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Abstract—An optimum polarization-space-time joint domain pro-
cessing (PST-JDP) technique is proposed for clutter suppression which
adequately adopts the three-domain information including the polar-
ization, space and Doppler frequency information of the radar echo.
The study shows that the polarization information together with the
space and Doppler frequency information are effective to significantly
enhance the clutter suppression performance for airborne radar. Sev-
eral new techniques, (i.e., the covariance matrix eigendecomposition,
the spectral analysis and the resolution grid method), are utilized for
deriving the performance of the optimum PST-JDP. The main factors
which affect on the performance of clutter rejection are the clutter
degree of polarization, statistical distance of polarization between tar-
get and clutter, Doppler frequency of target and input clutter-to-noise
ratio. The new optimum PST-JDP method outperforms significantly
the traditional optimum space-time processing technology, especially
in the case of the slowly or tangentially moving target. The simulation
verifies the correctness and efficiency of the model.

1. INTRODUCTION

Clutter suppression or the detection of weak targets in heavy clutter
environments is considered a challenging problem, mainly because it is
not possible to discriminate the target from the clutter in the Doppler
frequency domain. Many techniques were proposed and analyzed to
suppress clutter in one or twodomain [1–4], which enhanced the out
of signal-to-clutter-plus-noise ratio (SCNR) and improved the target
detectability, discrimination and resolution. Figure 1 summarizes the
methods for clutter suppression in different domains.
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Figure 1. The method of clutter suppression in different domains.

The methods in one domain contain adaptive polarization filter
and moving target detection (MTI). The early developments of
polarization techniques may be traced back to 1950s [5]. There
are many polarimetric filtering techniques which contain adaptive
polarization cancellation (APC) [6] virtual polarization adaptation
(VPA) technique [7, 8], multi-notch logic-product (MLP) polarization
filter [9] and adaptive polarimetric filter [10–14]. However, all
of techniques have a common problem that both the target and
clutter/interference may be cancelled when they have a similar
polarization. This problem can be partially solved by altering radar
transmit polarization parameters to vary the polarization response of
the target and clutter [15–19], which maybe enlarge the polarization
difference between the target and clutter in polarization domain. MTI
filter suppresses clutter at integer multiples of the pulse repetition
frequency (PRF) in time domain, and allows to return from moving
targets to pass through with little or no degradation [20]. The common
methods are two pulses canceller and three pulses canceller. However,
the performance of MTI becomes serious when the target Doppler
frequency is small.

The techniques of clutter suppression in two joint domains
contain space time adaptive processing (STAP), polarization-Doppler
joint processing and polarization-space joint domain processing
Polarization-space joint domain processing [21–25] is mainly utilized
to reject jamming from different direction. Polarization-Doppler
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joint processing for coherent radar were studied in Gaussian and
non-Gaussian background [26, 27], which has used fully polarization
and Doppler information of target to suppress clutter and enhance
detection probability. The researches results have been demonstrated
by IPIX radar measure data. However, it is difficult to discriminate
the target and clutter when they are similar to each other in
the polarization domain and Doppler domain. The effort on the
development of space-time adaptive processing technique of clutter
suppression may be traced back to the 1970s [28] with the clutter
covariance matrix (CCM) assumed to be known. The sample matrix
inversion (SMI) algorithm has been developed [29] to replace with the
covariance matrix estimate. In the middle of 1980s, Kelly presented
the generalized likelihood ratio (GLR) test algorithm in the case
of unknown covariance matrix and the target amplitude [30]. In
the complex electromagnetic environment, the clutter environment
is always nonhomogeneous and nonstationary, which leads to a
straightforward application of the data domain SMI or GLR algorithm
performance degradation. Therefore, aiming at the problem of
the nonhomogeneous environment and large computation burden of
fully adaptive space time processing, some typical suboptimal STAP
approaches were proposed [31–37]. In the end of 1990s, the knowledge-
based space-time adaptive processing (KB-STAP) for airborne early
warning radar was proposed, which was the hot topic in the first ten
years of the 21st century [38–40]. However, the STAP’s performance
becomes significantly degradation when the target and clutter are
similar to each other in the angle domain and Doppler domain or when
the knowledges do not agree with the reality in KB-STAP.

