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Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the third highly pathogenic
human coronavirus and is rapidly transmitted by infected individuals regardless of their symptoms.
During the COVID-19 pandemic, owing to the dearth of skilled healthcare workers (HCWs) to
collect samples for early diagnosis, self-collection emerged as a viable alternative. To evaluate the
reliability of self-collection, we compared the virus detection rate using 3990 self-collected swabs
and HCW-collected swabs, procured from the same individuals and collected immediately after the
self-collection. The results of multiplex reverse-transcription quantitative polymerase chain reaction
revealed that the viral load in the HCW-collected swabs was marginally (18.4–28.8 times) higher than
that in self-collected swabs. Self-collection showed no significant difference in sensitivity and speci-
ficity from HCW-collection (κ = 0.87, McNemar’s test; p = 0.19), indicating a comparable performance.
These findings suggest that self-collected swabs are acceptable substitutes for HCW-collected swabs,
and that their use improved the specimen screening efficiency and reduced the risk of SARS-CoV-2
infection among HCWs during and after the COVID-19 pandemic.

Keywords: SARS-CoV-2; mRT-qPCR; HCW-collection; self-collection; large-scale sampling; viral load

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the third highly
pathogenic human coronavirus to emerge in recent years [1]. This novel coronavirus was
initially identified in December 2019; the World Health Organization declared the coro-
navirus disease 2019 (COVID-19) a global pandemic on March 11, 2020 [2]. Currently,
vaccination is the most effective strategy for combating the pandemic; however, viral
evolution (driven by genomic mutations) threatens the efficacy of vaccines [3]. Despite
multiple vaccinations, breakthrough SARS-CoV-2 infections have become common owing
to the emergence of variants, including Delta (B.1.617.2) and Omicron (B.1.1.529) [4,5].
Despite increased screening and testing, more than 551 million confirmed cases and
6.3 million deaths had been documented worldwide by July 11, 2022 [6].

SARS-CoV-2 is transmitted through both symptomatic and asymptomatic carriers [7].
Therefore, early diagnosis of positive cases significantly reduces the virus spread [8]. The
virus has been detected in numerous clinical specimens, including nasopharyngeal swabs
(NPS), oropharyngeal swabs (OPS), nasal swabs (NS), and oral swabs (OS); as well as in
sputum, urine, stools, and blood [9,10]. Current surveillance relies on established sampling
techniques, such as the collection of NPS by trained healthcare workers (HCWs) [11–13].
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However, a shortage of HCWs has strained the NPS sampling system, especially when
the incidence of infections increases rapidly [14]. The Food and Drug Administration
authorized rapid antigen tests for over-the-counter usage in December 2020 [15]. However,
the sensitivity of these antigen tests is much lower than that of the polymerase chain
reaction (PCR) test; therefore, cases need to be validated by PCR [16]. Consequently, it is
necessary to expand testing capacity, including self-collection of respiratory specimens (NS,
OS, and saliva), for PCR testing [10].

HCWs collect NPS and OPS specimens by swabbing the posterior nasopharynx and
oropharynx, respectively [17]. Self-collection of NS and OS specimens can be performed
simply by swabbing the anterior nares and mouth [10]. Numerous investigations have
evaluated the accuracy of SARS-CoV-2 test results from self-collected vs. HCW-collected
specimens. Some studies reported no significant difference between the two collection
methods in terms of diagnostic sensitivity (86.3–89.2%) [18–20]; however, a low reliability
of test results from self-collected samples was reported in some other studies [21].

Because sampling by HCWs is limited by time and place [22], previous findings have
suggested that the time delay between disease onset and sampling may be variable. The
diagnostic performance of self-collected swabs has been evaluated using small sample
sizes; however, large-scale (≥ 3000) sampling has not yet been conducted. Therefore,
research on the diagnostic efficacy of self-collected swabs is crucial for the prevention of
disease transmission and early diagnosis. In this study, we assessed the detection rate
and viral load using large-scale sampling and evaluated the diagnostic performance of the
self-collection system to highlight its potential as an alternative to collection by HCWs. The
results demonstrate that self-collection could replace HCW-collection for the diagnosis of
SARS-CoV-2.

