
International Journal of Scientific & Engineering Research, Volume 2, Issue 12, December-2011 1
ISSN 2229-5518

IJSER © 2011

http://www.ijser.org

Performance Analysis of TCP in a Reliable
Connections Environment with UDP Flows using

OPNET Simulator

Friday Yakubu, S.E Abdullahi and P.E Aigbe

Abstract— The widely use transport protocol on the Internet is TCP/IP and its usage is mainly based on its high dynamic nature of adaptability to any
kind of network capacity. The Internet technology today runs over large different link technologies with vastly different characteristics. In spite of the
recent sudden increase in accessibility of broadband Internet access to improve the transport protocols communication, business organization,
computer laboratory in learning environment, and public organization have fairly small-bandwidth links compare to the network environment that host
the requested content. With the explosive growth of the Internet application traffics, the network traffic congestion grows and available limited resources
becomes a bottleneck. The performance of the network eventually decline because of traffic congestion among other challenging issues, bringing the
need for outstanding means of improving the TCP performance. Therefore, it becomes necessarily for any kind of network environment, to carry out a
TCP performance analysis and identify the possible means of obtaining an optimal performance. This paper seeks to reflect the performance analysis
of TCP in a network environment of multiple reliable connections with UDP traffic flows.

Keywords - TCP Implementations, TCP performance, Application Traffics, OPNET Simulator, Packet Dropped, Retransmission Count

——————————  ——————————

1. Introduction

he growth in network technology has made the
internetworking to be flexible enough to incorporate the
changing network environments of the past few decades.

The Internet technology today runs over a large different link
technologies with vastly different characteristics in terms of
bandwidth and communication rate. With the explosive
growth of the Internet, as users need for accessing the
Internet increases, in a limited Bandwidth environment, the
network traffic congestion grows and available limited
Bandwidth shrinks. The performance of the network
eventually decline because of traffic congestion among other
challenging issues, bringing the need for viable solutions.
Therefore, it becomes necessarily to study the performance of
TCP at the individual flows share link. This paper seeks to
carry reflect the performance analysis of TCP in a network
environment of multiple reliable connections with UDP
traffic flows.

2. Transmission Control Protocol and User

Datagram Protocol
According to Gilbert, TCP is a reliable connection-

oriented protocol that includes a built-in capability to
regulate the flow of information, a function referred to as
flow control [7]. The flow of information is managed by TCP,
by increasing or decreasing the number of segments that can
be outstanding at any point in time. For example, under
periods of congestion when a station is running out of
available buffer space, the receiver may indicate it can only
accept one segment at a time and delay its acknowledgment
to ensure it can service the next segment without losing data.
Conversely, if a receiver has free and available buffer space,
it may allow multiple segments to be transmitted to it and

quickly acknowledge the segments [7]. The original TCP
specification is described by Postel [12].

On the other hand, User Datagram Protocol (UDP) is a
connectionless, best-effort, non-error checking transport
protocol [7]. There is no handshaking between sending and
receiving transport layer entities before sending a segment.
UDP was developed in recognition of the fact that some
applications may require small pieces of information to be
transferred. The use of a connection-oriented protocol would
result in a significant overhead error checking to the transfer
of data. Therefore, UDP transmits a piece of information
referred to as a UDP datagram without first establishing a
connection to the receiver. The protocol is also referred to as
a best-effort protocol [7]. To ensure that a series of UDP
datagram are not transmitted into a black hole if a receiver is
not available, the higher layer in the protocol suite using
UDP as a transport protocol will wait for an
acknowledgment. If one is not received within a predefined
period of time, the application can decide whether to
retransmit or cancel the session.

3. TCP Implementations
The original TCP implementations used window

size based flow-control to control the use of buffer space at
the receiver and retransmission after a packet drop for
reliable delivery. The implementations did not include
dynamic adjustment of the flow-control window in response
to congestion collapse such as classical congestion collapse
[11] due to unnecessary retransmission of segments,
fragmentation congestion collapse [9] resulting from
Maximum Transfer Unit (MTU), and undelivered-segments
congestion collapse that occurs when networks overloaded

T

International Journal of Scientific & Engineering Research, Volume 2, Issue 12, December-2011 2
ISSN 2229-5518

IJSER © 2011

http://www.ijser.org

with packets that are discarded before they reach the receiver
[3].

