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ABSTRACT 

In this paper, we present performance analysis of two NASA 

applications using performance tools like Tuning and Analysis 

Utilities (TAU) and SGI MPInside. MITgcmUV and 

OVERFLOW are two production-quality applications used 

extensively by scientists and engineers at NASA. MITgcmUV is 

a global ocean simulation model, developed by the Estimating the 

Circulation and Climate of the Ocean (ECCO) Consortium, for 

solving the fluid equations of motion using the hydrostatic 

approximation. OVERFLOW is a general-purpose Navier-Stokes 

solver for computational fluid dynamics (CFD) problems. Using 

these tools, we analyze the MPI functions (MPI_Sendrecv, 

MPI_Bcast, MPI_Reduce, MPI_Allreduce, MPI_Barrier, etc.) 

with respect to message size of each rank, time consumed by 

each function, and how ranks communicate. MPI communication 

is further analyzed by studying the performance of MPI functions 

used in these two applications as a function of message size and 

number of cores. Finally, we present the compute time, 

communication time, and I/O time as a function of the number of 

cores. 

1. INTRODUCTION 

Developing or porting codes on new computing 

architectures to achieve good performance is a challenging 

and daunting task for application scientists and engineers. 

Performance of most of the real-world applications is less 

than 10% of the peak performance on these computing 

systems. Low performance is due to a number of 

challenges facing the high-performance scientific 

community, including increasing levels of parallelism 

(threads, multi- and many-cores, nodes), deeper and more 

complex memory hierarchies (register, multiple levels of 

cache, on node NUMA memory, disk, network), and 

hybrid hardware (processors and GPGPUs). In many cases, 

factors such as runtime variation due to system noise, 

traditional computer benchmarking is not sufficient to 

understand the performance of large-scale applications. In 

such cases, simple inspection of the profile (the timing 

breakdown) is not adequate to analyze performance of 

particularly MPI applications. One needs to know what is 

happening “inside” both the application and the MPI 

library and along with the interaction of the two. 

The present study uses two performance tools (SGI’s 

MPInside and TAU from University of Oregon) to profile 

two production-quality applications (OVERFLOW-2 and 

MITgcmUV, hereafter OVERFLOW-2 will be referred as 

OVERFLOW). This study also uses the low-level MPI 

function benchmarks to measure their performance as a 

function of message size. The study was carried out on an 

SGI Altix ICE 8200EX cluster, Pleiades, located at NASA 

Ames Research Center. Pleiades consists of two sub-

clusters: one part based uses the Xeon 5472 Harpertown 

processor [1–2] (hereafter called “Pleiades-HT”), and the 

second uses Xeon 5570 Nehalem processor, the first server 

implementation of a new 64-bit micro-architecture 

(henceforth called “Pleiades-NH”) [3-4].  All the nodes 

employ the Linux operating system and SGI MPT library 

and are connected in a hypercube topology using 

InfiniBand [5-6]. 

In this paper we have conducted the performance profiling 

of OVERFLOW and MITgcmUV using the two 

performance tools, MPInside and TAU, on Pleiades-HT 

and Pleiades-NH.  We have also evaluated and compared 

the performance of MPI functions as a function of message 

size on Pleiades-HT and Pleiades-NH. 

The remainder of this paper is organized as follows: 

Section 2 describes the two performance tools, SGI’s 

MPInside and TAU from University of Oregon, used in the 

study.  Section 3 gives the overview of the applications 

and MPI function benchmarks. Section 4 presents and 

analyzes results from running these benchmarks and 

applications on the two clusters. Section 5 contains a 

summary and conclusions of the study.   

2. Performance Tools Used 

Based on an initial survey and looking into pros and cons 

of each performance tool, we decided to use two tools, 

MPInside and TAU, to conduct in-depth performance 

analysis of two real-world applications used extensively by 

scientists and engineers at NASA [7-22]. MPInside is a 

profiling and diagnostic tool developed by SGI to analyze 

and predict the performance of MPI applications [15]. 
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Tuning and Analysis Utilities (TAU) developed by 

University of Oregon, and supported by ParaTools, Inc., is 

a portable profiling and tracing toolkit for performance 

analysis of parallel programs [14].  

3. Applications and Benchmarks 

3.1 Science and Engineering Applications 

For this study, we used two production applications, taken 

from NASA’s workload. OVERFLOW, developed at 

NASA’s Langley Research Center, is a general-purpose 

Navier-Stokes solver for CFD problems [23]. MITgcmUV, 

developed by the Estimating the Circulation and Climate 

of the Ocean (ECCO) Consortium, is a global ocean 

simulation model for solving the fluid equations of motion 

using the hydrostatic approximation [24]. 