2. Materials and Methods
2.1. Study Design and Inclusion and Exclusion Criteria

This study was designed as a collaboration between Ewha Womans University and
Seegene Medical Foundation for the Ewha Safe Campus (ESC) project. This project
was developed by the university safety campus management as a model for the SARS-
CoV-2 infection. The study was approved by the Institutional Review Board of the See-
gene Medical Foundation (SMF-IRB-2022-022). Informed consent from the participants
was waived because the data collected for this study were anonymized. Anonymized
data were obtained from the ESC project between February and April 2022. A total of
16,478 participants were enrolled in the study and divided into two groups: (i) both self-
collection and HCW-collection (3990 participants), and (ii) either self-collection or HCW-
collection (12,488 participants). Participants from the latter group were excluded from this
study. The participants were provided visual instructions according to the self-collection
manual (Korean version). Self-collection was first conducted under the supervision of
HCWs, and HCW-collection was conducted immediately thereafter. Self-collection was per-
formed by first swabbing the anterior nares and then the mouth, whereas HCW-collection
was performed by swabbing the oropharynx first and then the posterior nasopharynx.
Each sample was analyzed immediately after collection. The outcomes of the test using
self-collected samples were compared with those of the HCW-collected samples.

2.2. Collection and Experimental Protocol

HCW-collection was used as the gold standard: combined NPS and OPS swabs were
collected in ALLTM medium (SG Medical, Seoul, Republic of Korea). The NS and OS
swabs were self-collected in SELTM medium (SG Medical). Based on the collection site,
ALLTM and SELTM universal transport media were classified into two sets of swabs.
Nucleic acids were simultaneously extracted from HCW- and self-collected specimens
using the automated MagNA Pure 96 system (Roche, Inc., Basel, Switzerland), as described
previously [23]. Following the Pathogen Universal 200 protocol, 200 µL of the samples was
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processed using magnetic beads for nucleic acid extraction. The purified nucleic acids were
eluted in 100 µL of elution buffer.

2.3. Multiplex Reverse Transcription Quantitative Real-Time Polymerase Chain Reaction
(mRT-qPCR) Analysis

mRT-qPCR was performed using the AllplexTM SARS-CoV-2 Assay kit (Seegene Inc.,
Seoul, Republic of Korea) to detect the SARS-CoV-2 genes encoding the envelope (E), RNA-
dependent RNA polymerase (RdRP), spike protein (S), and nucleocapsid (N), following
a recent study [24]. If more than one of the target genes (E, RdRP and S, and N) were
not detected in HCW-collected samples, the result was considered negative [25]. Positive
samples were categorized as weakly positive (30–40 Ct), moderately positive (20–30 Ct), or
strongly positive (10–20 Ct).

2.4. Viral RNA Load Standard

The nucleic acid of the SARS-CoV-2 strain NCCP-43330 was procured as an RNA
powder from the National Culture Collection for Pathogens (NCCP; Cheongju, South
Korea). The viral RNA was serially diluted in Tris-EDTA buffer to 103 copies/mL for
use as a quantification standard. The viral RNA load was measured in triplicates from
109 to 103 copies/mL (Supplementary Figure S1). Raw Ct values of HCW- and self-collected
samples were converted to viral RNA loads based on the SARS-CoV-2 standard curve, using
the following formula: Viral load = 10(Ct value − 47.01)/−3.40 for N, 10(Ct value − 47.79)/−3.39 for
RdRP and S, and 10(Ct value − 46.35)/−3.45 for E.

2.5. Statistical Analysis

All statistical analyses were performed using R Studio (version 4.1.2; R_Studio Inc.,
Boston, MA, USA). Categorical variables (positive or negative) are reported in percentages,
absolute numbers, and 95% confidence intervals (CI). We defined the detection rate as
the ratio of positivity for either self- or HCW-collection among self- and HCW-collected
samples with at least one positive. The performance of a diagnostic test for SARS-CoV-2
was evaluated by estimating the sensitivity and specificity for self-collected samples against
HCW-collected samples using the epiR package. Using Cohen’s kappa (κ) and McNe-
mar’s significance test from the caret package, perfect concordance (κ = 1), almost perfect
agreement (κ > 0.9), or strong agreement (κ > 0.8) was determined between HCW-collected
and self-collected samples [26]. The McNemar’s test was used to evaluate the reliabil-
ity of paired differences (false positives and false negatives) between the two collection
methods [27]. A paired t-test was used to determine the difference in Ct values between
the HCW- and self-collection groups. Results were considered statistically significant at
p < 0.05. Continuous variables of the mRT-PCR Ct values are represented by mean or
median (interquartile range (IQR)). The scatter, histogram, and box plots were generated
using the ggplot2 packages.

