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Abstract

In this paper we study a production system consisting of agroup of parallel machines
producing multiple job types. Each machine has its own queue and it can process a
restricted set of job types only. On arrival a job joins the shortest queue among
al queues capable of serving that job. Under the assumption of Poisson arrivals
and identical exponential processing times we derive upper and lower bounds for
the mean waiting time. These bounds are obtained from so-called flexible bound
models, and they provide a powerful tool to efficiently determine the mean waiting
time. The bounds are used to study how the mean waiting time depends on the
amount of overlap (i.e. common job types) between the machines.
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1 Introduction

In this paper we consider a queueing system consisting of a group of paralel identical
servers serving multiplejob types. Each server hasits own queue and is capable of serving
arestricted set of job typesonly. Jobs arrive according to a Poisson process and on arrival
they join the shortest feasible queue. The service times are exponentially distributed. We
will refer to this queueing model asthe Generalized Shortest Queue System (GSQS). This
model is motivated by a situation encountered in the assembly of Printed Circuit Boards
(PCBs). Thisisexplained in more detail below.

Figure 1 shows a typical layout of an assembly system for PCBs. It consists of three
parallel insertion machines, each with its own local buffer. An insertion machine mounts
vertical components, such as resistors and capacitators, on a PCB by the insertion head.
The components are mounted in a certain sequence, which is prescribed by a Numerical
Control program. The insertion head is fed by the sequencer, which picks components
from tapes and transports them in the right order to the insertion head. Each tape contains
only one type of components. The tapes are stored in the component magazine, which
can contain at most 80 tapes, say. Each PCB needs on average 60 different types of
components. To assemble a PCB all required components have to be available in the
component magazine. Hence, the set of components available in the magazine determines
the set of PCB types that can be processed on that machine. The system in Figure 1 has
to assemble three PCB types, labeled A, B and C. The machines are basically similar,
but due to the fact that they are loaded with different types of components, the sets of
PCB types that can be handled by the machines are different. Machine M1 can handle
the A and B types, machine M5 the A and C, and machine M3 the B and C. When the
mounting times for all PCB types are approximately the same, it is reasonable to send
arriving PCBs to the shortest feasible queue.

|
’
Mi| AB
M2 A C
M3 B C

Figure 1. A flexible assembly system consisting of three parallel insertion machines, on which
three types of PCBs are made.

Since the assembly of PCBs is often characterized by relatively few job types, large
production batches and small mounting times (see Zijm [16]), the use of a queueing model
seems appropriate to predict performance characteristics such as the mean waiting time.
Animportant issueisthe assignment of the required componentsto the machines. 1deally,
each machine should get all components needed to process all PCB types. However, since
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the component magazines have afinite capacity, they can contain the components needed
for a(small) subset of PCB typesonly. Inthis paper we will investigate how much overlap
(i.e. common components) between the machinesis required such that the system nearly
performs asin the ideal situation where the machines are equipped with all components.

The GSQS is aso relevant for many other practical situations; e.g., for parallel ma-
chines loaded with different sets of tools, computer disks loaded with different infor-
mation files, or operators in a call center handling requests from different customers.
Nevertheless, the literature on the GSQS is limited. Schwartz [12] (see also Roque [11])
considered a system related to the GSQS, but with a specific server hierarchy. He derived
some expressions for the mean waiting times. Adan, Wessels and Zijm [2] derived rough
approximationsfor the mean waiting timesin a GSQS. Green [ 7] constructed atruncation
model for arelated system with two types of jobs and two types of servers. serverswhich
can serve both job types and servers which can only serve jobs of the second type.

For the present model with general (i.e. nonexponential) arrivals, Sparaggis, Cassan-
dras and Towsley [13] showed that the generalized shortest queue routing is optimal with
respect to the overall mean waiting time for symmetric cases (see Theorem 3.1 in [13];
see also Subsection 2.3). For more general systems, Foss and Chernova [6] used a fluid
approximation approach to establish ergodicity conditions (see also the remarks at the end
of Subsection 2.2). The issue of ergodicity has also been considered in arecent report by
Foley and McDonald [5]. Their main contribution, however, consists of results on the
asymptotic behavior of a GSQS with two exponential serverswith different service rates.
Finally, Hassin and Haviv [8] have studied a symmetric GSQS with two servers and an
additional property called threshold jockeying. They focus on the difference in waiting
time between jobs which can choose between both servers and jobs which can not choose.

