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Abstract—In cognitive radio (CR) networks, the ability to cap-
ture a frequency slot for transmission in an idle channel has a
significant impact on the spectrum efficiency and quality of service
(QoS) of a secondary user (SU). The radio frequency (RF) front-
ends of an SU have limited bandwidth for spectrum sensing with
the target frequency bands dispersed in a discontinuous manner.
This results in the SU having to sense multiple target frequency
bands in a short period of time before selecting an appropriate
idle channel for transmission. This paper addresses this technical
challenge by proposing a selective opportunistic spectrum access
(SOSA) scheme. With the aid of statistical data and traffic pre-
diction techniques, our SOSA scheme can estimate the probability
of a channel appearing idle based on the statistics and choose the
best spectrum-sensing order to maximize spectrum efficiency and
maintain an SU’s connection. By means of doing so, this SOSA
scheme can preserve the QoS of an SU while improving the system
efficiency. In contrast to previous work, we consider the practical
issues encountered by an SU in a wireless environment, such
as discontinuous target frequency bands and limited spectrum-
sensing ability. We examine the spectrum-sensing scheme in terms
of packet loss ratio (PLR) and throughput. The simulation results
show that the proposed SOSA scheme can decrease the probability
of packet losses in the discontinuous spectrum environment and
improve the spectrum efficiency.

Index Terms—Cognitive radio (CR), spectrum sensing, traffic
prediction.

I. INTRODUCTION

CURRENT radio systems employ inflexible spectrum al-
location strategies, resulting in inefficient spectrum uti-

lization [1]. Cognitive radio (CR), which has attracted the
attention of many researchers across the globe, is a novel
technology aimed at more efficiently utilizing the spectrum [2].
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CR technology enables a secondary user (SU) with cognitive
access ability to use the idle channel resources of the primary
radio systems. This idle channel resource, which is temporarily
unoccupied by the primary user (PU), can be used by the SU
to exchange information, provided it does not interfere with the
smooth communication of the primary system [3], [4].

Current research in CR focuses on solving two main chal-
lenges, namely, 1) the avoidance of interference to the normal
communication of primary systems and 2) the performance
optimization of SU’s transmission. For the former challenge,
several methods for accurate signal detection have been pro-
posed, including matched filter detection, energy detection, and
cyclostationary feature detection [3]. To combat the negative
effect caused by fading to the transmitter detection accuracy,
a novel detection method based on CR user cooperation is
proposed in [5] and [6]. As far as the SU’s performance is con-
cerned, SUs within the CR system should intelligently search
and exploit vacant channel resources via dynamic spectrum
access. Nevertheless, SUs do not have the ability to gather data
from the primary systems; hence, they can only obtain informa-
tion regarding the channel status of different frequency bands
using periodic spectrum detection, which in turn consumes a
nonnegligible length of time [11].

With regard to the deployment of wireless access networks
in practice, SUs will be present in an environment comprising
numerous wireless access networks spanning a wide spectrum
range in a discontinuous manner [1]. Consequently, the SU is
likely to lose some transmission opportunities made available
from vacant channels, unless it can support spectrum sensing
over a large frequency range spanning several gigahertz. State-
of-the-art radio frequency hardware capable of sensing weak
signals over a large dynamic range, such as multispeed analog-
to-digital converters with a high resolution, wideband antennas,
and highly linear power amplifiers, are still subject to many
application constraints [3]. Thereby, an SU will have limited
ability to carry out spectrum sensing and access, leading to an
overall decrease in throughput.

In this paper, we propose a generic selective opportunis-
tic spectrum access (SOSA) framework to carry out intelli-
gent and selective spectrum sensing and access. This SOSA
framework enables an SU to sense and select target spectrum
bands in an optimum order while achieving quaity-of-service
(QoS) requirements and maximizing spectrum efficiency. This
is achieved with the aid of traffic prediction, which allows an
SU to determine the optimum channel-sensing order by taking
into account the probability of a channel appearing idle in the
next time slot and its QoS requirements. In this paper, we also
define the criteria and devise a theoretical model for evaluating
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system performance under the application of prediction-based
spectrum sensing and access. We derive the theoretical upper
bound for an SU’s system performance by employing traffic
prediction, which in turn could serve as a performance eval-
uation criterion for different traffic prediction methods in CR
networks.

The rest of this paper is organized as follows: In Section II,
the related work on traffic prediction and its application in CR
are summarized. In Section III, the proposed generic intelligent
spectrum sensing cycle is described, and the system parameters
for our research scenario, the PU traffic model, and the SOSA
scheme are defined. Section IV examines the proposed selective
spectrum sensing and access strategy in detail. In Section V, the
performance evaluation models are presented, and the SOSA
scheme performance is investigated. The simulation results are
analyzed in Section VI. Finally, the conclusions are given in
Section VII.

II. RELATED WORK

The ability to predict the variation of parameters reflect-
ing network conditions, such as bandwidth, interference level,
bit rate, and bit error rate, in future time intervals is a key
challenge in network management and control. As a result,
traffic prediction is becoming increasingly important. Previous
work has focused on improving network efficiency and QoS
performance through traffic control and avoidance of traffic
congestion. Fuzzy logic and linear autoregressive prediction
algorithms have been implemented for this case [14], [15].