The exponential growth in the Internet usage has
caused a great increase in the number of TCP
implementations. However, the development of TCP must
handle changes that may enforce any network setup into
congestion collapse [4]. TCP has experienced number of
changes in its primitive design, during its development
process. Many versions of TCP exist today and each TCP
implementation employs congestion control algorithms as
described in section 2.4. The available implementations
include TCP Tahoe and TCP Reno.

3.1 TCP Tahoe/Reno
The fundamental algorithm for congestion

avoidance and control was first introduced by Jacobson [8].
The implementation of the algorithm, called TCP Tahoe, was
based on the principle of conservation of packet and it has
introduced significant improvements for working over a
shared network [5]. When TCP connection is established at
the available resources capacity, a packet is not set in transit
into the network until sent packet leaves the network. In
other word, a packet can be set in transit only when the
sender receives an acknowledgement from the receiver
indicating successful delivery of the packet. The
acknowledgements clock the outgoing packets because an
acknowledgement means that a packet was taken off the
transmission medium and resources [5]. TCP Tahoe includes
Slow-Start, Congestion Avoidance and Fast Retransmit. The
Slow Start algorithm was introduced to control transmission
following any detected congestion.

The modification of how TCP Tahoe response to
detection of loss packet through duplicate ACKs is what
leads to the implementation of TCP Reno [6]. The concept is
that if packet loss is detected via a duplicate ACK before TCP
timeout expired, TCP sender retransmits the loss packet by
performing a Fast retransmit algorithm without waiting for
RTO and enters into its Fast recovery stage until the non
duplicate ACK that acknowledges the entire transmit
window of data is received. If it does not receive such an
ACK, TCP Reno experiences a timeout and enters the slow-
start state as implemented in TCP Tahoe. TCP Reno adds
Fast Recovery to TCP Tahoe.

3.2 TCP New Reno/Vegas
 TCP New-Reno is a modified version of TCP Reno. In
TCP Reno, TCP sender would leave Fast Recovery on the
receipt of first ACK that acknowledges new data. This
algorithm recovers loss packet efficiently, if there is only one
lost packet. However, the algorithm fails from multiple
packet recovery within a sliding window [6]. Therefore, an
enhanced version of Fast recovery algorithm was proposed
to address the short comings in TCP Reno [6]. The algorithm
proposed that a smaller value for threshold causes early

termination of the slow start stage and also slow increase of
the congestion window. In the other way round, a larger
value causes the sender to overwhelm the network with
packets, causing congestion.

The idea behind TCP New Reno is that during the
Fast Recovery, the TCP sender does not exit its Fast Recovery
stage on receiving partial ACK until all the data packets
which were outstanding at the time entered Fast Recovery.
Thereby recovering from multiple packet loss in a single
window of data and exits its Fast Recovery phase either on
receiving the ACK that acknowledges entire data within that
window or on occurrence of retransmission timeout.

TCP Vegas was presented before New Reno, SACK
and FACK were developed [2]. Vegas is a TCP
implementation which is builds on the fact that proactive
measures rather than reactive against packet losses. TCP
Vegas is fundamentally different from other TCP variants in
that it does not wait for loss to trigger congestion window
reductions. It employs an alternative strategy in that it tries
to predict when congestion is about to happen and adapts its
window to compensate. This is a proactive approach as it
attempts to reduce its sending rate before packets start being
dropped by the network. TCP Vegas keeps track of the time
each segment is sent. When an ACK arrives, it estimates RTT
as the difference between the current time and the recorded
timestamp for the relevant segment. TCP Vegas has not been
widely implemented and is not universally accepted by the
Internet community and is still a subject of much
controversy.

3.3 TCP SACK/FACK
 The default TCP acknowledgment behavior is to
acknowledge the highest sequence number of in- order bytes.
This default behavior is prone to cause unnecessary
retransmission of data, which can exacerbate a congestion
condition that may have been the cause of the original packet
loss. A proposed modification to TCP, selective
acknowledgement (SACK) allows a TCP receiver to
acknowledge out-of-order segments selectively rather than
just cumulatively acknowledging the last correctly received
in-order segment [10]. SACK option is used by TCP receiver
to inform the TCP sender that a non contiguous segment of
data has been received and it is queued. So the sender need
retransmit only the packets that have actually been lost [6],
[1]. When a retransmitted packet is itself dropped, the SACK
implementation detects the drop with a retransmit timeout,
retransmitting the dropped packet and then slow-starting. If
all of the outstanding data is ACKed (received ACK sequence
is greater than recover), the sender exits fast recovery and
continues in congestion avoidance. To use SACK, both the
TCP sender and receiver must support the feature and must
enable it by negotiating the SACK-Permitted option during
the connection establishment. Adding the SACK option to