The GSQS can be described by a continuous-time Markov processwith multi-dimensional
states where each component denotes the queue length at one of the servers. Only in very
special cases exact analytical solutions can be found (see e.g. [3]). Therefore, to deter-
mine the mean waiting times, we will construct truncation models which: (i) are flexible
(i.e. the size of their state space can be controlled by one or more truncation parameters);
(i) can be solved efficiently; (iii) provide upper and lower bounds for the mean waiting
times. Such models are called solvable flexible bound models. They are derived by us-
ing the so-called the precedence relation method. This is a systematic approach for the
construction of bound models, which has been developed in [14, 15]. In this paper we
will construct a lower and upper bound model for the mean waiting times. These two
model s constitute the core of a powerful numerical approach: the two bound models are
solved for increasing sizes of the truncated state space until the mean waiting times are
determined within a given, desired accuracy.

This paper is organized as follows. In Section 2, we describe the GSQS and we
discuss conditions under which the GSQS is ergodic and balanced. Next, in Section 3, we
construct the flexible bound models and we formulate a numerical approach to determine
the mean waiting times. Finally, in Section 4, we investigate how the mean waiting times
for the GSQS depend on the amount of overlap (i.e. common job types) between the
servers. Thisisdone by numerically evaluating several scenarios.



2 Mode€

This section consists of three subsections. In the first subsection, we describe the GSQS.
In Subsection 2.2 we present a simple condition that is necessary and sufficient for ergod-
icity. In the last subsection, we present a related condition under which the GSQS is said
to be balanced and we briefly discuss symmetric systems.

2.1 Model description

The GSQS consists of ¢ > 2 parallel servers serving multiple job types. Each server has
itsown queue and is capable of serving arestricted set of job typesonly. All servicetimes
are exponentially distributed with the same parameter 1« > 0. The arrival stream of each
job type is Poisson and an arriving job joins the shortest queue among all queues capable
of serving that job (ties are broken with equal probabilities). Figure 2 showsa GSQSwith
¢ = 2 servers and three job types: type A, B and C jobs arrive with intensity A 5, Ag and
Ac, respectively. The A jobs can be served by both servers, the B jobs can only be served
by server 1, and the C jobs must be served by server 2.

HHD A B

AaAgAc NE(H)
HH(2) AcC

NE (1)

Figure 2: A GSQSwith ¢ = 2 servers and three job types.

We introduce the following notations. The servers are numbered from 1, ..., c and
theset | isdefined by | = {1,...,c}. The set of al jobs type is denoted by J. The
arrival intensity of type j € J jobsisgivenby A; > 0, and A = ZjEJ Aj isthe total
arrival intensity. We further assume that each job type can be served by at least one
server and each server can handle at least one job type; so, 1 (j) # @ foral j € J, and
Ujesl (j) = I. Without loss of generality, we set © = 1. Then the average workload per
server isgivenby p = A/c. Obvioudly, the requirement p < 1isnecessary for ergodicity.

The behavior of the GSQS is described by a continuous-time Markov process with
states (m4, ..., m¢), where m; denotes the length of the queue at serveri,i € | (jobsin
service are included). So, the state space isequal to

M = {m|m=@mg,...,mg) withm; e Noforali el}. (D)
We assume that 3 ; 2jLiel(j)) > Oforal serversi € | (here, L) is the indicator
function, whichis 1 if G istrue and O otherwise), i.e., that all servers have a positive po-
tential arrival rate. This guarantees that the Markov processisirreducible. The transition
rates are denoted by gm . Figure 3 showsthe transition rates for the GSQS in Figure 2.
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Figure 3: Thetransition rate diagram for the GSQSin Figure 2.

The relevant performance measures are the mean waiting times W) for each of job
type j € J, and the overall mean waiting time W, which is equal to

Aj i
W = XJ:TJW(”. )
je

It isobviousthat for an ergodic system,

w) = Z (min mi>n(m1,...,mc), jed, (3)

(mq,....,mg)eM tel ()

where w (mg, . .., m¢) denotes the steady-state probability for state (mq, ..., me).

2.2 Ergodicity

By studying the job routing, we obtain a simple, necessary condition for the ergodicity of
the GSQS. For each subset J' € J, J # @, jobs of type j € J’ arrive with an intensity
equal to Zjey 2j and they must be served by the servers Ujc /1 (j). Thisimmediately
leads to the following lemma.

