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Abstract 

This paper presents a benchmarking study on the steepest descent (SD) method considering three different line search conditions 
including Backtracking (BC), Armijo-Backtracking (ABC) and Goldstein (GC) in nonlinear least squares fitting of measured data 
obtained from coordinate measuring machine (CMM). Within this scope, five primitive geometries such as circle, square, rectangle, 
triangle and ellipse were built via 3D printer. Those geometries were then scanned with CMM to acquire their 2D profiles to be fitted. 
To find best fitting parameters for each geometry, the nonlinear least squares approach along with the above-mentioned optimization 
method-line search condition combinations were employed. During the fitting process, the total number of function evaluations, when 
the combination converges to required tolerance, were used as a performance metric of the combination in question. With those data, 
the performance and data profiles for each combination were created to be able to carry out a reliable performance evaluation. Based 
on those profiles, it has been seen that the SD-ABC combination is the fastest one. In addition, it is successful on all the geometries 
while the others are not. For the second fastest combination, the SD-BC combination stands out. However, its successful rate is only 
80%, which means it fails on a geometry. On the other hand, the SD-GC combination takes the last place in this study. All those results 
have shown that the line search conditions have a great contribution to the success and performance of the optimization algorithm being 
used. Besides, their performance may differ from problem-to-problem. The end-users should consider these facts to find best 
optimization method-line search condition combination for their problems. 

Keywords: steepest descent method, line search condition, performance profiles, data profiles, nonlinear least squares fitting, 
optimization.   
 

Koordinat Ölçme Makinesi Verilerinin Doğrusal Olmayan En Küçük 
Kareler Uydurulmasında En Dik İniş-Doğru Boyunca Arama Şartı 

Kombinasyonlarının Performans Analizi 
Öz 

Bu makale koordinat ölçme makinesinden (KÖM) elde edilen verilerin doğrusal olmayan en küçük kareler uydurulmasında 
Backtracking (BC), Armijo-Backtracking (ABC) ve Goldstein (GC) içeren üç farklı doğru boyunca arama şartlarını dikkate alarak en 
dik iniş (EDİ) yöntemi üzerine bir kıyaslama çalışması sunmaktadır. Bu kapsamda, daire, kare, dikdörtgen, üçgen ve elips şekillerindeki 
beş temel geometri 3B yazıcı ile imal edildi. Daha sonra bu geometrilerin uydurulacak 2B profillerini elde etmek için adı geçen 
geometriler KÖM ile tarandı. Her bir geometriye en iyi uydurma parametresini bulmak için, doğrusal olmayan en küçük kareler 
yaklaşımı yukarıda bahsedilen optimizasyon yöntemi-doğru boyunca arama şartı kombinasyonları ile birlikte kullanıldı. Uydurma süreci 
boyunca ilgili kombinasyon istenilen tolerans değerine yakınsadığında ortaya çıkan toplam fonksiyon değerlendirme sayısı kullanılan 
kombinasyonun bir performans metriği olarak dikkate alındı. Güvenilir bir performans analizi yapabilmek amacıyla bu veriler ile, her 

bir kombinasyon için performans ve veri profilleri oluşturuldu. Adı geçen profillere dayanarak EDİ-ABC kombinasyonun en hızlı 
olduğu görüldü. Ek olarak bu kombinasyon diğer kombinasyonların aksine tüm geometrilerde başarılıdır. İkinci en hızlı kombinasyon 
için EDİ-BC kombinasyonu ortaya çıkmaktadır. Fakat, adı geçen kombinasyonun başarı oranı sadece %80’dir, yani bir geometride 

başarısız olmaktadır. Öte yandan, EDİ-GC kombinasyonu bu çalışmada son sırayı almaktadır. Tüm bu sonuçlar gösteriyor ki, doğru 
boyunca arama şartlarının kullanılan optimizasyon yönteminin başarısına ve performansını büyük bir katkısı vardır. Ayrıca bu şartların 
performansı problemden probleme farklılık gösterebilir. Son kullanıcılar kendi problemleri için en iyi optimizasyon yöntemi-doğru 
boyunca arama şartı kombinasyonunu bulmak için bu bulguları dikkate almalıdır. 
 