International Journal of Scientific & Engineering Research, Volume 2, Issue 12, December-2011 3
ISSN 2229-5518

IJSER © 2011

http://www.ijser.org

the TCP flavours such as TCP Tahoe or Reno, does not
change their basic underlying congestion control algorithms.
The information about missing sequence numbers is
transmitted to TCP sender using three SACK blocks with
each ACK, using the rules outlined by Mathias [10].
 The Forward Acknowledgment (FACK) algorithm
proposed, aims at better recovery from multiple losses [10].
In FACK, TCP maintains two additional variables: the
forward-most segment that has been acknowledged by the
receiver through the SACK option and retransmitted data
that reflects the amount of outstanding retransmitted data in
the network. Using these variables, the sender can estimate
the actual quantity of outstanding data in the network and
can inject new data if allowed by receiver’s window. TCP
FACK regulates the amount of outstanding data in the
network to be within one segment of CWND, which remains
constant during the Fast Recovery phase.

4. Analysis using Simulator
The use of network simulator to emulate an existing

network environment has many merits. With the network
simulator, the elements properties, and the emulated
network architecture can be controlled. The predefined test
configurations may also run automatically, which makes the
execution of the performance measurements more
convenient. The most widely known simulator, OPNET was
selected and used for the analysis. OPNET is a graphic
network simulator that provides a set of tools for network
modelling, displaying statistics. Many predefined types of
nodes are present and almost all widely used protocols and
technologies are supported. The supported operating system
is Windows.

4.1 The Targeted Environment
 The target environment of study is a LAN network
environment generating UDP and TCP traffic flows. The
network environment consists of ten client hosts each
communicating with one of the three different server hosts
via a wireless link and a last network element as shown in

figure 1.

 Figure 1: Emulation environment.

The study concentrated on the behaviour of a client
TCP in the LAN, in the presence of multiple TCP and UDP
traffic flows. The LAN has bandwidth of 100 megabits,
wireless link data rate of 64,000 bps and router buffer of
2MB. The network is assumed to provide traffic flows
significantly faster than what the wireless link can transmit.
Figure 1 illustrates the elements which are emulated from the
target network environment.

OPNET software was used to emulate the target
network environment. In the emulation environment,
performance tests were made using ten client hosts on the
network and two different hosts were set to generate voice
and video streams. Each of the ten hosts generates TCP
traffic. Traffic shaping was not imposed in the network set
up. The traffic flows are forwarded base on Best-effort
scheme.

The network hosts were assumed to be running the
Windows operating system. Each of the client hosts and the
server hosts are the TCP endpoints communicating with each
other using TCP connection. The TCP enhancements that are
used in the performance tests are implemented only in the
endpoint hosts.

The wireless link is emulated by issuing appropriate
data transmission rate and propagation delay. Link layer
retransmissions are emulated by causing an error delay for a
packet. During the error delay no packets are released from
the link receive buffer. The last-hop router queue is emulated
using the input queue. The traditional first-in-first-out
scheduling is used on the input queue. If there is no room for
incoming packet in the input queue, emulator router discards
the packet.

4.2 Internet Application traffics
The most commonly used applications in the target

network environment are those that require Internet access,
which we call the Internet applications and Internet
application traffic must traverse via the last router, the IP32
cloud, and finally via the Internet Servers gateway to reach
the Internet Servers. The Internet applications for the study
are web browsing, video conference, and FTP, e-mail.

OPNET Modeler provides standard built-in models
for software applications such as web (HTTP), e-mail and FTP
which can be easily configured to simulate applications used
in the subnets. Thus, these applications are implemented and
configured via OPNET’s Custom Application feature. Table 1
summarizes the application definitions.

Table 1: Application Definitions
Application Meaning

e-Mail (light) Indicate light activities of e-mail
application

e-Mail (heavy) Indicate heavy activities of e-mail

FTP (light) Indicate light file transfer activities

International Journal of Scientific & Engineering Research, Volume 2, Issue 12, December-2011 4
ISSN 2229-5518

IJSER © 2011

http://www.ijser.org

FTP (heavy) Indicate heavy file transfer activities

Web browsing (light) Indicate light browsing activities

Web browsing (heavy) Indicate heavy browsing activities

To set-up and configure any application in OPNET,
the Application Configuration and Profile Configuration
modules was added to the emulated target network
environment. The Application Configuration module
contains the application definitions, while the Profile
Configuration module contains the profiles of user behavior,
e.g. describes how the users employ the applications defined
in the Application Configuration module.