3.2 Intel MPI Benchmarks (IMB) 

The performance of real-world applications that use MPI 

as the programming model depends significantly on the 

MPI library and the performance of various point-to-point 

and collective message exchange operations supported by 

the MPI implementations. Intel MPI Benchmarks (IMB), 

(formerly, the Pallas MPI Benchmarks) is a commonly 

used benchmark suite to evaluate and compare the 

performance of different MPI implementations [25].  

The MPI standard defines several collective operations, 

which can be broadly classified into three major categories 

based on the message exchange pattern: OnetoAll, 

AlltoOne, and Alltoall. We have evaluated the performance 

of MPI_Bcast, MPI_Reduce, MPI_Alltoall, and 

MPI_Allreduce collective operations on both clusters.  

4. Results 

In this section, we present the results of our study. 

4.1 Scientific and Engineering Applications 

4.1.1 MITgcmUV 
Figure 1 shows the sustained performance of MITgcmUV 

using TAU and MPInside.  

 

Figure 1: Sustained performance of MITgcmUV on Pleiades-HT 

Sustained performance of MITgcmUV is about 1.2–1.4% of 

the peak, which is relatively low, as most of the applications 

have sustained performance around 3–8% of peak. We have 

not looked into the cause of this low performance from 

processor and memory subsystem perspective here but have 

only investigated the role of various MPI functions for the 

application. 

In Figure 2, we show the percentage of time for total, 

compute, communication, and I/O times on Pleiades-HT and 

Pleiades-NH. As expected, percentage of compute time 

decreases and communication time increases for increasing 

numbers of cores for both systems.  Percentage contribution 

of I/O time increases for large number of cores. On 64 cores 

of Pleiades-NH compute is 93%, communication 3.5%, I/O 

3.5%.  Corresponding numbers for 480 cores are: compute 

59.1%, communication 23.4%, and I/O 17.5%.  

 

Figure 2: Time percentage of MITgcmUV using MPInside on two 

systems. 

Figure 3 shows the read, write, and (read+write) times for 

MITgcmUV on two systems. Read time is almost the same 

on both systems; however, write time on Pleiades-HT is 

much higher than on Pleiades-NH—it writes 8 GB of data. 

This is due to the fact that Pleiades-NH has three times 

more memory than Pleiades-HT so one is measuring writes 

to buffer cache in memory. On the other hand, on Pleiades-

HT one is measuring “write time” to disk because there is 

not enough memory to hold all 8 GBs of output data. 

 

Figure 3: I/O times for MITgcmUV using MPInside on two systems. 

In Figure 4, we plot the write bandwidth on the two 

systems. Write bandwidth on Pleiades-NH is about 55% 

higher than on Pleiades-HT. As mentioned in the previous 

paragraph, this is due to the fact that there is three times 

more memory per core in Pleiades-NH than Pleiades-HT—

write is done using the memory buffer as opposed to disk 

write in Pleiades-HT.  
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Figure 4: Write bandwidth of MITgcmUV on two systems. 

In Figure 5, we plot the percentage of time spent in each of 

the MPI functions in MITgcmUV. Percentage of 

communication time spent is 60, 30, and 5% in MPI_Recv, 

MPI_Allreduce, and MPI_Waitall, respectively. Only 5% 

of the time is spent in MPI_Send, MPI_Isend, MPI_Bcast, 

and MPI_Barrier.  
 

 
Figure 5: Percentage of time spent in MPI functions for MITgcmUV. 

 

In Figure 6, we plot the minimum, average, and maximum 

message size of MPI_Recv in MITgcmUV using 

MPInside. The average message size varies from 3–9 KB.  
 

 

Figure 6: Message size of MPI_Recv in MITgcmUV using MPInside. 

With both the tools the message size in MPI_Allreduce is 8 

bytes for cores ranging from 60 to 480. Since data size is 

only 8 bytes, MPI_Allreduce is network latency-bound in 

MITgcmUV. A message size of 225 KB is broadcast to all 

cores. Message sizes for all MPI functions in MITgcmUV 

including MPI_Recv, MPI_Allreduce, and MPI_Bcast 

were the same, as measured by TAU and MPInside. 

4.1.2 OVERFLOW 
In this subsection, we present results for OVERFLOW 

using the performance tools MPInside and TAU.  Only the 

results obtained using MPInside are shown, as they are 

same as those obtained by using TAU. 

