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Abstract

In this paper we study a production system consisting of a group of parallel machines
producing multiple job types. Each machine has its own queue and it can process a
restricted set of job types only. On arrival a job joins the shortest queue among
all queues capable of serving that job. Under the assumption of Poisson arrivals
and identical exponential processing times we derive upper and lower bounds for
the mean waiting time. These bounds are obtained from so-called flexible bound
models, and they provide a powerful tool to efficiently determine the mean waiting
time. The bounds are used to study how the mean waiting time depends on the
amount of overlap (i.e. common job types) between the machines.
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1 Introduction

In this paper we consider a queueing system consisting of a group of parallel identical
servers serving multiple job types. Each server has its own queue and is capable of serving
a restricted set of job types only. Jobs arrive according to a Poisson process and on arrival
they join the shortest feasible queue. The service times are exponentially distributed. We
will refer to this queueing model as the Generalized Shortest Queue System (GSQS). This
model is motivated by a situation encountered in the assembly of Printed Circuit Boards
(PCBs). This is explained in more detail below.

Figure 1 shows a typical layout of an assembly system for PCBs. It consists of three
parallel insertion machines, each with its own local buffer. An insertion machine mounts
vertical components, such as resistors and capacitators, on a PCB by the insertion head.
The components are mounted in a certain sequence, which is prescribed by a Numerical
Control program. The insertion head is fed by the sequencer, which picks components
from tapes and transports them in the right order to the insertion head. Each tape contains
only one type of components. The tapes are stored in the component magazine, which
can contain at most 80 tapes, say. Each PCB needs on average 60 different types of
components. To assemble a PCB all required components have to be available in the
component magazine. Hence, the set of components available in the magazine determines
the set of PCB types that can be processed on that machine. The system in Figure 1 has
to assemble three PCB types, labeled A, B and C . The machines are basically similar,
but due to the fact that they are loaded with different types of components, the sets of
PCB types that can be handled by the machines are different. Machine M1 can handle
the A and B types, machine M2 the A and C , and machine M3 the B and C . When the
mounting times for all PCB types are approximately the same, it is reasonable to send
arriving PCBs to the shortest feasible queue.

C

M 1 A BBAB

M 2 A CA

M 3 B CCB

Figure 1: A flexible assembly system consisting of three parallel insertion machines, on which
three types of PCBs are made.

Since the assembly of PCBs is often characterized by relatively few job types, large
production batches and small mounting times (see Zijm [16]), the use of a queueing model
seems appropriate to predict performance characteristics such as the mean waiting time.
An important issue is the assignment of the required components to the machines. Ideally,
each machine should get all components needed to process all PCB types. However, since
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the component magazines have a finite capacity, they can contain the components needed
for a (small) subset of PCB types only. In this paper we will investigate how much overlap
(i.e. common components) between the machines is required such that the system nearly
performs as in the ideal situation where the machines are equipped with all components.

The GSQS is also relevant for many other practical situations; e.g., for parallel ma-
chines loaded with different sets of tools, computer disks loaded with different infor-
mation files, or operators in a call center handling requests from different customers.
Nevertheless, the literature on the GSQS is limited. Schwartz [12] (see also Roque [11])
considered a system related to the GSQS, but with a specific server hierarchy. He derived
some expressions for the mean waiting times. Adan, Wessels and Zijm [2] derived rough
approximations for the mean waiting times in a GSQS. Green [7] constructed a truncation
model for a related system with two types of jobs and two types of servers: servers which
can serve both job types and servers which can only serve jobs of the second type.

For the present model with general (i.e. nonexponential) arrivals, Sparaggis, Cassan-
dras and Towsley [13] showed that the generalized shortest queue routing is optimal with
respect to the overall mean waiting time for symmetric cases (see Theorem 3.1 in [13];
see also Subsection 2.3). For more general systems, Foss and Chernova [6] used a fluid
approximation approach to establish ergodicity conditions (see also the remarks at the end
of Subsection 2.2). The issue of ergodicity has also been considered in a recent report by
Foley and McDonald [5]. Their main contribution, however, consists of results on the
asymptotic behavior of a GSQS with two exponential servers with different service rates.
Finally, Hassin and Haviv [8] have studied a symmetric GSQS with two servers and an
additional property called threshold jockeying. They focus on the difference in waiting
time between jobs which can choose between both servers and jobs which can not choose.

The GSQS can be described by a continuous-time Markov process with multi-dimensional
states where each component denotes the queue length at one of the servers. Only in very
special cases exact analytical solutions can be found (see e.g. [3]). Therefore, to deter-
mine the mean waiting times, we will construct truncation models which: (i) are flexible
(i.e. the size of their state space can be controlled by one or more truncation parameters);
(ii) can be solved efficiently; (iii) provide upper and lower bounds for the mean waiting
times. Such models are called solvable flexible bound models. They are derived by us-
ing the so-called the precedence relation method. This is a systematic approach for the
construction of bound models, which has been developed in [14, 15]. In this paper we
will construct a lower and upper bound model for the mean waiting times. These two
models constitute the core of a powerful numerical approach: the two bound models are
solved for increasing sizes of the truncated state space until the mean waiting times are
determined within a given, desired accuracy.

