Note that Qρfl is determined by the traffic
statistics of the local area network and at least this number
of transmitters must be equipped in the switch only to send
the from-local packets, thus we need only to derive E(L).

Let Li be the number of leftover packets destined for
output fiber i where 1 ≤ i ≤ N . L1, L2, . . . , are random
variables with the same distribution, although dependent upon
each other. By probability theory, E(L) = E(L1+L2+ · · ·+
LN ) = NE(L1). Let H1 be the number of non-local packets
arrived for output fiber 1. Note that a packet can be sent out
as long as there is some unoccupied wavelength channel on
its destination fiber, since the wavelength of a packet can be
converted to any other wavelength by a full range wavelength
converter. Hence if H1 ≤ k, no packet will be left over;
otherwise, H1 − k packets will be left over. Therefore

E(L1) =
Nk∑

h=k+1

(h − k)P (H1 = h)

where H1 is a Binomial random variable B(Nk, ρn/N),
since the probability that there is a non-local packet arrived
for output fiber 1 on an input wavelength channel is ρn/N ,
and there are totally Nk input channels.

The service rate is no more than T because it also depends
on the destinations of the packets in the buffer and the
destinations of the newly arrived non-local packets. For
example, suppose T = 4, k = 4, and there are 4 packets
in the buffer, all destined for output fiber 1. If there always
arrive 4 non-local packets from the input fibers destined for
output fiber 1, the packets in the buffer can never be sent out
and therefore the service rate is 0. However, as confirmed by
our simulations, as long as T is no less than E(L)+Qρfl, the
queues will be stable, i.e., will not grow to infinite size, which
can be roughly explained as follows. Suppose the claim is not
true, that is, the number of packets that should be buffered
can be infinity when T > E(L) + Qρfl. Then there must
be one queue of infinite length in the buffer. Note that due
to the symmetry of the traffic, the arrival rate to the queue
is (E(L) + Qρfl)/N . The service rate of the queue is the
minimum of T/N and k(1−ρn)+E(L)/N , where the former
is the average number of transmitters used to send packets
in this queue and the latter is the number of unoccupied
wavelength channels on the output fiber. It can be easily
verified that the service rate is larger than the arrival rate,
therefore the length of the queue cannot stay at infinity.

In Fig. 2, E(L) as a function of the arrival rate is shown
for switches of two sizes when ρn/ρ = 0.9, where the lines
are obtained by simulations and the marks are obtained by
analytical formulas. We can observe that E(L) is remarkably
small, for example, for the switch where N = 8, k = 16,
when ρ = 0.8, E(L) is only slightly larger than 1. This
is a very encouraging fact since it means that very few
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Figure 2. The average number of leftover packets for switches
of two sizes when ρn/ρ = 0.9 under Bernoulli traffic. The lines
are obtained by simulations and the marks are obtained by
analytical formulas.

transmitters are needed to be added to the switch to make
sure that the non-local packets will not overflow the buffer.

4.2. The Minimum Number of Receivers

We next wish to find the minimum number of receivers
needed to make sure that the packet loss probability is below
a preset threshold.

As mentioned earlier, we assume that in case both to-
local and non-local packets need to be received, to-local
packets have higher priority, i.e., will be sent to receivers
first, and the non-local packets can be sent to receivers only
if there are some receivers left. The total number of arrived
to-local packets, denoted by V , is a Binomial random variable
B(Nk, ρl). The packet loss probability (PLP) of to-local
packets is thus

Nk∑
v=R+1

(v − R)
(

Nk
v

)
ρv

l (1 − ρl)Nk−v/(Nkρl)

where R is the total number of receivers. Fig. 3 shows the
packet loss probability of to-local packets as a function of
the number of receivers for switches of two sizes when
ρn/ρ = 0.9, where the lines are obtained by simulations
and the marks are obtained by analytical formulas. We can
see that to make the loss rate lower than an acceptable level,
in general, a significant amount of receivers are needed. For
example, for the switch where N = 8, k = 16, when ρ = 0.8,
to make the loss ratio close to 10−6, at least 24 receivers are
needed. Note that the switch has to have these number of
receivers to receive to-local packets, and in the following, we
will find how many more receivers are needed to be added
to the switch to make sure that the loss ratio of the non-local
packets is acceptably low.

