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Abstract—In multiple-input–multiple-output (MIMO) fading
environments, degenerate channel phenomena, called keyholes or
pinholes, may exist under the realistic assumption that the spatial
fading is uncorrelated at the transmitter and the receiver, but the
channel has a rank-deficient transfer matrix. In this paper, we
analyze the exact average symbol error rate (SER) of orthogonal
space–time block codes (STBCs) with -PSK and -QAM con-
stellations over Nakagami- fading channels in the presence of
the keyhole. We derive the moment generating function (MGF) of
instantaneous signal-to-noise ratio (SNR) after space–time block
decoding (signal combining) in such channels. Using a well-known
MGF-based analysis approach, we express the average SER of the
STBC in the form of single finite-range integrals whose integrand
contains only the derived MGF. Numerical results show that the
keyhole significantly degrades the SER performance of the STBC
from idealistic behaviors in independent identically distributed
MIMO channels.

Index Terms—Diversity, keyhole, multiple-input–mul-
tiple-output (MIMO) channels, Nakagami fading, space–time
block codes, symbol error rate (SER).

I. INTRODUCTION

I N research areas on wireless communications, mul-
tiple-input–multiple-output (MIMO) systems equipped

with the multielement antenna arrays at both transmit and
receive ends have recently drawn considerable attention in
response to the increasing requirements on high data rate
and reliability in radio links. More recently, in MIMO fading
environments, the existence of rank-deficient (keyhole or
pinhole) channels has been proposed and demonstrated through
physical examples that have uncorrelated spatial fading, but
only have a single or reduced degree of freedom [1]–[4]. This
rank deficiency reduces achievable spectral efficiency and link
quality in MIMO systems.

One of the most promising approaches to use MIMO
channels is signal processing and modulation techniques
to maximize the diversity gain [5]–[8]. Space–time block
coding is a modulation scheme for the use of multiple transmit
antennas providing a simple transmit diversity scheme with
the same diversity order as maximal-ratio receiver combining
[7]–[9]. Due to the orthogonal structure of space–time block
codes (STBCs), maximum likelihood (ML) decoding can be
implemented by using the single-symbol decoding based on
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linear processing at the receiver. It is well known that the
orthogonal space–time block encoding and decoding (signal
combining) transform a MIMO fading channel into an equiva-
lent single-input–single-output (SISO) Gaussian channel with a
path gain of the squared Frobenius (or Hilbert–Schmidt) norm
of the channel matrix [10]–[13]. In [14], it is also shown that the
orthogonal STBCs are optimal in terms of the signal-to-noise
ratio (SNR).

In this paper, we study the effect of keyholes on the symbol
error rate (SER) of the orthogonal STBC with the assumption
that the rich multiple scattering at the transmit and receive
arrays may result in independent Nakagami- fading. In this
case, the fading between each pair of the transmit and receive
antennas in the presence of the keyhole is characterized by
double Nakagami- fading, i.e., a product of two indepen-
dent Nakagami- distributions. This is a generalization of
the statistical model used in [1] and [2], where the fading is
characterized by double Rayleigh fading—that is, each entry
of the channel matrix was assumed to be a product of two
independent zero-mean complex Gaussian random variables,
in contrast to the complex Gaussian that is normally assumed
in wireless channels—for keyhole channels. In order to eval-
uate the exact average SER of the orthogonal STBC with

-ary phase-shift keying ( -PSK) and -ary quadrature
amplitude modulation ( -QAM) constellations over keyhole
Nakagami- fading channels, we first derive the moment gen-
erating function (MGF) of instantaneous SNR after space–time
block decoding in this propagation scenario. We then use the
MGF-based approach for evaluating the error performance
over fading channels developed by using alternative represen-
tations of the Gaussian and Marcum Q-functions [16]–[19].
This MGF-based approach does not attempt to compute the
probability density function (pdf) of instantaneous SNR. Once
the MGF is available, the average SER can be expressed in
terms of a finite-range integral involving only the derived MGF.
In addition, we obtain an expression for the average SER of
the STBC over normal independent and identically distributed
(i.i.d.) Nakagami- fading channels (i.e., i.i.d. Nakagami-
MIMO channels without the keyhole phenomenon) in terms of
higher transcendental functions, such as the Gauss and Appell
hypergeometric functions [24]. These expressions hold for ar-
bitrary real-valued fading index . To the authors’ best
knowledge, no closed-form solutions to the average SER of

-ary signals over Nakagami- fading channels with single
and multichannel reception are available for arbitrary . Pre-
vious closed-form solutions are restricted to integer values of
or noncoherent detection of orthogonal -ary frequency-shift
keying ( -FSK) (e.g., see [17]–[19] and the references therein).
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Fig. 1. Keyhole MIMO channels.