3. Results
3.1. Characteristics of the Study Participants

The demography and characteristics of the 3990 eligible participants are presented
in Table 1. Samples from the 3990 participants were collected immediately and classified
into self- or HCW-collection groups. The percentages of participants showing SARS-CoV-2-
positive and -negative results in the self-collection group were 23.9% (n = 954/3990) and
76.1% (n = 3036/3990) and those in the HCW-collection group were 23.4% (n = 935/3990)
and 76.6% (n = 3055/3990), respectively. The Ct values for the N, RdRP and S, and E were
similar in each group.
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Table 1. Demography and characteristics of the study participants.

Demography/Characteristics
Self-Collection (n = 3990) HCW-Collection (n = 3990)

Positive Negative Positive Negative

Collected sample, n 954 3036 935 3055

Demography
Age, years 22 (20–26) 24 (21–30) 22 (20–26) 24 (21–30)
Ct value

N 27.6
(22.3–32.1) N/A 20.3

(17.9–26.3) N/A

RdRP and S 27.9
(22.6–32.5) N/A 21.6

(19.1–27.7) N/A

E 27.0
(22.0–31.9) N/A 20.8

(18.2–26.6) N/A

Data are presented as the median (interquartile range). Abbreviations: N, gene encoding the nucleocapsid protein;
RdRP, gene encoding the RNA-dependent RNA polymerase; S, gene encoding the spike protein; E, gene encoding
the envelope protein; N/A, not available.

3.2. Comparison of the Clinical Diagnosis Performance between the HCW- and Self-Collected Samples

Among the 3990 participants, 26.0% (1039/3990) tested positive for the virus in the
HCW-collection group, the self-collection group, or both groups. Self-collected samples
had a higher detection rate than those in HCW-collected samples (HCW-collection (90.0%;
935/1039) versus self-collection (91.8%; 954/1039), paired t-test; p < 0.001) (Table 2). The
Ct values for each gene (N, RdRP and S, and E) were compared in (81.8%; 850/1039)
samples from the HCW-collection and self-collection groups that were positive for the virus
(Figure 1). In the concordant positive group (samples that tested positive for the virus in
both the HCW- and self-collection groups), more samples in the HCW-collection group
had a low Ct value than those in the self-collection group (this was true for all the tested
genes): N (82.0%, 697/850; RdRP and S (79.1%, 672/850); and E (79.5%, 676/850) (Table 2
and Figure 1). Overall, the results indicate that HCW-collected samples had a lower Ct
value of SARS-CoV-2 than that of the self-collected samples.

Table 2. Comparison of clinical diagnosis performance between self-collection and HCW-collection.

HCW-Collection

Positive Negative Total

Self-collection
Positive, n 850 104 954

Negative, n 85 2951 3036
Total, n 935 3055 3990

Sensitivity, % (95% CI) 90.9 (88.9–92.7)
Specificity, % (95% CI) 96.6 (95.9–97.2)

Cohen’s kappa 0.87
McNemar’s test p-value 0.19

Abbreviations: CI, confidence interval; HCW, health care worker.

Among the samples with discordant results (18.2%; 189/1039), 104 tested positive
for the virus in the self-collection group but tested negative in the HCW-collection group.
Eighty-five participants tested positive for SARS-CoV-2 in the HCW-collection group but
tested negative in the self-collection group (Table 2). These findings imply that the self-
collection method is reasonably sensitive, detecting > 90.9% of the SARS-CoV-2 infections
diagnosed after sample collection by HCWs (Table 2). Our positive rates for the self-
collected samples are comparable to those reported in other studies.
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Figure 1. Comparison of Ct values for three SARS-CoV-2 genes detected in 1039 self- and HCW-
collected samples that were positive for SARS-CoV-2. (A) N, (B) RdRP and S, and (C) E. The dotted
lines between the x- and y-axis of the scatterplot indicate the reference Ct values of 20, 30, or 40. Each
sample was tested using real-time PCR under the indicated conditions.

