
Performance Analysis of the Libswift

P2P Streaming Protocol

Riccardo Petrocco

Technische Universiteit Delft

Delft, The Netherlands

r.petrocco@gmail.com

Johan Pouwelse

Technische Universiteit Delft

Delft, The Netherlands

peer2peer@gmail.com

Dick H. J. Epema

Technische Universiteit Delft

Delft, The Netherlands

d.h.j.epema@tudelft.nl

Abstract—Video distribution is nowadays the dominant source
of Internet traffic, and recent studies show that it is expected
to reach 90% of the global consumer traffic by the end of
2015. Peer-to-peer assisted solutions have been adopted by many
content providers with the aim of improving the scalability and
reliability of their distribution network. While many solutions
have been proposed, virtually all of them are at the overlay level,
and so rely on the standard functionality of the transport layer.
The Peer-to-Peer Streaming Protocol workgroup of the IETF has
adopted the Libswift transport-layer protocol that is targeted at
P2P traffic. In this paper we describe the design features and
a first implementation of the Libswift protocol, and a piece-
picking protocol that uses the transport features of Libswift in
an essential way. We investigate its performance on both high-
end and power-constrained low-end devices, comparing it to the
state-of-the-art in P2P protocols.

I. INTRODUCTION

Over the last years, the demand for video over the internet

has dramatically increased. A recent white paper released

by Cisco [10] predicts that by the end of 2015, 90% of

global consumer internet traffic will be video. In facing this

growing demand, techniques that guarantee a good quality

of service (QoS) to the end users are required. A popular

choice for this has been peer-to-peer (P2P) assisted systems

[25, 25, 28, 29], in which each end user contributes to

other interested viewers by sharing his downloaded content.

P2P assisted systems offer an efficient way of increasing the

scalability of a system by reducing the load on the distribution

infrastructure, and therefore, on the content provider. To satisfy

the need for a standard for distributing video content over

P2P networks, the Internet Engineering Task Force (IEFT) has

been working towards defining a new Peer-to-Peer Streaming

Protocol (PPSP), which has resulted in the Libswift protocol

being adopted as the working group reference. In this paper

we present the first implementation of current draft, and a

performance comparison with existing BitTorrent-based P2P

clients.

The most popular way of sharing content in a P2P fashion is

currently the BitTorrent protocol, which is a natural candidate

for the design of P2P assisted systems. Originally designed

for file downloading with the goal of retrieving the entire

content as soon as possible, much work has been done on

adapting BitTorrent-like protocols to fit the needs of video-

on-demand and video streaming [4, 14, 17, 18, 21]. Most of

the proposed changes have affected the download scheduler

(usually called the piece picker), the upload policies, and the

overlay networks, but have relied on the standard transport

protocols in the internet.

In this paper we provide a performance comparison of the

Libswift protocol with popular BitTorrent-based clients on

both high-end and power-limited devices. We propose Libswift

[19, 23] as an appropriate candidate for media streaming

applications. Libswift is a content-centric multi-party transport

protocol that has been designed with flexibility and lightness

in mind. It allows NAT traversal, small message-passing over-

head, and has a novel data structure that allows a very small

per-connection cost. It differs from most of the existing P2P

systems as it lies at the transport layer rather than at the appli-

cation layer. While most of the existing solutions use standard

transport layer protocols designed for client-server networks

such as TCP, Libswift provides a protocol specifically crafted

for P2P networks, removing features that are not needed for

video distribution such as in-order retrieval. Furthermore, we

present an algorithm for selecting peers from which to request

time-critical data, an algorithm for ordering data requests that

guarantees upload fairness to all requesting peers that applies

a form of Weighted Fair Queuing (WFQ), and a downloading

algorithm that takes peer locality and robustness into account.

Each of these three algorithms exploits information available

at the transport layer of Libswift.

We have implemented a realistic testing framework that

executes the P2P clients that we compare on a multicluster

machine, which gives us a chance to evaluate Libswift’s

behaviour in a real world environment, rather than relying on

simulations. Furthermore, we provide a comparison of the Lib-

swift client with popular BitTorrent-based clients, providing

more insight into its strengths and weaknesses.

The main contributions of this paper are the following:

• We describe the design features of the Libswift protocol

(Section II).

• We present a peer selection and upload request ordering

policy for video-on-demand that use Libswift’s transport-

layer features in an essential way (Section III).

• We perform an experimental evaluation of Libswift’s

performance on high-end and power-constrained devices,

and compare it with popular, state-of-the-art BitTorrent-

based protocols (Sections IV and V).