The i.i.d. and single keyhole channels considered in this paper
are two extreme cases of spatially uncorrelated MIMO chan-
nels [20].

The remainder of this paper is organized as follows. The next
section presents the channel model that is under consideration
and brief overview of the STBC. In Section III, we derive the
MGF of instantaneous SNR after space–time block decoding.
Section IV gives the average SER of the orthogonal STBC with

-PSK and -QAM constellations over i.i.d./keyhole Nak-
agami- fading channels. Simulation and numerical results are
also presented in Section V. Finally, the main points are sum-
marized in Section VI.

II. SYSTEM MODEL

We consider a MIMO wireless communication system with
transmit and receive antennas.

A. Keyhole and Channel Models

Assuming a nonline of sight, local scattering model at both
transmit and receive sides for outdoor transmission, scatterers
are placed randomly close to either the transmit or receive array.
Furthermore, the arrangement of scatterers is assumed to be
quasistatic; therefore, the random arrangement will change at
certain intervals. In general, this leads to a quasistatic, frequency-
flat, and uncorrelated MIMO channel for narrow-band signals.
However, in certain environments the channel degeneracy may
arise due to the keyhole or pinhole effect (for details, see [2]
and [3]), as shown in Fig. 1. The only way for the radio wave
to propagate from the transmitter to the receiver is to pass
through the keyhole. In this case, the channel matrix for
MIMO channels is given by (1), shown at the bottom of the
page. In (1), and describe the rich

scattering at the transmit and receive arrays, respectively, and
. The th entry of represents a complex

channel coefficient from the th transmit antenna to the th
receive antenna. For a more general model, we assume that

and are i.i.d. Nakagami- variates with
fading severity parameters and , respectively, namely

(2)

(3)

where , , and is the gamma func-
tion. All of the channel phase shifts and are as-
sumed to be independent and uniformly distributed over .
Furthermore, we assume that the keyhole ideally reradiates the
captured energy, like the transmit and receive scatterers, and that
each entry of has a unit power, i.e.,
for all and . Note that as
all of and are independent, all entries of the
channel matrix are uncorrelated, but rank .

B. Space–Time Block Codes

Fig. 2 shows a space–time block-coded MIMO system.
information bits are mapped as symbols ,

which are selected from the -PSK or -QAM signal con-
stellation with average energy by Gray mapping, where

. Then, are encoded by a space–time block
code defined by a column orthogonal transmission
matrix

...
...

. . .
...

(4)

where the entries , , and
are linear combinations of and their conjugates
[8], [9]. At each time slot , signals are transmitted
simultaneously through transmit antennas. Since symbol
durations are necessary to transmit symbols, the rate of the
STBC is . For instance, the STBC , first proposed

...

...
...

. . .
...

(1)
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Fig. 2. Space–time block-coded MIMO system and its equivalent SISO model.

Fig. 3. SER versus average SNR per receive antenna for the STBC G with 8-PSK over i.i.d. and keyhole Nakagami-m fading channels. n = 2 and m =

m = m for keyhole channels.

by Alamouti in [7], is a one-rate code employing two transmit
antennas, defined by

(5)

where represents the complex conjugate.
At the receiver, the signal received by the th antenna in the

th time slot is given by

(6)

where is a zero-mean complex Gaussian noise with vari-
ance per dimension. The average energy of the symbols
transmitted from each antenna is assumed to be so that
the average power of the received signal at each receive antenna
is equal to and the SNR per re-
ceive antenna is . With perfect channel-state information,
the ML receiver computes the decision metric [9]

(7)

over all codewords and decides in favor of the codeword that
minimizes the sum .
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Fig. 4. SER versus average SNR per receive antenna for the STBC G with 16-QAM over i.i.d. and keyhole Nakagami-m fading channels. n = 2 and m =
m = m for keyhole channels.