CR technology enables users to share the available spectrum
in an opportunistic manner. Current research in CR networks
focuses on optimizing specific parameters, such as link outage
probability and delay, rather than capturing transmission op-
portunities at the physical layer to maximize the overall system
throughput. As far as spectrum handoff is concerned, [8] and [9]
analyze the probability of link maintenance during a spectrum
handoff by employing different spectrum handoff schemes or a
different number of redundant channels, respectively. In [10], a
protocol is proposed to support link maintenance during a spec-
trum handoff for orthogonal frequency-division-multiplexing-
based CR systems. In recent years, several traffic-prediction
methods have been introduced into CR technology. Reference
[13] presents different prediction rules for different types of
ON/OFF traffic models with the aim of minimizing the number
of handovers between channels, as well as the associated delay.
In [14], an autoregressive spectrum hole prediction model is
presented, which adopts an AR-2 model with a Kalman filter to
reduce the collisions between PUs and SUs. In [15], a proactive
spectrum-access approach is introduced, which differs from the
existing reactive sense-and-avoid approaches in that channel
histories are utilized to make predictions regarding future spec-
trum conditions. Furthermore, the idea of predictive dynamic
spectrum access is also explored and developed in [15], which
is then implemented in [16] using cyclostationary detection and
hidden Markov models.

Although several models that employ traffic prediction have
been proposed, none of them consider traffic prediction and
spectrum sensing in conjunction in a practical heterogeneous

Fig. 1. Generic selective spectrum-sensing and access cycle.

wireless network environment where SUs have limited sensing
and access ability. Furthermore, there is still no unified theoret-
ical model for evaluating system performance when proactive
spectrum selection and sensing are employed.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Generic Selective Spectrum-Sensing Cycle

In [4], the SU is defined as a machine that can learn from the
surrounding environment in an intelligent manner and adjust
its transmission parameters to meet certain objectives, such as
link reliability and transmission rate, in the light of the learning
outcome. We can divide the CR entire sensing and access
process into four parts: 1) sniffing; 2) learning; 3) decision; and
4) adaption.

1) Sniffing stage—During this stage, relevant information
concerning the surrounding wireless access networks is
collected and stored, such as bandwidth, traffic operation,
interval duration, and channel quality.

2) Learning stage—This phase involves the analysis of sta-
tistical data, the modeling of PU traffic, and the esti-
mation of parameters serving as inputs to the spectrum
sensing and access strategy.

3) Decision stage—In this stage, the spectrum sensing order
is determined, as well as the access scheme for the next
time unit, depending on the values of the input parameters
obtained from the learning stage.

4) Adaption stage—This final phase involves adjusting the
transmitter and receiver parameters according to the
outputs acquired from the spectrum-sensing and access
strategy.

The generic spectrum-sensing and access framework, which
is based on the foregoing four operations, is illustrated in Fig. 1.
First, using a sniffing process, the SU collects, stores, and
updates information regarding the usage of target frequency
bands. During the learning stage, the SU will estimate the PU
traffic pattern and the relevant traffic parameters with the aim of
predicting the PU traffic trend for a future time interval. The de-
cision stage is where the SU will determine the optimum sens-
ing order based on QoS requirements, the probability of each
channel appearing idle in the next time interval, and the trans-
mission capability of each frequency band under consideration.
The spectrum sensing and access operation will take place



YUAN et al.: PERFORMANCE ANALYSIS OF SOSA WITH TRAFFIC PREDICTION 1951

during the adaptation phase based on the outcome obtained
from the decision phase. This adaptation may involve tuning
transceiver parameters to adapt to the instantaneous channel
variations. In our work, we assume that spectrum overlay is the
only access method available to an SU, unless stated otherwise.
Moreover, taking into account that, with spectrum overlay, the
transceiver can be configured in a more straightforward fashion
compared with the underlay method, we will also assume that
the SU’s transceiver transmits data with a fixed power, which
will not cause interference to the PUs operation in the licensed
spectrum.

B. System Architecture and Notation

We consider a distributed slotted wireless access environ-
ment where the multiple frequency bands span a wide spectrum
range. In our work, these frequency bands are defined as pri-
mary channels and are independent of each other. All primary
channels serve as target-sensing channels for an SU, with some
of them acting as potential access channels for an SU in a
specific time slot. The following notations are used throughout
the remaining sections of this paper:

N total number of target frequency bands or primary chan-
nels that can be accessed by the SU;

K random variable representing the number of channels
that are idle in a time slot, where 0 ≤ K ≤ N ;

i time slot index in the primary system;
wi

n channel state of the nth channel at time slot i. Wn(i)=1
means that the channel is occupied by a PU, namely ON
(Busy) state; Wn(i) = 0 means that the channel is not
being used by a PU, namely OFF (Idle) state;

Ts time slot length in the primary system;
Ci

n transmission capacity of the target SU on the nth pri-
mary channel in the ith time slot;

ts average sensing time per primary channel;
th average handoff time between two primary channels;
M random variable representing the number of channels

that are assumed to be busy in a time slot but are in fact
idle, where 0 ≤ M ≤ K;

L random variable representing the number of channels
that are assumed to be idle in a time slot but are in fact
busy, where 0 ≤ L ≤ N − K;

R target transmission rate of an SU;
αn mean value of the OFF-period for the nth primary

channel;
βn mean value of the ON-period for the nth primary

channel;
S spectrum sensing time threshold;
Pe average probability of error associated with the predictor

of an SU;
Pn,i

off predicted probability of the nth primary channel appear-
ing idle in the ith time slot;

Pn,i
on predicted probability of the nth primary channel appear-

ing busy in the ith time slot.