Traditionally, the significant attention on clutter suppression has
been given to one- and two-domain processing. However, as the
difference between the target and clutter in one- or two-domain
may be very small, the performance of the processing is degraded.
The adaptive polarization-space-time joint domain processing for
radar target detection in nonhomogeneous or nonstationary clutter
environments were developed by Park [41–43] et al. in 1990s. Properties
of the degree of cross-polarization in the space-time domain were
analyzed in [44]. However, the factors which effect on the
performance of clutter suppression are not clear. As a result, some
new techniques (i.e., covariance matrix eigendecomposition spectral
analysis and resolution grid processing method) are utilized for deriving
performance of clutter suppression in polarization-space-time joint
domain processing (PST-JDP).

This paper is organized as follows. We firstly formulate the
received signal model of PST-JDP in Section 2. In Section 3 we
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propose a new method to analyse optimum PST-JDP. Compared to
STAP’s performance, we analyze the performance superiority of PST-
JDP. Experimental results and discussions are shown in Section 4.
Finally, Section 5 summarizes the conclusions.

2. FUNDAMENTALS OF PST-JDP

2.1. Signal Model

The radar antenna system that consists of N -element uniform linear
array (ULA) is considered. Each element consists of two-dipole which
is sensitive to the echo polarization diversity. One is horizontally
polarized and the other is vertically polarized. The array consists of H
channel subarray which contains N horizontally polarized sensors and
V channel subarray which contains N vertically polarized sensors. The
two subarrays are assumed to have the same array geometry as shown
in Figure 2(a). Assume Si is the ith target scatter point ϕ denotes the
azimuth angle of the signal source with 0 ≤ ϕ ≤ π, and θ denotes the
elevation angle of the signal source with 0 ≤ θ ≤ π/2. The radar echo
is assumed to be a burst of M identical pulses with PRF in a coherent
processing interval (CPI). The received signal which is down-converted
and matched filtered to produce a baseband signal may be written as

x = α0v0 + xc + xn (1)
where α0 is the unknown complex constant representing the amplitude
and phase of a target return and v0 the signal polarization-space-time
joint steering vector of a known form. xc and xn are the 2MN -by-
1 clutter and noise vector, respectively. For simplicity of discussion
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Figure 2. (a) Polarization sensitive array and clutter/target scatter
geometry distribution. (b) Optimum PST-JDP signal processing chart.
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only, we assume that the spatial elements are colinear, identical, omni-
directional, and equally spaced with spacing d. The polarization-space-
time joint steering vector (2MN -by-1) can be written as follows

v0 = vp(γ, η)⊗ vt(fd)⊗ vs(fs) (2)
where ⊗ denotes the Kronecker product vp(γ, η), vt(fd) and vs(fs)
denote the corresponding polarization, Doppler and space steering
vectors, respectively. vp(γ, η) has the expression

vp(γ, η) =
[

cos γ
sin γ exp(jη)

]
(3)

where γ and η denote the amplitude ratio and phase difference between
two channels, respectively. vt(fd) has the expression

vt(fd) = [1 exp(j2πfd) . . . exp(j2π(M − 1)fd)]
T (4)

where (·)T denotes vector transposition. fd is target normalized
Doppler frequency with fd = 2va

λ0PRF cos θ cosϕ+ 2vr(S0)
λ0PRF , va the airborne

platform velocity, vr the ith target radial velocity, and λ0 the radar
wavelength vs(fs) has the expression

vs(fs) = [1 exp(j2πfs) . . . exp(j2π(N − 1)fs)]
T (5)

where fs is the target spatial frequency with fs = d cos θ cos ϕ
λ0

.
Unlike a target, the ground/sea clutter is distributed in all range

and all azimuths and is spread in Doppler frequency due to the radar
platform motion. We use the standard space-time clutter model for a
uniform linear array which was codified in Ward’s oft-cited report [32]
and combined polarization-space-time covariance matrix by Park [41].
Modified clutter covariance matrix (CCM) is written as

R(c)
pst = E

{
xcxH

c

}
= R̄p ⊗Rs−t (6)

where R̄p is the normalized polarization covariance matrix and denotes
polarization correlation characteristic, which can be written as

R̄p =
1

1 + r

[
1

√
r |µ| e−jφ̄

√
r |µ| ejφ̄ r

]
(7)

where r is the power ratio between H channel and V channel, µ the
complex correlation coefficient between the two channels, φ̄ = arg(µ)
the statistical average phase difference, and arg(·) returns the phase
angles.