This paper is organized as follows. In Section 2, we describe the GSQS and we
discuss conditions under which the GSQS is ergodic and balanced. Next, in Section 3, we
construct the flexible bound models and we formulate a numerical approach to determine
the mean waiting times. Finally, in Section 4, we investigate how the mean waiting times
for the GSQS depend on the amount of overlap (i.e. common job types) between the
servers. This is done by numerically evaluating several scenarios.
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2 Model

This section consists of three subsections. In the first subsection, we describe the GSQS.
In Subsection 2.2 we present a simple condition that is necessary and sufficient for ergod-
icity. In the last subsection, we present a related condition under which the GSQS is said
to be balanced and we briefly discuss symmetric systems.

2.1 Model description

The GSQS consists of c ≥ 2 parallel servers serving multiple job types. Each server has
its own queue and is capable of serving a restricted set of job types only. All service times
are exponentially distributed with the same parameter µ > 0. The arrival stream of each
job type is Poisson and an arriving job joins the shortest queue among all queues capable
of serving that job (ties are broken with equal probabilities). Figure 2 shows a GSQS with
c = 2 servers and three job types: type A, B and C jobs arrive with intensity λA, λB and
λC , respectively. The A jobs can be served by both servers, the B jobs can only be served
by server 1, and the C jobs must be served by server 2.

λA ,λB ,λC

1

NE(µ)

A B

2

NE(µ)

A C

Figure 2: A GSQS with c = 2 servers and three job types.

We introduce the following notations. The servers are numbered from 1, . . . , c and
the set I is defined by I = {1, . . . , c}. The set of all jobs type is denoted by J . The
arrival intensity of type j ∈ J jobs is given by λ j ≥ 0, and λ = ∑

j∈J λ j is the total
arrival intensity. We further assume that each job type can be served by at least one
server and each server can handle at least one job type; so, I ( j) �= ∅ for all j ∈ J , and
∪ j∈J I ( j) = I . Without loss of generality, we set µ = 1. Then the average workload per
server is given by ρ = λ/c. Obviously, the requirement ρ < 1 is necessary for ergodicity.

The behavior of the GSQS is described by a continuous-time Markov process with
states (m1, . . . , mc), where mi denotes the length of the queue at server i , i ∈ I (jobs in
service are included). So, the state space is equal to

M = {m | m = (m1, . . . , mc) with mi ∈ IN0 for all i ∈ I } . (1)

We assume that
∑

j∈J λ j 1{i∈I ( j)} > 0 for all servers i ∈ I (here, 1{G} is the indicator
function, which is 1 if G is true and 0 otherwise), i.e., that all servers have a positive po-
tential arrival rate. This guarantees that the Markov process is irreducible. The transition
rates are denoted by qm,n. Figure 3 shows the transition rates for the GSQS in Figure 2.
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λB

µ

µ

λA+λC

λBµ

Figure 3: The transition rate diagram for the GSQS in Figure 2.

The relevant performance measures are the mean waiting times W ( j) for each of job
type j ∈ J , and the overall mean waiting time W , which is equal to

W =
∑
j∈J

λ j

λ
W ( j) . (2)

It is obvious that for an ergodic system,

W ( j) =
∑

(m1,...,mc)∈M

(
min

i∈I ( j)
mi

)
π(m1, . . . , mc) , j ∈ J, (3)

where π(m1, . . . , mc) denotes the steady-state probability for state (m1, . . . , mc).

2.2 Ergodicity

By studying the job routing, we obtain a simple, necessary condition for the ergodicity of
the GSQS. For each subset J ′ ∈ J , J �= ∅, jobs of type j ∈ J ′ arrive with an intensity
equal to

∑
j∈J ′ λ j and they must be served by the servers ∪ j∈J ′ I ( j). This immediately

leads to the following lemma.

Lemma 1 The GSQS can only be ergodic if

∑
j∈J ′

λ j < | ∪ j∈J ′ I ( j)| for all J ′ ⊂ J, J ′ �= ∅. (4)

Note that for J ′ = J , this inequality is equivalent to ρ < 1. For the GSQS in Figure
2, condition (4) states that for ergodicity it is necessary that the inequalities λB < 1,
λC < 1 and λ < 2 (or, equivalently, ρ < 1) are satisfied. It appears that condition (4)
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is also sufficient for ergodicity. To show this, we consider so-called corresponding static
systems.

A corresponding static system is a system that is identical to the GSQS, but with
static (random) routing instead of dynamic shortest queue routing. The static routing is
described by discrete distributions {x ( j)

i }i∈I ( j), j ∈ J , where for each j ∈ J and i ∈ I ( j),

the variable x ( j)
i denotes the probability that an arriving job of type j is sent to server i .