Lemmal The GSQScan only be ergodic if

DA < [Ujerr I(j)] foralld cJ, I #0. (4)
jed’

Note that for J’ = J, thisinequality is equivalent to p < 1. For the GSQS in Figure

2, condition (4) states that for ergodicity it is necessary that the inequalities Ag < 1,
Ac < land A < 2 (or, equivaently, p < 1) are satisfied. It appears that condition (4)
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is also sufficient for ergodicity. To show this, we consider so-called corresponding static
systems.

A corresponding static system is a system that is identical to the GSQS, but with
static (random) routing instead of dynamic shortest queue routing. The static routing is
described by discrete distributions {x\}ic| (j), j € J,whereforeach j € J andi € I (}),
the variable xi(” denotes the probability that an arriving job of type j issent to serveri.
Under static routing, it holds for each j € J that the Poisson stream of arriving type |
jobsis split up into Poisson streams with intensities X j = iji(”, i € 1(j), fortypej
arrivalsjoining server i . Hence the queuesi € | constitute independent M /M /1 queues
with identical mean service times equal to x = 1 and arrival intensities > ;) Xj.i,
where A(i) = {j € J|i € 1())}. Asaresult, we obtain a simple necessary and sufficient
condition for the ergodicity of a corresponding static system, viz.

Y X <pu  foraliel.
jeAd)

Lemma 2 For a GSQS there exists a corresponding static system that is ergodic, if and
only if condition (4) is satisfied.

Proof. There existsa corresponding static system that isergodic if and only if there exists
anonnegative solution {X; i }(j.i)ea Of the following equations and inequalities:

D xji = aj foral j e, D X < Lfordliel; (5)

iel(j) jeA)
the equalities in (5) guarantee that the solution {xj,i}(j,iyea corresponds to discrete dis-
tributions {xf”}id (j) which describe a static routing, and the inequalities in (5) must be
satisfied for ergodicity. It is easily seen that (5) has no solution if condition (4) is not
satisfied.

Now, assume that condition (4) is satisfied. To prove that there exists a nonnegative

solution {X;j i }(j,iyea Of (5), we consider atransportation problemwith supply nodes V; =
J U {0}, demand nodes Vo = |, andarcs A= AU {(0,i)]i € I}, with

A={(,h]jed, ieladiel(j}.

(supply node O denotes an extratype of jobs, which can be served by all servers). Define
the suppliesa; by a; = 1j fordl j € V1 \ {0} and & = ¢ — 1 — ce, where

CUjear LD = ey A
€ = min —= Ljey

Vel Uicy 1 (j
e | Ujear 1 (D]

(from (4), itfollowsthat ¢ > 0, and &g > 0 since by tgkingg’ = J we obtain the inequal-
ity e < (c—A)/c). Further, we define the demands bj by bi = 1 — € forall i € Vy; note
that ) jeVy aj =), <V, bi- 1t may be verified that this transportation problem satisfies a
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necessary and sufficient condition for the existence of afeasible flow; see Lemma 5.4 of
[14] and its proof is based on a transformation to a maximum-flow problem followed by
the application of the max-flow min-cut theorem (see e.g. [4]). S0, there exists afeasible
flow for the transportation problem, i.e., there exists a nonnegative solution {X;j i} (i.heA
of the equations

Y Rji = & foral j e Vi, Y % = b foralli e V.
i€\72 16\71
(j.heA (j.heA

Itiseasily seen that then the solution {X; i }ji)ea defined by X i = X;j i foral (j,i) € A,
is a nonnegative solution of (5), which completes the proof. O

In situationswith many job types shortest queue routing will balance the queue lengths
more than any static routing. So if there is a corresponding static system that is ergodic,
then the GSQS will also be ergodic. Together with Lemma 2, thisinformally shows that
the following theorem holds.

Theorem 1 The GSQSisergodic if and only if condition (4) is satisfied.

For aformal proof of thistheorem, the reader isreferred to Fossand Chernova[6] or Foley
and McDonald [5]. In the latter paper, a generalization of condition (4) is proved to be
necessary and sufficient for the (more general) model with different service rates. Their
proof also exploitsthe connection with a corresponding static system. Foss and Chernova
[6] use a fluid approximation approach to derive necessary conditions for a model with
genera arrivals and general service times.

