
 Open access Proceedings Article DOI:10.1109/HPCC.2010.55

Performance Analysis of Scientific and Engineering Applications Using MPInside and
TAU — Source link

Subhash Saini, Piyush Mehrotra, Kenichi Taylor, Sameer Shende ...+1 more authors

Institutions: Ames Research Center

Published on: 01 Sep 2010 - High Performance Computing and Communications

Related papers:

 Space Performance Tradeoffs in Compressing MPI Group Data Structures

Performance Analysis of CFD Application Cart3D Using MPInside and Performance Monitor Unit Data on Nehalem
and Westmere Based Supercomputers

 MPI performance measurement on the Earth Simulator

 An MPI Benchmark Program Library and Its Application to the Earth Simulator

 Tuning MPI Runtime Parameter Setting for High Performance Computing

Share this paper:

View more about this paper here: https://typeset.io/papers/performance-analysis-of-scientific-and-engineering-
91mh3g6y2x

https://typeset.io/
https://www.doi.org/10.1109/HPCC.2010.55
https://typeset.io/papers/performance-analysis-of-scientific-and-engineering-91mh3g6y2x
https://typeset.io/authors/subhash-saini-1djd17ug4c
https://typeset.io/authors/piyush-mehrotra-1jnqm63u9o
https://typeset.io/authors/kenichi-taylor-4lg44p068m
https://typeset.io/authors/sameer-shende-3867jjhg3w
https://typeset.io/institutions/ames-research-center-39cde3eb
https://typeset.io/conferences/high-performance-computing-and-communications-14ror4mv
https://typeset.io/papers/space-performance-tradeoffs-in-compressing-mpi-group-data-4jh2s5nhtk
https://typeset.io/papers/performance-analysis-of-cfd-application-cart3d-using-2uyzvrg2cv
https://typeset.io/papers/mpi-performance-measurement-on-the-earth-simulator-46fc4zb1x5
https://typeset.io/papers/an-mpi-benchmark-program-library-and-its-application-to-the-3rp78pq9xo
https://typeset.io/papers/tuning-mpi-runtime-parameter-setting-for-high-performance-4jukpv019h
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/performance-analysis-of-scientific-and-engineering-91mh3g6y2x
https://twitter.com/intent/tweet?text=Performance%20Analysis%20of%20Scientific%20and%20Engineering%20Applications%20Using%20MPInside%20and%20TAU&url=https://typeset.io/papers/performance-analysis-of-scientific-and-engineering-91mh3g6y2x
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/performance-analysis-of-scientific-and-engineering-91mh3g6y2x
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/performance-analysis-of-scientific-and-engineering-91mh3g6y2x
https://typeset.io/papers/performance-analysis-of-scientific-and-engineering-91mh3g6y2x

 1

Performance Analysis of Scientific and Engineering

Applications Using MPInside and TAU

Subhash Saini1, Piyush Mehrotra1, Kenichi Taylor2, Sameer Shende3, Rupak Biswas1
1
 NASA Advanced Supercomputing

NASA Ames Research Center

Moffett Field, CA 94035 USA

{subhash.saini, piyush.mehrotra,

rupak.biswas}@nasa.gov

2
 Silicon Graphics International (SGI)

46600 Landing Pkwy

Fremont, CA 94538 USA

kenichi@sgi.com

3
 ParaTools, Inc.

2836 Kincaid Street
Eugene, OR 97405 USA

sameer@paratools.com

ABSTRACT

In this paper, we present performance analysis of two NASA

applications using performance tools like Tuning and Analysis

Utilities (TAU) and SGI MPInside. MITgcmUV and

OVERFLOW are two production-quality applications used

extensively by scientists and engineers at NASA. MITgcmUV is

a global ocean simulation model, developed by the Estimating the

Circulation and Climate of the Ocean (ECCO) Consortium, for

solving the fluid equations of motion using the hydrostatic

approximation. OVERFLOW is a general-purpose Navier-Stokes

solver for computational fluid dynamics (CFD) problems. Using

these tools, we analyze the MPI functions (MPI_Sendrecv,

MPI_Bcast, MPI_Reduce, MPI_Allreduce, MPI_Barrier, etc.)

with respect to message size of each rank, time consumed by

each function, and how ranks communicate. MPI communication

is further analyzed by studying the performance of MPI functions

used in these two applications as a function of message size and

number of cores. Finally, we present the compute time,

communication time, and I/O time as a function of the number of

cores.