4.3 Metrics of the Performance Analysis
Retransmissions: One of the interesting metric for the

analysis is the number of retransmission which does strongly
affects the throughput of a TCP connection. When the
number of retransmission is reduced, the throughput of the
TCP connection most significantly improves. In this analysis,
retransmission is triggered by packet drop at the last-hop
router or by a retransmission timeout caused by excessive
delay.

Dropped packets: another metric is the number of
dropped packets which has direct effect on the number of
retransmissions. This metric gives additional information
needed to derive the number of unnecessary retransmissions.
Because packets drop take place only at the last-hop router as
a result of buffer overflow, this metric measures the severity
of congestion at the last-hop router.

5. Baseline Configuration for the

Performance Analysis
The main objective is to inspect the performance of

TCP in a MRC with the presence of UDP traffic flows over
wireless link and router of a limited buffer memory, and to
inspect certain details of TCP behaviour more closely. Buffer
size of 8mb and data rate of 64,000 kb were used as baseline
for the performance analysis. However, three different router
buffer sizes with three different data rates were later used in
the analyses. The primary interest of the study is not to find
exactly the optimal buffer size and data rate for the different
scenarios. Hence the selection of the three different buffer
sizes and data rates are to limit the number of test runs.
 SACK implementation was used as the baseline
technology for establishing a reliable connection. Using the
same modelled environment, TCP Reno and NewReno
implementations were later, at different scenarios
configured. Similarly, the selection of the TCP platforms is to
report which among offers better performance.

5.1 TCP Technologies Performance

Analysis Using Different Router Buffer

Size (ETTDB)

In theory, it is expected that when buffer size is
increased, the expected result would be a significant increase
on the TCP performance, because buffer overflow that leads
to packet drop will decrease. The selected TCP technologies
discussed in section 5 were tested on the same test-bed to see
the effect of TCP technology on the performance using
different router buffer size and to find possible causes of
change in the behaviour. After running the three simulations
with same data rate of 64,000bps, the best scenario from each
simulation were selected and simulated again.

Table 2: Simulation Configuration for ETTDD

 Table 2 summarizes the TCP implementation and
router buffer size configurations for the simulations. The best
scenarios are scenarios2 from simualtion1, scenario3 from
simulation2, and scenario3 from simulation3.

Figure 6: ETTDB Dropped Packets

Simulation1: SACK Simulation2: NewReno Simulation3: Reno

Scenarios Router
buffer size

Scenarios Router
buffer size

Scenarios Router
buffer
size

1
2
3
4

8mb
16mb
32mb
64mb

1
2
3
4

8mb
16mb
32mb
64mb

1
2
3
4

8mb
16mb
32mb
64mb

P
ac

k
et

s

Time (s)

International Journal of Scientific & Engineering Research, Volume 2, Issue 12, December-2011 5
ISSN 2229-5518

IJSER © 2011

http://www.ijser.org

Figure 7: ETTDB Retransmission Count

In these simulation scenarios, the interest is to see
how the technology implementation adapts to buffer
overflows and link noise in the presence of UDP traffic
connection.

The scenarios of the TCP technologies that offered
best performance were selected, scenarios renamed and
simulated again. The best selected scenario2 renamed as
scenario1, scenario3 renamed as scenario2, and scenarios3
was not renamed. The graph pattern of the packets dropped
in figure 6 showed that scenario3 using Reno implementation
with 32mb offered better TCP performance followed by
scenario1 using SACK technology with 16mb. The gradual
increase in packets dropped and retransmission in the figures
6 and 7 indicate the effect of overlapping radio channels,
signal attenuation and additional noises. They have
significant impact on packet losses and retransmission.

5.2 TCP Technologies Performance

Analysis Using Different Data Rate

(ETTDR)

The selected TCP technologies discussed in section 5
were tested on the same test-bed to see the effect of TCP
technology on the performance of the TCP using different
data rate over fixed router buffer size of 16mb, and to find
possible causes of change in the behaviour.