Figure 7 shows the sustained performance of 

OVERFLOW. Sustained performance is about 2.5% of 

peak. Performance of OVERFLOW is slightly better than 

MITgcmUV. We notice that even for 16 cores (2 nodes), 

performance is low. We did not investigate the cause of 

this low sustained performance but believe it is related to 

processor and memory subsystem. 

 

Figure 7: Sustained performance of OVERFOW. 

Figure 8 shows the percentage of computation, 

communication, I/O, and total time on both systems. On 

both systems, percentage of computation time decreases as 

the number of cores increase from 32 to 128 and then 

increases for 256 cores. In addition, percentage of 

communication time increases as the number of cores 

increases from 32 to 128, and then decreases for 256 cores. 

For 256 cores on Pleiades-HT: computation 62%, 

communication 25%, and I/O 13%; Pleiades-NH: 

computation 52%, communication 33%, and I/O 15 %.  

 

Figure 8: Percentage of computation, communication, I/O, and total time 

in OVERFLOW using MPInside. 

Figure 9 shows the I/O time for OVERFLOW on the two 

 

Figure 9: I/O time in OVERFLOW for Pleiades-HT and Pleiades-NH. 
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systems. I/O times are better on Pleiades-NH than on 

Pleiades-HT. Performance of (read+write) is better on 

Pleiades-NH than Pleiades-HT by a factor of 1.4 for all 

core counts except at 128 cores where it is a factor of 1.7. 

Figure 10 shows the read and write bandwidth in 

OVERFLOW for the two systems. Size of input data file 

read is 1.6 GB, and size of the solution file written is 2 

GB. Both read and write bandwidths are higher on 

Pleiades-NH than on Pleiades-HT. The reason for this is 

that memory per node is three times higher on Pleiades-

NH than on Pleiades-HT (24 vs. 8 GB), so size of memory 

buffers is higher in the former. Performance of the write 

bandwidth in OVERFLOW is almost the same as in 

MITgcmUV, although data written is four times larger in 

MITgcmUV (2 vs. 8 GB). 

 

Figure 10: Read and write bandwidth in OVERFLOW for two systems. 

In Figure 11, we show times for the top five MPI 

functions. Most of the time is consumed by the two 

functions MPI_Waitall and MPI_Gatherv, followed by 

MPI_Recv and MPI_Send and the lowest time by 

MPI_Bacst. For 128–256 cores, time for MPI_Waitall and 

MPI_GatherV decreases, whereas time for MPI_Recv, 

MPI_Send, and MPI_Bcast remains almost constant.  

 

Figure 11: Timings for the top 5 MPI functions in OVERFLOW. 

Figure 12 shows percentage time for the top 5 MPI 

functions. Percentage of time taken by MPI_Recv and 

MPI_Send increases as the number of cores increases. Up 

to 64 cores, percentage of time taken by MPI_Send is more 

than MPI_Recv and then it becomes the same for 128 and 

256 cores. For higher numbers of cores, percentage time 

consumed by all MPI functions increases, except for 

MPI_GatherV. At 256 cores, percentage of time consumed 

by MPI_Waitall is the highest. The function MPI_Waitall 

waits for all communications to complete. At 256 cores, 

percentage of time contributions are MPI_Waitall 36%, 

MPI_GatherV 21%, MPI_Recv 17%, MPI_Send 17%, and 

MPI_Bcast 9%.  

 

Figure 12: Percentage time for the top 5 MPI functions in OVERFLOW 

using MPInside. 

Figure 13 shows the minimum, average, and maximum 

message size of MPI_Send in the OVERFLOW 

application. Message size decreases as the number of cores 

increases. The average message size for MPI_Send is 348, 

129, 80, and 54 KB for 16, 128, 256, and 512 cores, 

respectively. 

 

Figure 13: Message size for the MPI_Send function in OVERFLOW 

using MPInside. 

Figure 14 shows the minimum, average, and maximum 

message size for MPI_Recv. For all three cases, size first 

increases up to 32/64 cores, and then decreases up to 512 

cores. Average message size for MPI_Recv is 53, 104, 144, 

and 219 KB for 16, 128, 256, and 512 cores respectively.  
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Figure 14: Message size for the MPI_Recv function in OVERFLOW 

using MPInside. 

Figure 15 shows the message size for MPI_Bcast. Message 

size for MPI_Bcast is 1.29 MB in the OVERFLOW 

application from 16 to 512 cores.  

 

Figure 15: Message size for the MPI_Bcast function in OVERFOW using 

MPInside. 