Anahtar Kelimeler: En dik iniş metodu, Doğru boyunca arama, Performans profilleri, Veri profilleri, Doğrusal olmayan en küçük 
kareler uydurma, Optimizasyon 
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1 Introduction 

The steepest descent method, developed by Cauchy [1], along 
with a line search has been widely implemented in many fields for 
optimization purpose. As such, in [2], a steepest descent 
optimization procedure was proposed to evaluate the circularity 
of a mechanical part. The authors used the geometrical methods 
for computing the steepest descent direction and step length and 
they reported that the proposed algorithm is more computationally 
efficient than the traditional optimization-based and 
computational geometry-based methods. Xiao et al. [3] employed 
the SD method for maximum power point tracking and the results 
showed that it is superior to hill climbing method. An algorithm 
based on the SD method for blind signal separation was presented 
by Dam et al. [4]. For optimal step length, they used a 
combination of Golden search technique and parabolic 
interpolation and it was determined from the computational 
experiments that the proposed algorithm provides faster converge 
than the one which uses constant step length. In addition to this 
study, regarding as the step length, Kalousek [5] released a 
random step length selection procedure for the SD method. On the 
other hand, the crystal lattice parameters were found by 
implementing the SD method in [6]. Another application of the 
SD method on the sensor placement problem was completed by 
Akbarzadeh et al. [7]. Furthermore, an energy minimization 
approach using the SD method for micromagnetics was presented 
by Exl et al. [8]. Besides those practical studies, various methods 
and algorithms, such as these of Refs. [9-11], have been proposed 
to improve the SD method performance in the literature.  

It is concluded from the literature studies summarized above 
that the SD method is a useful and a practical tool for many 
applications and its performance may vary depending on the 
problem dealing with and the step length computations techniques 
being used. By keeping those facts in mind, in this paper, it is 
concentrated on performance evaluation of the SD method 
considering three well-known line search conditions including 
BC, ABC and GC in the nonlinear least squares geometry fitting. 
For this purpose, the five test geometries were built with 3D 
printer and then, their 2D profiles were acquired via the CMM. 
With implementing an iterative nonlinear least squares geometry 
fitting procedure, the best parameters, which enable to represent 
the measured data, for the test geometries have been identified. 
During the fitting process, the number of function evaluations at 
each iteration are monitored and the total number of function 
evaluations when the best parameters are found are set as the 
performance criteria of the SD-line search condition combination 
in question. Henceforth, the paper is organized as follows: Section 
II accommodates the nonlinear fitting procedure, as well as 
includes test geometries. Section III covers the experimental 
studies. The obtained results with discussion are provided in 
Section IV. Finally, Section V summarizes and concludes the 
paper. 

2. Nonlinear Least Squares Fitting 
Procedure of CMM Data 

To obtain the CMM data for nonlinear least squares fitting, 
the five test geometries containing circle, square, triangle, ellipse 
and rectangle have been selected. Their parametric mathematical 
models [12] are given as follows: 

 

 

Circle: 

 
𝑥 = 𝑟𝑐 cos(𝑢) + 𝑥𝑐 𝑦 = 𝑟𝑐 sin(𝑢) + 𝑦𝑐 

(1) 

Square and rectangle: 

 

𝑥𝑢 = 𝑤2 (|cos(𝑢)| cos(𝑢) + |sin(𝑢)| sin(𝑢)) 

𝑦𝑢 = ℎ2 (|cos(𝑢)| cos(𝑢) − |sin(𝑢)| sin(𝑢)) 𝑥 = 𝑥𝑢 cos(𝜃) − 𝑦𝑢 sin(𝜃) + 𝑥𝑐 𝑦 = 𝑥𝑢 sin(𝜃) + 𝑦𝑢 cos(𝜃) + 𝑦𝑐 

(2) 

Triangle: 

 

𝑟 = ℎ𝑐𝑜𝑠( 2𝑛𝑠 𝑎𝑟𝑐𝑠𝑖𝑛 (𝑠𝑖𝑛 (𝑛𝑠2 𝑢))) 