The clutter degree of polarization (DP) can be defined in terms of
the elements of covariance matrix, which is given by

ρ =

√
1− 4 det R̄p

(TrR̄p)2
=

√
1− 4r(1− |µ|2)

(1 + r)2
(8)



584 Wu et al.

If power ratio is unit, clutter degree of polarization equals to the
absolute value of complex correlation coefficient, ρ = |µ|. Rs−t is the
space-time clutter covariance matrix and denotes spatial and temporal
correlation, which can be written as

Rs−t =
Nc∑

i=1

{
γ(Si)vt

(
f

(i)
d

)
vH

t

(
f

(i)
d

)
⊗ vs

(
f (i)

s

)
vH

s

(
f (i)

s

)}
(9)

where Nc is number of independent clutter patches evenly distributed
in azimuth about the radar, γ(Si) the power of the ith clutter patch,
and f

(i)
d and f

(i)
s denote the normalized Doppler frequency and spatial

frequency of ith clutter patch, respectively.
The covariance matrix of receiver noise is addressed as follows.

The receiver noise output from the subarrays is assumed to be zero
mean Gaussian random variables, independent, identically distributed,
and independent of clutter. The covariance matrix of noise is σ2I2MN

with zero mean, where σ2 denotes noise power and I2MN denotes
2MN × 2MN dimensional unity diagonal matrix. The total clutter
plus noise polarization-space-time covariance matrix, denoted by Rc+n,
can be written as a linear combination of R(c)

pst and σ2I2MN , which is

Rc+n = R(c)
pst + σ2I2MN = R̄p ⊗Rs−t + σ2I2MN (10)

2.2. Optimum PST-JDP

Figure 2(b) shows the optimum PST-JDP chart. The target
polarization-space-time steering vector v0 and 2MN × 2MN clutter
plus noise covariance matrix Rc+n are given in Figure 2(b). It is well
known that the optimal weight of the 2MN -length data vector which
maximizes the output signaltointerferenceplusnoise ratio (SINR) can
be written as

w = R−1
c+nv0 (11)

and the corresponding output SINR is

SINR(pst)
max = PsvH

0 R−1
c+nv0 = SNRinσ2vH

0 R−1
c+nv0 (12)

where Ps is the desired signal power, Ps = E[|α0|2], and SNRin denotes
the received signal-to-noise ratio of a single element and single pulse.
SNRin Polarized sensitive array processing gain is defined as

SNRgain =
SINR(pst)

max

SNRin
= σ2vH

0 R−1
c+nv0 (13)
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3. A NEW METHOD FOR OPTIMUM PST-JDP

From (10), R̄p and Rs−t denote polarization and space-time covariance
matrix (CM), respectively. R̄p and Rs−t are Hermitian matrix, which
play a central role in performance analysis in this section.

3.1. Polarization CM Eigendecomposition

Since R̄p is a Hermitian matrix, its eigenvalues are real and
corresponding eigenvectors are orthogonal with each other. In
particular, one partially polarized wave can decompose two completely
polarized waves which are orthogonal with each other. Thus Eq. (7)
can be decomposed as

R̄p = λ1α1α
H
1 + λ2α2α

H
2 (14)

where λi(i = 1, 2) is the ith descending-ordered eigenvalue of R̄p and
αi (i = 1, 2) the corresponding eigenvector. α1 is defined as the main
polarized vector which denotes the position on Poincare sphere. α2 is
the secondary polarized vector which denotes the position on Poincare
sphere as well. The eigenvalues and eigenvectors can be written in
detail as

λ1 =
(1 + ρ)

2
, α1 = k1

[
r − 1− (1 + r)ρ
−2
√

r |µ| ejφ̄

]

λ2 =
(1− ρ)

