Peter P. Pham and Sylvie Perreau

Abstract

Research on multi-path routing protocols to provide improved throughput and route resilience as compared with single-path routing has been explored in details in the context of wired networks. However, multi-path routing mechanism has not been explored thoroughly in the domain of ad hoc networks. In this paper, we analyze and compare reactive single-path and multi-path routing with load balance mechanisms in ad hoc networks, in terms of overhead, traffic distribution and connection throughput. The results reveals that in comparison with general single-path routing protocol, multipath routing mechanism creates more overheads but provides better performance in congestion and capacity, provided that the route length is within a certain upper bound which is derivable. The analytical results are further confirmed by simulation.

Keywords - ad hoc networks, load balance, multi-path routing protocol, overheads.

1. Introduction

Mobile ad hoc networks (MANETs) are collections of wireless mobile nodes, constructed dynamically without the use of any existing network infrastructure or centralized administration. Due to the limited transmission range of wireless network interfaces, multiple hops may be needed for one node to exchange data with another one across the network. MANETs are characterized by limited power resource, high mobility and limited bandwidth. Routing in MANETs can be accomplished through either single path or multiple paths. When using single-path routing protocols, the traffic is distributed through one route and is therefore less flexible than in multi-path routing protocols.
The problem of two entities communicating using multiple paths has been considered widely in various contexts for wired networks [1-5]. It was shown that multi-path routing mechanism provides better throughput than singlepath routing protocols [2,3]. Although research on multipath routing protocols has been covered quite thoroughly in wired networks, similar research for wireless networks is still in its infancy. Some multi-path routing protocols for MANETs have been proposed in [6-9]. However, the performance of these protocols are only assessed by simulations in certain limited scenario. Although some recent papers provide analytical models for multi-path routing [10, 11], they are limited on a single aspect of multipath routing such as route discovery frequency or error
recovery. To the best of our knowledge, there has been no paper which provides an analytical model which allows comparing the performance of reactive shortest single-path routing and multi-path routing with load balance.
In this paper, we propose models to analyze and compare reactive single-path and multi-path routing protocols in terms of overheads, traffic distribution and connection throughput. Thereafter, the terms "single-path routing" and "multi-path routing" are equivalent to "shortest single-path routing" and "multi-path routing with load balance" respectively. In addition, we focus our analysis only on reactive routing mechanism. The overhead analysis in this paper is only applicable for reactive routing mechanism. However, the results regarding the traffic distribution and connection throughput is also applicable for both proactive and hybrid routing mechanisms. The outcome from analytical models is further validated by simulation.
The remaining of this paper is organized as follows. Section 2 gives a detailed analysis of overhead for both singlepath and multi-path routing techniques. In Section 3, we analyze the traffic distribution for both mechanisms and Section 4 concentrates on the capacity analysis. We finally conclude this study and discuss future research directions in Section 5.

2. Overheads analysis

2.1. Qualitative overheads analysis

Overheads in reactive routing protocols are caused in the following phases: Route Discovery, Route Maintenance, and Data Transmission. In this section, we describe these phases and also briefly comment on the amount of overhead they involve for both single-path and multi-path routing. A quantitative study, which provides numerical values is proposed in the next section.

2.1.1. Route discovery

In this phase, the source node broadcasts route request packets (RRQs) to find the route to the destination node. When a RRQs reach the destination, the node will response back by sending route reply packets (RRPs) to notify the source of the route path. Route Discoveries for single-path and multi-path routing mechanisms are shown in Fig. 1. Clearly shown, the number of broadcasted RRQs is the same for both single-path and multi-path routing. However, when

Fig. 1. Route discovery in single-path routing mechanism.
the destination sends the RRPs back to the source, because it has to send N_{u} (N_{u} being the number of multiple paths created in the Route Discovery phase) RRPs to correspond to N_{u} RRQs, the overheads of multi-path routing in Route Discovery phase is N_{u} times higher than that of single-path routing.

2.1.2. Route maintenance

In this phase, when a link is broken, an error packet (ERR) is sent back to the source to indicate the route breakage. In multi-path routing, since there are multiple paths for each source-destination pair, assuming the probability of link breakage and the route length for all the routes are the same, the number of route breakage is proportional to the number of paths. Therefore, it can be deduced that in multi-path routing, the number of ERRs is higher than in single-path routing which induces more overheads.

2.1.3. Data transmission

During this stage, the overhead portion contained in the data packets depend on the routing protocols themselves. For some protocols such as dynamic source routing protocol (DSR) [12], the complete route from the source to the destination is stored inside the overhead portion of the data packets. However, in other ones such as ad hoc on-demand distance vector routing protocol (AODV) [13], only the next node information is stored in the data packet which results in less overhead as compared with DSR.

2.1.4. Comment

In summary, we can clearly see that there is a trade-off between single-path and multi-path routing mechanisms.

In multi-path routing, overheads in multi-path routing are expected to be higher than in single-path routing due to extra RRPs and ERRs. However, the frequency of route discoveries in multi-path routing is lower than in singlepath routing as claimed in [11]. Hence, an analytical model is necessary to allow a better understanding of this trade-off.