2.3 Balanced and symmetric systems

It is desirable that the shortest queue routing, as reflected by the sets | (), balances the
workload among the servers. Formally, we say that a GSQS is balanced if there exists
acorresponding static system for which all queues have the same workload. This means
that there must exist discrete distributions {xi(”}i el (j) such that for each serveri € 1, the
arrival intensity » ;5 (ji)caXj,i isequa tor/c = p, where the xj i and the set A are
defined asbefore. Such discrete distributionsexist if and only if there exists anonnegative
solution {Xj i} j.i)ea Of the equations

A
Xii = Aj fordlj e J, Xiji = — fordli el. 6
; ji j ] € ; =g € (6)
(j,heA (j,heA
These equations are precisely the equations which must be satisfied by a feasible flow
for the transportation problem with supply nodes V; = J, demand nodes V, = I, arcs
A, suppliesaj = A foral j € V; and demandsbj = A/c for all i € V,. Applying the
necessary and sufficient condition for the existence of such afeasible flow (see[14]) leads
to the following lemma.



Lemma3 A GSQSisbalanced if and only if

A
doaj o< [Ujear 1D ¢ forall 3’ c J. (7)
jed’

Notethat for J’ = @ and J’ = J, condition (7) holds by definition. Further, it followsthat
a balanced GSQS satisfies condition (4) if and only if p < 1. So, for a balanced GSQS,
the simple condition p < 1 isnecessary and sufficient for the ergodicity.

For a balanced GSQS the workloads under the shortest queue routing are not neces-
sarily balanced. This can be seen by considering the GSQS in Figure 2. According to
condition (7), this GSQS isbaanced if and only if A\g < A/2and Ac < 1/2, i.e. if and
onlyif Ag < Aa+Aic andic < Aa+ Ap. Thisconditionisobviously satisfied if we take
Ac = Aa + Ag. Inthiscase, equal workloads for both servers can only be obtained if all
jobs of type A are sent to server 1. But, under the shortest queue routing, it will still occur
that jobs of type A are sent to server 2, and therefore server 2 will have a higher workload
than server 1. Nevertheless, one may expect that for a balanced GSQS, the shortest queue
routing at |least ensures that the workloads will not differ too much.

A subclass of balanced systems are the symmetric systems. A GSQS is said to be
symmetric, if

Al = A(lp) foral Iy, o C | with|l1] = |l2], (8

where

A1) = Y 2. 1" c 1.

jed
(="

So, aGSQS is symmetric, if for all subsets |’ c | with the same number of servers 1’|,
the arrival intensity A(1") for the jobs which can be served by precisely the serversof 1/,
isthe same. The GSQS in Figure 2 issymmetricif Ag = Ac.

For a symmetric GSQS, al queue lengths have the same distribution, which implies
that all servers have equa workloads. For such a system, it follows from Sparaggis et
al. [13], that the shortest queue routing minimizes the total number of jobs in the system
and hence the overall mean waiting time W. In particular, this implies that the overall
mean waiting time in asymmetric GSQS islessthan in the corresponding system consist-
ing of N independent M /M /1 queues with workload p.

3 Flexible bound models

In this section we construct two truncation models which are much easier to solve than
the origina model. One truncation model produces lower bounds for the mean waiting
times, and the other one upper bounds. At the end of this section we describe a numerical
method for the computation of the mean waiting times within a given, desired accuracy.
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The truncation models exploit the property that the shortest queue routing causes a
drift towards states with equal queue lengths. The state space M’ of the two models is
obtained by truncating the original state space M around the diagonal, i.e.,

M ={meM|m=@my,....,m)andm; <min(m) + T forali el}, (9

where min(m) := minj¢; m; and Ty, ..., Tc € N are so-called threshold parameters; the
corresponding vector T .= (T, ..., To) iscdled the threshold vector. So statem € M
alsoliesin M’ if and only if for eachi € | thelength of queuei isat most T; greater than
the length of any other queue. Later on in this section we discuss how appropriate values
for T can be selected. There are two types of transitions pointing from statesinside M’ to
states outside M’:

() instatem = (My,...,mg) € M withminim) > Oand |’ = {i € I|m =
min(m) + T;} # @, at aserver k € | with mg = min(m) a service completion
occurs with rate u and leads to atransition frommto staten = m — ex € M’;

(i) instatem = (Mg, ...,mg) € M withl” = {i € I|mj = min(m) + T;} # &,
at aserveri € |’ an arrival of anew job leads to a transition from m to the state
n=m+ g ¢ M’; thistransition occurs with rate ZjEJ I (j;m)l_l)\.jl{id(j;m)},
wherethe set | (j; m) isdefined by 1 (j;m) = {i € [(}) | m = minke ¢j) Mk}
(note that this rate may be equal to 0).

In the lower (upper) bound model, the transitions to states n outside M’ are redirected to
states n’ with less (more) jobsinside M’.