Let be the total average energy of a block, i.e.,
where is the squared Frobenius norm1

of the matrix . From the column orthogonal property of the
matrix [8], can be also written as

(8)

where is the identity matrix and is a constant de-
pending on the matrix . For example, for , , and

in [9] and for and in [9]. From (8), we get the
average energy of the constellation as

(9)

III. MGF OF INSTANTANEOUS SNR AFTER SPACE–TIME

BLOCK DECODING

Due to the orthogonality of ’s columns, the metric in
(7) can decompose into parts, which are only a function of

1The squared Frobenius norm of a p� q matrixA is defined as

kAk = tr(AA ) = ja j

where tr(�) and y denote the trace operator and the transpose conjugate of a
matrix, respectively.

, respectively [9], [10]. Consequently, the
minimization of (7) is equivalent to minimizing each decision
metric for separately and the ML receiver chooses for

, if and only if [10]

(10)

where and are the combiner output
and Gaussian noise for after space–time block decoding, respec-
tively.2 From (10), we see that orthogonal space–time block
encoding and decoding (signal combining) transform a MIMO
fading channel into an equivalent SISO channel. The price of
this simple decoding structure for the orthogonal STBC is the
loss in the data rate, because the rate of orthogonal STBCs
over arbitrary complex constellations is less than the full rate
if the number of transmit antennas is greater than two. From
(9) and (10), we have the instantaneous SNR per symbol after
space–time block decoding as

(11)

which states that the performance of STBCs depends on the sta-
tistical property of the squared Frobenius norm of the channel
matrix.

2See (17) and (20) in [10], where the constant � was assumed to be 1.
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Fig. 5. SER versus average SNR per receive antenna for the STBC H with 8–PSK over i.i.d. and keyhole Nakagami-m fading channels. n = 2 and m =
m = m for keyhole channels.

A. MGF of

In the following, we derive the MGF of , which is used
to evaluate the SER of the STBC in the next section. To this end,
we first derive the MGF of .

Let and . Then we can rewrite
the squared Frobenius norm of the channel matrix as

(12)

Since and are Nakagami- distributed, and
follow the gamma distribution, i.e.,
and [17].3 Moreover, the sum of
statistically independent gamma variates with shape parameters

, , and a common scale parameter is also
a gamma variate with the shape parameter and scale
parameter [22]. Therefore, and are gamma distributed,
i.e., and .
According to the result of (34) in Appendix A, we can obtain
the MGF of as

(13)

3We use the shorthand notation X � �(b; c) to denote that X is gamma
distributed with a scale parameter b > 0 and a shape parameter c > 0, namely
[22, ch. 19]

p (x) = e ; x � 0:

If and (i.e., double Rayleigh-
fading channels), then the MGF (13) reduce to

(14)

where is the complementary incom-
plete gamma function [23, (8.350.2)].

From (11) and (13), the MGF of for keyhole MIMO
channels can be readily written as

(15)

where is the probability density function (pdf) of in-
stantaneous SNR after space–time block decoding for keyhole
Nakagami- fading channels. Note that, for normal i.i.d. Nak-
agami- MIMO channels in the absence of the keyhole,
is the sum of i.i.d. gamma variates and then the MGF of

can be easily written as

(16)
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Fig. 6. SER versus average SNR per receive antenna for the STBC H with 16-QAM over i.i.d. and keyhole Nakagami-m fading channels. n = 2 and
m = m = m for keyhole channels.

where is the pdf of instantaneous SNR after
space–time block decoding for i.i.d. Nakagami- fading
channels.

B. Amount of Fading

The amount of fading (AF) is a unified measure of the severity
of the fading defined by the ratio of the variance of the received
energy to the square of the average received energy [17, ch. 2],
[21]. For a space–time block-coded MIMO link, we have

(17)

Let us now consider a keyhole channel with .
From (11), (12), and (35), we obtain the AF for the space–time
block-coded keyhole MIMO channel in the form

(18)

which reveals that the severity of the fading is increased by a
factor of due to the keyhole, as compared
to for the i.i.d. case. The case that

corresponds to fading situations more severe
than Rayleigh fading without diversity.

IV. AVERAGE SER

From the MGF of in previous section, we can evaluate
the SER of the orthogonal STBC over i.i.d. and keyhole Nak-
agami- fading channels by using a well-known MGF-based
approach for evaluating the error performance of a digital com-
munication system over fading channels [16], [17].