2.2. Route creation frequency

Let us firstly review the results of [11]. This significant result indicates that the route creation rate for multi-path routing strategy is lower than it is for single-path routing. The link lifetimes are assumed to be independent and identically distributed (iid) exponential random variables with mean l. Since a route fails when any link in its path breaks, the lifetime of a route with L links is also an exponentially distributed random variable with a mean of l / L.
Theorem 1. Denoting by $\mu_{i}=l / L_{i}$, the probability density function (pdf) of T, the time between successive route discoveries, is given by:

$$
\begin{equation*}
f_{T}(t)=\prod_{i=1}^{N}\left(1-\exp \left(-\mu_{i} t\right)\right) \sum_{i=1}^{N} \mu_{i} \frac{\exp \left(-\mu_{i} t\right)}{1-\exp \left(-\mu_{i} t\right)} . \tag{1}
\end{equation*}
$$

Comment. The expected value of T can be derived by knowing the hop-wise lengths of all the routes k_{i}, $i=1, \ldots, N$. It was also shown in [11] that using multipath routing can achieve 25% reduction in route discoveries rate for 3-4 hops routes as compared with single-path routing. This reduction is because in multi-path routing, route discovery is only initiated when all the routes to the destination are broken whereas in single-path routing, it is done when one single route is broken.

2.3. Overhead analysis using analytical model

2.3.1. Network model

We assume that mobile nodes are distributed uniformly with node density δ inside a circle of radius R. We also assume that there are N nodes in the network. N is related to the node density and the circle radius by the following expression $N=\pi R^{2} \delta$. Each link has a link breakage rate of μ, i.e. a link has a average lifetime of $1 / \mu$ seconds on average. Furthermore, we assume that the average route length (in terms of number of hops) for single-path routing is L_{s} and for multi-path routing is L_{m}. Since singlepath routing mechanism uses shortest routes, we obviously have $L_{m}>L_{s}$. In addition, L_{e} is assumed to be the average length of the route from the source to the node where a link breakage occurs. For multi-path routing, N_{u} represents the number of paths for each source-destination pair. In addition, the number of active connections per node is denoted by A_{c} for both routing mechanisms. Furthermore, the size of route request packet, route reply packet and error packet are denoted as $M_{r q}, M_{r p}$, and M_{e}, respectively. Finally, a route discovery takes T seconds to find the routes to the destination. All the parameters are summarized in Table 1.

Table 1
Summary of parameters

Nota- tion	Definition
N	Number of nodes
N_{u}	Number of routes per source-destination pair
L_{e}	Average length of error route
μ	Link breakage rate
L_{s}	Average length of a route for single-path routing
L_{m}	Average length of a route for multi-path routing mechanism
A_{c}	Number of active routes per node
$M_{r q}$	Size of the request packet
M_{e}	Size of error request packet
$M_{r p}$	Size of reply packet
ε	Inter-arrival rate
P	Overhead portion of a data packet
M_{d}	Size of the data packet
T	Average delay for route creation
λ_{s}	Route discovery frequency for single-path routing
λ_{m}	Route discovery frequency for multi-path routing

2.3.2. Overhead due to RRQs

- Single-path routing mechanism:

Assuming that N nodes each broadcast a RRQ λ_{s} times per second, the total overhead created by RRQs is obviously $M_{r q} \lambda_{s} N^{2}$. λ_{s} (i.e the route discovery frequency) is related to link breakage as $\lambda_{s}=\mu L_{s}$. Hence, the amount of overheads due to the RRQs is $M_{r q} \mu L_{s} N^{2}$.

- Multi-path routing mechanism:

Using a similar argument as above, the amount of overheads due to RRQs is $M_{r q} \lambda_{m} N^{2}$ where λ_{m} is the frequency of route discovery for multi-path routing algorithm. This parameter can be calculated using Theorem 1.

2.3.3. Overhead due to RRPs

- Single-path routing mechanism:

Reply packets follow L_{s} hops to return back to the source. Since the rate of sending the RRPs is the same as the rate of sending RRQs, the overhead created by the RRPs, is $M_{r p} \mu L_{s}^{2} N$.

- Multi-path routing mechanism:

Since the destination node replies to N_{u} RRQs, the overhead due to RRPs is $M_{r p} \lambda_{m} L_{m} N N_{u}$. Note that the fact that λ_{m} is smaller than λ_{s} balances the fact that the number of RRPs are increased by a factor of N_{u} compared to single-path routing.

2.3.4. Overheads due to ERRs

When a link is broken, an error packet is sent back to the source to signal the link breakage. Recall that L_{e} is the average length of the path from the broken link to the source ($L_{e}<L_{s}<L_{m}$). Since the error packet has to travel L_{e} links to the source, this effectively produces L_{e} error packets per route broken.

- Single-path routing mechanism:

Since the link breakage rate is μ, the route breakage rate for a route with L_{s} links is μL_{s}. For each node, the average number of active routes is A_{c}. Therefore, for a node, the route breakage rate is $\mu L_{s} A_{c}$. Therefore, in a N-node network, the average number of overheads due to error packets is $\mu L_{s} A_{c} N L_{e} M_{e}$.

- Multi-path routing mechanism:

In multi-path routing, since each source-destination pair maintains N_{u} routes, the overhead due to error packets is $N_{u} \mu L_{m} L_{e} A_{c} N M_{e}$.

2.3.5. Overheads due to data transmission

The overheads created during data transmission are due to the overhead portion of data packets. We assume that the each route discovery is accomplished in T seconds on average. Furthermore, each mobile node is a simple source with data transmission rate of ε once the route discovery is completed.