Under static routing, it holds for each j ∈ J that the Poisson stream of arriving type j
jobs is split up into Poisson streams with intensities x j,i = λ j x ( j)

i , i ∈ I ( j), for type j
arrivals joining server i . Hence the queues i ∈ I constitute independent M/M/1 queues
with identical mean service times equal to µ = 1 and arrival intensities

∑
j∈A(i) x j,i ,

where A(i) = { j ∈ J |i ∈ I ( j)}. As a result, we obtain a simple necessary and sufficient
condition for the ergodicity of a corresponding static system, viz.

∑
j∈A(i)

x j,i < µ for all i ∈ I.

Lemma 2 For a GSQS, there exists a corresponding static system that is ergodic, if and
only if condition (4) is satisfied.

Proof. There exists a corresponding static system that is ergodic if and only if there exists
a nonnegative solution {x j,i}( j,i)∈A of the following equations and inequalities:

∑
i∈I ( j)

x j,i = λ j for all j ∈ J,
∑

j∈A(i)

x j,i < 1 for all i ∈ I ; (5)

the equalities in (5) guarantee that the solution {x j,i}( j,i)∈A corresponds to discrete dis-

tributions {x ( j)
i }i∈I ( j) which describe a static routing, and the inequalities in (5) must be

satisfied for ergodicity. It is easily seen that (5) has no solution if condition (4) is not
satisfied.

Now, assume that condition (4) is satisfied. To prove that there exists a nonnegative
solution {x j,i}( j,i)∈A of (5), we consider a transportation problem with supply nodes V̂1 =
J ∪ {0}, demand nodes V̂2 = I , and arcs Â = A ∪ {(0, i)|i ∈ I }, with

A = {( j, i) | j ∈ J, i ∈ I and i ∈ I ( j)} .

(supply node 0 denotes an extra type of jobs, which can be served by all servers). Define
the supplies â j by â j = λ j for all j ∈ V̂1 \ {0} and â0 = c − λ − cε, where

ε := min
J ′⊂J
J ′ �=∅

| ∪ j∈J ′ I ( j)| − ∑
j∈J ′ λ j

| ∪ j∈J ′ I ( j)|

(from (4), it follows that ε > 0, and â0 ≥ 0 since by taking J ′ = J we obtain the inequal-
ity ε ≤ (c − λ)/c ). Further, we define the demands b̂i by b̂i = 1 − ε for all i ∈ V̂2; note
that

∑
j∈V̂1

â j = ∑
i∈V̂2

b̂i . It may be verified that this transportation problem satisfies a
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necessary and sufficient condition for the existence of a feasible flow; see Lemma 5.4 of
[14] and its proof is based on a transformation to a maximum-flow problem followed by
the application of the max-flow min-cut theorem (see e.g. [4]). So, there exists a feasible
flow for the transportation problem, i.e., there exists a nonnegative solution {x̂ j,i }( j,i)∈ Â
of the equations

∑
i∈V̂2

( j,i)∈ Â

x̂ j,i = â j for all j ∈ V̂1,
∑
j∈V̂1

( j,i)∈ Â

x̂ j,i = b̂i for all i ∈ V̂2.

It is easily seen that then the solution {x j,i}( j,i)∈A defined by x j,i = x̂ j,i for all ( j, i) ∈ A,
is a nonnegative solution of (5), which completes the proof. 2

In situations with many job types shortest queue routing will balance the queue lengths
more than any static routing. So if there is a corresponding static system that is ergodic,
then the GSQS will also be ergodic. Together with Lemma 2, this informally shows that
the following theorem holds.

Theorem 1 The GSQS is ergodic if and only if condition (4) is satisfied.

For a formal proof of this theorem, the reader is referred to Foss and Chernova [6] or Foley
and McDonald [5]. In the latter paper, a generalization of condition (4) is proved to be
necessary and sufficient for the (more general) model with different service rates. Their
proof also exploits the connection with a corresponding static system. Foss and Chernova
[6] use a fluid approximation approach to derive necessary conditions for a model with
general arrivals and general service times.

2.3 Balanced and symmetric systems

It is desirable that the shortest queue routing, as reflected by the sets I ( j), balances the
workload among the servers. Formally, we say that a GSQS is balanced if there exists
a corresponding static system for which all queues have the same workload. This means
that there must exist discrete distributions {x ( j)

i }i∈I ( j) such that for each server i ∈ I , the
arrival intensity

∑
j∈J, ( j,i)∈A x j,i is equal to λ/c = ρ, where the x j,i and the set A are

defined as before. Such discrete distributions exist if and only if there exists a nonnegative
solution {x j,i}( j,i)∈A of the equations

∑
i∈I

( j,i)∈A

x j,i = λ j for all j ∈ J,
∑
j∈J

( j,i)∈A

x j,i = λ

c
for all i ∈ I. (6)