The following two sections present the design assumptions
and the implementation issues associated with the PU and SU
systems, respectively.

C. PU Traffic Model

PU traffic can generally be modeled in one of two distinct
ways: using either a deterministic model or a stochastic model,
depending on the traffic pattern of the primary channels under
consideration. In the current CR research, the traffic activity
for PUs operating on a licensed frequency band is modeled
as an alternating renewal process consisting of busy and idle
periods [3], [11], which correspond to the stochastic model.
An example of this alternating renewal process is illustrated in
Fig. 2(a). We use binary digits 0 and 1 to accordingly denote
the idle state (OFF) and the busy state (ON) for each primary
channel in every time slot. In the aforementioned literature, the
ON and OFF periods of the primary channels are independent
identically distributed (i.i.d.), where the alternating renewal
process is modeled as a two-state birth–death process with
death rate αn and birth rate βn. The lengths of the OFF and
ON periods follow an exponential distribution with mean value
equal to αn and βn, respectively [11].

D. SU Spectrum Sensing and Access

The spectrum-sensing procedure is indispensable to an SU
since it entails two important functions that allow an SU to ob-
tain access to primary systems. The first function validates the
real state of the primary channels to be accessed to avoid inter-
ference. The second function involves collecting long-term us-
age data with regard to the activity taking place on the primary
channels to aid traffic prediction. Existing spectrum sensing
technologies cannot achieve faultless spectrum detection, and
undetected errors degrade system performance [12]. However,
physical layer issues are beyond the scope of this paper and,
hence, are not dealt with in our work. Instead, we assume that
the sensing results generated by the spectrum sensor of an SU
are accurate enough to establish the state of a primary channel.

In each time slot, the SU senses all the primary channels
one by one and transmits its data on the first idle channel that
becomes available. Following transmission, the SU continues to
sense the remaining primary channels to collect their channel
state, which will subsequently be used to predict the channel
states in the next time slot. The detailed channel-sensing and
access process is illustrated in Fig. 2(b). It is evident that the
overall time required to sense N primary channels should not
exceed the length of a time slot Ts; otherwise, the SU will not
be able to learn the states of all primary channels, making it
impossible to predict the channel state for the next time interval.

IV. SELECTIVE OPPORTUNISTIC SPECTRUM ACCESS

In this section, we formulate our SOSA framework by pre-
senting our theoretical models evaluating SU system perfor-
mance under constant and variable bit rate (CBR and VBR)
traffic.

The wireless access environment under consideration con-
sists of N primary channels, which are indexed as 1, 2, . . . , N .
These N channels form a primary channel set Φ, which con-
forms to no specific sequence criteria. The transmitter can
access any of these channels without having to inform the
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Fig. 2. Example of (a) the renewal process for a primary system and (b) the SU sensing process in a time slot.

primary system beforehand. Operations are carried out in the
discrete time domain, which is indexed with i. At the start of
each time slot, the SU needs to determine the sensing order by
jointly considering the transmission capacity of each channel
and its probability of appearing idle in the next time slot. These
operations will take place during the learning and decision
stages.

The target SU has a transmission capacity Ci
n on the nth

primary channel in time slot i. We have defined the variable
wi

n to indicate the state of the nth primary channel in time
slot i taking binary values 0 or 1. In this case, 0 represents
an idle primary channel, whereas 1 represents a busy primary
channel. If the SU finds an idle channel in time slot i, then
the number of information bits in this time slot is I(i). This
is the theoretical product of an SU’s channel capacity with its
effective transmission time in one time slot having subtracted
the time consumed for spectrum sensing and handoff. To protect
a PU’s signal, the SU is not permitted to transmit on a primary
channel before sensing and detecting its real state.

We assume that the SU obtains the accurate channel state
information vector wi of N primary channels, where wi =
[wi

1, w
i
2, . . . , w

i
N ], and wi ∈ W , where W is the set of all

possible primary channel state combinations. We also assume
that the SU knows its transmission rate on the primary channels;
in other words, the SU knows the channel capacity vector Ci in
time slot i. This information can be collected via the sniffing
process that takes place in each time slot. During the learning
stage, the SU will predict the primary channel states for time
slot i + 1 based on the most recent channel state vector wi

and will update the channel history record accordingly. The SU
can adjust the relevant parameters of its predictor to improve
the accuracy of the results obtained; however, this depends on
the initial design requirements outlined for the predictor. The
prediction result can be represented by the vector ŵi+1, which
takes into account the probability of each primary channel being
idle Pn,i+1

off or occupied Pn,i+1
on in time slot i + 1. Without

loss of generality, we can arrange the index of the N primary
channels according to their probability of being idle Pn,i+1

off in
time slot i + 1 such that P 1,i+1

off ≥ P 2,i+1
off ≥ · · · ≥ PN,i+1

off ≥
0. In contrast to previous work, the SU in our case does not

predict the length of time for which a channel will remain
idle. Taking such a criterion into account for the transmission
of an SU’s data would lead to a higher probability of outage
compared with a slotted system scenario where the time unit is
considered to be fixed. We formulate this process as