𝑥𝑢 = 𝑟 𝑐𝑜𝑠(𝑢) 𝑦𝑢 = 𝑟 𝑠𝑖𝑛(𝑢) 𝑥 = 𝑥𝑢 𝑐𝑜𝑠(𝜃) − 𝑦𝑢 𝑠𝑖𝑛(𝜃) + 𝑥𝑐 𝑦 = 𝑥𝑢 𝑠𝑖𝑛(𝜃) + 𝑦𝑢 𝑐𝑜𝑠(𝜃) + 𝑦𝑐  

(3) 

Ellipse: 

 

𝑥𝑢 = 𝑎 cos(𝑢) 𝑦𝑢 = 𝑏 sin(𝑢) 𝑥 = 𝑥𝑢 cos(𝜃) − 𝑦𝑢 sin(𝜃) + 𝑥𝑐 𝑦 = 𝑥𝑢 sin(𝜃) + 𝑦𝑢 cos(𝜃) + 𝑦𝑐 

(4) 

In these equations,  𝑥  and 𝑦 are the geometry final coordinates, 𝑥𝑢  and 𝑦𝑢 are the geometry coordinates without rotation, 𝑥𝑐  and 𝑦𝑐 are the center coordinates of the geometry, 𝑢 is the parameter 
ranging from 0 to 2𝜋 radians, 𝑟𝑐  is the radius of circle, 𝑤 is the 
width of square and rectangle, ℎ is the height of square, rectangle 
and triangle, 𝜃 is the rotation angle, 𝑟 is the radius of triangle, 𝑛𝑠 
is the number of edges (i.e., 𝑛𝑠 = 3 for triangle), 𝑎 is the radius 
of ellipse along the 𝑥 axis and 𝑏 is the radius of ellipse along the 𝑦 axis. 

It is well-established in the literature that the nonlinear least 
squares fitting method aims to minimize the sum of squared error 
between measured and computed data. To adapt this approach for 
geometry fitting, the following parameter dependent sum of the 
squared error [13], 𝜖2(𝑝), is defined. 

 

 

𝜖2(𝑝) = ∑[𝑥𝑗 − 𝑥𝑗𝑚𝑜𝑑𝑒𝑙(𝑝)]2𝑛
𝑗=1 + ∑[𝑦𝑗 − 𝑦𝑗𝑚𝑜𝑑𝑒𝑙(𝑝)]2𝑛

𝑗=1  

(5) 

In Eq. (5),  𝑝 is the parameter vector of the geometry (i.e., 𝑝 =[𝑟𝑐 𝑥𝑐 𝑦𝑐 𝑢] for circle,  𝑝 = [𝑤ℎ𝑥𝑐 𝑦𝑐 𝜃𝑢] for square and 
rectangle, 𝑝 = [ℎ𝑥𝑐 𝑦𝑐 𝜃𝑢] for triangle and 𝑝 = [𝑎𝑏𝑥𝑐 𝑦𝑐 𝜃𝑢] 
for ellipse), 𝑛 is the number of data points, 𝑥𝑗 and 𝑦𝑗 are the 
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coordinates acquired via CMM, 𝑥𝑗𝑚𝑜𝑑𝑒𝑙  and 𝑦𝑗𝑚𝑜𝑑𝑒𝑙  are the 
coordinated computed via mathematical model. To find the best 
parameter vector, which minimizes the 𝜖2(𝑝), a line search 
procedure is used as follows: 

 𝑝𝑖+1 = 𝑝𝑖 + 𝛼ℎ (6) 

where ℎ = −𝐽𝑇𝐷 is the search direction which is the steepest 
descent direction in this study, 𝐽 is the Jacobian matrix of the 

objective function and 𝐷 = [𝐷𝑥𝐷𝑦], 𝐷𝑥 = 𝑥𝑖 − 𝑥𝑖𝑚𝑜𝑑𝑒𝑙(𝑝) 𝐷𝑦 =𝑦𝑖 − 𝑦𝑖𝑚𝑜𝑑𝑒𝑙(𝑝). On the other hand, 𝛼 > 0 is the step length that 
defines the amount of the movement along the steepest descent 
direction. There are several computation methods (i.e., line search 
conditions) for this step length in the literature. We use three well-
known line search conditions (i.e., BC, ABC and GC) [14] in this 
study. Their mathematical descriptions are given in Table 1. 