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in
the IEEE P2P 2012 proceedings

978-1-4673-2862-3/12/$31.00 ©2012 IEEE 103

II. LIBSWIFT

This section describes several design characteristics of Lib-

swift which are required to understand the algorithms and

experiments presented in this paper. A full description of the

protocol is available at [7].

A. Design Features

The Libswift protocol has been designed with simplicity and

lightness in mind. It can be run over any transmission protocol

[19], allowing each provider to choose its own mechanism

depending on the specific needs. Libswift operates at the

transport layer rather than the application layer, and given its

small footprint, it can be easily integrated into the operating-

system kernel as an additional transport protocol. It features

very short start-up times and it has been designed for in-order

and out-of-order download with a particular focus on real-time

streaming.

For congestion control, the Low Extra Delay Background

Transport (LEDBAT) [27] approach has been implemented

and integrated into our reference implementation. LEDBAT

has been designed to provide the best possible ”background”

transmission, avoiding interference with TCP foreground traf-

fic on the same network link. The algorithm has proven to

be successful and has already being integrated into some

BitTorrent-based clients [6]. This behaviour allows Libswift

to be run in the background, without the side effects of a

noticeable delay when traffic generated by other applications,

such as a web browser, needs access to the link. LEDBAT is

the ideal congestion control mechanism for file-sharing and

video-on-demand (VoD) content, while for live-streaming a

different mechanism might be applied.

Content integrity is provided by employing Merkle hash

trees [8, 24]. All the hashes needed to validate the received

packets are sent along with the actual content, allowing for

immediate verification. In our implementation, the Merkle

tree scheme is applied for every download scenario, offline

file downloading, VoD, and live streaming, but the modu-

larity of Libswift allows for an easy integration of different

mechanisms. As a last note, Libswift has been designed to

support both push and pull strategies, but for the scope of the

experiments presented in this paper, we implement Libswift

as a push protocol, providing consistent and reliable results.

The reference implementation currently consists of about

8K lines of code, and has not yet been fully optimised.

It uses the UDP protocol because of its simplicity, lack of

connection set-up delays, and retransmission. UDP also fulfils

the requirements of time critical applications, such as video

streaming, and we therefore consider it to be the best candidate

for our reference implementation.

B. Binmap

Every P2P system needs a way of representing the local

availability of the downloaded content to other peers partici-

pating in the swarm. BitTorrent, which splits the content into

a number of data blocks, usually about a thousand, addresses

this issue by using a bitmap in which every bit represents a

Fig. 1: The binmap for a file divided into 8 blocks.

successfully downloaded block. Peers exchange their bitmaps

to detect who already retrieved any missing blocks. While

this approach guarantees a constant and easy way of sharing

information, it does not scale and is not flexible enough to

provide any level of aggregation of information. Being a plain

array of bits, the cost of sharing this information is constant

and does not scale over time.

In Libswift, to prevent the propagation to every node

of redundant information, a binary tree is built on top of

the bitmap every node of which represents a specific data

range. The nodes in this tree, which is called a binmap [31],

represent the availability of their left and right child nodes. If a

consecutive range of data has the same status, either available

or not, this information can be aggregated in a node in the

tree that is at a higher layer, offering an easy way to identify

missing ranges of data without having to inspect the entire

binmap. Once the information of a node, also called binary

interval or bin, is aggregated in a parent node, it is removed

from the tree, thus reducing the size of the tree and space in

memory. Each bin in the binmap is represented by a 16-bit

value, therefore, while the leaves of the binmap have a value

of either all 0 or all 1, their information is propagated to their

parent bins, up to the fourth layers. This structure is repeated at

the higher levels of the tree, with the root of the tree indicating

whether all blocks are available or not. The novel binmap data

structure merges the concept of bitmaps with the one of binary

interval, and represents an efficient way of storing information

about the data availability of each connection, reducing the

per-connection costs. This approach reduces the overhead in

peer communication, allowing to request data and announce

the local availability with a single number, the bin number.

104

Leecher Seeder

HANDSHAKE

HANDSHAKE + HAVE(root bin)

HINT(bin1)

DATA(bin1) + UNKLE_HASH(bin1)

verify(bin1)

ACK(bin1) + HINT(bin2)

Fig. 2: Sequence diagram of the initial interaction.

An example of such a binmap for a file consisting of 8

blocks is presented in Figure 1. In this example bin 7, called

the root bin, represents the entire content from block 1 to

block 8, while for instance bin 3 represents blocks 1 to 4.