2
, α2 = k2

[
r − 1 + (1 + r)ρ
−2
√

r |µ| ejφ̄

] (15)

where k1 and k2 are normalized coefficient, αH
1 α1 = αH

2 α2 = 1, and
αH

1 α2 = αH
2 α1 = 0. The partially polarized wave can be decomposed

as two orthogonal completely polarized waves, which can be described
through the Stokes vector g, whose components are defined as follows

g =




g0

g1

g2

g3


 =




1
|αi(1)|2 − |αi(2)|2

2 |αi(1)| |αi(2)| cosφi

2 |αi(1)| |αi(2)| sinφi


 i = 1, 2 (16)

where φi is the phase difference between two channels, and
φi = arg(αi(2)/αi(1)). Defined γi as amplitude ratio, γi =
tan−1(|αi(2)| / |αi(1)|). For α1 is orthogonal with α2, we have
φ1 − φ2 = ±π and γ1 + γ2 = π/2. By the representation of Poincare
sphere [5], any polarization state of a completely polarized wave can
be represented by a point S with Cartesian co-ordinates which are
expressed through Stokes parameters as follows

S = ( g1 g2 g3 ) (17)
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Because the wave is supposed to be completely polarized,
polarizations are mapped on to the surface of sphere (seen in Figure 3).
The extremum of each diameter corresponds to a pair of orthogonal
polarizations, which may denote the main polarization vector and
secondary polarization vector.

3.2. Spacetime CM Eigendecomposition

Spacetime CM is a Hermitian matrix, which can be decomposed as

Rs−tβj = µjβj (18)

where µj and βj are the eigenvalue and eigenvector of space time
covariance matrix Rs−t, respectively. Slepian and Pollak [45, 46] and
Fancourt and Principe [47] demonstrated some asymptotic relationship
in the eigenvalues, eigenfunctions, and PSD of the random process. For
the clutter power spectral density (PSD) P (fs, fd) are the 2D Fourier
transform (FT) of covariance matrix Rs−t, we have

P (fs, fd) =
Nc∑

i=1

γ(Si)δ
(
fs − f (i)

s

)
δ
(
fd − f

(i)
d

)
(19)

where f
(i)
d = βf

(i)
s , β is the slope of clutter ridge, as shown β = 2va

dPRF .
It is clear that this curve is precisely the 2D direction Doppler curve
(DDC). Hence, the 2D DDC is the support of the clutter PSD. The
clutter energy is distributed in 2D angle-Doppler curve (i.e., the ridge
of the clutter) (seen in Figure 3 and Figure 4). According to the
relationship between eigenvalue of space-time CM and PSD [40], the
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eigenvalue of Rs−t can be written as

µj ≈ 1
Ag

∫∫

Gj

P (fs, fd)dfsdfd (20)

where Gj is the jth resolution grid (a rectangular region with [fd −
1/2M, fd + 1/2M ] × [fs − 1/2N, fs + 1/2N ]) on the angle-Doppler
plane and Ag = 1/(MN) the size of the grid Gj . As shown in Figure 4,
the angle-Doppler plane can be sliced into many resolution grids and
each grid corresponds to an eigenvalue. Centre frequency of each grid
corresponding to Fourier basis of eigenvector can be written as

βj = ej2πfm,n (21)

where fm,n = (m/M,n/N) is the centre frequency of the (m,n)th grid.

3.3. Polarizationspacetime CM Eigendecomposition

Theorem 1: Given the matrix Rc+n = R̄p⊗Rs−t+σ2I2MN . If λi and
αi are respectively the eigenvalue and eigenvector of matrix R̄p, and µj

and βj are respectively the eigenvalue and eigenvector of matrix Rs−t

αi ⊗βj is the eigenvector of matrix R̄p ⊗Rs−t and the corresponding
eigenvalue is λiµj .

Corollary 1: αi ⊗ βj is also the eigenvector of matrix Rc+n =
R̄p ⊗Rs−t + σ2I2MN , and the corresponding eigenvalue is λiµj + σ2.