In the lower bound model, thetransitionin (i) isredirectedton’ = m—ec—) ;. & €
M’. This means that the departure of ajob at a non-empty shortest queue is accompanied
by killing one job at each of the queuesi € 1’, which are already T; greater than the
shortest queue. Thetransitionin (ii) isredirected to mitself, i.e., anew job arriving at one
of theserversi € |’ isregjected. The lower bound model is therefore called the Threshold
Killing and Rejection (TKR) model.

In the upper bound model, the transition in (i) is redirected to m itself. This means
that if at least one queueis already T; greater than the shortest queue, the finished job in
the shortest queue is not allowed to depart, but is served once more; thisis equivalent to
saying that the servers at the shortest queues are blocked. Transition (ii) is redirected to
n=m+¢g + Zkels & € M, with Isg = {k € I|mg = min(m)}. This means that
an arrival of anew job at one of the queues which is aready T; greater than the shortest
gueue, isaccompanied by the addition of one extrajob at each of the shortest queues. The
upper bound model istherefore called the Threshold Blocking and Addition (TBA) model.
Note that this model may be non-ergodic while the original model is ergodic. However,
the larger the values of the thresholds T; the more unlikely this situation. In Figure 4,
we show the redirected transitions in the lower and upper bound model for the GSQS of
Figure 3.

It isintuitively clear that the queuesin the TKR model are stochastically smaller than
the queues in the original model. Hence, for each j € J, the TKR model yields a lower



Threshold Killing and Rejection Threshold Blocking and Addition

Figure 4. The redirected transitions in the TKR and TBA model for the GSQS depicted in Figure
2. For both models, T = (T1, To) = (3, 3).

bound for the mean length of the shortest queue among the queuesi € | (), and thusalso
for the mean waiting time of type j jobs (cf. (3)). Denote the steady-state probabilitiesin
the TKR model by 71k r(mg, ..., m¢) and let

W%QR(?) = Z ( min mi) Tk R(ML, ..., Me) jed

(mq,...,mg)eM’ tel ()

Then we have for each j € J that W (T) < W), and thus (cf. (2))

A Ai ; A
Wrkr(T) =3 =8 Wakp(T)
jed

yields alower bound for the overall mean waiting time W. The lower bounds W-%) o (T)
monotonically increase as the thresholds Ty, . .., T¢ increase. Similarly the TBA model
produces monotonically decreasing upper bounds W2, (T), j € J, and Wrga(T). The
bounds and the monotonicity properties can be rigorously proved by using the precedence
relation method, see [14]. This method is based on Markov reward theory and it has been
developed in [14, 15].

The truncation models can be solved efficiently by using the matrix-geometric ap-
proach described in [10]. Since the truncation models exploit the property that shortest
gueue routing tries to balance the queues, one may expect that the bounds are tight for
already moderate values of the thresholds Ty, ..., Te.

We will now formulate a numerical method to determine the mean waiting times with
an absolute accuracy egps. The method repeatedly solves the TKR and TBA model for
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increasing threshold vectors T = (Ty, ..., T¢). For each vector T we use (W) o(T) +

W (T))/2 asan approximation for W) andand AW (T) = (Wil . (T)—wil) o (T))/2
asan upper bound for the error; we similarly approximate W by (Wrk r(T)+Wrga(T))/2
wherethe error isat most A(T) = (Wrga(T) — Wrkr(T))/2. The approximations and

error bounds are set equal to oo if the TBA model is not ergodic (which may be the case

for small thresholds). The computation procedure stops when all error bounds are less

than or equal to e4ps; Otherwise at least one of the thresholdsisincreased by 1 and new

approximations are computed. The decision to increase athreshold T; isbased on the rate

of redirectionsrq(i). Thisisexplained in the next paragraph.

Thevariabler,y(i),i € |, denotestherate at which redirections occur in the boundary
statesm = (Mg, ..., mg) with mj = min(m) + T; of the truncated state space. If for
given T only the TKR model is ergodic, thenr,q(i) denotes the rate for the TKR model,
otherwiser,4(i) denotesthe sum of the rate for the TKR and TBA model. Theratesrq(i)
can be computed directly from the steady-state distributions of the bound models. The
higher therater,4(i), the higher the expected impact of increasing T;j. The computation
procedure increases al thresholds T; for which ryq(i) = maxe rrq(k). The numerica
method is summarized below.