The default block size in Libswift is 1 KByte, but the system

can easily increase the size depending on the environment

and size of the content. The choice of 1 KByte data packet

allows to avoid fragmentation while adding to the message the

local availability, acknowledgements for previously received

packets and requests for new data blocks, all represented by

bin numbers.

C. Peer Communication

As previously stated, Libswift operates at the transport layer,

and as it is specifically targeted at video distribution in P2P

systems, it only has messages for the discover of new peers,

for establishing a connection, and for requesting content.

Peer discovery in Libswift is done through Peer exchange

(PEX), enabling peers to exchange peer addresses with each

other in order to reduce the load on the (optional) track-

ers. The communication between peers is performed with a

small set of messages. These represent the initial handshake

(HANDSHAKE), the announcement of local availability of a

piece (HAVE), acknowledgements of received packets (ACK),

packets containing data (DATA) with its uncle hashes needed

for verification (HASH), and requests for new content (HINT).

The quality of the connection with each peer is constantly

being monitored and predicted, based on the arrival of data,

the round trip time (RTT), and the stability of the end-to-end

link. The binmap data structure used to record the content

availability presented in the previous section allows for a very

low per-peer communication cost. The request for hardware

resources is highly dynamic and is directly influenced by the

level of data fragmentation in the swarm.

Figure 2 shows the initial interaction between a peer and a

seeder. The key characteristic is the aggregation of information

within the same message. This design allows peers to start

requesting data already at their second interaction (HINT),

greatly reducing the warm-up time and therefore leading to

short start-up times in streaming environments.

III. DOWNLOAD SCHEDULING

In this section we present the design principles of Libswift’s

download algorithm, which has been designed with a focus on

providing video-on-demand capabilities, such fast pre-fetching

or buffering, and low start-up delays. The download algorithm,

presented in Section III-C, selects fast peers from which the

high-priority data is requested. Section III-A presents the

ranking system used to select fast peers and Section III-B

presents the upload strategy introduced to achieve fairness,

to have the opportunity to limit the upload capacity, and to

provide a better bandwidth estimation.

A. Peer Ranking

P2P clients usually select peers to which to send requests

for data randomly. The importance of selecting the right peers

when playing a video stream retrieved through a P2P network

has been proven by many existing systems [13, 21]. Many

alternative upload strategies have been proposed [18, 30] that

allow requesting urgent data, which is prioritised over other

requests, from a selected group of peers. This behaviour

guarantees that urgent data will be sent before their deadline,

but it assumes an environment without selfish peers. This can

however not be assumed for the Libswift system, because as

the code and its policies are easily accessible to the users,

selfish peers might modify their policies and mark all of their

requests as urgent. While most of the solutions design an

overlay network to organise the peers, we have direct access

to the transport layer, and therefore, we can take advantage

of direct information about the actual received bandwidth

and other values such as the packet loss rate. Exploiting this

information, we can select peers that provide the best end-to-

end links, reducing the probability of requesting urgent data

from slow or unreliable peers.

The quality of a link is calculated based on the measured

bandwidth speed as derived from the RTT and the packet inter-

arrival time, and the packet loss rate. The information we need

is already available as every peer continuously monitors the

acknowledgements for the data it sends to other peers in the

swarm, and, in order to apply the LEDBAT congestion control

[27], the average RTT, the bandwidth capacity, and the packet

loss rate are constantly updated.

Every peer then ranks all its neighbour peers according to

the value of

Ri = Si − k · Si · Lr , where Si = P ·
1−RTTi

DIPi

, (1)

where Ri is defined as the expected bandwidth of peer i, DIP

represents the packet inter-arrival time, P represents the packet

size, Lr represents the loss ratio defined as the ratio between

the numbers of lost and received packets, and k is a variable

parameter that determines the influence of the packet loss rate

on the bandwidth estimation. The variable k is initialised at

1, and incremented if the peer shows to have an unstable

connection, resulting in big variations of the derived RTT and

DIP values. Peers then sort their neighbour peers according

105

Fig. 3: Scheduler for incoming requests. a) The original

scheduler. b) The new scheduler for fairness and load

distribution.

to decreasing expected bandwidth, and select the first n peers

for which
n
∑

i=1

Ri ≥ x · BRv, (2)

where BRv is the average video bit-rate and x is a dynamic

factor that varies based on the experienced playback behaviour,

e.g., the number of playback stalls. These n peers represent

the set of fast peers, to which the download algorithm will

turn when requesting urgent data.