4. PERFORMANCE ANALYSIS

4.1. Performance Analysis of PST-JDP

According to Theorem 1 and Corollary 1, the polarization array
processing gain SNRgain can be decomposed as

SNRgain =
2∑

i=1

MN∑

j

σ2
∣∣∣vH

ij v0

∣∣∣
2

λ
(ij)
c + σ2

(22)

where λ
(ij)
c = λiµj denotes PSD of ith polarized position of Poincare

and jth resolution grid, center frequency of jth resolution grid fm,n =
(m/M, n/N), when M → ∞ and N → ∞. Thus, the corresponding
polarization-space-time joint steering vector of λ

(ij)
c is

vij = αi ⊗ vs−t(fm,n) = αi ⊗ vs−t(m/M, n/N) (23)
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(22) may also be written as

SNRgain =
2∑

i=1

M∑

m=1

N∑
n

σ2
∣∣∣
(
αH

i ⊗ v(m,n)H
s−t

)
v0

∣∣∣
2

λ
(i,m,n)
c + σ2

=
2∑

i=1

M∑

m=1

N∑
n

σ2χi,m,n

λ
(i,m,n)
c + σ2

(24)

where λ
(i,m,n)
c is equal to λ

(ij)
c , which denotes the power spectra of

the ith polarized position of Poincare and the (m,n)th resolution grid.
χi,m,n is defined as the inner of steering vector, which can be written
as

χi,m,n =
∣∣αH

i α0

∣∣2
(

sin [Nπ(fs0 − n/N)]
sin [π(fs0 − n/N)]

sin [Mπ(fd0 −m/M)]
sin [π(fd0 −m/M)]

)2

(25)
where α0, fs0, and fd0 denote polarization, spatial frequency and
Doppler frequency of the target, respectively. If the target spatial and
temporal frequency is not in the (m,n)th grid, χi,m,n is very small.
Therefore, the SNR gain is mainly due to the grid of target. Assume
it is in the (k, l)th grid, (24) can be written as

SNRgain =
2∑

i=1

σ2χi,k,l

λ
(i,k,l)
c + σ2

=
2∑

i=1

σ2
∣∣αH

i α0

∣∣2
λiµk,l + σ2

χk,l (26)

where µk,l is the PSD of clutter in the (k, l) grid, and χk,l denotes the
spatial and temporal gain of the target, which may be written as

χk,l =
(

sin [Nπ(fs0 − k/N)]
sin [π(fs0 − k/N)]

sin [Mπ(fd0 − l/M)]
sin [π(fd0 − l/M)]

)2

(27)

If Doppler frequency of a target is large and clutter does not exist
in the resolution grid of the target, (i.e., µk,l ≈ 0), Eq. (26) is also
expressed as

SNRgain = χk,l

(∣∣αH
1 α0

∣∣2 +
∣∣αH

2 α0

∣∣2
)

= χk,l (28)

If clutter exists, the angle between polarization steering vector
of target and main polarization vector of clutter (AP) is assumed as
α with 0 ≤ α ≤ π

2 as shown in Figure 5. α is defined as the wide
polarization distance in polarization domain. We can rewrite Eq. (26)
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Figure 5. Angle between target and clutter in polarization domain.

as

SNRgain = σ2χk,l

[( ∣∣αH
1 α0

∣∣2
λ1µk,l + σ2

+

∣∣αH
2 α0

∣∣2
λ2µk,l + σ2

)]

= σ2χk,l

[
cos2 α

1+ρ
2 µk,l + σ2

+
sin2 α

1−ρ
2 µk,l + σ2

]
(29)

where
α = arccos

|〈α0, α1〉|
‖α0‖ ‖α1‖ = arccos |〈α0, α1〉| (30)

Given the above deducibility, (12) can also be written as

SINR(pst)
max ≈ SNRinσ2 · χk,l

[
cos2 α

1+ρ
2 µk,l + σ2

+
sin2 α

1−ρ
2 µk,l + σ2

]
(31)

From Eqs. (28) and (31), we can deduce that the maximum output
SINR depends on the input SNR, clutter PSD in the target grid
(or CNR), polarization distance clutter degree of polarization, target
Doppler and spatial frequency. According to (31), the larger is
the polarization distance and the higher is the clutter degree of
polarization, the bigger is the output SINR.

4.2. Compared to STAP’s Performance

We have studied the clutter suppression performance of PST-JDP. The
output SINR in the case of STAP is

SINR(st)
max ≈ SNRinσ2 · χk,l · 1

µk,l + σ2
(32)
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where SINR(st)
max denotes the output SINR for STAP method. Then,

the right part of Eq. (32) may be written as

SNRinσ2 · χk,l · 1
µk,l + σ2

= SNRinσ2 · χk,l · sin2 α + cos2 α

µk,l + σ2

= SNRinσ2 · χk,l ·
[

sin2 α

µk,l + σ2
+

cos2 α

µk,l + σ2

]

≤ SNRinσ2 · χk,l ·
[

cos2 α
1+ρ
2 µk,l + σ2

+
sin2 α

1−ρ
2 µk,l + σ2

]

= SINR(pst)
max (33)

So far, we have analyzed that the performance of PST-JDP is
better than STAP theoretically.