- Single-path routing mechanism:

Since the route discovery rate is λ_{s}, the interval between each route discoveries is on average $1 / \lambda_{s}$. Each route discovery takes on average T seconds. Therefore, the actual time for data transmission is $\left(1 / \lambda_{s}-T\right)$ seconds. The number of data packets sent during that interval is $\left(1 / \lambda_{s}-T\right) \varepsilon$. Thus, data packets are sent with an average rate of $\lambda_{s} \varepsilon\left(1 / \lambda_{s}-T\right)$
packets/sec. Since each data packet has to travel L_{s} hops to the destination, the total amount of overhead is $\lambda_{s} \varepsilon\left(1 / \lambda_{s}-T\right) P L_{s}=\mu L_{s} \varepsilon\left(1 /\left(\mu L_{s}\right)-T\right) P L_{s}$.

- Multi-path routing mechanism:

Using a similar derivation as above, the total amount of overheads for multi-path routing is $\lambda_{m} \varepsilon\left(1 / \lambda_{m}-T\right) P L_{m}$ where λ_{m} can be calculated using Theorem 1 (we do not include the derivation of this calculation in this paper due to the lack of the space).

2.3.6. Summary

The total amount of overheads due to RRQs, RRPs, ERRs and data packets for single-path and multi-path respectively denoted by $O v_{s}$ and $O v_{m}$ can be expressed as:

$$
\begin{align*}
O v_{s} & =M_{r q} \lambda_{s} N^{2}+M_{r p} \lambda_{s} L_{s} N+ \\
& +\mu L_{e} L_{s} A_{c} N M_{e}+\mu L_{s} \varepsilon\left(1 /\left(\lambda_{s}-T\right) P L_{s}\right. \tag{2}\\
O v_{m} & =M_{r q} \lambda_{m} N^{2}+M_{r p} \lambda_{m} N L_{m} N_{u}+ \\
& +\mu L_{e} L_{m} A_{c} N M_{e} N_{u}+\mu \varepsilon\left(1 / \lambda_{m}-T\right) P L_{m} \tag{3}
\end{align*}
$$

Fig. 2. Overhead comparison (a) versus N_{u} and (b) versus link breakage rate increases.

In Fig. 2, we have plotted $O v_{s}$ and O_{m} as functions of the number of paths N_{u}. One can see that there is no significant increase in overheads for N_{u} up to 3. This confirms the fact that in the literature, authors often mentioned that $N_{u}=3$ provides an optimum trade off [3, 11]. This claim is usually based on simulation results and the study provided in this paper confirms this observation. In Fig. 2, $N_{u}=3$ and $O v_{s}$ and $O v_{m}$ are compared as the link breakage is varied. It is interesting to note that the maximum increase in overheads is approximately 20% (for a link breakage rate of 50%). Otherwise, for link breakages lower than 10%, the increase in overhead is approximately 10%. One might argue that the figure is not insignificant. In fact, assessing whether this increase in overhead is acceptable or not really depends on the advantages brought out by multi-path routing. This is why a theoretical study in the following sections is necessary.

2.4. Simulation results

In the simulation, we choose dynamic source routing [12] and multi-path routing protocol with load balance (MRP-LB) [14] as typical candidates for shortest path and multi-path routing protocols respectively. The choice of these routing protocols does not limit the applicability of this result into the others. In other words, the result which is derived above is applicable to other reactive routing al-

Fig. 3. (a) Overheads of DSR and MRP-LB; (b) traffic versus distance from circle centre.
gorithms such as ad hoc on-demand distance vector routing protocol [13], or temporally-ordered routing algorithm [15]. However, the result is not suitable for proactive and hydrid routing protocols.
Clearly seen from Fig. 3, MRP-LB exhibits higher overhead than DSR which once again confirms the correctness of our analytical model.

3. Traffic analysis of single shortest path and multi-path load balancing routing mechanisms

The following section compares the traffic distribution for the shortest-path and load-balancing routing mechanisms. We will be able to quantify the advantages in terms of congestion avoidance of the load-balancing routing mechanism over the shortest-path one. In particular, we will be able to determine the network conditions, i.e. network density, node-to-node transmission rate, and node processing rate, in which networks multi-path routing really present interest. We will also derive an upper bound for a certain parameter which will guarantee that when multi-path routing mechanism is worth considering, i.e. it results in congestion decrease.

3.1. Network model

In the model, we assume that mobile nodes are situated inside a circle with radius R. Furthermore, they are distributed uniformly with density δ. In addition, mobile nodes communicate with each other at a uniform rate λ. Each node is assumed to have the same processing power of η. Clearly, we can see that the traffic going through each node consists of two types, i.e. the common traffic which is defined as a point-to-point communication traffic between nodes and the relay traffic which is defined as the forwarding traffic caused by data packets travelling through multiple hops to the destination. The parameters to be used in the analysis are summarized in Table 2.