Table 3 summarises the TCP implementation and
data rate configurations for the simulations. After running
the three simulations with same router buffer size of 16mb,
the best scenario from each simulation were selected and
simulated again. The best scenarios are scenarios2 using
SACK implementation with data rate of 128,000bps from
simulation1, scenario3 using NewReno implementation
with 256,000bps from simulation2, and scenario3 using

Reno implementation from simulation3. When simulating
the best scenarios selected, scenario2 from simulation1 was
renamed as scenario1, scenario3 from simulation2 renamed
as scenario2, and scenarios3 from simulation3 left as
scenario3. Figures 8 and 9 below show the results of the
simulation of the best scenarios selected.

Table 3: Simulation Configuration for ETTDR

When the best scenarios were simulated, NewReno

technology (scenario2) with wireless link data rate of

258,000bps over a router buffer size of 16mb offered the best

TCP performance followed by SACK (scenario1) technology

with wireless link data rate of 128,000bps over the same router

as shown in figure 9. The Reno technology with wireless link
rate of 258,000 bps over the same router buffer size yielded the
worse performance of the TCP.

The graph pattern of retransmission count in figure 9
indicates that using Reno technology configured in scenario1,
the TCP experienced the highest retransmission count
throughout the simulation period and SACK technology
configured in scenario1 offered better performance of TCP
followed by NewReno technology configured in scenario2.

Among the possible reasons for having such
patterns of retransmission is due to packets dropped at the
router as a result of buffer overflow and probably less effect
of link noisy. Finally, the results of the simulations reveal
that TCP Implementation using the selected different data
rate over the same router buffer size of 16mb yielded
different performance of the TCP in the emulated network
environment.

Simulation1: for SACK Simulation2: NewReno Simulation3: Reno

Scenarios Data rate Scenarios Data rate Scenarios Data rate

1

2

3

4

64,000bps

128,000bps

256,000bps

512,000bps

1

2

3

4

64,000bps

128,000bps

256,000bps

512,000bps

1

2

3

4

64,000bps

128,000bps

256,000bps

512,000bps

P
ac

k
et

s

Time (s)

International Journal of Scientific & Engineering Research, Volume 2, Issue 12, December-2011 6
ISSN 2229-5518

IJSER © 2011

http://www.ijser.org

Figure 8: ETTDD Dropped Packets

Figure 9: ETTDD Retransmission Count

5.3 Summary of the finding
The focus of this study was to analyze the effects of

TCP implementation in a network environment of MRC with
UDP traffic flows. In addition, the study also aimed to help
researchers who are interested in improving TCP or UDP
performance by giving them an accurate insight about TCP
implementations behavior. The study used simulation tool
OPNET. Six kinds of traffic, three TCP implementations were
configured and simulated. Based on the simulation results,
the performance of the TCP implementations in the emulated
network environment are not the same. SACK
implementation with data rate of 128,000bps offered best
performance of TCP followed by NewReno technology with
data rate of 258,000bps using the same router buffer size of

16mb. Reno platform with data rate of 258,000bps using the
same buffer size offered worst performance.

6. Conclusion
In spite of the recent sudden increase in accessibility

of broadband Internet access, the best part of business
organization, computer laboratory in learning environment,
and public organization have fairly small-bandwidth links in
comparison with the sites hosting beloved content. It is quite
common for multiple users of the Internet to get connected at
the same time, and running multiple networking
applications. Based on the paper work, different type of TCP
connections can give different result depending on the
network environment. Using selected test cases, TCP SACK
yielded the best followed by NewReno. Besides, it is
observed that the rate of UDP affect TCP send rates. In the
presence of UDP, there was significant decrease in the
performance of the TCP.

Authors Profile
Friday Yakubu received the B.Tech. degree in Computer
Science from Abubakar Tafawa Balewa University, Bauchi,
Nigeria, in 2003, he obtained Masters of Information
Management in 2008 and M.Sc. degree in Computer Science
in 2011, from A.B.U Zaria. He currently works with Ahmadu
Bello University, Zaria as Software Programmer.
 Email: Yakfri@yahoo.com

Dr. S.E Abdullahi, Visiting Lecturer, Department of
Mathematics, Ahmadu Bello University Zaria, Nigeria.

Aigbe Patience Erinma received her B.sc. degree from
University of Benin, Nigeria in 1993, Msc. degree from
Ahmadu Bello University Zaria in 2011. She presently works
with A.B.U Zaria as Chief System Analyst.