1. INTRODUCTION

Developing or porting codes on new computing

architectures to achieve good performance is a challenging

and daunting task for application scientists and engineers.

Performance of most of the real-world applications is less

than 10% of the peak performance on these computing

systems. Low performance is due to a number of

challenges facing the high-performance scientific

community, including increasing levels of parallelism

(threads, multi- and many-cores, nodes), deeper and more

complex memory hierarchies (register, multiple levels of

cache, on node NUMA memory, disk, network), and

hybrid hardware (processors and GPGPUs). In many cases,

factors such as runtime variation due to system noise,

traditional computer benchmarking is not sufficient to

understand the performance of large-scale applications. In

such cases, simple inspection of the profile (the timing

breakdown) is not adequate to analyze performance of

particularly MPI applications. One needs to know what is

happening “inside” both the application and the MPI

library and along with the interaction of the two.

The present study uses two performance tools (SGI’s

MPInside and TAU from University of Oregon) to profile

two production-quality applications (OVERFLOW-2 and

MITgcmUV, hereafter OVERFLOW-2 will be referred as

OVERFLOW). This study also uses the low-level MPI

function benchmarks to measure their performance as a

function of message size. The study was carried out on an

SGI Altix ICE 8200EX cluster, Pleiades, located at NASA

Ames Research Center. Pleiades consists of two sub-

clusters: one part based uses the Xeon 5472 Harpertown

processor [1–2] (hereafter called “Pleiades-HT”), and the

second uses Xeon 5570 Nehalem processor, the first server

implementation of a new 64-bit micro-architecture

(henceforth called “Pleiades-NH”) [3-4]. All the nodes

employ the Linux operating system and SGI MPT library

and are connected in a hypercube topology using

InfiniBand [5-6].

In this paper we have conducted the performance profiling

of OVERFLOW and MITgcmUV using the two

performance tools, MPInside and TAU, on Pleiades-HT

and Pleiades-NH. We have also evaluated and compared

the performance of MPI functions as a function of message

size on Pleiades-HT and Pleiades-NH.

The remainder of this paper is organized as follows:

Section 2 describes the two performance tools, SGI’s

MPInside and TAU from University of Oregon, used in the

study. Section 3 gives the overview of the applications

and MPI function benchmarks. Section 4 presents and

analyzes results from running these benchmarks and

applications on the two clusters. Section 5 contains a

summary and conclusions of the study.

2. Performance Tools Used

Based on an initial survey and looking into pros and cons

of each performance tool, we decided to use two tools,

MPInside and TAU, to conduct in-depth performance

analysis of two real-world applications used extensively by

scientists and engineers at NASA [7-22]. MPInside is a

profiling and diagnostic tool developed by SGI to analyze

and predict the performance of MPI applications [15].

 2

Tuning and Analysis Utilities (TAU) developed by

University of Oregon, and supported by ParaTools, Inc., is

a portable profiling and tracing toolkit for performance

analysis of parallel programs [14].

3. Applications and Benchmarks

3.1 Science and Engineering Applications

For this study, we used two production applications, taken

from NASA’s workload. OVERFLOW, developed at

NASA’s Langley Research Center, is a general-purpose

Navier-Stokes solver for CFD problems [23]. MITgcmUV,

developed by the Estimating the Circulation and Climate

of the Ocean (ECCO) Consortium, is a global ocean

simulation model for solving the fluid equations of motion

using the hydrostatic approximation [24].