B. Upload Policy

The design of Libswift [7] does not specify a specific upload

strategy when serving incoming requests. The requesters de-

cide how much data to request based on the measured network

delay, following the LEDBAT approach [27]. The initial design

of LEDBAT did not take fairness in serving requests into

account, but recently its authors have presented [9] several

strategies to do so. The proposed solutions provide a fair

distribution of the available bandwidth to concurrent LEDBAT

streams, always aiming to fully utilise the available bandwidth.

While this approach is well suited for high-end devices,

maximising the upload stream is not always the best approach

for low-end devices, such as mobile phone and set-top boxes,

where resources are usually expensive. In order to be able to

limit the upload capacity, we approach the problem of fairness

from a different perspective. One of the main goals of Libswift

is to provide a protocol that, given its small footprint, can be

easily integrated on low-power devices such as mobile phones

and set-top boxes. To limit the upload bandwidth utilisation

in environments where resources are scarce, either because

of network costs or to offload the hardware during a video

playback, we present a new approach that schedules the stream

of outgoing packets equally among the connected peers.

We replace the original upload queue management that was

serving requests following a FIFO approach, see Figure 3-a,

with a more elaborate one to provide fairness and a good level

of bandwidth estimation. We apply the well known Weighted

Fig. 4: Content divided into three different priority sets.

Fair Queuing (WFQ) scheduling technique [12], that fairly

distributes the available bandwidth to all the connected peers.

The weight used in the WFQ algorithm is assigned per peer,

depending on the amount of outstanding requests. If the upload

speed of the sender is limited, and the limit is reached, the

sender will delay serving the requests, introducing a delay

specific to each peer, and proportional to the amount of his

outstanding requests. The requester, on the other hand, will

notice an increasing delay in the responses and will decrease

the rate of his requests. Ideally, the algorithm reaches a stable

state in which all requests are served with the same delay, and

all peers sends the same amount of requests. If the requester is

expecting urgent data, it will cancel his outstanding requests,

that might be asked from other connected peers, and reduce

the size of the next request to guarantee its delivery on time.

In this way it becomes trivial to predict load changes on

the sending peers, and it gives a more accurate bandwidth

estimation needed for the peer scheduler, see above.

C. The download algorithm

For the download algorithm, each peer maintains for every

swarm it participates in a so-called availability tree in which

it keeps track of its view of the global data availability in the

swarm. In fact, the availability tree of a peer represents the data

availability among all peers it is connected to. It has the same

structure and size as the binmap in its fully expanded form,

and it keeps track of the percentage of availability of each

bin, or node, of the binmap tree. The cost of maintaining this

tree is very small as it is only updated when new availability

information is received from a neighbour peer. The availability

tree allows the download algorithm to detect, and target for

download, bins that have a low level of replication. This

approach will balance the data availability in a swarm, and

will facilitate data exchange between peers.

The download algorithm divides the video stream into three

sets, a high-, a medium-, and a low-priority set [16], see Figure

4. The high-priority set starts at the current playback position

and selects data in-order, as it represents the most urgent data

in a video stream. If nothing can be downloaded from the high-

priority set, the algorithm selects data from the mid- and low-

priority sets in a rarest first fashion to increase their availability

in the swarm. In the high-priority sets data are retrieved as

soon as possible, requesting content form the set of fast peers

106

defined in the previous section, which provide the best end-

to-end link quality. The size of the requests depends on the

number of fast peers currently in the set and the queue delay

calculated given by LEDBAT. In particular it is defined as:

min

(

Wledbat

2
,
H

F

)

, (3)

where Wledbat is the size of the congestion window, H is

the size of the high-priority window, and F is the number of

fast peers currently in the set. The algorithm keeps track of

each request that has been sent, and assigns a deadline to it

based on the current playback position and the loss ratio. The

deadline for packets from the high priority is always assigned

with a safety margin, allowing to forward the same request to

a different peer in case the it is not retrieved on time.

The higher the speed and the reliability calculated from

previous data transmissions, the bigger the requested data

blocks. This is a similar approach to the windowing system

in the TCP protocol. Libswift constantly monitors several

parameters, such as packet losses and average round trip times

(RTT), trying to fully utilise the available link capacity. When

downloading from the low-priority set, the algorithm iterates

through the local binmap to identify missing data, through

the remote peers’ binmaps to see what data can be retrieved,

and through its availability tree, selecting the rarest bin in the

swarm.