Table 2
Summary of parameters for traffic analysis

Nota- tion	Definition
R	Radius of the circle
δ	Node density
λ	Node-to-node transmission rate
λ_{m}	Node-to-node transmission rate for multi-path rout- ing
η	Node processing rate
r	Distance of the node of interest to the circle center
L_{m}	Average length of a route in multi-path routing

3.2. Analysis of the shortest path routing algorithm

It can be proven in Appendix A that the total traffic going through a node located at a distance r from the center of the circle, $\lambda(r)$ can be expressed as follows:

$$
\begin{equation*}
\lambda(r)=\left(\pi R^{2} \delta-1\right) \lambda+\frac{\pi\left(R^{2}-r^{2}\right)^{2} \delta^{2} \lambda \beta}{2} \tag{4}
\end{equation*}
$$

Therefore, according to Little theorem [16], the average number of packets in the queue for a node located at a distance r from the center of the circle is:

$$
\begin{equation*}
N_{p a c}(r)=\frac{\lambda(r)}{\eta-\lambda(r)} . \tag{5}
\end{equation*}
$$

From the above equation, the total number of congested packets in the circle is:

$$
\begin{equation*}
N_{p a c_{\text {total }}}=\int_{0}^{R} 2 \pi r \delta N_{p a c}(r) d r . \tag{6}
\end{equation*}
$$

Hence, the average number of packets in a queue can be evaluated as:

$$
\begin{equation*}
N_{p a c_{s}}=\frac{1}{\pi R^{2} \delta} \int_{0}^{R} 2 \pi r \delta N_{p a c}(r) d r . \tag{7}
\end{equation*}
$$

The exact calculation of $N_{p a c_{s}}$ is shown in the Appendix B. It is important to know that $N_{p a c_{s}}$ can be exactly evaluated by integration and is a good indicator of the general congestion of the network.

3.3. Analysis of the multi-path load balancing routing mechanism

A perfect load balancing multi-path routing mechanism distributes the traffic evenly among nodes in the network. As a consequence, "hot-spots" are eliminated. Therefore, packets are expected to experience lower average end-to-end delay. Suppose that L_{m}, λ_{m} and η are respectively the average length of a route in a network, the node to node traffic rate, and the processing rate. Let us evaluate the total traffic within the network. Since the number of nodes is $\pi R^{2} \delta$, it is easy to see that the total number of possible connections within the network is $\left(\pi R^{2} \delta-1\right) \pi R^{2} \delta$. With an average route length between two nodes of L_{m} the total traffic within the network is $\left(\pi R^{2} \delta-1\right) \pi R^{2} \delta \lambda_{m} L_{m}$. Therefore, the incoming traffic per node is $\left(\pi R^{2} \delta-1\right) \lambda_{m} L_{m}$ and the average number of packets in the queue per node is:

$$
\begin{equation*}
N_{p a c_{m}}=\frac{\left(\pi R^{2} \delta-1\right) \lambda_{m} L_{m}}{\left.\eta-\pi R^{2} \delta-1\right) \lambda_{m} L_{m}} . \tag{8}
\end{equation*}
$$

In order to ensure that the load balancing policy decreases the congestion level of the network, $N_{p a c_{m}}$ should be smaller than $N_{p a c_{s}}$. One can see in the above equation that the key parameter which controls $N_{p a c_{m}}$ is the average length of a route. Indeed, in order to have $N_{p a c_{m}}<N_{p a c_{s}}, L_{m}$ must satisfy:

$$
\begin{equation*}
L_{m}<\frac{N_{p a c_{s}} \eta}{\left(N_{p a c_{s}}+1\right)\left(\pi R^{2} \delta-1\right) \lambda_{m}}=L_{\max } . \tag{9}
\end{equation*}
$$

This result shows that if $L_{m}>L_{\max }$, using a load balancing routing mechanism is no longer beneficial as compared with a shortest-path routing scheme. This can be easily implemented in practice: given a network characterized by its node density, its size and the traffic rate, one can evaluate $N_{p a c_{s}}$. This value can then be used to calculate the theoretical value for $L_{\max }$ which is interesting because the result of this section can be used as a criterion to select the route in multi-path routing mechanism.

3.4. Simulation results

Similarly to the previous section, DSR and MRP-LB are used to measure the traffic versus distance from the circle center. The results obtained from DSR and MRP-LB altogether with the result of ideal shortest path routing are shown in Fig. 3. Clearly shown, DSR demonstrates a consistent behavior to ideal shortest path routing in terms of traffic allocation. In addition, nodes closer to the circle center are experiencing more traffic intensity, i.e. more congestion. However, in MRP-LB, due to the load balancing policy, mobile nodes are experiencing approximately the same traffic.
In the next section, we will investigate another issue associated with a load balancing routing mechanism, namely the connection throughput of the network.

4. Connection throughput analysis

In this section, we compare how the resources for transmission are used within the network for single-path and multipath routing protocols. In order to conduct this study, we define the concept of connection throughput as follows:
Definition. The connection throughput of a network is defined as the average transmission rate of a connection in the network.
Note that the higher is the connection throughput, packets are experienced lower delay during transmission. Therefore, the connection throughput is a good indicator of the average end to end delay in the network. Intuitively, we can see that congestion restricts the full usage of the available bandwidth. In other words, assuming that every route can support in theory a transmission at W bits/seconds, the actual transmission rate of a route is limited by the fact that the bandwidth has to be shared with other routes at the MAC layer of each node. Therefore, the transmission rate of a route will be limited by the bandwidth available at the most congested node of this route. A load balancing policy which relieves "hot-spot" congestion should improve the connection throughput of the network. However, one has to be cautious since while the transmission rate in "hot-spot" areas increases due to congestion avoidance, it also decreases elsewhere in the network where more traffic is distributed. There is therefore a trade-off needed to consider when applying multi-path routing mechanism. An interesting parameter characterizing the performance of
multi-path routing is the average route length (calculated in number of hops). When this parameter increases, it results in more nodes in the network involved in connection, which means that more traffic is distributed across the network. In the following section, we propose an upper bound on the average length of a route in multi-path routing, which guarantees that the connection throughput is improved as compared to single-path routing.