References

[1] Blanton E., Allman M., Fall K., and Wang L. (2003). A
Conservative Selective Acknowledgment (SACK)-based Loss
Recovery Algorithm for TCP. RFC 3517. Available:
http://www.ietf.org/rfc/rfc3517.txt, accessed on
29/08/2010.

[2] Brakmo S.L, O’Malley W.S., and Peterson L.L.(1994). TCP
Vegas: New Techniques for Congestion Detection and Avoidance.
Proceeding of ACM SIGCOMM ’94 held at Stanford,
California. August, Pp. 158-181.
Available:http://www.cs.umd.edu/class/spring2010/cmsc7
11/vegas.pdf, accessed on 25/08/2010.

[3] Floyd S. and Fall K. (1999). Promoting the Use of End-to-end
Congestion Control in the Internet. IEEE/ACM Transactions on
Networking. Vol. 7, pp. 458-472.
Available:http://citeseerx.ist.psu.edu/viewdoc/download?d
oi=10.1.1.22.6774.pdf, accessed on 1/10/2010.

[4] Floyd S. (2000). Congestion Control Principles. RFC 2914.
Available:http://www.ietf.org/rfc/rfc2914.txt, accessed on
20/10/2010.

P
ac

k
et

s

Time (s)

P
ac

k
et

s

Time (s)

mailto:Yakfri@yahoo.com
http://www.ietf.org/rfc/rfc3517.txt
http://www.cs.umd.edu/class/spring2010/cmsc711/vegas.pdf
http://www.cs.umd.edu/class/spring2010/cmsc711/vegas.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.22.6774.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.22.6774.pdf
http://www.ietf.org/rfc/rfc2914.txt

International Journal of Scientific & Engineering Research, Volume 2, Issue 12, December-2011 7
ISSN 2229-5518

IJSER © 2011

http://www.ijser.org

[5] Floyd S. and Henderson T. (1999). The NewReno Modification to
TCP's Fast Recovery Algorithm. RFC 2582.
Available: http://www.ietf.org/rfc/rfc3390.txt, accessed on
20/10/2010.

[6] Floyd S. and Fall K. (1996). Simulation-based Comparisons of
Tahoe, Reno, and SACK TCP. Computer Communication
Review, July, Vol. 26, No. 3, pp. 5-21.
Available:http://citeseerx.ist.psu.edu/viewdoc/download?d
oi=10.1.1.22.3327.pdf, accessed on 20/10/2010.

[7] Gilbert H. (2002). The ABC of IP Addressing. AUERBACH, Baca
Raton London, New York Washington, D.C.

[8] Jacobson V. (1988). Congestion Avoidance and Control,
Proceeding of ACM SIGCOMM ’88 held at Palo Alto,
California. August, pp. 133-147. Available:
http://ee.lbl.gov/papers/congavoid.pdf, accessed on
10/09/2010.

[9] Kent C. and Mogul J. (1987). Fragmentation Considered Harmful.
Proceeding of the ACM workshop on Frontiers in Computer
Communications Technology held at New York, NY, USA.
November, pp. 390-401.
Available:http://citeseerx.ist.psu.edu/viewdoc/download?d
oi=10.1.1.37.5308.pdf, accessed on 25/10/2010.

[10] Mathis M., Mahdavi J., Floyd S., and Romanow A. (1996). TCP
Selective Acknowledgment Options. RFC 2018.
Available:http://www.ietf.org/rfc/rfc2018.txt, accessed on
10/08/2010.

[11] Nagle J. (1984). Congestion Control in IP/TCP Internetworks.
ACM SIGCOMM Computer Communication Review held at
Palo Alto, California. June, pp. 3-5.
Available:http://www.sigcomm.org/ccr/archive/1995/jan9
5/ccr-9501-nagle84.pdf, accessed on 15/09/2010.

[12] Postel J (1981). Transmission Control Protocol. Internet RFC 793.
Available: http://tools.ietf.org/html/rfc793, accessed on
25/08/2010.

http://www.ietf.org/rfc/rfc3390.txt
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.22.3327.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.22.3327.pdf
http://ee.lbl.gov/papers/congavoid.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.37.5308.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.37.5308.pdf
http://www.ietf.org/rfc/rfc2018.txt
http://www.sigcomm.org/ccr/archive/1995/jan95/ccr-9501-nagle84.pdf
http://www.sigcomm.org/ccr/archive/1995/jan95/ccr-9501-nagle84.pdf
http://tools.ietf.org/html/rfc793