L : F(wi,α,β) RN−→ ŵi+1, n ∈ Φ,wi ∈ W (1)

where L indicates the learning process, F represents the pre-
diction method used in the learning process, and RN is the
traffic record of all N primary channels. The data format for
this record will be designed according to the prediction method
employed. α and β are the vectors for the death and birth rates,
respectively, of the periods for all primary channels. The SU
has to arrange the spectrum-sensing sequence of decreasing
probability of a channel appearing idle while considering trans-
mission requirements and sensing efficiency at the same time.
This procedure can be modeled as follows:

D : G(ŵi+1,Ci+1,ψ) −→ U ∗, n ∈ Φ (2)

where ψ is the set of transmission requirements for the SU, G
is the ordering strategy used by the SU to determine the sensing
sequence for the primary channels, which jointly considers the
transmission requirements of the SU and the sensing efficiency,
and U ∗ is the optimum spectrum-sensing order acquired during
the decision phase. The following pane summarizes the steps of
our proposed spectrum sensing cycle:

SOSA Scheme
1) The SU retrieves the channel statistics regarding the state

of each obtained through sniffing and based on the predictor
requirements defined at the start of time slot i + 1.

2) The SU predicts the probability of each channel appearing
idle or occupied in time slot i + 1 using the predefined predic-
tion model.

3) The SU uses the predetermined ordering strategy to
arrange the sensing sequence for time slot i + 1.

4) The SU begins to sense primary channels according to the
sensing order generated in step 3).
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5) The SU locks on to the first idle channel that be-
comes available, provided that there are no special transmission
requirements.

6) The SU continues to sense the remaining primary chan-
nels, finally recording the states of all N primary channels in
time slot i + 1.

7) If deemed necessary, then the SU adjusts the predictor
parameters according to the outcome obtained from the sniffing
stage in the last time slot.

8) The SU repeats these steps until it reaches the last time
slot.

For the purpose of performance evaluation and comparison,
we adopt a relatively simple but effective channel-ranking
method. This method takes the long-term statistical traffic
characteristics as the critical input parameters to the learning
process formulated in (1). The two input parameters α and β
are the vectors corresponding to the mean values of the OFF and
ON periods of all primary channels, respectively. These mean
values are obtained using the maximum-likelihood estimation
method, which in turn uses statistical data relevant to the
channel state of all primary channels. For simplicity, during the
learning process, the channel state vector wi is not considered
in the channel-state-prediction process. The vector ŵi+1, which
represents the probability of a channel being idle in the next
time slot, is determined by the channel’s long-term statistical
characteristics. If we denote pn as the probability of the nth
primary channel appearing idle in the next time slot, then pn is
given by

pn =
αn

αn + βn
(3)

where 1 ≤ n ≤ N . As channel-state statistical data are gradu-
ally collected over the period of time, the mean lengths of the
ON and OFF periods, as well as the probability of each primary
channel appearing idle in the next time slot, will be updated
accordingly.

Equation (2) indicates that the channel capacity and the
transmission requirements of the SU will be taken into account
during the decision procedure. In our work, we assume that all
primary channels have the same transmission capacities C0 and
that their channel-state variation is slow enough so that it does
not distort the results obtained from our theoretical evaluation
model. Hence, Ci+1 in (2) is simplified into a constant vector.
The input parameter ψ in (2) reflects the SU’s transmission
requirements and should be considered in conjunction with the
transmission capacity. The optimum channel-sensing sequence
indicated by U ∗ should be arranged in order of decreasing
probability according to the corresponding magnitudes defined
in vector ŵi+1.

V. PERFORMANCE ANALYSIS

In the previous sections, we looked at the challenges encoun-
tered by an SU when wishing to capture a transmission oppor-
tunity. In this section, we will evaluate system performance in
terms of two key performance metrics, namely, packet loss ratio
(PLR) and throughput. In this paper, the transmission quality of

an SU is evaluated under CBR and VBR traffic in terms of PLR
and throughput, respectively. In the following two sections, we
derive the theoretical models to evaluate the performance of CR
systems with and without traffic prediction. We determine the
system performance upper bound under the assumption that the
SU has limited spectrum-sensing and access capability and is
operating in a wireless environment, which consists of discon-
tinuous target frequency bands. This performance upper bound
could in turn be used to compare different traffic prediction and
spectrum-sensing methods.

In Section III, we defined the random variable K as the
number of idle primary channels in one time slot i. Hence,
the number of occupied primary channels in one time slot is
N − K. Since all the primary channels are i.i.d., it follows
that each channel has the same probability of being idle, which
is denoted by P . Therefore, the random variable ki follows a
binomial distribution with a mean value equal to NP .