These equations are precisely the equations which must be satisfied by a feasible flow
for the transportation problem with supply nodes V1 = J , demand nodes V2 = I , arcs
A, supplies a j = λ j for all j ∈ V1 and demands bi = λ/c for all i ∈ V2. Applying the
necessary and sufficient condition for the existence of such a feasible flow (see [14]) leads
to the following lemma.
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Lemma 3 A GSQS is balanced if and only if

∑
j∈J ′

λ j ≤ | ∪ j∈J ′ I ( j)| λ

c
for all J ′ ⊂ J. (7)

Note that for J ′ = ∅ and J ′ = J , condition (7) holds by definition. Further, it follows that
a balanced GSQS satisfies condition (4) if and only if ρ < 1. So, for a balanced GSQS,
the simple condition ρ < 1 is necessary and sufficient for the ergodicity.

For a balanced GSQS the workloads under the shortest queue routing are not neces-
sarily balanced. This can be seen by considering the GSQS in Figure 2. According to
condition (7), this GSQS is balanced if and only if λB ≤ λ/2 and λC ≤ λ/2, i.e. if and
only if λB ≤ λA +λC and λC ≤ λA +λB . This condition is obviously satisfied if we take
λC = λA + λB . In this case, equal workloads for both servers can only be obtained if all
jobs of type A are sent to server 1. But, under the shortest queue routing, it will still occur
that jobs of type A are sent to server 2, and therefore server 2 will have a higher workload
than server 1. Nevertheless, one may expect that for a balanced GSQS, the shortest queue
routing at least ensures that the workloads will not differ too much.

A subclass of balanced systems are the symmetric systems. A GSQS is said to be
symmetric, if

λ(I1) = λ(I2) for all I1, I2 ⊂ I with |I1| = |I2|, (8)

where

λ(I ′) :=
∑
j∈J

I ( j)=I ′

λ j , I ′ ⊂ I.

So, a GSQS is symmetric, if for all subsets I ′ ⊂ I with the same number of servers |I ′|,
the arrival intensity λ(I ′) for the jobs which can be served by precisely the servers of I ′,
is the same. The GSQS in Figure 2 is symmetric if λB = λC .

For a symmetric GSQS, all queue lengths have the same distribution, which implies
that all servers have equal workloads. For such a system, it follows from Sparaggis et
al. [13], that the shortest queue routing minimizes the total number of jobs in the system
and hence the overall mean waiting time W . In particular, this implies that the overall
mean waiting time in a symmetric GSQS is less than in the corresponding system consist-
ing of N independent M/M/1 queues with workload ρ.

3 Flexible bound models

In this section we construct two truncation models which are much easier to solve than
the original model. One truncation model produces lower bounds for the mean waiting
times, and the other one upper bounds. At the end of this section we describe a numerical
method for the computation of the mean waiting times within a given, desired accuracy.
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The truncation models exploit the property that the shortest queue routing causes a
drift towards states with equal queue lengths. The state space M ′ of the two models is
obtained by truncating the original state space M around the diagonal, i.e.,

M ′ = {m ∈ M | m = (m1, . . . , mc) and mi ≤ min(m) + Ti for all i ∈ I } , (9)

where min(m) := mini∈I mi and T1, . . . , Tc ∈ IN are so-called threshold parameters; the
corresponding vector T̂ := (T1, . . . , Tc) is called the threshold vector. So state m ∈ M
also lies in M ′ if and only if for each i ∈ I the length of queue i is at most Ti greater than
the length of any other queue. Later on in this section we discuss how appropriate values
for T̂ can be selected. There are two types of transitions pointing from states inside M ′ to
states outside M ′:

(i) in state m = (m1, . . . , mc) ∈ M ′ with min(m) > 0 and I ′ = {i ∈ I |mi =
min(m) + Ti } �= ∅, at a server k ∈ I with mk = min(m) a service completion
occurs with rate µ and leads to a transition from m to state n = m − ek �∈ M ′;

(ii) in state m = (m1, . . . , mc) ∈ M ′ with I ′ = {i ∈ I |mi = min(m) + Ti } �= ∅,
at a server i ∈ I ′ an arrival of a new job leads to a transition from m to the state
n = m + ei �∈ M ′; this transition occurs with rate

∑
j∈J |I ( j ; m)|−1λ j 1{i∈I ( j ;m)},

where the set I ( j ; m) is defined by I ( j ; m) = {i ∈ I ( j) | mi = mink∈I ( j) mk}
(note that this rate may be equal to 0).

In the lower (upper) bound model, the transitions to states n outside M ′ are redirected to
states n′ with less (more) jobs inside M ′.

In the lower bound model, the transition in (i) is redirected to n ′ = m−ek −∑
i∈I ′ ei ∈

M ′. This means that the departure of a job at a non-empty shortest queue is accompanied
by killing one job at each of the queues i ∈ I ′, which are already Ti greater than the
shortest queue. The transition in (ii) is redirected to m itself, i.e., a new job arriving at one
of the servers i ∈ I ′ is rejected. The lower bound model is therefore called the Threshold
Killing and Rejection (TKR) model.