Algorithm (to determine the mean waiting times for the GSQS)
Input:  The data of an ergodic instance of the GSQS, i.e.,
c,J,I(j)foraljed,andrjforalje J;
the absolute accuracy €aps;
theiinitial threshold vector T = (Ty, ..., To).
Step 1. DetermmeWHiR(T) W%‘éA(T) and A“)(T)for aljed,
and Wrk r(T), Wrga(T) and A0(T),
andr.q(i)forali el.
Step 2. If AO(T) > eaps for some j € J or A(T) > eaps,
thenT; :=T, + 1forali e | withr,q(i) = maxye; rrq(K),
and return to Step 1.
Step 3. W = Wil R(T)er;J AT 2forall j e 3,
and W = (Wrkr(T) + Wrga(T))/2.

Note that for a symmetric GSQS it is natural to start with a threshold vector T with
equal components. Then in each iteration all ratesr, 4 (i) will be equal, and hence each T;
will beincreased by 1. So the components of T will remain equal.

4 Numerical study of the GSQS

In this section we consider three scenarios. In Subsection 4.1 we distinguish two types of
jobs. common jobs and specialist jobs. The common jobs can be served by all serversand
the other ones can be served by only one specific server. We focus on the behavior of the
overal mean waiting time W as a function of the fraction of work due to common jobs.
The higher thisfraction, the more balanced the queues and the better the performance. So
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W will be decreasing as the number of common jobs increases. In one extreme case, viz.
when all jobs are specialist jobs, the GSQS reduces to independent M /M /1 queues, and
W ismaximal. In the other extreme case, viz. when all jobs are common jobs, the GSQS
is identical to a pure Symmetric Shortest Queue System (SSQS), and W is minimal. In
Subsection 4.1 we investigate how W behaves in between these two extremes.

In Subsection 4.2 we consider a symmetric GSQS with ¢ = 3 servers, and, besides
common and specialist jobs, we also have semi-common jobs. These jobs can be served
by two servers. We compare two situations: (i) a GSQS with a given fraction of common
jobs (and no semi-common jobs); (i) a GSQS with twice this fraction of semi-common
jobs (and no common jobs). In both cases the average number of servers capable of
serving an arbitrary job is the same. In Subsection 4.3 we evaluate a series of balanced,
asymmetric systems. We investigate how the mean waiting times deteriorate due to the
asymmetry. Finally, in Subsection 4.4, the main conclusions are summarized.

4.1 Theimpact of common jobs

We distinguish ¢ + 1 job types, numbered 1,...,c,c + 1. Type j jobs are specialist
jobs, which can only be served by server j, ] = 1,...,c. Thetypec + 1 jobs are
common jobs, which can be served by all servers. The total arrival intensity is equal to
A = ¢p, with p € (0, 1). The common jobs constitute afraction p, p € [0, 1], of the total
arrival stream, while each of the streams of specialist jobs constitutes an equal part of the
remaining stream. SOAcy 1 = prandij = (1—p)ra/cforj=1,...,c.

Table 1 lists the mean waiting times for specialist jobs (= W® = ... = W©),
common jobs (= WD), and an arbitrary job (= W) as a function of p for a system
with ¢ = 2 and ¢ = 3 servers, respectively. For p = 0 there are no common jobs; then
W€D js defined as the limiting value of the waiting time of common jobsas p | 0. For

p = 1 asimilar remark holds for the mean waiting times W@ = ... = W©, Table 1
also liststhe realized reduction rr (p). Thisis defined as
Wm/m/1 — W
rr(p) = - (10)

Wwm/m/1 — Wssos

where Wy,m/1 and Wssgs denote the mean waiting time in an M/M/1 system and
SSQS, respectively, both with the same workload p = 0.9 and mean servicetimeu = 1
as for the GSQS. The mean waiting time Wy, /1 isrealized when p = 0, and Wssgs is
realized when p = 1. Clearly, rr(0) = Oand rr (1) = 1 by definition. For all casesin
Table 4.1, WM/M/l = 9and WSSQS = 4.475forc = 2 and WSSQS = 2.982 for c = 3.
The mean waiting times in the SSQS have been determined with an absolute accuracy
of 0.0001 by using the bound models in [1]. The mean waiting times in Table 1 have
been determined by using the algorithm described in Section 3 with an absolute accuracy
€aps = 0.005.
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c=2 c=3
p wD  weHDh  w rr(p) wD werDh  w rr(p)

001 900 426 9.00 00% | 9.00 269 9.00 0.0%
01| 680 436 65 540% | 6.07 282 575 541%
02| 604 440 572 T726% |506 288 463 T727%
03| 566 443 529 820% |45 291 406 820%
04| 543 444 504 876%|425 293 372 87.7%
05| 528 445 486 914% |405 295 350 914%
06| 517 446 474 941% | 390 29 334 941%
07| 50 446 465 961% | 379 297 321 961%
08| 502 447 458 97.7% | 371 297 312 97.7%
09| 497 447 452 90% | 364 298 304 990%
10| 493 448 448 1000% | 358 298 298 100.0%

Table 1: Mean waiting times as a function of p and c.