A. PLR

For CBR traffic, the target SU needs to transmit R informa-
tion bits in one time slot. We define the packet loss as the event
during which an SU cannot find an idle channel for transmission
that has already sensed S primary channels, where S is the
sensing threshold. In other words, S is defined as the maximum
number of channels the SU is permitted to sense to find a va-
cant channel. This threshold is determined by the transmission
capacity of the target primary channel to be accessed by the
SU, as well as the number of information bits that need to
be transmitted in one time slot [19]. S is given by

S =
⌊

Ts − R/C0

ts + th

⌋
(4)

where 1 ≤ S < N .
1) Spectrum Sensing Without Traffic Prediction: Without

the aid of traffic prediction, capturing a transmission opportu-
nity is totally dependent on the traffic activity taking place on
each primary channel. Since the SU needs to transmit its data
at a CBR, packet loss will occur when the SU cannot locate an
idle primary channel for transmission within the sensing time
threshold S. We assume that there are K idle primary channels
in time slot i. The probability that the SU cannot find an idle
channel from K idle primary channels is given by

P i,K
wo =

S∏
j=1

(
1 − K

N − j + 1

)
, 0 ≤ K ≤ N. (5)

This is the instantaneous packet loss probability for time
slot i. As earlier defined, K is a random variable following a
binomial distribution with mean value NP and represents the
number of idle primary channels in time slot i. Hence, the aver-
age probability of packet loss for an SU in time slot i is given by

P i
wo =

N∑
k=0

Pr{Ki = k}
S∏

j=1

(
1 − Ki

N − j + 1

)

=
N∑

k=0

(
N

k

)
P k(1−P )N−k

S∏
j=1

(
1 − k

N − j + 1

)
. (6)
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TABLE I
PACKET LOSS CONDITION ANALYSIS IN SPECTRUM SENSING WITH

TRAFFIC PREDICTION

For the case where different primary channels have different
traffic characteristics, the average PLR taking into account the
sensing time threshold S is given by

P ave
wo =

S∏
n=1

(1 − pn), 1 ≤ S ≤ N. (7)

2) Spectrum Sensing With Traffic Prediction: In this sce-
nario, the prediction result obtained for the next time slot
is used to arrange the sensing order. In a similar fashion to
the case without traffic prediction, the SU must find an idle
primary channel within the sensing time threshold S to prevent
packet loss. Since a perfect predictor does not exist in practice,
incorrect prediction results will give rise to errors that could
lead to packet loss. We can identify three different scenarios in
relation to packet loss.

1) No packet loss takes place.
2) Packet loss may occur.
3) Packet loss will definitely occur.
The three foregoing cases are summarized in Table I. From

Table I, we can see that packet loss could occur as a re-
sult of the simultaneous interaction between multiple random
variables. Packet loss may take place under two conditions,
i.e., (K ≤ N − S,M < K,K − M + L > S) and (K ≤ N −
S,M = K,L < S), whereas it will definitely occur if the con-
dition (K ≤ N − S,M = K,L ≥ S) is met. The number of
primary channels predicted to be idle in the next time slot is
K − M + L. Their joint probability density function (pdf) has
a tight relationship with the probability of packet loss taking
place. We define the joint pdf of these three random variables as
VK,M,L(k,m, l). For the purpose of deriving a unified formula
for evaluating different prediction methods, we define Pe, with
Pe > 0, as the average probability that the SU will predict the
state of a primary channel in the next time slot incorrectly. For
a detailed derivation of VK,M,L(k,m, l), see the Appendix.

1) K ≤ N − S, M = K, L ≥ S: According to the joint pdf
GK,M,L(k,m, l), the probability for this case is given by

P i
w,1 = VK,M,L(N − S,N − S,L ≥ S). (8)

2) K ≤ N − S, M = K, L < S: For this case, the differ-
ence between the number of primary channels L (pre-
dicted incorrectly as being idle) and the sensing time
threshold S determines the probability of packet loss
taking place and is given by

P i
w,2 =VK,M,L(N−S,N−S, S)

S−L∏
j=1

(
1− K

N−L−j+1

)
(9)

where K follows a binomial distribution with mean value
(N − S)P and has a numerical range [0, N − S].

3) K ≤ N − S, M < K, K − M + L > S: For this case,
the difference between the number of primary channels
predicted to be idle in the next time slot and the sensing
time threshold S determines the probability of packet
loss taking place. If this difference is greater or equal to
the number of primary channels that are idle in the next
timeslot, which is denoted by L ≥ S, then it is likely that
packet loss will occur. In a similar fashion, the probability
of incorrect prediction is determined by the number of
channels that have been predicted as being idle in the
next time slot when in actual fact they are busy. There-
fore, the probability of packet loss in this third case is
given by

P i
w,3 = VK,M,L(N − S,K,L ≥ S)

·
S∏

j=1

(
1 − K − M

K − M + L − j + 1

)
(10)

where K follows a binomial distribution with mean value
(N − S)P and has a numerical range K is [0, N − S].
In summary, the PLR for an SU carrying out spectrum
sensing with traffic prediction is given by

P i
w =

3∑
j=1

P i
w,j . (11)

In this situation, where traffic prediction is used, we assume
that the SU will always sense the channels in an optimum order.
In other words, the primary channel to be sensed first will
be the one with the highest statistical average probability of
appearing idle in the next time slot with the remaining channels
arranged in order of decreasing probability and renumbered ac-
cordingly from 1 to N , where the primary channel with index 1
is the channel with the highest statistical average probability
of being idle and will be sensed first. Defining Pe as the
predictor’s average probability of error, the average PLR for an
SU employing traffic prediction is given by