In the upper bound model, the transition in (i) is redirected to m itself. This means
that if at least one queue is already Ti greater than the shortest queue, the finished job in
the shortest queue is not allowed to depart, but is served once more; this is equivalent to
saying that the servers at the shortest queues are blocked. Transition (ii) is redirected to
n′ = m + ei + ∑

k∈Isq
ek ∈ M ′, with Isq = {k ∈ I |mk = min(m)}. This means that

an arrival of a new job at one of the queues which is already Ti greater than the shortest
queue, is accompanied by the addition of one extra job at each of the shortest queues. The
upper bound model is therefore called the Threshold Blocking and Addition (TBA) model.
Note that this model may be non-ergodic while the original model is ergodic. However,
the larger the values of the thresholds Ti the more unlikely this situation. In Figure 4,
we show the redirected transitions in the lower and upper bound model for the GSQS of
Figure 3.

It is intuitively clear that the queues in the TKR model are stochastically smaller than
the queues in the original model. Hence, for each j ∈ J , the TKR model yields a lower
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Figure 4: The redirected transitions in the TKR and TBA model for the GSQS depicted in Figure
2. For both models, T̂ = (T1, T2) = (3, 3).

bound for the mean length of the shortest queue among the queues i ∈ I ( j), and thus also
for the mean waiting time of type j jobs (cf. (3)). Denote the steady-state probabilities in
the TKR model by πT K R(m1, . . . , mc) and let

W ( j)
T K R(T̂ ) =

∑
(m1,...,mc)∈M ′

(
min

i∈I ( j)
mi

)
πT K R(m1, . . . , mc) , j ∈ J.

Then we have for each j ∈ J that W ( j)
T K R(T̂ ) ≤ W ( j), and thus (cf. (2))

WT K R(T̂ ) =
∑
j∈J

λ j

λ
W ( j)

T K R(T̂ )

yields a lower bound for the overall mean waiting time W . The lower bounds W ( j)
T K R(T̂ )

monotonically increase as the thresholds T1, . . . , Tc increase. Similarly the TBA model
produces monotonically decreasing upper bounds W ( j)

T B A(T̂ ), j ∈ J , and WT B A(T̂ ). The
bounds and the monotonicity properties can be rigorously proved by using the precedence
relation method, see [14]. This method is based on Markov reward theory and it has been
developed in [14, 15].

The truncation models can be solved efficiently by using the matrix-geometric ap-
proach described in [10]. Since the truncation models exploit the property that shortest
queue routing tries to balance the queues, one may expect that the bounds are tight for
already moderate values of the thresholds T1, . . . , Tc.

We will now formulate a numerical method to determine the mean waiting times with
an absolute accuracy εabs . The method repeatedly solves the TKR and TBA model for
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increasing threshold vectors T̂ = (T1, . . . , Tc). For each vector T̂ we use (W ( j)
T K R(T̂ ) +

W ( j)
T B A(T̂ ))/2 as an approximation for W ( j) and and ( j)(T̂ ) = (W ( j)

T B A(T̂ )−W ( j)
T K R(T̂ ))/2

as an upper bound for the error; we similarly approximate W by (WT K R(T̂ )+WT B A(T̂ ))/2
where the error is at most (T̂ ) = (WT B A(T̂ ) − WT K R(T̂ ))/2. The approximations and
error bounds are set equal to ∞ if the TBA model is not ergodic (which may be the case
for small thresholds). The computation procedure stops when all error bounds are less
than or equal to εabs ; otherwise at least one of the thresholds is increased by 1 and new
approximations are computed. The decision to increase a threshold Ti is based on the rate
of redirections rrd(i). This is explained in the next paragraph.

The variable rrd(i), i ∈ I , denotes the rate at which redirections occur in the boundary
states m = (m1, . . . , mc) with mi = min(m) + Ti of the truncated state space. If for
given T̂ only the TKR model is ergodic, then rrd(i) denotes the rate for the TKR model,
otherwise rrd(i) denotes the sum of the rate for the TKR and TBA model. The rates rrd(i)
can be computed directly from the steady-state distributions of the bound models. The
higher the rate rrd(i), the higher the expected impact of increasing Ti . The computation
procedure increases all thresholds Ti for which rrd(i) = maxk∈I rrd(k). The numerical
method is summarized below.

Algorithm (to determine the mean waiting times for the GSQS)
Input: The data of an ergodic instance of the GSQS, i.e.,

c, J , I ( j) for all j ∈ J , and λ j for all j ∈ J ;
the absolute accuracy εabs ;
the initial threshold vector T̂ = (T1, . . . , Tc).

Step 1. Determine W ( j)
T K R(T̂ ), W ( j)

T B A(T̂ ) and ( j)(T̂ ) for all j ∈ J ,
and WT K R(T̂ ), WT B A(T̂ ) and ( j)(T̂ ),
and rrd(i) for all i ∈ I .