Figure 16 shows the minimum, average, and maximum 

message size for MPI_Gatherv. Average size of the 

message gathered by MPI_Gatherv is 270 bytes for 16 to 

512 cores. Since the size of the message is very small, 

performance of MPI_Gatherv depends on network latency 

and not on network bandwidth. 

 

Figure 16: Message size for the MPI_Gatherv function in OVERFLOW 

using MPInside. 

4.2 Intel MPI Benchmarks (IMB) 

In this section, we describe the performance of various 

MPI functions relevant to the two applications 

(MITgcmUV and OVERFLOW) used in this paper.  

4.2.1 MPI_Sendrecv & MPI_Exchange 

In Figure 17, we plot the performance of the 

MPI_Sendrecv and MPI_Exchange benchmarks for small 

messages on both systems. This plot provides insights into 

the relationship between the message exchange pattern, 

point-to-point message exchange algorithms, and overall 

performance. On both systems, performance of the 

MPI_Sendrecv benchmark is better than MPI_Exchange. 

In the MPI_Exchange benchmark, each process exchanges 

messages with both its left and right neighbors 

simultaneously, whereas in the MPI_Sendrecv benchmark, 

each process receives from its left neighbor and sends to 

its right neighbor at any instant. Since the MPI_Sendrecv 

benchmark involves a lesser volume of messages 

exchanged in comparison with MPI_Exchange, it is natural 

to expect better throughput. We see a change in slope for 

both benchmarks on the two systems around a message 

size of 1 KB, which is due to a change of algorithm. 

 

Figure 17: Performance of the MPI_Sendrecv and MPI_Exchange 

functions on two systems for small messages. 

In Figure 18, we plot the performance of the 

MPI_Sendrecv and MPI_Exchange benchmarks for large 

messages on both systems. We see a peak bandwidth with 

a 16 KB message (3.6 GB/s for Pleiades-NH vs. 2.6 GB/s 

for Pleiades-HT), which falls drastically for larger 

messages and stabilizes at 2.3 GB/s for Pleiades-NH and 

2.9 GB/s for Pleiades-HT. We believe this could be due to 

cache effects as large message intra-node exchanges 

usually involve making a copy from the user buffer to the 

shared-memory buffers. As size of the data in the user 

buffer grows, we may not be able to fit it in the cache, 

leading to cache misses. 



 6 

 

 

Figure 18: Performance of the MPI_Sendrecv and MPI_Exchange 

functions on two systems for large messages. 

Figure 19 shows the bandwidth of the MPI_Sendrecv 

benchmark for a message size of 262 KB, which is the 

average size used in MITgcmUV for the cores ranging 

from 2 to 512. Bandwidth within a node (8 cores) is higher 

on Pleiades-NH than on Pleiades-HT as the former uses 

faster intra-node communication via QPI. Beyond 8 cores 

(a node), the bandwidth on both systems is almost same 

except at 512 cores where Pleiades-NH has higher 

bandwidth.  

 

Figure 19: Performance of the MPI_Sendrecv function on two systems for 

a message size of 262 KB. 

4.2.2 MPI_Bcast 
Figure 20 shows the performance of MPI_Bcast for small 

messages on the two systems. Up to a 1 KB message size, 

performance on both systems is almost the same. 

However, beyond that we notice there is a drastic change 

of slope on both systems due to transition of algorithms 

used in its implementation. In addition, performance is 

better on Pleiades-NH than on Pleiades-HT. 

 

Figure 20: Performance of MPI_Bcast on two systems for small 

messages. 

Figure 21 shows the performance of MPI_Bcast for large 

messages on the two systems. Performance difference 

between the two systems is small for 16 to 64 KB, and 

then the performance gap increases as the message size 

increases. Timings are (a) 64 KB: 289 vs. 481 !s, and (b) 1 

MB: 5,398 vs. 8,038 !s on two systems. 

 

Figure 21: Performance of MPI_Bcast on two systems for large messages. 

Figure 22 shows the performance of MPI_Bcast for a 1 

MB message size used in OVERFLOW. We see that 

performance on Pleiades-NH is higher than Pleiades-HT 

for both intra- and inter-node communication.  

 

Figure 22: Performance of MPI_Bcast on two systems for a 1 MB 

message. 
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4.2.3 MPI_Allreduce 

In Figure 23, we plot average time for the MPI_Allreduce 

benchmark for small messages for both systems. Up to 64 

bytes, performance is higher on Pleiades-HT and then from 

128 bytes to 1 KB, performance is the same. From 2 KB 

onwards, the performance gap continues to widen and at 8 

KB, it is 40% higher (151 vs. 211 !s). 