Table 1. Line search conditions 

BC 𝜖(𝑝𝑖 + 𝛼ℎ) ≤ 𝜖(𝑝𝑖) 

ABC 𝜖(𝑝𝑖 + 𝛼ℎ) ≤ 𝜖(𝑝𝑖) + ζ𝛼𝐺𝑇ℎ 

GC 𝜖(𝑝𝑖) + (1 − 𝜈)𝛼𝐺𝑇ℎ ≤ 𝜖(𝑝𝑖 + 𝛼ℎ)≤ 𝜖(𝑝𝑖) + 𝜂𝛼𝐺𝑇ℎ 

In Table 1 𝐺 = 𝐽𝑇𝐷 is the gradient of the objective function, ζ and 𝜂 are the scalars. ζ = 0.25 and 𝜂 = 0.35 are used in here. The line 
search procedure with calculated step length at each iteration (i.e., 
Eq. (6)) keeps computing parameter vector until the converge 
condition is met, which is:  

 𝑚𝑎𝑥𝑖𝑚𝑢𝑚|𝐽𝑇𝐷| ≤ 10−3 (7) 

3. Experimental Studies 

The geometries given in the previous section have been first 
built with 3D printer using PLA material. Their 2D profiles have 
been then obtained via the CMM, as shown in Fig. 1. 

 

Fig. 1 Scanning of geometries 

The scanning has been performed with 2 mm touch prob and the 
scanning speed 𝑉𝑠 = 100 mm/min was used. An example CMM 
measurement for a square with this setup are shown in Fig. 2. As 
mentioned before, the collected data (i.e., 𝑥𝑗 and 𝑦𝑗) are employed 
as the input for Eq. (5). 

 

Fig. 2 Example CMM measurement 

4. Results and Discussion 

To test the effect of the line search conditions on the SD 
method performance, the nonlinear least squares geometry fitting 
procedure has been completed for all the geometries using the SD-
line search condition combinations (i.e., SD-BC, SD-ABC and 
SD-GC). While performing this procedure, all the geometry 
parameters are monitored and recorded for every iteration. 
Besides, the sum of least square error, norm of the objective 
function gradient and the number of function evaluations to 
compute the step length are recorded to check the fitting 
procedure health. As an example for those data, Fig. 3 shows 
parameters and step length progresses at each iteration for a 
square fitting using the SD-ABC combination. In addition, the 
sum of least squares error and norm of the objective function 
gradient progresses are illustrated in Fig. 4. 

As can be seen from Fig. 3, all the parameters successfully 
converge after a little bit fluctuation. Notice also that the step 
length 𝛼 varies at each iteration. This is due to line search 
conditions the have to be met for a remarkable progress. 
Otherwise (i.e., using constant step length), it might require much 
more iterations to converge or, the algorithm may fail to complete 
fitting process. It noteworthy that although the use of varying step 
lengths may be beneficial for significant progress in the parameter 
search, they also bring computational cost, which is core of the 
paper. This will be elaborated in later of this section. However, to 
contribute this fact, a plot showing the number of function 
evaluations at each iteration are provided in Fig. 5. As seen, a 
quite amount of work to compute the step length is required to 
consume because the number of parameters to be found are large. 
More specifically, for this example square fitting, the number of 
parameters (i.e., 𝑝 = [𝑤ℎ𝑥𝑐 𝑦𝑐 𝜃𝑢]) to be found is 72. This large 
parameter value is emerged from the 𝑢 which should be 
correspond to the number of measured points (i.e., 67 points in 
this fitting). 