P ave
w =

S∏
j=1

(1 − pn + Pepn). (12)

3) Performance Upper Bound: In view of the fact the per-
fect prediction is not feasible in practice, it is obvious that
the real state of all the primary channels at a future point in
time cannot be determined. Nevertheless, if we assume that the
SU has precognition ability, meaning it has perfect knowledge
of the state of each primary channel in the next time slot,
then no time will be spent to carry out spectrum sensing and
handoff. Hence, for this case, packet loss will occur if and only
if there are no idle channels available in the time slot under
consideration. Based on the foregoing analysis, the PLR of an
SU with precognition ability is given by

Ppre =
N∏

n=1

αn

αn + βn
=

N∏
n=1

(1 − pn). (13)
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Since the N primary channels are i.i.d., the packet loss proba-
bility is (1 − P )N .

B. Throughput

In Section III, we defined the channel-transmission capacity
of an SU in one time slot. In this section, we analyze and model
the throughput of an SU considering the same three scenarios
identified in the previous section, which examined the PLR.
Contrary to the PLR scenarios where the sensing threshold S
was the key parameter, in the following cases, we assess how
fast an SU can locate the first idle primary channel. The corre-
sponding time required for this operation, which is independent
of S, directly influences the throughput performance. Hence, K
is still defined as the number of idle primary channels in time
slot i; however, the number of channels the SU has to sense
before arriving at the first idle channel is denoted by γK

i , where
(1 ≤ γK

i ≤ N). Consequently, the throughput of an SU in time
slot i is given by

I(i) = C0

[
Ts − γK

i (ts + th)
]
. (14)

1) Spectrum Sensing Without Traffic Prediction: In this sit-
uation, where traffic prediction is not employed, the number
of idle primary channels and their distribution in a time slot
determine the throughput of an SU in this time slot. We assume
that there are Ki idle primary channels in time slot i. The
probability of finding the first idle primary channel after sensing
j primary channels is

P i,K
wo =

j−1∏
m=1

(
1− Ki

N−m+1

)
Ki

N−j+1
, 1≤j≤N−K+1.

(15)

Similar to the previous section, Ki is a random variable
following a binomial distribution with mean value NP . The
average sensing time required to hit upon the first idle primary
channel in time slot i, which is measured in terms of the number
of channels sensed before the first idle channel is found, is
given by

γ̄i
wo =

N∑
k=0

Pr{Ki = k} ·
N−K+1∑

j=1

j · P i,K
wo

=
N∑

k=0

N−k+1∑
j=1

(
N

k

)
P k(1 − P )N−k jk

N − j + 1

·
j−1∏
m=1

(
1 − k

N − m + 1

)
. (16)

Therefore, we can substitute (16) into (14) and express the
instantaneous throughput of an SU in time slot i as

Īi
wo =C0

⎧⎨
⎩Ts−

⎡
⎣ N∑

k=0

N−k+1∑
j=1

(
N

k

)
P k(1−P )N−k jk

N−j+1

·
j−1∏
m=1

(
1− k

N−m+1

)⎤
⎦ (ts+th)

⎫⎬
⎭ . (17)

Based on (17), the average throughput can be expressed as

Īwo = C0 [Ts − γ̄wo(ts + th)]

−
N∏

i=1

(1 − pi) · C0 [Ts − N(ts + th)] . (18)

where γ̄wo represents the average sensing time and can be
computed using the following formula:

γ̄wo =
N∑

i=0

i
i−1∏
j=1

(1 − pj)pi. (19)

2) Spectrum Sensing With Traffic Prediction: Once again,
when traffic prediction is employed, the SU determines the opti-
mum spectrum sensing sequence allowing the primary channels
that have a high probability of appearing idle in the next time
slot to be given a higher priority for sensing. Each channel is
associated with the probability of being idle Pn,i

off , as well as the
probability of being busy Pn,i

on , in the next time slot. To evaluate
the instantaneous throughput of an SU in time slot i, we require
the average spectrum sensing time γ̄w. The probability that
an SU locates the first idle primary channel having sensed j
primary channels in one time slot with K idle primary channels
is given by

P i,K
w =

j−1∏
m=1

Pm,i
on P j,i

off , 1 ≤ j ≤ N − K + 1. (20)

Equation (20) indicates that P i,K
w depends on Pn,i

on and Pn,i
off

whose accuracy varies according to the predictor’s capability.
Evidently, different prediction methods would yield different
prediction results for the same statistical data. Taking Pe to be
the average probability of error as before, where Pe > 0, (20)
can be rewritten as

P i,K
w = (1 − Pe)P j−1

e , 1 ≤ j ≤ N − K + 1 (21)

with the average sensing time of an SU using traffic prediction
given by

γ̄w =
N∑

k=0

Pr{K = k} ·
N−k+1∑

j=1

j · P i,k
w

=
N∑

k=0

N−k+1∑
j=1

(
N

k

)
P k(1 − P )N−kj(1 − Pe)P j−1

e . (22)

Substituting (22) into (14), we obtain the average throughput
of an SU, which is expressed as

Īw = C0

{
Ts −

[
N∑

k=0

N−k+1∑
j=1

(
N

k

)
P k(1 − P )N−kj(1 − Pe)

· P j−1
e

]
(ts + th)

}
. (23)

3) Performance Upper Bound: The throughput of an SU
with precognition ability, implying the same definition as that
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given in the section for PLR, is expressed as

Ipre = C0Ts

[
1 −

N∏
n=1

(1 − pn)

]
. (24)

Since all primary channels are i.i.d., the throughput of an SU
with precognition ability can be written as C0Ts(1 − PN ).