3.2 Intel MPI Benchmarks (IMB)

The performance of real-world applications that use MPI

as the programming model depends significantly on the

MPI library and the performance of various point-to-point

and collective message exchange operations supported by

the MPI implementations. Intel MPI Benchmarks (IMB),

(formerly, the Pallas MPI Benchmarks) is a commonly

used benchmark suite to evaluate and compare the

performance of different MPI implementations [25].

The MPI standard defines several collective operations,

which can be broadly classified into three major categories

based on the message exchange pattern: OnetoAll,

AlltoOne, and Alltoall. We have evaluated the performance

of MPI_Bcast, MPI_Reduce, MPI_Alltoall, and

MPI_Allreduce collective operations on both clusters.

4. Results

In this section, we present the results of our study.

4.1 Scientific and Engineering Applications

4.1.1 MITgcmUV
Figure 1 shows the sustained performance of MITgcmUV

using TAU and MPInside.

Figure 1: Sustained performance of MITgcmUV on Pleiades-HT

Sustained performance of MITgcmUV is about 1.2–1.4% of

the peak, which is relatively low, as most of the applications

have sustained performance around 3–8% of peak. We have

not looked into the cause of this low performance from

processor and memory subsystem perspective here but have

only investigated the role of various MPI functions for the

application.

In Figure 2, we show the percentage of time for total,

compute, communication, and I/O times on Pleiades-HT and

Pleiades-NH. As expected, percentage of compute time

decreases and communication time increases for increasing

numbers of cores for both systems. Percentage contribution

of I/O time increases for large number of cores. On 64 cores

of Pleiades-NH compute is 93%, communication 3.5%, I/O

3.5%. Corresponding numbers for 480 cores are: compute

59.1%, communication 23.4%, and I/O 17.5%.

Figure 2: Time percentage of MITgcmUV using MPInside on two

systems.

Figure 3 shows the read, write, and (read+write) times for

MITgcmUV on two systems. Read time is almost the same

on both systems; however, write time on Pleiades-HT is

much higher than on Pleiades-NH—it writes 8 GB of data.

This is due to the fact that Pleiades-NH has three times

more memory than Pleiades-HT so one is measuring writes

to buffer cache in memory. On the other hand, on Pleiades-

HT one is measuring “write time” to disk because there is

not enough memory to hold all 8 GBs of output data.

Figure 3: I/O times for MITgcmUV using MPInside on two systems.

In Figure 4, we plot the write bandwidth on the two

systems. Write bandwidth on Pleiades-NH is about 55%

higher than on Pleiades-HT. As mentioned in the previous

paragraph, this is due to the fact that there is three times

more memory per core in Pleiades-NH than Pleiades-HT—

write is done using the memory buffer as opposed to disk

write in Pleiades-HT.

 3

Figure 4: Write bandwidth of MITgcmUV on two systems.

In Figure 5, we plot the percentage of time spent in each of

the MPI functions in MITgcmUV. Percentage of

communication time spent is 60, 30, and 5% in MPI_Recv,

MPI_Allreduce, and MPI_Waitall, respectively. Only 5%

of the time is spent in MPI_Send, MPI_Isend, MPI_Bcast,

and MPI_Barrier.

Figure 5: Percentage of time spent in MPI functions for MITgcmUV.

In Figure 6, we plot the minimum, average, and maximum

message size of MPI_Recv in MITgcmUV using

MPInside. The average message size varies from 3–9 KB.

Figure 6: Message size of MPI_Recv in MITgcmUV using MPInside.

With both the tools the message size in MPI_Allreduce is 8

bytes for cores ranging from 60 to 480. Since data size is

only 8 bytes, MPI_Allreduce is network latency-bound in

MITgcmUV. A message size of 225 KB is broadcast to all

cores. Message sizes for all MPI functions in MITgcmUV

including MPI_Recv, MPI_Allreduce, and MPI_Bcast

were the same, as measured by TAU and MPInside.