5. EXPERIMENTAL RESULTS AND DISCUSSIONS

The SINR loss of a processing algorithm is defined to be output SINR
in the case of interference/clutter relative to the matched filter SNR
in an interference-free environment [32], which is

LSINR = 10 log10(SINRmax/SNRo) = 10 log10(SNRgain/MN) (34)

Table 1. System parameters.

Parameter Symbol value
Number of sensors N 8
Number of pulses M 12
Radar wavelength λ0 0.3m

Inter-sensor spacing d 0.15m
Pulse repetition interval PRI 5 ms
Clutter-to-noise ratio CNR 30 dB
Signal-to-noise ratio SNR 0 dB

Azimuth angle ϕ [0◦, 180◦]
Platform velocity va 150m/s

Clutter degree of polarization ρ 0.999
Clutter statistical

average phase difference
φ̄ 90◦
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Figure 6. (a) SINR loss versus AP and DP in the case of PST-JDP
by theory method. (b) Contour figure for SINR loss versus AP and
DP in the case of PST-JDP by theoretical method.

where SNRo = MN · SNRin is the optimum matched filter output
signal-to-noise ratio in absence of clutter. SINR loss is useful because
the performance metric is independent on the input signal power.
The processor performance can be translated to a radar system’s
detection performance by including it as an additional loss factor
in the radar equation. If LSINR = −5 dB, the radar detection
range after a processor is 75% of the radar’s noise-limited detection
range at least. Similarly, if LSINR = −12 dB at least 50% of the
radar’s maximum detection range is acceptablely defined. In the next
simulation, the airborne platform is side-looking ULA. Some typical
system parameters are listed in Table 1.

5.1. Effect of AP and DP

Figure 6 and Figure 7 show the effects of DP and AP on SINR loss.
Figure 6 depicts the theoretical analyses results by Eqs. (29), (32),
and (34). Figure 7 gives the simulation results by Eqs. (13) and (34).
For Figure 6, assume that the range of clutter degree of polarization is
0 ≤ ρ ≤ 1 and that the angle of between target polarization steering
vector and clutter main polarization vector is 0 ≤ α ≤ π/2. The
received thermal noise power is 1 and the clutter-and-noise ration is
20 dB in the grid of target. Figure 6(a) shows that the performance
of clutter suppression becomes better for PST-JDP when the clutter
degree of polarization is higher and the polarization angle between then
target and main clutter is larger. The SINR loss for STAP is −20.04 dB
which demonstrates that the performance of clutter suppression for
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Figure 7. (a) SINR loss versus AP and DP in the case of PST-JDP
by simulation method. (b) Contour figure for SINR loss versus AP and
DP in the case of PST-JDP by simulation method.

PST-JDP in the case of slowly moving target is significantly superior
to the performance of STAP. Figure 6(b) is the contour figure of
Figure 6(a) and shows that the radar detection range for PST-JDP
algorithm is at least 75% of the radar’s noise-limited detection range
with 0.95 ≤ ρ ≤ 1 and 0.58 ≤ α ≤ 1.73 in the scene. Similarly, it
is about 50% of the radar’s noise-limited detection range in the case
of 0.7 ≤ ρ ≤ 1 and 0.24 ≤ α ≤ 1.73. However, the radar for STAP
algorithm can’t detect target if clutter is present in the grid of target.
Figure 6(b) also shows that the clutter polarization degree is the main
factor to effect on the performance of clutter suppression. The total
clutter-and-noise ratio is assumed to be 23 dB in Figure 7, because the
accurate CNR value in the grid of target is not known. The simulative
results are similar to the theoretical results, which demonstrate the
theoretical analyses correctness.