IV. EXPERIMENTAL SET-UP

In this section we present the environment, the scenarios,

and the metrics we use to evaluate the performance of Libswift

in comparison to existing solutions. Section IV-A describes the

experimental set-up for assessing the download algorithm pre-

sented in Section III, Section IV-B does so for the comparison

of Libswift with BitTorrent-based protocols, and Section IV-C

does so for the evaluation of the performance of Libswift on

power-limited devices.

A. Algorithm Comparison

In this section we describe the environment and scenar-

ios we use to evaluate the impact of the newly introduced

scheduling algorithm. We perform a series of experiments

in which we analyse the behaviour of Libswift in terms of

efficiency, reliability, and its capabilities of providing deadline-

based streaming content. Table I presents the scenarios we use

to investigate Libswift’s behaviour, characterized by different

proportions of seeders and leechers, with the size of the

swarm ranging from 32 to 208 peers. We assume peers to

be selfish, leaving the swarm as soon as they complete the

download or reach the end of the playback. We compare the

algorithms in this scenario, since swarm that provide an over-

supply of bandwidth don’t allow to easily identify misbehaving

algorithms. The only seeder in the swarm is the initial content

provider, which distributes a video stream encoded with an

average bitrate of about 1Mbit/s.

To simulate the content playback, we implement a video

player that starts consuming the content provided by the down-

load engine as soon as the initial 5-second buffer has been

Fig. 5: Artificial delay and packet loss rate introduced

between group of peers.

filled. This initial set of data is requested by the media player

in an aggressive way in order to reduce time till playback, thus

stressing the download engine. After the buffer has been filled,

the player requests the content at its average bitrate, simulating

normal playback. The media player stops consuming content

only when it reaches the end of the stream or when the engine

cannot provide the requested content, in which case it will

pause and resume once the buffer has been filled again. This

behaviour completely decouples the media player from the

transport layer, as the download engine has no control over

the rate at which the content is consumed. Furthermore, it

simulates a real world scenario, in which existing mediaplayers

can use Libswift as their transport protocol.

We compare our VoD algorithm with two alternative ap-

proaches, a baseline algorithm, referred to as linear, and a

standard priority-based VoD algorithm, referred to as std-vod.

The first retrieves data in order, while the second divides the

content into the same priority sets as our algorithm, retrieving

data in order from the high-priority set and in a rarest-first

fashion from the mid- and low-priority sets. Both algorithms

do not apply any kind of peer selection, and forward the

requests to random connected peers.

To evaluate the performance of our VoD algorithm presented

in the previous section, we divide the leechers into four groups

distinguished by different connection speeds. For each group

we introduce an artificial delay and a packet loss rate for

each outgoing network packet, except for the seeder for which

no packet loss rate is introduced. Packets sent by the seeder

are characterised by the peer’s delay and an additional 5ms

latency. The delays assigned to each group, and introduced

between the groups, are presented in Figure 5. The seeder

distributes the content over a 20Mbit/s network link, while

the upload rate of the leechers is limited to 1.2Mbit/s.

Our experiments are performed on the Distributed ASCI

supercomputer [15] (DAS4), which has dual quad-core 2.5

107

TABLE I: Experiment scenarios showing the number of

leechers in the swarm.

Libswift vs. BitTorent. 4 Leechers per Node

4 8 16 24 32 48 64 96 128 176 208

Libswift VoD algorithm comparison. 8 Leechers per Node

32 48 64 96 128 176 208

GHz machines connected with Gbps links, to guarantee a sta-

ble environment providing consistent results and avoiding bot-

tlenecks introduced by limited network capabilities and lack

of hardware resources. Depending on the specific experiment

presented in Table I, we execute up to 8 clients simultaneously

on each DAS node, considering that our current prototype

implementation is single threaded and each process fits well

within the boundaries of a single core’s capabilities.

B. Libwift versus BitTorrent

To evaluate the performance of the Libswift protocol we

compare it to the most popular P2P protocol, BitTorrent [11].

For our comparison we have selected the uTorrent client [6], as

the most widely used P2P client [32], and the libtorrent library

[2], which is currently in use by several popular projects

(e.g., Limewire [3], Deluge torrent [1] and Miro [4]) for its

lightness and good performance. For our experiments we select

the latest Windows version of uTorrent, as it proves to be

more stable and provides more consistent results than the

outdated Linux version of the client, and we implement a

small client composed of few lines of code as an interface

to the libtorrent library. For both BitTorrent-based clients we

disable optional features, such as DHT support or the decline

of connections from clients running the same host, where

possible. Furthermore, we enable features such as prioritising

partial pieces, to increase sharing.