Step 2. If ( j)(T̂ ) > εabs for some j ∈ J or (T̂ ) > εabs ,
then Ti := Ti + 1 for all i ∈ I with rrd(i) = maxk∈I rrd(k),
and return to Step 1.

Step 3. W ( j) = (W ( j)
T K R(T̂ ) + W ( j)

T B A(T̂ ))/2 for all j ∈ J ,
and W = (WT K R(T̂ ) + WT B A(T̂ ))/2.

Note that for a symmetric GSQS it is natural to start with a threshold vector T̂ with
equal components. Then in each iteration all rates rrd(i) will be equal, and hence each Ti

will be increased by 1. So the components of T̂ will remain equal.

4 Numerical study of the GSQS

In this section we consider three scenarios. In Subsection 4.1 we distinguish two types of
jobs: common jobs and specialist jobs. The common jobs can be served by all servers and
the other ones can be served by only one specific server. We focus on the behavior of the
overall mean waiting time W as a function of the fraction of work due to common jobs.
The higher this fraction, the more balanced the queues and the better the performance. So
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W will be decreasing as the number of common jobs increases. In one extreme case, viz.
when all jobs are specialist jobs, the GSQS reduces to independent M/M/1 queues, and
W is maximal. In the other extreme case, viz. when all jobs are common jobs, the GSQS
is identical to a pure Symmetric Shortest Queue System (SSQS), and W is minimal. In
Subsection 4.1 we investigate how W behaves in between these two extremes.

In Subsection 4.2 we consider a symmetric GSQS with c = 3 servers, and, besides
common and specialist jobs, we also have semi-common jobs. These jobs can be served
by two servers. We compare two situations: (i) a GSQS with a given fraction of common
jobs (and no semi-common jobs); (ii) a GSQS with twice this fraction of semi-common
jobs (and no common jobs). In both cases the average number of servers capable of
serving an arbitrary job is the same. In Subsection 4.3 we evaluate a series of balanced,
asymmetric systems. We investigate how the mean waiting times deteriorate due to the
asymmetry. Finally, in Subsection 4.4, the main conclusions are summarized.

4.1 The impact of common jobs

We distinguish c + 1 job types, numbered 1, . . . , c, c + 1. Type j jobs are specialist
jobs, which can only be served by server j , j = 1, . . . , c. The type c + 1 jobs are
common jobs, which can be served by all servers. The total arrival intensity is equal to
λ = cρ, with ρ ∈ (0, 1). The common jobs constitute a fraction p, p ∈ [0, 1], of the total
arrival stream, while each of the streams of specialist jobs constitutes an equal part of the
remaining stream. So λc+1 = pλ and λ j = (1 − p)λ/c for j = 1, . . . , c.

Table 1 lists the mean waiting times for specialist jobs (= W (1) = . . . = W (c)),
common jobs (= W (c+1)), and an arbitrary job (= W ) as a function of p for a system
with c = 2 and c = 3 servers, respectively. For p = 0 there are no common jobs; then
W (c+1) is defined as the limiting value of the waiting time of common jobs as p ↓ 0. For
p = 1 a similar remark holds for the mean waiting times W (1) = · · · = W (c). Table 1
also lists the realized reduction rr(p). This is defined as

rr(p) = WM/M/1 − W

WM/M/1 − WSSQS
, (10)

where WM/M/1 and WSSQS denote the mean waiting time in an M/M/1 system and
SSQS, respectively, both with the same workload ρ = 0.9 and mean service time µ = 1
as for the GSQS. The mean waiting time WM/M/1 is realized when p = 0, and WSSQS is
realized when p = 1. Clearly, rr(0) = 0 and rr(1) = 1 by definition. For all cases in
Table 4.1, WM/M/1 = 9 and WSSQS = 4.475 for c = 2 and WSSQS = 2.982 for c = 3.
The mean waiting times in the SSQS have been determined with an absolute accuracy
of 0.0001 by using the bound models in [1]. The mean waiting times in Table 1 have
been determined by using the algorithm described in Section 3 with an absolute accuracy
εabs = 0.005.
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c = 2 c = 3
p W (1) W (c+1) W rr(p) W (1) W (c+1) W rr(p)

0.0 9.00 4.26 9.00 0.0 % 9.00 2.69 9.00 0.0 %
0.1 6.80 4.36 6.56 54.0 % 6.07 2.82 5.75 54.1 %
0.2 6.04 4.40 5.72 72.6 % 5.06 2.88 4.63 72.7 %
0.3 5.66 4.43 5.29 82.0 % 4.56 2.91 4.06 82.0 %
0.4 5.43 4.44 5.04 87.6 % 4.25 2.93 3.72 87.7 %
0.5 5.28 4.45 4.86 91.4 % 4.05 2.95 3.50 91.4 %
0.6 5.17 4.46 4.74 94.1 % 3.90 2.96 3.34 94.1 %
0.7 5.09 4.46 4.65 96.1 % 3.79 2.97 3.21 96.1 %
0.8 5.02 4.47 4.58 97.7 % 3.71 2.97 3.12 97.7 %
0.9 4.97 4.47 4.52 99.0 % 3.64 2.98 3.04 99.0 %
1.0 4.93 4.48 4.48 100.0 % 3.58 2.98 2.98 100.0 %

Table 1: Mean waiting times as a function of p and c.