A. i.i.d. Nakagami- Fading Channels

The conditional SER for coherent -PSK signals is given by
[16], [17]

(19)

where . Averaging (19) over the pdf
and using (16), the average SER of the STBC with

-PSK modulation over i.i.d. Nakagami- fading channels
is given by

(20)
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Fig. 7. Symbol error rates versus average SNR per receive antenna for the STBC C with 8-PSK over i.i.d. and keyhole Nakagami-m fading channels. n = 2;
m = m = m for keyhole channels.

The conditional SER for coherent square -QAM signals is
given by [16], [17]

(21)

where and . Similar to
(20), the average SER of the STBC with -QAM modulation
over i.i.d. Nakagami- fading channels can be readily shown
as

(22)

(23)

(24)
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Fig. 8. SER versus average SNR per receive antenna for the STBC C with 16-QAM over i.i.d. and keyhole Nakagami-m fading channels. n = 2 andm =

m = m for keyhole channels.

For an arbitrary noninteger , (20) and (22) can be evaluated in
terms of the Gauss and Appell hypergeometric functions with
the help of (43) and (48) in Appendix B, as shown in (23)
and (24) at the bottom of the previous page. In (23) and (24),

and .
When is a positive integer value, (20) and (22) can be ex-

pressed as closed forms in terms of finite sums of elementary
functions by using the following results from [18, Appendix]:

positive integer (25)

where , , and

Applying (25) to (20) and (22), the average SERs of the
STBC with -PSK and -QAM constellations over i.i.d.
Nakagami- fading channels for a positive integer are
given, respectively, by

(26)

and

(27)

B. Keyhole Nakagami- Fading Channels

Taking the same steps as in Section IV-A, we can obtain the
average SER of the STBC with -PSK and -QAM over key-
hole Nakagami- fading channels as integral expressions anal-
ogous to (20) and (22), respectively, only by replacing
with . The results are given by (28) and (29), shown
at the bottom of the next page.

Unfortunately, the integrals in (28) and (29) do not have
readily available closed-form solutions and, thus, one must
evaluate these integrals numerically. Note that the hyperge-
ometric functions , , and are provided as built-in
functions in a common mathematical software package such as
MATHEMATICA.

V. SIMULATIONS AND NUMERICAL RESULTS

In this section, we provide the results of our analysis and com-
pare them with simulation results in order to verify the analysis.
For two, three, and four transmit antennas, we use the one-rate
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Fig. 9. SER versus average SNR (n E =N ) for the STBC G and C with QPSK over keyhole Nakagami-m fading channels when n = 1, 2, 3, 5, 10, 20,
and 100. For comparison, the SER for an i.i.d. Nakagami-m fading channel with one receive antenna is also plotted. m = m = m = 0:7.

STBC (Alamouti code) and the following 3/4-rate codes,
given in [9] and [15], respectively:

and

It should be noted that one can also design a simpler 3/4-rate
STBC for three transmit antennas by dropping one column from

, which is constructed from the unitary design [15].4 In all
examples, we set in keyhole Nakagami-
fading channels for the sake of a comparison with normal i.i.d.
channels.

Figs. 3 and 4 show the SER versus average symbol SNR per
receive antenna for the STBC with 8-PSK and 16-QAM,
respectively, over i.i.d. and keyhole Nakagmi- fading chan-
nels for various values of . These results are given for
two receive antennas. The transmission rates of 8-PSK and
16-QAM codes are 3 and 4 bits/s/Hz, respectively. Also,
the SER for the STBC and with 8-PSK and 16-QAM
are plotted in Figs. 5–8. Since and are 3/4-rate codes,
the transmission rates for 8-PSK and 16-QAM are 2.25 and

4C has a simpler form than a 3/4-rate STBC H employing four transmit
antennas given in [9] and can also be obtained by the unitary transformation of
H . The unitary transformations do not change the performance of the code.

(28)

(29)
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3 bits/s/Hz, respectively. From these figures, we see that the
analysis agrees exactly with the simulation results and that
the keyhole reduces the diversity improvement of the STBC,
particularly in channels with a larger amount of fading (i.e.,
small values of the fading parameter ). This performance
degradation is due to the fact that a keyhole channel has only
a single degree of freedom and will fade twice as often as a
normal i.i.d. channel. For (Rayleigh case), the degra-
dation due to the keyhole at the SER of is approximately
15.5 dB for the 8-PSK , 16-QAM , and 16-QAM .
The transmission rate in each case is 3 bits/s/Hz.