5.2. Effect of Doppler and DP

Figure 8 shows that the eigenspectra of clutter versus the clutter
polarization degree, with ρ = 0.999, ρ = 0.99, and ρ = 0.9.
In Figure 8, the number of big eigenvalue increases as the clutter
polarization degree becomes small. From Eq. (22), the results will
be demonstrated. The big eigenvalue number of clutter polarization-
space-time covariance matrix is is not less than the big eigenvalue
number of clutter space-time covariance matrix and not more than
the twice of big eigenvalue of space-time algorithm. For Figure 8,
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Figure 8. Eigenspectra versus
clutter polarization degree, ρ =
0.999, ρ = 0.99, ρ = 0.9.
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Figure 9. SINR loss versus
target Doppler frequency in the
case of different clutter polariza-
tion degree for PST-JDP method,
ρ = 0.999, ρ = 0.99, ρ = 0.9, and
SINR loss versus target Doppler
frequency for STAP method.

according to Brennan’s rule, eight elements and twelve coherent pulses
are assumed in the case of a narrowband N element ULA with half of
wavelength inter element spacing, in the absence of antenna crabbing.
Assumming M coherent processing pulses are received, the clutter rank
K is approximately given by K = dN + β(M − 1)e [28], where β is the
slope of clutter ridge and d e denotes the “ceiling” operator. According
to eigenvalue discomposition, the big eigenvalue of polarization-space-
time covariance matrix (PST-CM) is dN + β(M − 1)e ≤ K ′ ≤
2 dN + β(M − 1)e. The big eigenvalue number is more than 19 and
less than 38. When the clutter is completely polarized wave, the big
eigenvalue number of PST-CM is K ′ = dN + β(M − 1)e.

Figure 9 shows the effect of normalized Doppler frequency and
clutter degree of polarization on SINR loss in the case of PST-JDP,
SINR loss versus target Doppler frequency for STAP method. For
Figure 9, target polarization phase difference is −60◦, clutter is circular
polarization and the clutter average phase difference φ̄ = 90◦. From
Figure 9, the performance of PST-JDP and STAP becomes worse when
the normalized target Doppler frequency is smaller. However, when the
clutter degree of polarization is higher, the performance of PST-JDP
is also good, which verifies the performance of PST-JDP is obviously
better than the performance of STAP, especially when the target is
slowly moving. The minimum SINR loss is −4.3 dB with ρ = 0.999,
which means that the radar detection range in the scene is more
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Figure 10. SINR loss versus target Doppler frequency in the case
of different target phase difference for PST-JDP method, η = −60◦,
η = 0◦, η = 30◦, and SINR loss versus target Doppler frequency for
STAP method.

than 75% of the radar’s noise-limited detection range. However, when
the DP is low, the performance of PST-JDP becomes worse because
random clutter on Poincare sphere is difficult to suppress. When the
normalized Doppler frequency is large, the performance of PST-JDP
is similar to the performance of STAP.

5.3. Effect of Doppler and AP

Figure 10 shows SINR loss versus target Doppler frequency in the case
of different target phase difference for PST-JDP method, η = −60◦,
η = 0◦, η = 30◦, and SINR loss versus target Doppler frequency for
STAP method. For Figure 10, the clutter degree of polarization is
ρ = 0.999 and the clutter average phase difference is φ̄ = 90◦. From
Figure 10, when normalized target Doppler frequency becomes smaller,
the performance of PST-JDP and STAP becomes worse. However, the
performance of PST-JDP is also good when the polarization difference
between the target and clutter is large. The reason is that the
polarization information in PST-JDP algorithm is used to discriminate
the target and clutter. In all scene of PST-JDP, the SINR loss is more
than −12 dB, which means that the radar detection range is more than
50% of the radar’s noise-limited detection range. However, detection
range of STAP algorithm is poor when the target normalized Doppler
frequency is low.
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Figure 11. (a) SINR loss versus target normalized Doppler frequency
in the case of different CNR for PST-JDP method. (b) SINR loss versus
target normalized Doppler frequency in the case of different CNR for
STAP method, CNR = 20 dB, 30 dB, 40 dB, 50 dB.
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Figure 12. Eigenspectra in completely polarized wave.