In the experiments we measure the time needed to complete

the download and the bootstrap time, that is, the initial start-up

delay until the playback starts, which has a great impact on

the quality of experience (QoE). Furthermore, we investigate

the capacity of the clients to provide consistent results across

all the peers in the swarm. During this set of experiments we

do not implement a player that consumes the content in real-

time, as those functionalities are not easily accessible on all

clients. Libswift downloads data according to the algorithm of

Section III, with the high-priority window set to 10 second,

which corresponds to 11.4MB, while the remaining content

is retrieved in a rarest-first fashion. Libtorrent has policies to

download the entire content either sequentially or in rarest-

first mode. Even through we could set the download policy to

retrieve the initial set of pieces in order, and than change it to

rarest first, we decide to retrieve the entire content in a rarest

first fashion, as this represents libtorrent’s default behaviour.

UTorrent, on the other hand, offers a streaming feature, but

unfortunately it cannot be enabled from the integrated web

interface we use to retrieve the download progress. Thus,

when measuring the start-up delay for uTorrent and libtorrent,

we consider the first 11.4MB downloaded from the entire

content, giving the clients a clear advantage over Libswift,

as the retrieved content doesn’t need to be at the beginning of

the file.

Also for these experiments, we use the DAS4. For the Bit-

Torrent clients we execute the content provider and seeder on

the same node as the tracker, using the popular opentracker [5],

while the clients are executed on remaining nodes following

the scenarios presented in Table I. For Libswift, even through a

tracker is considered to be optional and can be used to speed up

the peer discovery phase, we consider PEX to be sufficient for

our needs and rely on the initial seeder for the dissemination

of peer addresses to new-comers.

We run each of the scenarios of Table I applying two inter-

arrival patterns. In the first, peers join the swarm roughly

at the same time, simulating a flashcrowd scenario. In the

second arrival pattern, the peers are started following a Poisson

interinter-arrival process with a rate of 1 peer per second, sim-

ulating a steady-state scenario. In all the presented scenarios,

peers are initialised only once the seeder and the tracker are

ready to receive incoming requests. The testing framework

schedules the arrival of the first peer 30 seconds after the

seeder and tracker have been initialised, giving the seeder

enough time to perform the needed integrity checks of the

1GB seeding content. We sample the progress with 1 second

accuracy, starting once the .torrent file is added to the client

in the case of uTorrent, or at execution time for Libswift and

Libtorrent as they receive it as an execution argument.

C. Libswift on Power Limited devices

In this section we present the metrics and scenarios we use

to evaluate Libswift when executed on power-limited devices.

In order to do so, we analyse its performance when running

Libswift on a 450Mhz set-top box developed by Pioneer in

the context of the P2P-Next project [26], and on a Samsung

Galaxy Nexus smart phone running the Android platform.

During the P2P-Next project, the Pioneer Digital De-

sign Center in London developed a low end set-top box

(STB),called NextShareTV, featuring HD streaming provided

through a P2P network. The initial implementation used a

BitTorrent based download engine to provide the stream to

the decoder, and ultimately to an HD TV. Later versions adopt

Libswift as the main P2P client. To evaluate both download

engines, we compare the ability to reach high download

bitrates given the hardware constraints. Experiments are run

by the Pioneer R&D team in an isolated environment where 7

STB peers receive the stream from the initial content provider,

represented by a PC client. All the peers are connected to each

other over a 1Gbit/s link, and, as for our previous experiments,

clients are started within 1 second to each other. Furthermore,

different from the previously presented scenarios, the retrieved

stream is actually sent to a player and displayed on the

connected TV, increasing the load on the hardware.