3.3. Clinical Performance of the HCW- and Self-Collection Methods

Cohen’s kappa analysis was performed to analyze the correlation between the two
collection methods. For all three genes in the self-collection group, 21.3% (850/3990) tested
positive for SARS-CoV-2. The sensitivity and specificity for the self-collection group were
90.9% (95% CI: 88.9–92.7) and 96.6% (95% CI: 95.9–97.2), respectively. In particular, the
clinical performance of self-collected samples was in strong agreement and not statistically
different from that of HCW-collected samples (κ = 0.87, McNemar’s test; p = 0.19) (Table 2).

3.4. Viral Load Detected Using the HCW- and Self-Collection Methods

As shown in Figure 2, the target viral genes in 850 individuals with concordant results
were analyzed following immediate collection. Positive samples in the HCW-collection
group had a mean Ct value of 21.6 (range: 17.6–24.4) for N, 22.7 (range: 18.8–25.6) for RdRP
and S, and 21.9 (range: 18.1–25.0) for E (Figure 2A–C). In contrast, positive samples in
the self-collection group had a mean Ct value of 26.6 (range: 21.8–31.3) for N, 27.1 (range:
22.3–31.6) for RdRP and S, and 26.3 (range: 21.6–30.7) for E (Figure 2D–F). The mean differ-
ence in Ct values ranged from 4.3 to 5.0, indicating that the viral load was
18.4–28.8 times lower in self-collected samples than in HCW-collected samples (Figure S1).

3.5. Comparison of Ct Values in the HCW-Collection and Self-Collection Groups

We analyzed and compared the Ct values of self-collected and HCW-collected samples.
The Ct values were as follows: strongly positive (median 17.7–18.3 for HCW-collection ver-
sus 22.5–23.6 for self-collection), moderately positive (median 22.7–23.3 for HCW-collection
versus 27.9–28.2 for self-collection), and weakly positive (median 32.9–33.7 for HCW-
collection versus 31.9–32.1 for self-collection) (Figure 3). Compared with self-collected
samples, the HCW-collected samples had a lower Ct value for strongly and moderately
positive samples. In contrast, the HCW-collected samples had a higher Ct value for weakly
positive samples. All groups (strongly, moderately, and weakly positive) of Ct values
differed significantly between HCW- and self-collected samples (paired t-test; p < 0.001).
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Figure 2. Histograms showing the distribution of Ct values for concordant positive specimens
(n = 850). (A–C) Density of (A) N, (B) RdRP and S, and (C) E in the HCW-collection group.
(D–F) Density of (D) N, (E) RdRP and S, and (F) E in the self-collection group. The y-axis of the
histograms represents the estimation of the probability density estimation, whereas the vertical line
presents the mean values.
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Figure 3. Distribution of the Ct values for SARS-CoV-2 in concordant positive specimens (n = 850).
Boxplot of (A) N, (B) RdRP and S, and (C) E. The box plots present the median (interquartile range)
values. *** p < 0.001.

4. Discussion

SARS-CoV-2 has frequently exhibited new mutations that have resulted in new
variants, including Delta (B.1.617.2) and Omicron (B.1.1.529). Moreover, Omicron is
evolving rapidly and its new subvariants are constantly emerging (e.g., BA.1, BA.2 and
BA.5) [28]. The emergence of SARS-CoV-2 variants carrying mutations in the S gene raises
concerns about the possibility of enhanced transmission during the ongoing COVID-19
pandemic [29]. As the pandemic spreads, with a rapidly increasing number of positive
cases [30], the workload of HCWs becomes more physically exhausting, leading to pan-
demic fatigue [31]. NPS collection by HCWs is the conventional approach for SARS-CoV-2
testing [10]. However, the collection of NPS exposes frontline HCWs to the virus, whereas
self-collection eliminates this risk and simultaneously processes the amount of sample
collections needed, which is particularly advantageous given the current global health
crisis [32].
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It is crucial that samples are collected promptly so that communities can undergo
testing for widespread infection without delay. Self-sampling is an excellent approach in
these situations, as it allows for more samples to be collected and screened in less time.
Self-collection of upper respiratory tract samples via the nasal cavity (such as NS) or oral
cavity (such as saliva, OS, or mouthwash) is, therefore, being investigated as a minimally
invasive technique, which poses less risk of infection to HCWs, and does not require the
use of expensive personal protective equipment [10,11,33]. Thus, self-collection could be
easily conducted at home or in the community in cases where close contact is required
with patients having SARS-CoV-2 infection for rapid screening and detection of the virus
during mass infection, thereby, eliminating close interaction of HCWs individuals with
SARS-CoV-2 infection.