In Table 1 we see that the overall mean waiting time W = pW (c+1) + (1 − p)W (1)

sharply decreases for small values of p; see Figure 5. Already 73% of the maximal
reduction is realized when 20% of the jobs is common and 91% of the maximal reduction
is realized when 50% of the jobs is common. A surprising result is that the realized
reduction rr(p) is almost the same for c = 2 and c = 3 servers. Further note that for
large p the mean waiting time W (1) for specialist jobs is only a little bit larger than the
mean waiting time W (c+1) for common jobs. This is due to the balancing effect of the
common jobs.

c = 2 c = 3
p ρ WM/M/1 W WSS QS rr(p) W WSS QS rr(p)

0.25 0.2 0.25 0.19 0.07 32.1 % 0.18 0.02 30.8 %
0.4 0.67 0.51 0.26 39.6 % 0.46 0.13 38.6 %
0.6 1.50 1.10 0.68 49.2 % 0.97 0.42 48.9 %
0.8 4.00 2.67 1.96 64.8 % 2.24 1.29 64.8 %
0.9 9.00 5.47 4.47 77.9 % 4.31 2.98 78.0 %
0.95 19.00 10.69 9.49 87.3 % 7.94 6.33 87.4 %
0.98 49.00 25.86 24.49 94.4 % 18.17 16.35 94.4 %

0.50 0.2 0.25 0.14 0.07 58.7 % 0.12 0.02 57.2 %
0.4 0.67 0.40 0.26 66.4 % 0.32 0.13 65.5 %
0.6 1.50 0.89 0.68 74.5 % 0.70 0.42 74.3 %
0.8 4.00 2.27 1.96 84.7 % 1.70 1.29 84.8 %
0.9 9.00 4.86 4.47 91.4 % 3.50 2.98 91.4 %
0.95 19.00 9.93 9.49 95.4 % 6.92 6.33 95.4 %
0.98 49.00 24.97 24.49 98.1 % 16.98 16.35 98.1 %

Table 2: Mean waiting times as a function of p, ρ and c.

The behavior of the overall mean waiting time W is further investigated in Table 2
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Figure 5: Graphical representation of the mean waiting times W listed in Table 1.

for different values of p, ρ and c. The mean waiting times are again determined with an
absolute accuracy εabs = 0.005 (and 0.0001 for WSSQS). Only for low workloads (i.e.,
ρ ≤ 0.4), the mean waiting time has been determined even more accurately in order to
obtain sufficiently accurate estimates for rr(p). The results in Table 2 show that for each
combination of p and c the mean waiting time W is close to WSSQS for all ρ. The results
also suggest that the rr(p) is insensitive to the number of servers c. However, rr(p)

strongly depends on ρ; it is rather small for low workloads and large for high workloads
(it seems that rr(p) ↑ 1 as ρ ↑ 1). The small values for rr(p) for low workloads are due
to the fact that WM/M/1 is also close to WSSQS in these cases.

4.2 Common versus semi-common jobs

In Subsection 4.1 we distinguished two job types only, specialist and common jobs. For
GSQSs more than two servers, one may also have jobs in between, i.e., jobs that can be
served by two or more, but not all servers. In this subsection we investigate which job
types lead to the largest reduction of W : common or semi-common jobs?

We consider a GSQS with c = 3 servers and a total arrival rate λ = 3ρ with ρ ∈ (0, 1).
The following two cases are distinguished for the detailed arrival streams. For case I, we
copy the situation in Subsection 4.1. In this case there are 4 job types. The type 4 jobs
are common jobs; they arrive with intensity λ4 = pλ with p ∈ [0, 0.5] (the reason why
p may not exceed 0.5 follows below). Type j jobs, j = 1, 2, 3 are specialist jobs which
only can be served by server j ; they arrive with intensity λ j = (1 − p)λ/3. So the mean
number of servers capable of serving an arbitrary job is equal to 1 + 2p. In case II we
have 6 job types. The type j jobs, j = 1, 2, 3, are again specialist jobs which can only be
served by server j . The type 4, 5 and 6 jobs are semi-common jobs; the type 4 jobs can be
served by the servers 1 and 2, the type 5 jobs by 1 and 3, and the type 6 jobs by 2 and 3.
To guarantee that the mean number of servers capable of serving an arbitrary job remains
the same (i.e., equal to 1 + 2p), the arrival intensity λ j is set equal to λ j = 2pλ/3 for
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j = 4, 5, 6 and λ j = (1 − 2p)λ/3 for j = 1, 2, 3 (to avoid negative intensities, p must
be less than or equal to 0.5).