In Table 1 we see that the overall mean waiting time W = pW¢*D + (1 — pyw@®
sharply decreases for small values of p; see Figure 5. Already 73% of the maximal
reduction is realized when 20% of the jobsis common and 91% of the maximal reduction
is realized when 50% of the jobs is common. A surprising result is that the realized
reduction rr (p) is amost the same for c = 2 and ¢ = 3 servers. Further note that for
large p the mean waiting time W for specialist jobs is only a little bit larger than the
mean waiting time W+D for common jobs. This is due to the balancing effect of the
common jobs.

p o || Wamar| W Wssgs r(p) | W Wssos 1 (p)
0.25 0.2 0.25| 0.19 0.07 321% | 0.18 0.02 30.8%
0.4 0.67| 051 0.26 39.6% | 0.46 0.13 38.6%
0.6 150 | 1.10 0.68 49.29% | 0.97 0.42 489%
0.8 4.00| 2.67 196 648% | 2.24 1.29 64.8%
0.9 9.00| 547 447 T779% | 431 298 78.0%

0.95 1900 | 10.69 949 873% | 794 633 874%
098 | 49.00| 2586 2449 944% | 1817 1635 944%

050 0.2 025| 014 007 587% | 012 002 57.2%
04 067 040 026 664% | 032 013 655%
0.6 150 089 068 745% | 070 042 743%
0.8 400 | 227 196 847% | 170 129 84.8%
0.9 9.00| 486 447 914% | 350 298 914%

0.95 1900 | 993 949 954% | 692 633 954%
098 | 49.00| 2497 2449 981% | 1698 16.35 98.1%

Table 2: Mean waiting times as a function of p, p and c.

The behavior of the overall mean waiting time W is further investigated in Table 2
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Figure 5: Graphical representation of the mean waiting times W listed in Table 1.

for different values of p, p and c. The mean waiting times are again determined with an
absolute accuracy eaps = 0.005 (and 0.0001 for Wssqs). Only for low workloads (i.e.,
p < 0.4), the mean waiting time has been determined even more accurately in order to
obtain sufficiently accurate estimatesfor rr (p). Theresultsin Table 2 show that for each
combination of p and ¢ the mean waiting time W is close to Wssqs for all p. The results
also suggest that the rr (p) is insensitive to the number of servers c. However, rr(p)
strongly depends on p; it is rather small for low workloads and large for high workloads
(itseemsthatrr(p) 1+ 1asp 1 1). Thesmall valuesfor rr (p) for low workloads are due
to the fact that Wi ,m /1 is also closeto Wssgs in these cases.

4.2 Common versus semi-common jobs

In Subsection 4.1 we distinguished two job types only, specialist and common jobs. For
GSQSs more than two servers, one may also have jobs in between, i.e., jobs that can be
served by two or more, but not all servers. In this subsection we investigate which job
types lead to the largest reduction of W: common or semi-common jobs?

We consider aGSQSwithc = 3 serversand atotal arrival rate A = 3p withp € (0, 1).
The following two cases are distinguished for the detailed arrival streams. For case |, we
copy the situation in Subsection 4.1. In this case there are 4 job types. The type 4 jobs
are common jobs; they arrive with intensity 14 = pA with p € [0, 0.5] (the reason why
p may not exceed 0.5 follows below). Type j jobs, | = 1, 2, 3 are specialist jobs which
only can be served by server |; they arrive with intensity Aj = (1 — p)A/3. So the mean
number of servers capable of serving an arbitrary job isequal to 1 + 2p. Incase |l we
have 6 job types. Thetype j jobs, | = 1, 2, 3, are again specialist jobs which can only be
served by server j. Thetype4, 5 and 6 jobs are semi-common jobs; the type 4 jobs can be
served by the servers 1 and 2, the type 5 jobs by 1 and 3, and the type 6 jobs by 2 and 3.
To guarantee that the mean number of servers capable of serving an arbitrary job remains
the same (i.e., equal to 1 + 2p), the arrival intensity A isset equal to A; = 2pa/3 for
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j=4,56andAr; = (1—-2p)Ar/3for j = 1,2, 3 (to avoid negative intensities, p must
be less than or equal to 0.5).