On the Android platform we evaluate the performance of

Libswift in comparison to the most popular VoD applica-

tion, YouTube. We implement a small interface between the

Libswift protocol and the default media player available on

108

the Android platform, to compare Libswift’s capabilities to

download and simultaneously playback.To evaluate the perfor-

mance of the compared applications, we measure the power

consumption when downloading, while playing, a 58 second

720p video content composed of about 14MByte over the

same wireless network link. To provide an equal comparison

of Libswift with the YouTube application, we chose the same

video encoded in mp4 format. This allows Libswift to stream

the content to the integrated media player using the same

native decoder used by the YouTube application. Considering

the fact that in the Android environment each application runs

independently in its own private virtual machine, measuring

the CPU and memory load would not give us sufficient inside

to the actual resource utilization. We therefore measure the

power consumption, physically bypassing the battery, and

consider it to be the most reliable metric to analyse the

resources needed to execute each application. We apply a 0.33

Ohm high side shunt providing a 99% accuracy [20] for our

measurements, and use a NI USB-6009 data acquisition card to

retrieve the battery variations. Our results are averaged over 3

consecutive measurements, where between each measurement

we reboot the device and wait 30 seconds after the application

is initialised, starting the download only once it provides a

constant reading. Even through the battery voltage readings

are known to degrade over time, and can not be avoided [22],

we consider the difference not significant enough to draw our

conclusions.

V. EXPERIMENTAL RESULTS

In this section we present the experimental results of Lib-

swift. Section V-A presents the results of retrieving streaming

content when different download algorithms are applied. Sec-

tion V-B presents the results of the comparison with existing

BitTorrent-based P2P solutions, while Section V-C presents

the performances on Libswift when run on hardware-limited

devices.

A. VoD Algorithm Comparison

In this section we discuss the effect that different download

policies have on the QoE of the final viewer. We consider

the number of stalls experienced during playback as the most

important metric to evaluate the final QoE. Figure 6 presents

the average number of stalls that occurred during the playback.

The worst QoE is obviously caused by the linear approach.

This approach, despite it’s simplicity, causes a very low level

of scalability and information exchange between peers, as

only peers further on in the playback are able to provide

useful data to newcomers. The main reason for failing in

establishing a fully scalable distributed network, is the lack

of global knowledge about data availability in the swarm.

The standard VoD algorithm, on the other hand, holds a

global knowledge about data availability in the swarm, using

the same availability tree data structure presented in Section

III-C. The effect of retrieving data in a rarest first fashion, to

increase its availability in the swarm, becomes quite evident

in scenarios with more than 96 leechers. Libswift’s download

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 20 40 60 80 100 120 140 160 180 200

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f
s
ta

lls

Swarm size (leechers)

Libswift-vod
std-vod

linear

Fig. 6: Average number of stalls experienced during

playback.

algorithm clearly outperforms the other approaches, selecting

the best candidate peers to which request urgent data before

its deadline, and in general, increasing the scalability of the

system. As faster peers, belonging to group A and B of Figure

5, retrieve the content from the high priority set, they are

selected by slow peers, from group C and D, as the best

candidates for providing urgent data and increasing their QoE.

We do not show the start-up time, as it proves to be very

similar for all three algorithm, ranging from 3 to 7 seconds

on average. This experiment also clearly demonstrates how

P2P networks represent an efficient solution to increase the

scalability of a system, taking fully advantage of the viewers

available bandwidth.

B. Libswift vs. BitTorrent

For each of the figures presented in this section, the time

refers to the relative time of each client. The time starts once

the torrent file is scheduled for download, for the BitTorrent-

based clients, or once the client has been launched, for

Libswift. The presented results are averaged over 10 runs for

each scenario and for each client.

Figure 7 shows the average time needed to complete the

download in a flashcrowd scenario. On average Libswift

performs right between the two compared clients, and all three

clients present a similar level of scalability. For swarms that

are characterised by a leecher to seeder ratio smaller than

32:1, Libswift presents better performance than Libtorrent.

Both clients fully utilise the available bandwidth link, and the

slightly faster download speed presented by Libswift is given

by the smaller overhead in peer communication, as messages

are sent within the same packet containing the actual data. For

swarms that are characterised by a ratio of leechers to seeders

higher than 48:1, libtorrent clearly outperforms Libswift, given

its highly optimised code and algorithm that select rare pieces

for download.

Figure 8 presents the interquartile range and the average

start-up delay for the six biggest scenarios presented in Table

I. We only investigate the scenarios with swarms composed

of more than 48 peers, as those present more interesting

results. The vertical axis of Figure 8 presents the start-up

109

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 50 100 150 200

C
o
m

p
le

te
 t
im

e
 (

s
e
c
.)

Swarm size (leechers)

Libswift
uTorrent
libtorrent

Fig. 7: The completion time in the flashcrowd scenario.

 0

 5

 10

 15

 20

48 64 96 128176208

S
ta

rt
u

p
 t

im
e

 (
s
e

c
.)