VI. SIMULATION RESULTS AND ANALYSIS

In the previous sections, we introduced and developed our
proposed selective opportunistic spectrum-sensing and access
cycle. In this section, we present the corresponding simula-
tion results, which were generated using MATLAB, as well
as the numerical results obtained from theory. All primary
channels have the same traffic model but with different traffic
characteristics. The lengths of the idle and busy channel state
periods follow an exponential distribution. A datasheet was
implemented to record the past and current primary channel
states using a discrete time-domain series. In our simulation, we
randomly generate the birth and death rates for each primary
channel and generate sufficient traffic records to enable us to
estimate the average probability of each primary channel being
idle. The magnitudes of these probabilities are then used to
determine the optimum spectrum-sensing order.

A. PLR Analysis

In this section, we compare the PLRs for the three scenarios
identified earlier, namely, the spectrum-sensing cases with and
without traffic prediction, as well as the system performance
upper bound. Packet loss occurs when the SU fails to find an
idle channel during the sensing time threshold S.

In Fig. 3, we compare the results under varying threshold
values for a fixed number of primary channels. In Fig. 3, the
curve with the lowest PLR represents the case where the SU has
precognition ability, which is impossible to achieve in practice.
Nevertheless, this curve could be used as the criterion for eval-
uating different prediction methods. We also find that this curve
representing the system’s performance upper bound tends to
zero. This is due to the sporadic event that all N primary chan-
nels are busy in that time slot. The curves corresponding to the
case without traffic prediction almost overlap with each other,
indicating that our simulation results are in accordance with
those obtained from theory. This implies that the proposed the-
oretical model is highly accurate for evaluating the CR system
performance for an SU operating in a discontinuous spectrum
environment with limited spectrum-sensing and access ability.

The middle curve marked with circular points represents the
PLR when the SU uses traffic prediction. In our simulation,
we adopt a relatively simple prediction and channel-ordering
method. The probability of a primary channel being idle is the
sole parameter used to determine the sensing order. This curve
corresponding to the case with traffic prediction should always
lie between the curve representing the lowest PLR and the curve
corresponding to the case where the sensing order remains
unaltered. Employing more sophisticated prediction techniques
would yield significant performance gains.

Fig. 3. PLRs for an increasing threshold value (under a fixed number of
primary channels; N = 20).

Fig. 4. PLRs for an increasing number of primary channels (under a fixed
sensing time threshold value; S = 4).

Finally, we see that the PLR decreases for an increasing
threshold value. This is due to the fact that the probability of an
idle channel being available increases as we increase the time
given to an SU to sense the primary channels. On the contrary,
the system performance upper bound remains constant at all
times since it is independent of the sensing time threshold S.

Similar trends were obtained when the number of primary
channels was increased from 10 to 30 under a fixed threshold
value. The results are illustrated in Fig. 4. Once again, the two
curves representing the simulation and theoretical results for
the case where traffic prediction is not employed almost overlap
with each other. The curve corresponding to the situation where
the SU uses traffic prediction lies in between the other curves,
in a similar manner to that in Fig. 3.

As can be seen in Fig. 4, the PLR for the case without
traffic prediction does not improve as we increase the number
of available primary channels. This is due to the fact that the
sensing order in this scenario remains unaltered, meaning that
the channels will not be arranged in such a way that would
allow those with a higher probability of appearing idle to be
sensed first during the spectrum sensing cycle. Hence, even
if the total number of primary channels increases with more
transmission opportunities becoming available in each time
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Fig. 5. Average throughput for an increasing number of primary channels
(under a fixed sensing and handoff time; ts + th = 0.05).

slot, the transmission opportunities for the first S primary
channels will never change if the SU does not employ traffic
prediction. This is clearly demonstrated in Fig. 4. On the other
hand, the PLR for the other two cases will decrease as a result
of finding transmission opportunities earlier.

B. Throughput

In this section, we evaluate the average throughput in each
timeslot with the number of primary channels and the time
consumed for spectrum sensing and handoff acting as the input
parameters. The results obtained follow the same trend as those
presented in the previous section.

Fig. 6 presents the throughput results for an increasing num-
ber of primary channels with the time required for spectrum
sensing and handoff maintained fixed. As expected, the theo-
retical maximum throughput can be achieved if the SU has the
ability of precognition, whereas the second-best performance
is achieved in the case where traffic prediction is employed by
the SU.

Fig. 5 illustrates that throughput increases for all four cases
as we increase the number of primary channels. This is due
to the fact that an increase in the total number of primary
channels will lead to an increase in the available transmission
opportunities irrespective of whether traffic prediction is used
or not. Fig. 5 also demonstrates that with the aid of traffic
prediction, we can obtain performance gains as a result of
our scheme selecting the primary channels offering the best
transmission opportunities.