Fig. 9 shows the average SER versus average received SNR
(i.e., ) for quaternary PSK (QPSK) and over
keyhole channels with when , 2, 3, 5, 10, 20,
and 100. For comparison, we also plot the average SER for the
i.i.d. Nakagami- fading channel with one receive antenna. For
a fixed SNR (irrespective of ), it follows that

(30)

which shows that, as observed in Fig. 9, the average SER per-
formance of the STBC over keyhole channels approaches that
of the i.i.d. fading case with one receive antenna as the number
of receive antennas increases. We can also see from (30) that
the diversity order achieved by the STBC in the presence of the
keyhole is limited to , as .

VI. CONCLUSION

We investigated the effect of keyholes, which make a MIMO
channel exhibit uncorrelated spatial fading between antennas
but a poor rank property, on the SER of STBCs. The fading
between each pair of the transmit and receive antennas for
keyhole channels was assumed to be characterized by a double
Nakagami- distribution. We derived the MGF of instanta-
neous symbol SNR after space–time block decoding and single
finite-range integral expressions for the average SERs of the
STBC with -PSK and -QAM constellations over keyhole
Nakagami- fading channels. In addition, we obtained an ex-
pression for the average SER for normal i.i.d. Nakagami-
fading in terms of the Gauss and Appell hypergeometric func-
tions. These expressions are valid even for noninteger values
of the Nakagami parameter , unlike the closed-form ex-
pressions formerly known in the literatures of the analysis
for diversity systems. Furthermore, we examined the AF to
quantify the effect of keyholes on the severity of fading. It
turns out that if the space–time block-coded MIMO link with

transmit and receive antennas is degenerated by the
keyhole effect, the severity of fading is increased by a factor
of and the achievable maximum diversity
order is at most when .

APPENDIX A
PDF AND MGF OF A PRODUCT OF TWO

INDEPENDENT GAMMA VARIATES

Let two independent random variables and be gamma
distributed, i.e., and , and

be a product of and . Then the pdf of is
given by

(31)

where is the th-order modified Bessel function of the
second kind and its integral representation is given by [23,
(8.432.6)]

(32)

Using (32), we can find the MGF of as

(33)

where is the confluent hypergeometric function [23,
(9.211.4)]. From the identify

[24, 6.6.(1)], we have

(34)

where is the generalized
hypergeometric function [23, (9.14.1)], [24, 4.1.(1)].

The th moment about the origin of is given by

(35)

where , , , is the
Pochhammer symbol.
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APPENDIX B
INTEGRALS OF THE FORMS

,

FOR ARBITRARY REAL VALUES

In calculating the average SERs of the orthogonal STBC with
-PSK and -QAM over i.i.d. Nakagami- fading channels,

we will need to evaluate

(36)

and

(37)

which also appear in the analysis of single and multichannel
reception of -ary signals in Rayleigh- and Nakagami- fading
channels (e.g., see [17] and [19]). Although it is possible to
express the closed-form solutions to these integrals with the
results obtained from [18, (53)] and [19, (6)], those closed-form
expressions are valid only for positive integer values of . In
this appendix, we obtain expressions for and
in terms of the Gauss and Appell hypergeometric functions,
which are available even if is not restricted to positive integer
values.

Dividing (36) into two integration parts as

(38)
then, the first integration part of (38), , can be rewritten as

(39)

Changing the variable in (39), can be expressed as

(40)

where is the Gauss hypergeometric function [23,
(9.111)]. The second integration part of (38), , can be rewritten
as

(41)

Changing the variable in (41), can be
expressed as

(42)

where is the Appell hypergeometric function
[24, 5.8.(5)]. From (38), (40), and (42), the integral
with arbitrary and can be expressed as

(43)

According to the reduction formula of the Appell hypergeo-
metric function [24, 5.10.(10)]

(44)
which can be obtained immediately from the Euler integral rep-
resentation of [24, 5.8.(5)], for two extreme cases of
and , (43) reduces to, respectively

(45)
and

(46)
Note that we can easily show that (46) agrees with [18, (57)]
by using the linear transformation of the Gauss hypergeometric
function [23, (9.131.1)]

Next, can be rewritten as

(47)
Introducing a new variable in (47), we can eval-
uate the integral in terms of the Appell hypergeometric
function as

(48)
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