5.4. Effect of CNR

Figure 11 shows SINR loss versus target normalized Doppler frequency
in the case of different CNR for PST-JDP method and for STAP
method, respectively. For Figure 11(a), the target polarization phase
difference between two channels is η = −30◦, the clutter degree of
polarization is ρ = 0.999 and the clutter average phase difference is
φ̄ = 90◦. The SINR loss becomes lower as the CNR becomes larger
in Figure 11(a), when the target is slowly moving. However, when the
CNR is less than 40 dB in the scene, the SINR loss is more than−12 dB,
which means that the radar detection range is more than 50% of the
radar’s noise-limited detection range. For Figure 11(b), the SINR loss
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Figure 13. SINR loss versus
target Doppler frequency in the
case of different target phase
difference for PST-JDP method,
η = −30◦, η = 0◦, η = 30◦, clutter
is completely polarized.
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Figure 14. SINR loss versus tar-
get normalized Doppler frequency
in the case of different CNR for
PST-JDP method, CNR = 20dB,
30 dB, 40 dB, 50 dB, η = −30◦.

of STAP descends significantly as the CNR increases in the case of
target slow moving. The SINR loss is approximately inverse ratio to
value of CNR. From Figure 11, the effect of CNR on the performance
of clutter suppression is small when the target normalized Doppler
frequency is large.

5.5. Assumed Clutter as Completely Polarized Wave

In this section, the clutter is assumed as completely polarization wave.
Figure 12 shows the number of big eigenvalue in the case of completely
polarized wave. The big eigenvalue number of clutter polarization-
space-time covariance matrix is 19 and is equal to the big eigenvalue
number of clutter space-time covariance matrix. From (22), the results
may be demonstrated. This means that clutter degree of free is
not various for optimum PST-JDP and equals to DOF of space-time
processing method when the clutter is completely polarized. The
degree of freedom (DOF) of system for optimum PST-JDP method is
twice bigger than optimum space-time processing method. Therefore,
the performance for clutter suppression by optimum PST-JDP method
is superior to space-time processing method.

Figure 13 shows SINR loss varies with the target Doppler
frequency in the case of different target phase difference for PST-JDP
and STAP methods, when η = −30◦, η = 0◦, and η = 30◦, with
completely polarized clutter. Compared to Figure 10, the performance
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for PST-JDP method in the case of completely polarized wave is
superior to the partially polarized wave.

Figure 14 shows SINR loss versus target normalized Doppler
frequency in the case of different CNR for PST-JDP method in the case
of completely polarized wave, when CNR = 20 dB, 30 dB, 40 dB, 50 dB
and η = −30◦. For Figure 14, CNR is small to effect on performance
in the case of completely polarized wave.

6. CONCLUSIONS

In this study, some new methods (i.e., eigendecomposition, spectral
analysis and resolution grid) are utilized for deriving performance of
clutter suppression by optimal polarization-space-time joint domain
processing (PST-JDP) technique. We demonstrated that the
performance of clutter suppression depends on DP, AP, input CNR
Doppler frequency. Several simulative results confirmed the validity of
the theoretical works and shown that the proposed method can provide
robustness performance. The details of results are as follows:

(i) The optimal PST-JDP for clutter suppression is superior to
optimal space-time processing, especially when target is slowly or
tangentially moving. As the spatial frequency and Doppler frequency
between target and clutter are similar, optimal PST-JDP technology
can discriminate target and clutter by polarization characteristic
difference and suppress the clutter.

(ii) The optimum PST-JDP is sensitive to polarization character-
istic of clutter (i.e., clutter degree of polarization) and the polarization
difference between target and clutter. Clutter degree of polarization is
the main factor to effect on the performance for clutter suppression.
The performance of clutter suppression becomes better as the clut-
ter polarization degree becomes higher and the polarization difference
between target and clutter becomes larger.

(iii) When the clutter is the completely polarized wave, the
performance of clutter suppression for PST-JDP method is insensitive
to the input CNR for Figure 8. However, when the clutter is the
partially polarized wave and the normalized target Doppler frequency
is small, both performance of optimal PST-JDP and optimum space-
time processing are sensitive to the input CNR.

(iv) The radar system for PST-JDP increases the DOF to suppress
clutter. The DOF of system is twice to the number of elements. When
clutter is high degree of polarization or completely polarized wave, the
DOF of clutter for PST-JDP system is approximately equal to the
DOF of space time processing system. Therefore, the performance for
PST-JDP is superior to optimum space-time processing.
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