4.1. Single-path routing

In this section, we use the same network model as in Section 4. According to Eq. (4), when a single-path routing mechanism is used, nodes closer to the circle center are experiencing more traffic, i.e. are more congested. Therefore, in terms of capacity, the total capacity of the network is limited by the capacity of the area close to the circle center. Considering a connection between nodes A_{1} and A_{2}, let us denote by A, the orthogonal projection of the circle center O on the line $A_{1} A_{2}$. Assume that there is a node on the route between A_{1} and A_{2} very close to A. Since this particular node is closer to the circle center than any other nodes on the route on the line A_{1} and A_{2}, it experiences the highest traffic. Therefore the data transmission rate on this particular route is limited by the congestion experienced by node close to A. From now on, we denote the node closed to A is node A for simplicity. It can be easily seen from Eq. (4) that the number of routes going through node A can be expressed as:

$$
\begin{equation*}
n(r)=\left(\pi R^{2} \delta-1\right)+\frac{\pi\left(R^{2}-r^{2}\right)^{2} \delta^{2} \beta}{2} \tag{10}
\end{equation*}
$$

Assuming that we have a fair MAC layer, each route is allocated an equal bandwidth for data transmission. Therefore, each route going through node A will be allocated the bandwidth denoted by $W(r)$ expressed as:

$$
\begin{equation*}
W(r)=\frac{W}{\left(\pi R^{2} \delta-1\right)+\frac{\pi\left(R^{2}-r^{2}\right)^{2} \delta^{2} \beta}{2}}, \tag{11}
\end{equation*}
$$

where W is the total bandwidth allocated to the network. It can be recalled that $N=\pi R^{2} \delta$, the total number of nodes in the network. Because this number is large, we also assume that $\pi R^{2} \delta-1 \approx N$.
Let us now evaluate the number of routes which transmission rate is limited by node A. Note that these routes have to be approximately perpendicular to $O A$ and go through A. One can in Fig. 4 that these routes are such as their source and destination nodes are respectively in the areas R_{1} and R_{2}, and vice versa. The number of nodes in each area can be expressed as:

$$
\begin{equation*}
N_{R_{1}}(r)=N_{R_{2}}(r)=\left(R^{2}-r^{2}\right) \beta \delta \tag{12}
\end{equation*}
$$

The derivation which leads to this results is very similar to the one leading to Eq. (4). We will therefore refer our reader to Appendix A for more details. From this, the number of routes which transmission rates are limited

Fig. 4. Network model for connection throughput.
by $W(r)$ is simply $2 N_{R_{1}}(r) N_{R_{2}}(r)$. Note that any node in the ring delimited by r and $r+d r$ with $d r$ small enough will have the same traffic characteristics as $A(r)$. Therefore, it can be shown that $W_{s p}$, the total bandwidth used by the network will be expressed as:

$$
\begin{align*}
W_{s p} & =\int_{0}^{R} W(r) 2 N_{R_{1}}(r) N_{R_{2}}(r) 2 \pi r \delta d r= \\
& =2 W \delta \int_{0}^{R} \frac{\left(R^{2}-r^{2}\right)^{2} \beta^{2} \delta^{2}}{\left(\pi R^{2} \delta-1\right)+\frac{\pi\left(R^{2}-r^{2}\right)^{2} \delta^{2} \beta}{2}} 2 \pi r d r= \\
& =2 W \sqrt{\frac{\beta N}{2 \pi}}\left(\sqrt{\frac{\beta N}{2 \pi}}-\arctan \sqrt{\frac{N \beta}{2 \pi}}\right) . \tag{13}
\end{align*}
$$

Note that we have used the fact that $\pi R^{2} \delta=N$. The total number of possible connections being N^{2}, the connection throughput for this network using a single-path routing mechanism is $\lambda_{s p}=W_{s p} / N^{2}$.

4.2. Multi-path load balancing routing

Suppose that and A_{c} is the average number of active routes per node. Obviously, the number of active routes in the network is $N A_{c}$. Suppose L_{m} being the average number of hops involved in a route, the total number of connections in the whole network is $N A_{c} L_{m}$ which means that the number of connections per node is $A_{c} L_{m}$. Assuming that the bandwidth available at each node is uniformly split among these connections, the bandwidth per connection is $W /\left(A_{c} L_{m}\right)$. Therefore, the total bandwidth used by this network is:
$W_{m p}=$ number of active routes \times connection bandwidth $=$

$$
\begin{equation*}
=N A_{c} W / A_{c} L_{m}=N W / L m \tag{14}
\end{equation*}
$$

The connection throughput is $\lambda_{m p}=W_{m p} / N^{2}$.