To find the packet loss probability of non-local packets,
we begin with the total number of packets arrived at the
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Figure 3. Packet loss probability of to-local packets for
switches of two sizes when ρn/ρ = 0.9 under Bernoulli traffic.
The lines are obtained by simulations and the marks are
obtained by analytical formulas.

input fibers of the switch, including the to-local and the non-
local packets, denoted as Y . Y is a Binomial random variable
B(Nk, ρ). Let the total number of non-local packets be S.
The probability that if y packets arrive, there are s non-local
packets is

P (S = s|Y = y) =
(

y
s

)
(ρn/ρ)s(1 − ρn/ρ)y−s

for 0 ≤ s ≤ y. If there are R receivers, there will be R−y+s
left for the non-local packets. Let the probability that given
S = s, there are l packets left over be written as P (L =
l|S = s). The packet loss probability (PLP) of the non-local
packet is thus

Nk∑
y=0

y∑
s=0

s∑
l=0

wP (L = l|S = s)P (S = s|Y = y)P (Y = y)/(Nkρn)

where w = max {0, l − R + y − s}.
It remains to find P (L = l|S = s) to determine the packet

loss probability. For convenience, the N output fibers can be
considered as N boxes each with capacity k and the s packets
can be considered as s balls, each to be randomly placed in
one of the boxes. P (L = l|S = s) is the probability that
given there are s balls, l balls cannot be placed into their
destination boxes because these boxes are full. The number
of balls to be placed in box i is Hi and let Si =

∑i
j=1 Hj .

Define Li
s as the number of leftover balls from box 1 to box i

given Si = s. Apparently, the p.m.f. of L1
s can be determined

as:

P (L1
s = t) =

{
1 t = max {0, s − k}
0 otherwise

The probability that Li
s is a certain value, say, l, can be

written as follows by conditioning on Hi:

P (Li
s = l) =

s∑
h=0

P (Li−1
s−h = l − z)P (Hi = h|Si = s) (1)

where z = max {0, h − k} which is the number of leftover
balls of box i given there are h balls to be placed in this box.
This equation holds since the total number of leftover balls
from box 1 to box i is the number of leftover balls from box
1 to box i − 1 plus the number of leftover balls of box i.
This suggests an inductive way to analytically find the p.m.f.
of Li

s by starting with the p.m.f. of L1
s, then use Eq. (1) to

find Li
s for larger i in each step. Note that

P (Hi = h|Si = s) =
(

s
h

)
(1/i)h(1 − 1/i)s−h,

and P (L = l|S = s) is simply P (LN
s = l), by definition.

Fig. 4 shows the packet loss probability of non-local
packets as a function of the number of receivers for switches
of two sizes when ρn/ρ = 0.9, where the lines are obtained
by simulations and the marks are obtained by analytical
formulas. First note that our analytical results agree very well
with the simulation results. It is very surprising to us to notice
that very few receivers are needed to be added to the switch
to greatly reduce the loss ratio of the non-local packets. For
example, for the switch where N = 8, k = 16, when ρ = 0.8,
if there is no receiver that is used to receive the non-local
packets, the loss ratio is about 10−2. However, the packet
loss ratio is reduced to close to 10−6 when there are totally
24 receivers. Note that originally 24 receivers are needed to
receive the to-local packets to make the loss ratio of the to-
local packets close to 10−6, thus, in this case, no receivers are
needed to be added to the switch to reduce the loss ratio of the
non-local packets from 10−2 to 10−6! This is another very
encouraging fact for supporting our new proposed scheme.
The reason for this is that local packets and non-local packets
all come from the input fibers of the switch, thus, when there
are more local packets arrived, there will be less non-local
packets that are left over, and vice versa. Sharing the same
set of receivers can take advantage of this fact and therefore
reduce the number of receivers.

4.3. Average Packet Delay

The average packet delay is harder to find because queues
in the switch are not simple queues since they are interacting
with each other by sharing the same set of transmitters.
Intuitively, increasing the number of transmitters will reduce
the packet delay. Therefore in this section we wish to find
the relations between the number of transmitters and the
packet delay. Since the size of the electronic buffer can be
very large and the number of receivers have been chosen to
guarantee a very low packet loss ratio, to simplify our study,
we can assume that there is no packet loss in the switch
and the packet delay is only determined by the number of
inputs/outputs and the number of transmitters.