 

Figure 23: Performance of MPI_Allreduce on two systems for small 

messages. 

In Figure 24, we plot the average time for the 

MPI_Allreduce benchmark for large messages for both 

systems. Throughout all cores, performance on Pleiades-

NH is higher than on Pleiades-HT, and the performance 

gap increases as the number of cores increases. At 16 KB, 

times are 261 and 392 !s, and at 1 MB, they are 7,958 and 

10,897 !s for Pleiades-NH and Pleiades-HT, respectively.  

 

Figure 24: Performance of MPI_Allreduce on two systems for small 

messages. 

Figure 25 shows the performance of MPI_Allreduce on 

two systems for a message size of 8 bytes used in 

MITgcmUV.  On both systems up to 64 cores, 

performance of MPI_Allreduce is same and degrades 

slowly as the number of cores increase. It may be recalled 

that in MITgcmUV the average size of message broadcast 

is 8 bytes. Since the message size is very small the 

performance of MPI_Allreduce in MITgcmUV depends on 

the network latency of the system.  Network latency of 

both systems increases with increasing number of cores 

especially beyond 128 cores (1 IRU) and therefore 

degrades rapidly.  

 

Figure 25: Performance of MPI_Allreduce on two systems for an 8-byte 

message.  

4.2.4 MPI_Gatherv 

Figure 26 shows the performance of MPI_Gatherv on two 

systems for small messages. Up to a message size 4 KB, 

performance of Pleiades-HT is much better than Pleiades-

NH, however for 8 KB message performance of Pleiades-

NH is better. The reason for this is the change in algorithm 

for the implementation of MPI_Gatherv on MPT. 

 

Figure 26: Performance of MPI_Gatherv on two systems for small 

messages. 

Figure 27 shows the performance of MPI_Gatherv on two 

systems for large messages. Up to 64 KB, performance of 

Pleiades-HT is better than Pleiades-NH, however for 128 

KB to 1 MB performance of Pleiades-NH is better.  

 

Figure 27: Performance of MPI_Gatherv on two systems for large 

messages. 

Figure 28 shows the performance of MPI_Gatherv on two 

systems for a message 262 KB. It is worth mentioning that 
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average message in MPI_Gatherv is 270 KB.  Within a 

node (8 cores), performance of Pleiades-NH is better than 

Pleiades-HT—the former’s inter-socket communication is 

faster due to QPI. Performance of both systems is same for 

16 to 64 cores. Beyond 64 cores, performance of Pleiades-

NH is better than Pleiades-HT. 

 

Figure 28: Performance of MPI_Gatherv on two systems for a 262 KB 

message. 

5. Summary and Conclusions 

In this paper, we study the performance of two NASA 

applications using two different analysis tools, TAU from 

University of Oregon and SGI’s MPInside. We focus 

particularly on the communication times analyzing the 

performance of various MPI functions used in these 

applications. One of the most interesting results reached by 

our analysis is that relatively few functions in the MPI 

library are used in the MITgcmUV and OVERFLOW 

applications. The other conclusion is that write data 

(solution file) is relatively small, namely 2 GB and 8 GB 

for OVERFLOW and MITgcmUV, respectively, and is 

performed sequentially.  

There was wide variation in message lengths—the shortest 

is 8-byte messages in MPI_Allreduce in MITgcmUV, and 

the largest message length is 1.3 MB for MPI_Bcast in 

OVERFLOW. Message length for MPI_Gatherv and 

MPI_Recv used in OVERFLOW is 270 bytes and 100 KB, 

respectively. Average message length for MPI_Recv and 

MPI_Bcast used in MITgcmUV is 6 KB (actually 3 to 9 

KB) and 225 KB. Overall, the conclusion that can be 

drawn is that inter-core communication for hardware and 

software must be optimized for both short and long 

messages. This paper shows that a large percentage of 

messages, for these applications, are not extremely long. 

We used two different tools for analyzing the performance 

of the MPI benchmarks and the two applications: SGI’s 

MPInside and TAU from University of Oregon. TAU has 

more extensive, sophisticated features and a nice visual 

interface. However, it does have a steep learning curve and 

to use it effectively, it is helpful to have support and 

training. On the other hand, MPInside is easy to use for the 

basic MPI functions but needs experience and training for 

collectives. Also, MPInside needs a better user interface 

and more features such as support to calculate the average 

message sizes. 
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