Some studies have reported low sensitivities of self-collected specimens (saliva or
NS) from asymptomatic patients [11]. Saliva, in particular, has serious limitations in its
usefulness due to its viscosity and the presence of various types of inhibitors [34]. In
addition, different sampling sites can affect the early detection of SARS-CoV-2 [35–37].
Therefore, self-collected swabs were used in this study. This investigation was conducted
according to the guidelines of the Korean Society for Laboratory Medicine guidelines and
the Korea Centers for Disease Prevention and Control for the diagnosis of COVID-19 [25].
We enrolled 3990 eligible participants, who were provided with two swabbing methods
(self-collection or HCW-collection). To avoid misdiagnosis, HCWs collected both NPS and
OPS in the same viral transport medium. In addition, self-collected NS and OS samples
were also combined in a transport medium.

The primary finding of this study was that there was a strong correlation between
the performance of self- and HCW-collected swabs (κ = 0.87, McNemar’s test; p = 0.19).
Moreover, the self-collection method demonstrated a sensitivity of 90.9 (88.9–92.7) and a
specificity of 96.6 (95.9–97.2) (Table 2). These findings imply that self-collected swabs are as
accurate as HCW-collected swabs for viral detection.

It has been suggested that SARS-CoV-2 can be detected in various specimens (such as
NPS, OPS, saliva, urine, and stools) [9,10,38], and that the viral load in the upper respiratory
tract is the highest during onset and in the last few days of symptoms [39]. However, it is not
apparent whether samples from the upper respiratory tract have higher detection rates [40].
We found that SARS-CoV-2 detection rates were similar between self- and HCW-collected
samples, although viral loads were lower in self-collected samples than in HCW-collected
samples (Figure 3 and Supplementary Figure S1), as previously reported [10,41]. However,
an analysis of weakly positive samples, namely, those with Ct > 30 (<105 copies/mL),
revealed a decreased viral load in the HCW-collection group (Figure 3). These results
indicate that the HCW-collection method detects SARS-CoV-2 at a higher viral load than
the self-collection method (Figure 2), despite the effect of several variables such as the
sampling worker, individual proficiency, and time interval. Nevertheless, although the
self-collection method shows a low viral load and varies with the self-sampling ability,
it may be advantageous for early diagnosis of COVID-19. We also emphasize that the
diagnostic capabilities between HCW- and self-collected samples are statistically similar, as
a criterion for an accurate diagnosis of COVID-19.

This study has three limitations. First, the participants were selected based on their
ability to collect samples suitable for analysis using an endogenous internal control. This is
because it is difficult to assess if an exogenous internal control is appropriate for collection.
Second, other respiratory specimens that can be obtained using the self-collection method,
such as saliva, were not evaluated. Third, depending on the sampling site, viral load
or clinical performance can affect the interpretation of the results. Therefore, additional
research is required to investigate the effectiveness of different collection methods in
participants with typical COVID-19 symptoms (such as cough and fever), compare detection
rates in other specimens (such as saliva), and examine the effects of endogenous internal
controls. Finally, because this was a retrospective study where we focused on the detection
ability of the early-stage self-collection system, no separate verification procedure was



Diagnostics 2022, 12, 2279 8 of 11

undertaken because it was difficult to follow-up on the disease progression. However, we
conducted a verification process for the inconsistent samples by repeating the test, from
nucleic acid extraction to the mRT-qPCR assay. Therefore, future studies are needed to
perform follow-up studies and test using other platforms, including rapid antigen tests or
other assay kits.

5. Conclusions

Owing to the global lifting of all COVID-19 restrictions and the emergence of highly
infectious SARS-CoV-2 variants, such as Omicron, we believe that the sampling method
needs to be highly reliable to manage community-based screening and necessary isolation.
In our study, we validated two hypotheses: firstly, the SARS-CoV-2 viral load required for
self-collection may be lower than that of HCW-collection; secondly, the sensitivities of self-
collected NS and OS swabs for SARS-CoV-2 were comparable to those of HCW-collected
NPS and OPS swabs, despite the viral load variation. The data presented support the notion
that self-collection of swabs is an acceptable substitute for HCW-collection for mRT-qPCR
analysis. In addition, self-collection reduces the exposure of HCWs to SARS-CoV-2 and can
improve testing capacity during and after the COVID-19 pandemic (Figure 4).
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