W Diff. (I−II)
p ρ Case I Case II Abs. Rel.

0.25 0.2 0.18 0.14 0.04 23.4 %
0.4 0.46 0.38 0.08 18.1 %
0.6 0.97 0.83 0.15 14.9 %
0.8 2.24 1.97 0.27 11.9 %
0.9 4.31 3.92 0.38 8.9 %
0.95 7.94 7.46 0.48 6.0 %
0.98 18.17 17.62 0.55 3.0 %

0.50 0.2 0.12 0.05 0.07 55.1 %
0.4 0.32 0.22 0.10 32.5 %
0.6 0.70 0.56 0.14 20.1 %
0.8 1.70 1.51 0.19 11.2 %
0.9 3.50 3.27 0.22 6.4 %
0.95 6.92 6.67 0.25 3.6 %
0.98 16.98 16.72 0.26 1.5 %

Table 3: Mean waiting times as a function of p and ρ.

Table 3 lists the overall mean waiting time W for different values of p and ρ. The
results for case I are copied from Table 2. We can conclude that the absolute difference
between the mean waiting time W in case I and II is rather small in each situation. This
suggests that W is mainly determined by the mean number of servers capable of serving
an arbitrary job; it does not matter whether this mean number is realized by common or
by (twice as many) semi-common jobs. Nevertheless, the results in Table 3 also show that
in each situation case II yields a smaller W than case I. This may be explained as follows.
Let us consider the situation with p = 0.5. In case I, λ1 = λ2 = λ3 = λ/6 and λ4 = λ/2.
Hence, for each group of 6 arriving jobs, on average 4 jobs join the shortest queue, 1 job
joins the shortest but one queue, and 1 job joins the longest queue. In case II, however,
λ1 = λ2 = λ3 = 0 and λ4 = λ5 = λ6 = λ/3. Thus for each group of 6 arriving jobs,
on average 4 jobs join the shortest queue and 2 jobs joins the shortest but one queue. So
in case II the balancing of queues will be slightly stronger, and thus W will be slightly
smaller.

4.3 Balanced asymmetric systems

In this subsection we study the GSQS with c = 2 servers and three job types as depicted
in Figure 2. The parameters are chosen as follows: ρ = 0.9, λ = 2ρ = 1.8, λA = λ/2 =
0.9, λB = p̂λ/2 = 0.9 p̂, λC = (1 − p̂)λ/2 = 0.9(1 − p̂) where p̂ ∈ [0, 0.5]. So one
half of the jobs are common (type A) jobs and the other half are specialist (type B and C)
jobs. But the specialist jobs are not equally divided over the servers. The fraction p̂ of
specialist jobs which must be served by server 1 (i.e., the type B jobs) is less than or equal
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to the fraction 1 − p̂ of specialist jobs which must be served by server 2 (i.e. the type C
jobs). Only for p̂ = 0.5 we have a symmetric system. For all p̂ ∈ [0, 0.5) we have an
asymmetric, but balanced system; a static system with equal workloads for both servers
is obtained when a fraction 1 − p̂ of the type A jobs is sent to server 1 and a fraction p̂ to
server 2.

p̂ W (A) W (B) W (C) W rr( p̂)

0.0 4.28 4.34 13.05 8.66 7.5 %
0.1 4.37 4.52 8.52 6.25 60.8 %
0.2 4.42 4.68 6.93 5.45 78.5 %
0.3 4.44 4.84 6.12 5.09 86.5 %
0.4 4.45 5.03 5.62 4.92 90.3 %
0.5 4.45 5.28 5.28 4.86 91.4 %

Table 4: Mean waiting times as a function of p̂.

Table 4 shows the mean waiting times W (A), W (B), W (C) for each job type and the
overall mean waiting time W for p̂ = 0, 0.1, . . . , 0.5. These waiting times have again
been computed with an absolute accuracy εabs = 0.005. In the last column of Table 4 we
list the realized reduction rr( p̂) defined by (10), where WM/M/1 = 9 and WSSQS = 4.475
for ρ = 0.9. The results in Table 4 show that W (A) is fairly constant for all values of p̂.
As expected, W (B) decreases and W (C) increases as p̂ decreases. A striking observation
is that W (C) sharply increases for p̂ close to 0; and thus also W = (W (A) + p̂W (B) +
(1 − p̂)W (C))/2. For p̂ = 0 we have λA = λC = 0.9 and λB = 0, and the overall mean
waiting time W is equal to 8.66. This is close to W M/M/1 = 9, which is realized when all
type A jobs would be sent to server 1.

4.4 Conclusion

The main conclusion from the numerical experiments is that the overall mean waiting
time may already be reduced significantly by creating a little bit of (semi-)common work.
Furthermore, this reduction is mainly determined by the amount of overlap, i.e., the mean
number of servers capable of handling an arbitrary job. Finally, the beneficial effect of
(semi-)common jobs may vanish for highly asymmetric situations.
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