4.1.2 OVERFLOW
In this subsection, we present results for OVERFLOW

using the performance tools MPInside and TAU. Only the

results obtained using MPInside are shown, as they are

same as those obtained by using TAU.

Figure 7 shows the sustained performance of

OVERFLOW. Sustained performance is about 2.5% of

peak. Performance of OVERFLOW is slightly better than

MITgcmUV. We notice that even for 16 cores (2 nodes),

performance is low. We did not investigate the cause of

this low sustained performance but believe it is related to

processor and memory subsystem.

Figure 7: Sustained performance of OVERFOW.

Figure 8 shows the percentage of computation,

communication, I/O, and total time on both systems. On

both systems, percentage of computation time decreases as

the number of cores increase from 32 to 128 and then

increases for 256 cores. In addition, percentage of

communication time increases as the number of cores

increases from 32 to 128, and then decreases for 256 cores.

For 256 cores on Pleiades-HT: computation 62%,

communication 25%, and I/O 13%; Pleiades-NH:

computation 52%, communication 33%, and I/O 15 %.

Figure 8: Percentage of computation, communication, I/O, and total time

in OVERFLOW using MPInside.

Figure 9 shows the I/O time for OVERFLOW on the two

Figure 9: I/O time in OVERFLOW for Pleiades-HT and Pleiades-NH.

 4

systems. I/O times are better on Pleiades-NH than on

Pleiades-HT. Performance of (read+write) is better on

Pleiades-NH than Pleiades-HT by a factor of 1.4 for all

core counts except at 128 cores where it is a factor of 1.7.

Figure 10 shows the read and write bandwidth in

OVERFLOW for the two systems. Size of input data file

read is 1.6 GB, and size of the solution file written is 2

GB. Both read and write bandwidths are higher on

Pleiades-NH than on Pleiades-HT. The reason for this is

that memory per node is three times higher on Pleiades-

NH than on Pleiades-HT (24 vs. 8 GB), so size of memory

buffers is higher in the former. Performance of the write

bandwidth in OVERFLOW is almost the same as in

MITgcmUV, although data written is four times larger in

MITgcmUV (2 vs. 8 GB).

Figure 10: Read and write bandwidth in OVERFLOW for two systems.

In Figure 11, we show times for the top five MPI

functions. Most of the time is consumed by the two

functions MPI_Waitall and MPI_Gatherv, followed by

MPI_Recv and MPI_Send and the lowest time by

MPI_Bacst. For 128–256 cores, time for MPI_Waitall and

MPI_GatherV decreases, whereas time for MPI_Recv,

MPI_Send, and MPI_Bcast remains almost constant.

Figure 11: Timings for the top 5 MPI functions in OVERFLOW.

Figure 12 shows percentage time for the top 5 MPI

functions. Percentage of time taken by MPI_Recv and

MPI_Send increases as the number of cores increases. Up

to 64 cores, percentage of time taken by MPI_Send is more

than MPI_Recv and then it becomes the same for 128 and

256 cores. For higher numbers of cores, percentage time

consumed by all MPI functions increases, except for

MPI_GatherV. At 256 cores, percentage of time consumed

by MPI_Waitall is the highest. The function MPI_Waitall

waits for all communications to complete. At 256 cores,

percentage of time contributions are MPI_Waitall 36%,

MPI_GatherV 21%, MPI_Recv 17%, MPI_Send 17%, and

MPI_Bcast 9%.

Figure 12: Percentage time for the top 5 MPI functions in OVERFLOW

using MPInside.

Figure 13 shows the minimum, average, and maximum

message size of MPI_Send in the OVERFLOW

application. Message size decreases as the number of cores

increases. The average message size for MPI_Send is 348,

129, 80, and 54 KB for 16, 128, 256, and 512 cores,

respectively.