This result shows that the capacity of the network is inversely proportional to the length of a route. This confirms our initial comment that increasing the route length means distributing more traffic across the network, therefore decreasing the average connection throughput. It is therefore useful to compute an upper bound on L_{m} which allows ensuring that:

$$
\begin{equation*}
\lambda_{m p}>\lambda_{s p} \tag{15}
\end{equation*}
$$

This leads to:

$$
\begin{equation*}
L_{m}<L_{\max }=\frac{1}{2\left(\frac{\beta}{2 \pi}-\sqrt{\frac{\beta}{2 \pi N}} \arctan \left(\sqrt{\frac{\beta N}{2 \pi}}\right)\right)} . \tag{16}
\end{equation*}
$$

It is worth noticing that $L_{\max }$ is itself bounded as follows:

$$
\begin{equation*}
L_{\max }>\frac{\pi}{\beta} \tag{17}
\end{equation*}
$$

Remember that β is a constant characterizing the fact that the routes between source and destination nodes are not perfect straight lines. This parameter, which only depends on the network density and node distribution, can be evaluated by geometric analysis. When the network density is high, β is typically small. Therefore, $L_{\max }$ will be a large number. For instance, for a network consisting of 100 nodes in 1 kilometer square, $\beta \approx \pi / 16$. We therefore have $L_{\max }>16$. However, on average, simulations show that the average path length in multi-path routing is around 6 or 7 hops. This means that there is in fact no constraint on L_{m} as far as connection throughput improvement guarantee is concerned. In other words, using multipath routing always improve the connection throughput of the network as compared to single-path routing. However, when the network density is low, β is bigger, the value $L_{\max }$ must be taken into account as an upper bound of the routes when performing the route discovery so that a better performance is guaranteed when using multi-path routing.

5. Conclusion

In this paper, we have analyzed and compared single-path and multi-path routing algorithms. We have first concentrated this study on the issue of overheads. We have shown how the amount of overheads increases with the number of multiple paths and we have seen that when this number exceeds three, the overheads increase significantly. This has confirmed many simulation results presented in the literature which state without any clear explanation that using three paths provides the best trade off. We have also derived an upper bound on the average length of the multi-path routes which guarantees a decrease of the network congestion. This upper bound depends on the traffic intensity, the processing power of each node and the number of nodes in the network, hence it is easy to compute in practice. Not only this bound allows to select routes that respect the upper bound constraint, but also, it can indicate in the first
place whether for a particular network, using load balancing will bring any improvement at all. Finally, we have shown that using multi-path routing always results in connection throughput improvement for high density networks.

Appendix A

Derivation of the traffic experienced by a node located at a distance r from the center of the network

Theorem 1. The traffic for a node located at a distance r from the center of the circle can be expressed as represented by the following expression:

$$
\lambda(r)=\left(\pi R^{2} \delta-1\right) \lambda+\frac{\pi\left(R^{2}-r^{2}\right)^{2} \delta^{2} \lambda \beta}{2} .
$$

Proof. Consider Fig. 5 and let us denote by A, a node located at a distance r from the center of the circle. Let us also define the following notation: $x(i)$ is a point on the edge of the circle such as the angle between $(A, x(i))$ and the axis (O, A) is equal to i. Consider $S_{\alpha} d(\alpha)$, the portion of the circle (shadowed area on the Fig. 5) centered around $(A, x(\alpha))$ with a aperture of $d \alpha$. Our aim is to determine the amount of traffic originated by source nodes in $S_{\text {alpha }} d(\alpha)$ and going through node A.

Fig. 5. Traffic analysis for shortest path mechanism.
Recall that we use a shortest path routing mechanism in this section. It is reasonable to assume that in this case, routes are "close" to straight lines. The problem is then to determine the "destination area" D, i.e. the portion of the circle containing all possible destination nodes corresponding with source nodes in $S_{\alpha} d(\alpha)$ through node A. If the routes were perfect straight lines, then obviously D would be the portion of the circle (dashed area in Fig. 5) centered around $(A, x(\alpha+\pi))$ with aperture $d \alpha$, i.e. $D=S_{\alpha+\pi} d(\alpha)$.

However, since the routes are obviously not straight lines, D is in fact larger than this, i.e. $D=S_{\alpha+\pi}(d \alpha+\beta)$ with β being a small positive real number, independent of α and $d \alpha$ and typically small. The value of β depends on the network density and the nodes distribution. This value can be obtained by using graphical analysis of the nodes distribution or by simulation.
Let us now evaluate $S_{\alpha} d(\alpha)$ and $S_{\alpha+\pi}(d \alpha+\beta)$. Since $d \alpha$ can be reasonably assumed small enough so that $d \alpha^{2} \ll d \alpha$, the following approximations hold:

$$
\begin{aligned}
\sin (d(\alpha)) & =d(\alpha) \\
|A x(\alpha-d(\alpha))| & =|A x(\alpha)| \\
|A x(\alpha+d(\alpha))| & =|A x(\alpha)| \\
S_{\alpha} d(\alpha) & =\frac{|A x(\alpha-d(\alpha))| \times|A x(\alpha+d(\alpha))| \sin (d(\alpha))}{2},
\end{aligned}
$$

where the notation $|y z|$ stands for the distance between points y and z. From these, we can conclude that

$$
\begin{equation*}
S_{\alpha} d(\alpha)=\frac{|A x(\alpha)|^{2} d(\alpha)}{2} \tag{18}
\end{equation*}
$$

Similarly:

$$
\begin{equation*}
S_{\alpha+\pi}(d \alpha+\beta)=\frac{|A x(\alpha+\pi)|^{2}(d \alpha+\beta)}{2} \tag{19}
\end{equation*}
$$