There are N queues in the buffer, one for each output fiber.
Note that since the T transmitters are shared by all queues,
the number of packets that can be sent out from a queue is
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Figure 4. Packet loss probability of non-local packets for
switches of two sizes when ρn/ρ = 0.9 under Bernoulli traffic.
The lines are obtained by simulations and the marks are
obtained by analytical formulas.

also determined by the number of available transmitters, i.e.,
the number of transmitters that are “left” by other queues.
Due to this reason, a good analytical model must consider
the N queues jointly. Since the input traffic is memoryless,
one straightforward way to accurately model the N queues is
to model them as an N -dimensional Markov chain, however,
this will result in a state space growing exponentially with
N and is thus not practical. Therefore we have used an
approximation model to reduce the complexity. Our model
is based on the idea of aggregation and finds the behavior
of the N queues in an inductive way, whereas after step I
(1 ≤ I ≤ N ) it will have found the behavior of I queues. To
elaborate, note that at the first step when I = 1, the behavior
of only one queue is easy to obtain. Suppose after step I , we
have found the behavior of I queues when aggregated into
a block, that is, the I queues will no longer be viewed as
I separate queues but as a single component with I queues
inside. We can now study I + 1 queues by regarding them
as two components, that is, by regarding the first I queues
as a block and queue I + 1 as a separate queue. Note that
the behaviors of both components are known at this moment,
therefore, the behavior of I + 1 queues can be found. After
this we can aggregate the I + 1 queues into one block, then
study I + 2 queues by regarding the first I + 1 queues as a
block, and so on, until all queues have been aggregated. The
advantage of this method is that it has polynomial complexity
and can be much more accurate than other approaches.

The idea of aggregation was first introduced in [19] for
switches with shared buffer where all queues share a common
buffer. In a shared buffer switch, queues interact with each
other through the fixed size buffer, for example, if some
queues are long, i.e., occupying most of the buffer space,
other queues must be short since the total buffer space is
limited. The model given in this paper is also based on the
idea of aggregation, however, the model is completely differ-

ent from the one in [19] because the switch architectures are
completely different and the ways the queues are interacting
with each other are completely different.

In the following we describe the details of the model. The
meanings of the symbols used in this model are summarized
as follows:

• s : the number of non-local packets arrived for the first
I outputs

• c : the number of from-local packets arrived for the first
I outputs

• l : the number of leftover non-local packets among
newly arrived non-local packets

• u : the number of packets currently stored in these I
queues

• x : the number of packets in these I queues that can be
sent to the output fibers

In addition, variables with a prime are used to denote corre-
sponding values associated with queue I +1, for example, s′

is the number of non-local packets arrived for output I + 1,
and so on.

Note that x is the number of packets that can be sent out
and is not the number of packets that are actually sent out.
For example, when I = 1, if there are 5 packets in queue 1
and there are k− 4 non-local packets arrived for output fiber
1, the number of packets that can be sent out is 4. However,
if there are only 3 transmitters, the number of packets that
are actually sent out is 3. In our model, we assume that
the transmitters are assigned to the queues according to a
predetermined order, that is, they will be first used to send
packets in queue 1, then the remaining transmitters will be
used to send packets in queue 2, and then queue 3, etc. Thus,
given x and x′, min {x, T} packets are sent out among queue
1 to queue I and min {x′,max {T − x, 0}} packets are sent
out in queue I + 1. This assignment strategy is not fair to
all queues and is biased toward queues with low indices,
however, it makes the analysis tractable and moreover, our
simulations show that the packet delay under this assignment
strategy is very close to that under a fairer random assignment
strategy.

The behavior of a block containing I queues is described
by a conditional probability written as CTI(x|s, l, u), which
can be interpreted as the probability that there are x packets in
the queues that can be sent out, given that there are currently
u packets in the queues and there are s non-local packets
arrived for the first I outputs and among them l are leftover.
At the beginning when I = 1, note that l = max {s − k, 0},
and the number of packets in queue 1 that can be sent out is
x = min {u,max {k − s, 0}}. Thus CT1(x|s, l, u) is 1 for l
and x satisfying these conditions, otherwise it is 0.