Figure 13: Message size for the MPI_Send function in OVERFLOW

using MPInside.

Figure 14 shows the minimum, average, and maximum

message size for MPI_Recv. For all three cases, size first

increases up to 32/64 cores, and then decreases up to 512

cores. Average message size for MPI_Recv is 53, 104, 144,

and 219 KB for 16, 128, 256, and 512 cores respectively.

 5

Figure 14: Message size for the MPI_Recv function in OVERFLOW

using MPInside.

Figure 15 shows the message size for MPI_Bcast. Message

size for MPI_Bcast is 1.29 MB in the OVERFLOW

application from 16 to 512 cores.

Figure 15: Message size for the MPI_Bcast function in OVERFOW using

MPInside.

Figure 16 shows the minimum, average, and maximum

message size for MPI_Gatherv. Average size of the

message gathered by MPI_Gatherv is 270 bytes for 16 to

512 cores. Since the size of the message is very small,

performance of MPI_Gatherv depends on network latency

and not on network bandwidth.

Figure 16: Message size for the MPI_Gatherv function in OVERFLOW

using MPInside.

4.2 Intel MPI Benchmarks (IMB)

In this section, we describe the performance of various

MPI functions relevant to the two applications

(MITgcmUV and OVERFLOW) used in this paper.

4.2.1 MPI_Sendrecv & MPI_Exchange

In Figure 17, we plot the performance of the

MPI_Sendrecv and MPI_Exchange benchmarks for small

messages on both systems. This plot provides insights into

the relationship between the message exchange pattern,

point-to-point message exchange algorithms, and overall

performance. On both systems, performance of the

MPI_Sendrecv benchmark is better than MPI_Exchange.

In the MPI_Exchange benchmark, each process exchanges

messages with both its left and right neighbors

simultaneously, whereas in the MPI_Sendrecv benchmark,

each process receives from its left neighbor and sends to

its right neighbor at any instant. Since the MPI_Sendrecv

benchmark involves a lesser volume of messages

exchanged in comparison with MPI_Exchange, it is natural

to expect better throughput. We see a change in slope for

both benchmarks on the two systems around a message

size of 1 KB, which is due to a change of algorithm.

Figure 17: Performance of the MPI_Sendrecv and MPI_Exchange

functions on two systems for small messages.

In Figure 18, we plot the performance of the

MPI_Sendrecv and MPI_Exchange benchmarks for large

messages on both systems. We see a peak bandwidth with

a 16 KB message (3.6 GB/s for Pleiades-NH vs. 2.6 GB/s

for Pleiades-HT), which falls drastically for larger

messages and stabilizes at 2.3 GB/s for Pleiades-NH and

2.9 GB/s for Pleiades-HT. We believe this could be due to

cache effects as large message intra-node exchanges

usually involve making a copy from the user buffer to the

shared-memory buffers. As size of the data in the user

buffer grows, we may not be able to fit it in the cache,

leading to cache misses.

 6

Figure 18: Performance of the MPI_Sendrecv and MPI_Exchange

functions on two systems for large messages.

Figure 19 shows the bandwidth of the MPI_Sendrecv

benchmark for a message size of 262 KB, which is the

average size used in MITgcmUV for the cores ranging

from 2 to 512. Bandwidth within a node (8 cores) is higher

on Pleiades-NH than on Pleiades-HT as the former uses

faster intra-node communication via QPI. Beyond 8 cores

(a node), the bandwidth on both systems is almost same

except at 512 cores where Pleiades-NH has higher

bandwidth.

Figure 19: Performance of the MPI_Sendrecv function on two systems for

a message size of 262 KB.

4.2.2 MPI_Bcast
Figure 20 shows the performance of MPI_Bcast for small

messages on the two systems. Up to a 1 KB message size,

performance on both systems is almost the same.

However, beyond that we notice there is a drastic change

of slope on both systems due to transition of algorithms

used in its implementation. In addition, performance is

better on Pleiades-NH than on Pleiades-HT.