2 mm 
probe  
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Fig. 3 Fitting parameters and step lengths 

 

Fig. 4 Sum of least square error and norm of objective function gradient progresses 

 

Fig. 5 Number of function evaluations at each iteration during the fitting process 

The reason behind defining the 𝑢 as a parameter is the irregular 
spacing between the measured points (see Fig. 2). Otherwise, 
from personal experience, the algorithm fails to complete 
geometry fitting process. This fact makes the geometry fitting 
more attractive to work on.  

As a result of the progresses shown in Figs. 3 to 5, we 
achieved a successful square fit, as shown in Fig. 6. This figure 
also provides a comparison of actual, fit and measured squares. 
As seen, the square fit is satisfyingly able to represent the 
measured data. From the practical application of view, this fit, 

for instance, enables us to identify the part tolerances, 
manufacturing accuracy (e.g., both additive and traditional 
manufacturing processes), quality inspection, tool path 
compensation amount etc. In Fig. 6, one can notice that there 
is a slight difference between the actual, fit and measured 
squares. The actual square dimensions are defined as  𝑤 = ℎ =10 mm in the design step. However, the fit performed on 
measured data gives the dimensions to be 𝑤 = 9.7580 mm, ℎ = 9.7812 mm. 

 



Avrupa Bilim ve Teknoloji Dergisi 
 

e-ISSN: 2148-2683  1194 

The difference between the actual and fit dimensions shows the 
manufacturing tolerance that might vary depending on the 
geometry to be built and the material to be used in the 3D printing.  

 

Fig. 6 A comparison between actual, fitted and measured 
squares 

In other respect, the same parameter monitoring and fit quality 
checking procedures reported so far are also carried out in all the 
geometry fittings with the SD-line search condition combinations. 
When the combination in question meets converge requirement 
(i.e., Eq. 7), the line search stops and the total number of function 
evaluations performed thus far is recorded to be a performance 
criterion of the combination. By doing so, Figs. 7 is obtained.  

 

Fig. 7 Total number of function evaluations 

This figure shows the total number of function evaluations for 
each line search condition, corresponding the geometries, when 
the converge occurs. In the figure, the geometry numbers (i.e., 1, 
2, 3, 4 and 5) represent the circle, square, triangle, ellipse and 
rectangle, respectively. Besides, ∞ denotes that the corresponding 
SD-line search conditions combination is not successful to find 
the geometry parameters. Specifically, the SD-BC and SD-GC 
combinations could not complete the fitting process, thereby their 
total number of function evaluations are set to infinity. By 
focusing on the figure, one can realize that the SD-ABC 

combination performs well-done on all the geometries and it 
requires the lowest number of function evaluations for converging 
compared to others. In addition, the circle geometry seems the 
easiest one to fit because all the combinations are successful on it 
with lower number of function evaluations in comparison with 
other geometries. This is attributed that the circle geometry 
equation is simpler and it does not need any rotation around its 
center while others require (see Eqs. 1 to 5). Similarly, we can 
state that the hardest one to fit is rectangle geometry due to the 
fact that the SD-BC and SD-GC combinations fails. Analogue 
observations can be extended by just looking at the Fig. 7. 
However, for more probabilistic analysis, we move on to the 
performance profiles, as shown in Fig. 8.  

 