To study I + 1 queues, we will model them as a two-
dimensional Markov chain (u, u′). Denote a generic initial
state as (u0, u

′
0). First consider when s, s′, c and c′ are given.

Given s non-local packets arrived for output 1 to output
I , the probability that l packets are leftover is P (LI

s = l)



which can be found by Eq. (1). The probability that there
are x packets stored in queue 1 to queue I that can be
sent out is CTI(x|s, l, u0), which has been found in the
previous step. Also note that given s′, l′ = max {s′ − k, 0}
and x′ = min {u′

0,max {k − s′, 0}}. Let

D(u′
1, s

′, c′, u′
0, x) ={

1 u′
1 = u′

0 − min {x′,max {T − x, 0}} + l′ + c′}
0 otherwise

Thus, the transition rate from (u0, u
′
0) to another state de-

noted as (u1, u
′
1) when s, s′, c and c′ are given is

Λ(u1, u
′
1|u0, u

′
0, s, s

′, c, c′) =∑
l,x

CTI(x|s, l, u0)P (LI
s = l)D(u′

1, s
′, c′, u′

0, x)

for all l and x satisfying u1 = u0 −min {x, T}+ l + c. The
transition rate from (u0, u

′
0) to (u1, u

′
1) is thus∑

s,s′c,c′
ps,s′(s, s′)pc,c′(c, c′)Λ(u1, u

′
1|u0, u

′
0, s, s

′, c, c′)

where ps,s′(s, s′) is the probability that there are s non-
local packets arrived for output 1 to output I and s′ non-
local packets arrived for output I + 1, and pc,c′(c, c′) is the
probability that there are c from-local packets arrived for
output 1 to output I and c′ from-local packets arrived for
output I +1. ps,s′(s, s′) and pc,c′(c, c′) can be found accord-
ing to the multinomial distribution. It can be verified that
ps,s′(s, s′) follows M(Nk, Iρn

N , ρn

N ) and pc,c′(c, c′) follows
M(Q,

Iρfl

N ,
ρfl

N ) where Q is the number of local ports.
After obtaining the transition rate of the Markov chain, the

steady state distribution, π(u, u′), can be found. We can then
find the behavior of I + 1 queues described by conditional
probability CTI+1(x∗|s∗, l∗, u∗), where variables with super-
script ‘*’ denote values associated with I +1 queues defined
similarly as those for I queues. We call (s, s′, l, u, u′) a “sub-
state” of (s∗, l∗, u∗) if s+ s′ = s∗, l = l∗−max {s′ − k, 0},
and u + u′ = u∗. Let Ω(x∗|s, s′, l, u, u′) be the probability
that there are totally x∗ packets from queue 1 to queue I +1
that can be sent out in sub-state (s, s′, l, u, u′). Since there
can be x′ = min {u′,max {k − s′, 0}} packets sent out from
queue I +1, Ω(x∗|s, s′, l, u, u′) is simply the probability that
there are x∗ − x′ packets that can be sent out from queue
1 to queue I which is CTI(x∗ − x′|s, l, u). Next, letting
P (s, s′, l, u, u′) be the probability of that the I + 1 queues
are in sub-state (s, s′, l, u, u′), we have

P (s, s′, l, u, u′) = P (l|s, s′, u, u′)P (s, s′, u, u′)
= P (LsI

s = l)ps,s′(s, s′)π(u, u′)

Let P (s∗, l∗, u∗) be the probability that the I + 1
queues are in state (s∗, l∗, u∗). Clearly, P (s∗, l∗, u∗) =∑

i P (si, s
′
i, li, ui, u

′
i) where (si, s

′
i, li, ui, u

′
i) denotes the ith

sub-state of (s∗, l∗, u∗). Then,

CTI+1(x
∗|s∗, l∗, u∗) =∑

i

Ω(x∗|si, s
′
i, li, ui, u

′
i)P (si, s

′
i, li, ui, u

′
i)/P (s∗, l∗, u∗)
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Figure 5. Packet delay for switches of two sizes when ρn/ρ =
0.9 under Bernoulli traffic. The lines are obtained by simulations
and the marks are obtained by our analytical model.