Figure 20: Performance of MPI_Bcast on two systems for small

messages.

Figure 21 shows the performance of MPI_Bcast for large

messages on the two systems. Performance difference

between the two systems is small for 16 to 64 KB, and

then the performance gap increases as the message size

increases. Timings are (a) 64 KB: 289 vs. 481 !s, and (b) 1

MB: 5,398 vs. 8,038 !s on two systems.

Figure 21: Performance of MPI_Bcast on two systems for large messages.

Figure 22 shows the performance of MPI_Bcast for a 1

MB message size used in OVERFLOW. We see that

performance on Pleiades-NH is higher than Pleiades-HT

for both intra- and inter-node communication.

Figure 22: Performance of MPI_Bcast on two systems for a 1 MB

message.

 7

4.2.3 MPI_Allreduce

In Figure 23, we plot average time for the MPI_Allreduce

benchmark for small messages for both systems. Up to 64

bytes, performance is higher on Pleiades-HT and then from

128 bytes to 1 KB, performance is the same. From 2 KB

onwards, the performance gap continues to widen and at 8

KB, it is 40% higher (151 vs. 211 !s).

Figure 23: Performance of MPI_Allreduce on two systems for small

messages.

In Figure 24, we plot the average time for the

MPI_Allreduce benchmark for large messages for both

systems. Throughout all cores, performance on Pleiades-

NH is higher than on Pleiades-HT, and the performance

gap increases as the number of cores increases. At 16 KB,

times are 261 and 392 !s, and at 1 MB, they are 7,958 and

10,897 !s for Pleiades-NH and Pleiades-HT, respectively.

Figure 24: Performance of MPI_Allreduce on two systems for small

messages.

Figure 25 shows the performance of MPI_Allreduce on

two systems for a message size of 8 bytes used in

MITgcmUV. On both systems up to 64 cores,

performance of MPI_Allreduce is same and degrades

slowly as the number of cores increase. It may be recalled

that in MITgcmUV the average size of message broadcast

is 8 bytes. Since the message size is very small the

performance of MPI_Allreduce in MITgcmUV depends on

the network latency of the system. Network latency of

both systems increases with increasing number of cores

especially beyond 128 cores (1 IRU) and therefore

degrades rapidly.

Figure 25: Performance of MPI_Allreduce on two systems for an 8-byte

message.

4.2.4 MPI_Gatherv

Figure 26 shows the performance of MPI_Gatherv on two

systems for small messages. Up to a message size 4 KB,

performance of Pleiades-HT is much better than Pleiades-

NH, however for 8 KB message performance of Pleiades-

NH is better. The reason for this is the change in algorithm

for the implementation of MPI_Gatherv on MPT.

Figure 26: Performance of MPI_Gatherv on two systems for small

messages.

Figure 27 shows the performance of MPI_Gatherv on two

systems for large messages. Up to 64 KB, performance of

Pleiades-HT is better than Pleiades-NH, however for 128

KB to 1 MB performance of Pleiades-NH is better.

Figure 27: Performance of MPI_Gatherv on two systems for large

messages.

Figure 28 shows the performance of MPI_Gatherv on two

systems for a message 262 KB. It is worth mentioning that

 8

average message in MPI_Gatherv is 270 KB. Within a

node (8 cores), performance of Pleiades-NH is better than

Pleiades-HT—the former’s inter-socket communication is

faster due to QPI. Performance of both systems is same for

16 to 64 cores. Beyond 64 cores, performance of Pleiades-

NH is better than Pleiades-HT.

Figure 28: Performance of MPI_Gatherv on two systems for a 262 KB

message.