Assuming a uniform distribution of nodes in the circle, the number of nodes in $S_{\alpha} d(\alpha) / 2$ and $S_{\alpha+\pi}(d \alpha+\beta)$ will respectively be $S_{\alpha} d(\alpha) \delta$ and $S_{\alpha+\pi}(d \alpha+\beta) \delta$ and therefore, the number of routes going through node A will be:

$$
\begin{align*}
N(\alpha) & =S_{\alpha} d(\alpha) \delta \times S_{\alpha+\pi}(d \alpha+\beta) \delta= \\
& =\frac{|A x(\alpha)|^{2} *|A x(\alpha+\pi)|^{2} \delta^{2}\left(d \alpha^{2}+d \alpha \beta\right)}{4} \tag{20}
\end{align*}
$$

Recalling that $d \alpha$ is very small, therefore $d \alpha^{2} \ll d \alpha$, we have $\left(d \alpha^{2}+d \alpha \beta\right)=\beta d \alpha$. Hence:

$$
\begin{equation*}
N(\alpha)=\frac{|A x(\alpha)|^{2}|A x(\alpha+\pi)|^{2} \delta^{2} \beta d \alpha}{4} . \tag{21}
\end{equation*}
$$

We need to evaluate $|A x(\alpha)||A x(\alpha+\pi)|$. In order to solve the problem, we have to prove the following result:
For any line $\left(B_{1} C_{1}\right)$ going through node $A,\left(B_{1}\right.$ and C_{1} located on the circle of radius R), we have: $|A C| *|A B|=$ $=\left|A C_{1}\right| *\left|A B_{1}\right|=\left(R^{2}-r^{2}\right)$. Indeed, from Fig. 6, we can see that $\angle A B_{1} B=\angle A C C_{1}$ and $\angle A B B_{1}=\angle A C_{1} C\left(\angle A B_{1} B\right.$ standing for the angle between lines $\left(B_{1}, B\right)$ and $\left.\left(B_{1}, A\right)\right)$. Therefore, the triangle $A B_{1} B$ is similar to the triangle $A C C_{1}$ and

$$
\frac{\left|A B_{1}\right|}{|A C|}=\frac{|A B|}{\left|A C_{1}\right|}
$$

or, $\left|A B_{1}\right| \times\left|A C_{1}\right|=|A B| \times|A C|=R^{2}-r^{2}$. Since $A x(\alpha)$ and $A x(\alpha+\pi)$ are on the same straight line, we can apply the above result to the case where $x(\alpha)=B_{1}$ and $x(\alpha+\pi)=C_{1}$ which leads to

$$
|A x(\alpha)| \times|A x(\alpha+\pi)|=R^{2}-r^{2} .
$$

Fig. 6. Analysis of a line going through node A.

It is worth pointing out that $|A x(\alpha)| \times|A x(\alpha+\pi)|$ does not depend on α. We then have

$$
\begin{equation*}
N(\alpha)=\frac{\pi\left(R^{2}-r^{2}\right)^{2} \delta^{2} \beta d \alpha}{4} . \tag{22}
\end{equation*}
$$

The total amount of traffic relayed by node A is obtained by integrating $N(\alpha)$ over α between 0 and π and multiplying it by the traffic rate λ :

$$
\begin{equation*}
\text { relay-traffic }=\frac{\pi\left(R^{2}-r^{2}\right)^{2} \delta^{2} \beta \lambda}{2} \tag{23}
\end{equation*}
$$

The traffic experienced by each node comprises relay traffic which has just been computed and traffic from others nodes. Since the circle is of radius R, the area πR^{2}. Therefore, the number of nodes in the circle are: $\pi R^{2} * \delta$. Hence, there are $\left(\pi R^{2} \delta-1\right)$ nodes communicating with the current node with traffic rate λ. The total traffic going through a node located at a distance r from the center is:

$$
\begin{align*}
\text { traffic } & =\text { common-traffic }+ \text { relay-traffic }= \\
& =\left(\pi R^{2} \delta-1\right) \lambda+\frac{\pi\left(R^{2}-r^{2}\right)^{2} \delta^{2} \lambda \beta}{2} \tag{24}
\end{align*}
$$

Appendix B

Derivation of $N_{p a c}$

From the derivation is Section 3.2, we have:

$$
N_{p a c}(r)=\frac{\lambda(r)}{\eta-\lambda(r)}=\frac{\left(\pi R^{2} \delta-1\right) \lambda+\frac{\pi\left(R^{2}-r^{2}\right)^{2} \delta^{2} \lambda \beta}{2}}{\eta-\left(\pi R^{2} \delta-1\right) \lambda-\frac{\pi\left(R^{2}-r^{2}\right)^{2} \delta^{2} \lambda \beta}{2}}
$$

and

$$
N_{p a c_{s}}=\frac{1}{\pi R^{2} \delta} * \int_{0}^{R} 2 \pi r \delta N_{p a c}(r) d r
$$