After aggregating all N queues, the stationary distribution of
the total number of packets in the buffer can be found, with
which the average number of packets stored in the buffer can
be found. The average packet delay can then be obtained by
the Little’s formula.

Fig. 5 shows the packet delay as a function of the number
of transmitters for switches of two sizes when ρn/ρ = 0.9,
in which the lines are obtained by simulations and the marks
are obtained by our analytical model. First note that our
analytical model agrees reasonably well with the simulations.
We also found that when the number of transmitters is less
than the minimum number of transmitters required in the
switch, the packet delay becomes very long (not plotted in
the figure); otherwise, the packet delay is relatively short.
Another important observation is that the packet delay drops
fastest at the beginning and almost ceases to drop when
the number of transmitters further increases. This is because
when there are enough number of transmitters, the packet
delay will be mainly determined by the availability of wave-
length channels on the output fibers. This suggests that not
too many extra transmitters are needed to reduce the packet
delay to close to the minimum level.

5. The Performance of the OPS Switch under
Self-Similar Traffic

We have also studied the performance of the switch under
self-similar traffic. Self-similar traffic is viewed as a more
realistic traffic model because it has been shown by mea-
surement studies that network traffic exhibits self-similarity
and long range dependence [25]. We mainly used simulations
in our study because unlike the Bernoulli traffic, self-similar
traffic cannot be described in simple mathematical forms.

The self-similarity of traffic is described by the Hurst
parameter, H , which takes value from 0.5 to 1. The larger
the Hurst parameter, the more self-similar the traffic. It



has been proved in [25] that self-similar traffic can be
generated by aggregating a large number of independent on-
off sources where the distributions of the on period and
the off period follow heavy-tailed distributions such as the
Pareto distribution. If a random variable X follows Pareto
distribution P (xm, α), P (X < x) = 1 − (xm

x )α, and the
mean of X is αxm

α−1 . In our simulations, the aggregated traffic
of a total of 200 independent on-off sources is sent to an
input fiber. The on period of an on-off source follows Pareto
distribution P (Ton, α) while the off period follows Pareto
distribution P (Toff , α), where Ton and Toff are constants
and α = 3 − 2H . In our simulations, Toff is fixed as 2.0
while Ton varies depending on the traffic load ρ. The on
period of an on-off source represents the bursty traffic from
one node to another node. A burst may have N + 1 possible
destinations, that is, it can either go to one of the N output
fibers or it can be a to-local burst. As a way to aggregate
the traffic, for each input fiber of the switch, there are N +1
queues which collect the bursts to the N output fibers plus the
to-local bursts. Note that these queues are only for generating
the self-similar traffic and are not part of the switch. At one
time slot, a random algorithm is used to determine bursts in
which queues can be sent to the input fiber.

In our simulations, each queue in the buffer of the switch
may hold up to 1,000 packets. This size is chosen such that
the packet loss is mainly caused by the lacking of receivers
rather than by buffer overflow, since the high-speed receivers
are harder to implement than the electronic memories. We
show the results when H = 0.7 in Fig. 6 to Fig. 9 where each
point is obtained by running the program for 10,000,000 time
slots. Similar observations can be drawn as in Fig. 2 to Fig. 5,
receptively. However, with the same number of transmitters
and receivers, the switch under self-similar traffic has higher
loss ratio and longer packet delay than those under Bernoulli
traffic, especially when the traffic load is heavy. This is
somewhat expected because self-similar traffic is much more
“bursty” than Bernoulli traffic.

6. Conclusions

In this paper we have studied the performance of a new
type of optical switch which combines optical switching with
electronic buffering. In this switch not all optical packets need
to be converted to electronic form and only those that cannot
be sent to the output fibers due to contentions are converted
by shared receivers to be stored in the buffer. We have shown
with analytical models and simulations that the performance
of the switch can be greatly improved by adding very few
receivers and transmitters. We therefore believe that this
switching scheme can greatly improve the practicability of
OPS networks and should be used in future optical networks.
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