5. Summary and Conclusions

In this paper, we study the performance of two NASA

applications using two different analysis tools, TAU from

University of Oregon and SGI’s MPInside. We focus

particularly on the communication times analyzing the

performance of various MPI functions used in these

applications. One of the most interesting results reached by

our analysis is that relatively few functions in the MPI

library are used in the MITgcmUV and OVERFLOW

applications. The other conclusion is that write data

(solution file) is relatively small, namely 2 GB and 8 GB

for OVERFLOW and MITgcmUV, respectively, and is

performed sequentially.

There was wide variation in message lengths—the shortest

is 8-byte messages in MPI_Allreduce in MITgcmUV, and

the largest message length is 1.3 MB for MPI_Bcast in

OVERFLOW. Message length for MPI_Gatherv and

MPI_Recv used in OVERFLOW is 270 bytes and 100 KB,

respectively. Average message length for MPI_Recv and

MPI_Bcast used in MITgcmUV is 6 KB (actually 3 to 9

KB) and 225 KB. Overall, the conclusion that can be

drawn is that inter-core communication for hardware and

software must be optimized for both short and long

messages. This paper shows that a large percentage of

messages, for these applications, are not extremely long.

We used two different tools for analyzing the performance

of the MPI benchmarks and the two applications: SGI’s

MPInside and TAU from University of Oregon. TAU has

more extensive, sophisticated features and a nice visual

interface. However, it does have a steep learning curve and

to use it effectively, it is helpful to have support and

training. On the other hand, MPInside is easy to use for the

basic MPI functions but needs experience and training for

collectives. Also, MPInside needs a better user interface

and more features such as support to calculate the average

message sizes.

REFERENCES

[1] Intel 5400 Chipset - Technical Documents,

www.intel.com/Products/Server/Chipsets/5400/5400-

technicaldocuments.htm

[2] SGI Altix ICE,

http://www.sgi.com/products/servers/altix/ice/configs.

html

[3] Intel Microarchitecture (Nehalem),

http://www.intel.com/technology/architecture-

silicon/next-gen/

[4] “An Introduction to the Intel® QuickPath Interconnect,”

Document Number: 320412, January 2009.

[5] InfiniBand Trade Assoc., www.infinibandta.org/home

[6] Message Passing Toolkit (MPT) User’s Guide,

http://techpubs.sgi.com/library/manuals/3000/007-

3773-003/pdf/007-3773-003.pdf

[7] HPCToolkit, http://www.hipersoft.rice.edu/hpctoolkit/

[8] IMP, http://ipm-hpc.sourceforge.net/

[9] KOJAK, http://icl.cs.utk.edu/kojak/

[10] mpiP, http://sourceforge.net/projects/mpip

[11] PAPI, http://icl.cs.utk.edu/papi/

[12] PDT (Program Database Toolkit),

 http://www.cs.uoregon.edu/research/pdt

[13] SvPablo, http://www.renci.org/projects/pablo.php

[14] TAU Performance System®, http://tau.uoregon.edu

[15] MPInside Reference Manual 3.01, SGI, 2010.

[16] Scalasca (Scalable Performance Analysis of Large-

Scale Applications), http://www.fz-

juelich.de/jsc/scalasca/

[17] OpenSpeedShop:

http://techpubs.sgi.com/library/tpl/cgi-

bin/browse.cgi?coll=0650&db=bks&cmd=toc&pth=/S

GI_Developer/SShop_UG

[18] Vampir - Performance Optimization,

http://www.vampir.eu

[19] Paraver, http://www.bsc.es/plantillaA.php?cat_id=485

[20] Jumpshot, http://www-

unix.mcs.anl.gov/perfvis/software/viewers/

[21] Vtune,
http://www.intel.com/software/products/vtune/vlin/index.ht

m

[22] PerfSuite, http://perfsuite.ncsa.uiuc.edu/

[23] OVERFLOW-2, http://aaac.larc.nasa.gov/~buning/

[24] ECCO: Estimating the Circulation and Climate of the

Ocean, www.ecco-group.org/

[25] Intel MPI Benchmarks: Users Guide and Methodology

Description, Intel GmbH, Germany.