Therefore,

$$
\begin{align*}
N_{p a c_{s}} & =\frac{1}{\pi R^{2} \delta} \int_{0}^{R} 2 \pi r \delta N_{p a c}(r) d r= \\
& =\frac{1}{\pi R^{2} \delta} \int_{0}^{R} 2 \pi r \delta \frac{\left(\pi R^{2} \delta-1\right) \lambda+\frac{\pi\left(R^{2}-r^{2}\right)^{2} \delta^{2} \lambda \beta}{2}}{\eta-\left(\pi R^{2} \delta-1\right) \lambda+\frac{\pi\left(R^{2}-r^{2}\right)^{2} \delta^{2} \lambda \beta}{2}} d r= \\
& =\frac{1}{\pi R^{2} \delta} \int_{0}^{R} \frac{2 K r\left[A+B\left(R^{2}-r^{2}\right)^{2}\right]}{\mu-A-B\left(R^{2}-r^{2}\right)^{2}} d r, \tag{25}
\end{align*}
$$

where: $K=\pi \delta, A=\left(\pi R^{2} \delta-1\right) \lambda$, and $B=\pi \delta^{2} \sin (\beta) \lambda / 2$. Hence

$$
\begin{align*}
N_{p a c_{s}} & =\frac{1}{\pi R^{2} \delta} \star \frac{K \mu / B}{2 \sqrt{\frac{\mu-A}{B}}} \ln \left(\frac{\sqrt{\frac{\mu-A}{B}}+R^{2}}{\sqrt{\frac{\mu-A}{B}}-R^{2}}\right)-\frac{1}{\pi R^{2} \delta} K R^{2}= \\
& =\frac{\mu / B}{2 R^{2} \sqrt{\frac{\mu-A}{B}}} \ln \left(\frac{\sqrt{\frac{\mu-A}{B}}+R^{2}}{\sqrt{\frac{\mu-A}{B}}-R^{2}}\right)-1 . \tag{26}
\end{align*}
$$

References

[1] N. F. Maxemchuck, "Diversity routing", in IEEE ICC'75, San Francisco, USA, 1975, vol. 1, pp. 10-41.
[2] R. Krishan and J. A. Silvester, "Choice of allocation granilarity in multi-path source routing schemes", in IEEE INFOCOMM'93, 1993, vol. 1, pp. 322-329.
[3] R. Rom, I. Cidon, and Y. Shavitt, "Analysis of multi-path routing", IEEE/ACM Trans. Netw., vol. 7, no. 6, pp. 885-896, 1999.
[4] R. C. Ogier and V. Ruthenburg, "Minimum-expected-delay alternate routing", in INFOCOMM'92, Florence, Italy, 1992, pp. 617-625.
[5] S. V. R. Nageswara and S. G. Batsell, "QoS routing via multiple paths using bandwidth reservation", in INFOCOM (1), 1998, pp. 11-18.
[6] S. J. Lee and M. Gerla, "AODV-BR: backup routing in ad hoc network", in IEEE WCNC 2000, 2000, pp. 1311-1316.
[7] L. Wang et al., "Multipath source routing in wireless ad hoc network", in Can. Conf. Elec. Comp. Eng., 2000, vol. 1, pp. 479-483.
[8] S. J. Lee and M. Gerla, "Split multi-path routing with maximally disjoint paths in ad hoc networks", in ICC'01, 2001.
[9] M. R. Pearlman et al., "On the impact of alternate path routing for load balancing in mobile ad hoc network", in MobiHOC, 2000, p. 150 .
[10] A. Tsirigos and Z. J. Haas, "Multi-path routing in the presence of frequent topological changes", IEEE Commun. Mag., Nov. 2001.
[11] A. Nasipuri and S. R. Das, "On-demand multi-path routing for mobile ad hoc networks", in IEEE ICCCN'99, 1999, pp. 64-70.
[12] D. B. Johnson and D. A. Maltz, "Dynamic source routing in ad hoc wireless networks", in Mobile Computing, T. Imielinski and H. Korth, Eds. Kluwer, 1996, vol. 353.
[13] C. Perkins and E. M. Royer, "Ad-hoc on-demand distance vector routing", in IEEE Works. Mob. Comput. Syst. Appl. WMCSA, 1999, pp. 90-100.
[14] P. Pham and S. Perreau, "Multi-path routing protocol with load balancing policy in mobile ad hoc network", in IEEE MWCN'2002.
[15] V. D. Park and M. S. Corson, "Temporally-ordered routing algorithm (tora) version 1: functional specification", Internet-Draft, Nov. 1997, draft-ietf-manet-tora-spec-00.txt.
[16] D. Bertsekas and R. Gallager, Data Networks. Prentice-Hall, 1992.

Peter P. Pham received the B.E. in computer system engineering (honour) from the University of Adelaide, Adelaide, Australia, in December 2000. After graduation, he worked as a software engineer for Motorola for 6 months in Singapore. Since August 2001, he received a President scholarhip and started as a Ph.D. candidate at Institute for Telecommunications Research, the University of South Australia. His area of interests are performance analysis and coding techniques for ad hoc networks. e-mail: ppham@spri.levels.unisa.edu.au Institute for Telecommunications Research University of South Australia Mawson Lakes, SA 5095, Australia

Sylvie Perreau received the engineering diploma and master degree (Diplome d'Etudes Approfondies) from the Ecole Nationale Superieure de l'Electronique et de ses Applications (ENSEA), France, in 1993 and the Ph.D. degree from the Ecole Nationale Superieure des Telecommunications de Paris, in 1997. She was research associate at the University of Connecticut (USA) in 1997 and later that year joined the Centre for Sensor Signals and Information Processing (CSSIP) in Adelaide, Australia, as a post-doctoral fellow. Since May 1998, she has been with the Institute for Telecommunications Research where she is now senior research fellow. Her research interests are in physical layers areas (equalisation, power control, turbo-equalisation) and in networks (routing protocols for ad hoc networks, congestion management).
e-mail: sylvie@ spri.levels.unisa.edu.au
Institute for Telecommunications Research
University of South Australia
Mawson Lakes, SA 5095, Australia