Fig. 8 Performance profiles-1 

The idea behind the performance profiles, developed by Dolan 
and More [15], is to give the success probability of the solver on 
the test set within the given factor. By adapting this approach in 
the current study, we achieve the performance profiles of the line 
search conditions. They provide efficient and reliable assessments 
on the line search conditions. For instance, by looking at the 
values of 𝑃𝑐(𝜐 = 1), we can determine the fastest line search 
condition which is the ABC. As seen from Fig. 8, it is the fastest 
one on all the geometries because its success probability at the 
factor 𝜐 = 1 is 𝑃𝑐(𝜐 = 1) = 100%  while others are 0% . This 
observation confirms the previous one conducted from Fig.7. As 
increasing 𝜐, the success probability of BC and GC start rising. 
Within the factor 𝜐 = 1.11 of the fastest condition, for instance, 
the BC is able to be successful on the 2 geometries (i.e., 𝑃𝑐(𝜐 = 1.11) = 40%). The BC success rate remains same at the 
factor range 1.11 ≤ 𝜐 ≤ 3.43. This range for the GC is  1.56 ≤𝜐 ≤ 3.22. At the factor 𝜐 = 9.13 of the fastest condition, the GC 
reaches maximum success rate (i.e., 𝑃𝑐(𝜐 = 9.13) = 80%) 
whereas the BC requires 𝜐 = 16.55 for maximum performance. 
For clarity, 𝑃𝑐(𝜐) = 80% means that the conditions in question 
are able to be successful on the 4 geometries out of 5. Fig. 7 
verifies this fact as mentioned before. On the other hand, for 
identifying the second fastest condition, we need to exclude the 
first one because the performance profiles are dependent each 
other. By excluding the ABC and generating the performance 
profiles with rest of them, we obtain Fig. 9. As have been done 
before, it is possible to determine the second fastest one based on 
the 𝑃𝑐(𝜐 = 1) values. It is obvious from Fig.9 that the second 
fastest one is the BC with the probability 𝑃𝑐(𝜐 = 1) = 60%. 
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Fig. 9 Performance profiles-2 

In other words, the BC has higher number of wins compared to 
GC (i.e., 𝑃𝑐(𝜐 = 1) = 20%). Based on Fig.7, we can confirm this 
observation, which the BC has lower number of function 
evaluations on the geometries 1, 3 and 4 (i.e., circle, triangle and 
ellipse, respectively) than the GC. This property of the 
performance profiles is quite useful for speed ranking of the line 
search conditions. However, it is sometimes given a 
computational budget in terms of algorithm running time, 
memory usage, number of function evaluations, etc.  and it is 
required to solve the certain number of problems within this 
budget. In this case, the performance profiles cannot be employed 
due to their dependency to each other. For an independent 
evaluation from a computational budget (i.e., total number of 
function evaluations in this study) perspective, we use the method 
of data profiles [16]. As such, the data profiles for all the line 
search conditions are indicated in Fig. 10 within the total number 
of function evaluations range 103 ≤ 𝜓 ≤ 107. In this figure, 𝐷(𝜓) denotes the percentage of the geometries, which are fitted, 
within the given computational budget 𝜓. To illustrate, for 𝜓 =104 all the line search conditions are able to complete fitting of 
only one geometry that is the circle (i.e., 𝐷(𝜓) = 20%). If we 
increase the 𝜓 to 105 the ABC fits one more geometry, which is 
the triangle (i.e., geometry number 3, see Fig. 7), while others 
remain same. The speed of the SD-ABC combination also appears 
in data profiles as expected. 

 

Fig. 10 Data profiles 

By combining the knowledges obtained from performance and 
data profiles on the line search conditions, it is obvious that the 
ABC is the fastest and most robustness (i.e., fits all the 
geometries).  

5. Conclusions 

This paper has been concentered on the performance assessment 
of the SD-line search condition combinations in nonlinear least 
squares geometry fitting. The three combinations, containing the 
SD-BC, SD-ABC and SD-GC, performances have been evaluated 
on the five geometries. Their 2D profiles were obtained using the 
CMM. In geometry fitting process, all the geometry parameters 
were kept track and the total number of function evaluations when 
the converge occurs were used as the performance measure of the 
combination in question. Using this measure, the performance and 
data profiles were generated for efficient performance 
assessments. It was seen that the geometry fitting is not a 
straightforward task because the 𝑢 parameter for each measured 
point must be defined as a search parameter. It means that all the 𝑢 parameters of measured points have to be included to be 
variables in addition to the number of dimension and rotation 
variables. This makes search parameter vector 𝑝 large enough and 
difficult to fit. On the other hand, it was observed that the line 
search conditions play a crucial role for the SD method 
performance and success. For a remarkable performance, the end-
users should consider this fact and it may be recommended to use 
the SD-ABC combination, which was found to be fastest and most 
robustness in this study, for geometry fitting. Moreover, the line 
search condition parameters (i.e., ζ and 𝜂 for the ABC and GC, 
respectively) might have an effect on the performance of the SD 
method, which deserves further explorations. 
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