W Diff. (I-11)
p 0 Casel Casell | Abs. Radl.
025 0.2 0.18 0.14 | 0.04 234%
0.4 0.46 0.38 | 0.08 18.1%
0.6 0.97 0.83| 015 149%
0.8 2.24 197 | 0.27 119%
0.9 431 392|038 89%
095 | 794 746 | 048 6.0%
098 | 18.17 17.62| 055 3.0%

050 0.2 0.12 0.05| 0.07 55.1%
0.4 0.32 0.22 | 0.10 325%
0.6 0.70 056 | 0.14 20.1%
0.8 1.70 151|019 11.2%
0.9 3.50 3271022 64%
095 | 6.92 6.67| 025 3.6%
098 | 1698 16.72| 026 15%

Table 3: Mean waiting times as a function of p and p.

Table 3 lists the overall mean waiting time W for different values of p and p. The
results for case | are copied from Table 2. We can conclude that the absolute difference
between the mean waiting time W in case | and |1 is rather small in each situation. This
suggests that W is mainly determined by the mean number of servers capable of serving
an arbitrary job; it does not matter whether this mean number is realized by common or
by (twice as many) semi-common jobs. Nevertheless, theresultsin Table 3 aso show that
in each situation case |1 yieldsa smaller W than case |. Thismay be explained asfollows.
Let usconsider the situationwith p = 0.5. Incasel, A1 = Ao = Az =A/6and A4 = 1 /2.
Hence, for each group of 6 arriving jobs, on average 4 jobs join the shortest queue, 1 job
joins the shortest but one queue, and 1 job joins the longest queue. In case |1, however,
A = X2 = A3 =0and Ag = A5 = Ag = A/3. Thus for each group of 6 arriving jobs,
on average 4 jobs join the shortest queue and 2 jobs joins the shortest but one queue. So
in case Il the balancing of queues will be dlightly stronger, and thus W will be dlightly
smaller.

4.3 Balanced asymmetric systems

In this subsection we study the GSQS with ¢ = 2 servers and three job types as depicted
in Figure 2. The parameters are chosen asfollows: p = 0.9, A =2p = 1.8, Ao = 1/2 =
09, A8 = PA/2 = 0.9P, Ac = (1 — P)A/2 = 0.9(1 — p) where p € [0, 0.5]. So one
half of the jobs are common (type A) jobs and the other half are specialist (type B and C)
jobs. But the specialist jobs are not equally divided over the servers. The fraction p of
specialist jobswhich must be served by server 1 (i.e., thetype B jobs) isless than or equal

14



to the fraction 1 — p of specialist jobs which must be served by server 2 (i.e. the type C
jobs). Only for p = 0.5 we have a symmetric system. For al p € [0, 0.5) we have an
asymmetric, but balanced system; a static system with equal workloads for both servers
is obtained when afraction 1 — p of thetype A jobsis sent to server 1 and afraction p to
server 2.

P [WA WE WO W rr(p) |
00 428 434 1305 866 75%
01| 437 452 852 625 60.8%
02| 442 468 693 545 785%
03| 444 484 612 509 865%
04 445 503 562 492 90.3%
05| 445 528 528 486 914%

Table 4: Mean waiting times as a function of p.

Table 4 shows the mean waiting times W, W® W(© for each job type and the
overal mean waiting time W for p = 0,0.1, ..., 0.5. These waiting times have again
been computed with an absolute accuracy ezps = 0.005. In the last column of Table 4 we
list the realized reductionrr (p) defined by (10), where Wy /m/1 = 9 and Wssgs = 4.475
for p = 0.9. Theresultsin Table 4 show that W® s fairly constant for all values of p.
As expected, W® decreases and W© increases as p decreases. A striking observation
is that W© sharply increases for p close to O; and thusalso W = (W™ + pw® 4
(1— pPW©) /2. For p = Owe have ia = Ac = 0.9 and Ag = 0, and the overall mean
waiting time W is equal to 8.66. Thisiscloseto Wy ,m/1 = 9, which isrealized when all
type A jobswould be sent to server 1.

4.4 Conclusion

The main conclusion from the numerical experiments is that the overall mean waiting
time may already be reduced significantly by creating alittle bit of (semi-)common work.
Furthermore, thisreduction is mainly determined by the amount of overlap, i.e., the mean
number of servers capable of handling an arbitrary job. Finally, the beneficial effect of
(semi-)common jobs may vanish for highly asymmetric situations.
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