Fig. 6 shows the impact of the variation in the time required
to carry out spectrum sensing and handoff on the average
throughput in each time slot. Fig. 6 illustrates that the difference
in performance gains between the two spectrum sensing cases
with and without traffic prediction augments as we increase
the time consumed for spectrum sensing and handoff. This is
a result of the reduction in the effective transmission rate in
a time slot due to the increment in the time consumed for
spectrum sensing and handoff. Since traffic prediction can aid
the SU in capturing a transmission opportunity as quickly as
possible, this could extend the SU’s effective transmission time,

Fig. 6. Average throughput in each time slot for an increasing sensing and
handoff time (under a fixed number of primary channels; N = 20).

thus improving the spectrum efficiency. This is particularly true
when the time consumed for spectrum sensing and handoff is
high, which results in a substantial decrease in throughput for
the case where traffic prediction is not incorporated into the
spectrum-sensing and access cycle.

VII. CONCLUSION

In this paper, we have proposed an intelligent selective
opportunistic spectrum-sensing and access cycle to enable CR
users to make efficient use of the wireless spectrum, which con-
sists of discontinuous frequency bands. The SU determines the
optimum sensing order based on its knowledge of the traffic pat-
tern of a primary channel and its prediction of the channel state
at a future point in time. The selective spectrum sensing and
access cycle is compatible with the QoS requirements of an SU
from the point of view of considering the spectrum sensing effi-
ciency in conjunction with transmission capacity when the SU
is in the process of establishing the optimum spectrum-sensing
order. In this paper, we also presented a theoretical model to
evaluate system performance in terms of PLR and throughput
and determined the system performance upper bound that may
be used as a performance measure for CR networks employing
traffic prediction. Finally, our simulation results are in accor-
dance with the numerical results obtained from theory. They
also prove that the proposed SOSA based on traffic prediction
can improve system efficiency and guarantee the QoS of an SU
operating in a discontinuous spectrum environment.

APPENDIX

In Section V, we need to construct a random process made up
of three random variables K, M , L following binomial distrib-
ution. We define the random variable in this random process as
VK,M,L. Because these three are distinct with each other and are
convolution characteristics of the moment-generating function,
we can obtain the moment-generating function of the random
variable VK,M,L as

MV (t) = MK(t)M−M (t)ML(t). (26)
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V 3
K,M,L =

N−S∑
k=0

(
N

k

)
P k(1−P )N−k

×
{

1−
S−k∑
r=0

{
P k−1

e

Pe

1−Pe
·(1−Pe)N−k−1πcsc [π(r+k−N)]

·
{

−
(1−Pe)2Γ(1−r)2F1

(
−k, 1−r, 2−k+N−r, (1−Pe)2/P 2

e

)
Γ(k−N)Γ(2−k+N−r)

+
P 2

e

[
(1−Pe)2

P 2
e

]k−M+r

Γ(−1−N+r)2F1

[
k−N,−1−N+r, k−N+r, (1−Pe)2/P 2

e )
]

Γ(−k)

}}}
(25)

We know that the moment-generating function of bino-
mial distribution is MX(t) = pet + q, where X is a random
variable following binomial distribution B(N, p) and the linear
translation characteristic of the moment-generating function.
Therefore, the foregoing formula can be rewritten as

MV (t)=(Pet+1−P )N (Pee
−t+1−Pe)K(Pee

t+1−Pe)N−K

(27)

where P is the average probability of being idle of a primary
channel when we assume that all the primary channels have
the same traffic model and traffic characteristic parameters, and
Pe is the average probability of incorrect prediction of SU.
Generally, to obtain the pdf, we need to implement inverse
transformation on MV (t) to get an expression in terms of k.
Obviously, it is not easy and intuitive to get the final solution.
However, we could get a conditional expression according to
the predefined multiple cases in Section V.

1) K ≤ N − S, M = K, L ≥ S: For this case, we can
separately consider the three random variables because
there is no need to compare certain combination of K,
M , and L with the sensing threshold S. Therefore, the
probability of occurrence of this situation is

V 1
K,M,L = (1 − P )N

N−S∑
k=0

(
N

k

)(
PPe

1 − P

)k

·
[
1 −

S∑
l=0

(
N − k

l

)
P l

e(1 − Pe)N−K−l

]
. (28)

2) K ≤ N − S, M = K, L < S: This case has a comple-
mentary relationship with the foregoing case, and there-
fore, the probability of occurrence of this situation is

V 2
K,M,L = (1 − P )N

N−S∑
k=0

(
N

k

)(
PPe

1 − P

)k

·
[

S∑
l=0

(
N − k

l

)
P l

e(1 − Pe)N−K−l

]
. (29)

3) K ≤ N − S, M < K, K − M + L > S: In this case,
we need to consider the joint distribution of the three

random variables because we have to compare the mag-
nitude of K − M + L and S. To simplify the inverse
transformation procedure, we will research the magnitude
relationship between K − M + L and S under a certain
K, which definitely satisfy 0 ≤ K ≤ N − S. Therefore,
(27) will be

MV (t) =
[
Pe + (1 − Pe)et

]K (Pee
t + 1 − Pe)N−K . (30)

By searching from [17], we find that the probability density
of V 3

K,M,L can be written as (25), shown at the top of the page.
2F1 in (25) is the regularized hypergeometric function.
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