48 64 96 128176208

Scenario

48 64 96 128176208

 100

Libswift Libtorrent uTorrent

Fig. 8: The start-up time in the flashcrowd scenario.

delay using two different scales. The first 20 seconds are

represented linearly, while the remainder is displayed on a

logarithmic scale. This allows us to show in great detail the

most interesting results, providing a higher QoE to the final

viewer, while keeping worst results on the same graph.

It is clear that on average, Libswift and Libtorrent appear

to have similar performance, but there is a great difference in

the variability of the results. While all Libswift clients start

almost always within the first 15 seconds, a small percentage

of Libtorrent clients will have to wait more than one minute

before being able to start the playback. UTorrent clients, on

the other hand, experience a lower QoE, having to wait more

than a minute on average before retrieving the first 10 seconds

of video and being able to start their playback.

Figure 9 shows the average download time when peers join

the swarm following a Poisson inter-arrival rate of 1 peer

per second. In this scenario, Libswift presents slightly better

results than in the previous one. This is clearly caused by

the VoD oriented download scheduler. In the absence of a

flashcrowd, peers are able to download all the data from the

high-priority window, prioritised over the rest of the content,

and start requesting data in a rarest first fashion, increasing the

cooperation between peers. This behaviour is more evident in

Figure 10, where the vast majority of Libswift peers retrieve

the initial data needed to start the playback within the first

second from their execution. As for the results presented in

Figure 8, Libtorrent peers fill the initial buffer within the first

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 50 100 150 200

C
o
m

p
le

te
 t
im

e
 (

s
e
c
.)

Swarm size (leechers)

Libswift
uTorrent
libtorrent

Fig. 9: The completion time in the steady-state scenario.

 0

 5

 10

 15

 20

48 64 96 128176208

S
ta

rt
u

p
 t

im
e

 (
s
e

c
.)

48 64 96 128176208

Scenario

48 64 96 128176208

 100

Libswift Libtorrent uTorrent

Fig. 10: The start-up time in the steady-state scenario.

10 seconds, but a small minority still needs more than one

minute for the buffer to fill. UTorrent clients also perform

better when their arrival is linearly distributed over time,

reducing by ∼20 seconds their average start-up delay, reaching

a more acceptable value of 40 second.

Finally, Figure 11 presents the CDF of the completion time

in the steady state scenario with 128 leechers and 1 seeder.

Clearly, the average values presented in Figure 9 do not always

reflect the real behaviour, as 25% of Libtorrent peers will

experience a quite higher complete time. As a last note, while

uTorrent appears in our results to be the worst client, it is

also the more mature one, offering a quite more extensive set

of functionalities compared to Libtorrent or Libswift. When

only one client per node is executed, libswift is the fastest,

retrieving the 1GB file in only 9 seconds and fully utilising

the Gbit connection, but its performance degrades a bit when

the link is shared with other clients or applications. Obviously,

our implementation being just an initial prototype, we can

not compete with the maturity of Libtorrent and uTorrent.

Nevertheless, we analyse the suitability of the clients in a

highly demanding streaming context with the sole aim of

retrieving the content as soon as possible.

C. Libswift on Power Limited devices

The low footprint of Libswift allows for an easy integration

on hardware-limited devices.

Figure 12 presents the results of running Libswift as the

transport protocol for the NextShareTV STB. During the P2P-

110

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350

C
D

F

Time (sec)

Libswift
uTorrent
libtorrent

Fig. 11: CDF of the completion time in a steady-state

scenario with 128 leechers

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2000 4000 6000 8000 10000 12000

A
v
e
ra

g
e
 C

P
U

 U
s
a
g
e
 (

%
)

Bitrate (Kb/s)

Libswift
BitTorrent

Fig. 12: A comparison of the NextShareTV STB running

Libswift and a python-based BiTorrent client as download

engine.

Next project, also real-world experiment have been conducted,

but unfortunately at that time only the original python-based

BitTorrent client had been integrated into the STB. It is

obvious that the performance of Libswift is far superior than

the original BitTorrent client, even though much has been

gained by moving from python code, needing more resources,

to C++ code. Nevertheless, the integration of Libswift allows

the STB to reach higher bitrates, offering a footprint of only

1MB for the code, and 0.5% of the content size for the Merkle

hashes.

Figure 13 presents the power consumption when running the

Libswift and the YouTube Android applications on the same

hardware. the measurements are taken while downloading and

playing the same 720p content in the same network conditions.

The experiment shows that the YouTube application maintains

a lower, more constant, power consumption, which is due to

the fact that the application retrieves the content at a lower

rate. On the other hand, the Libswift application is just a

proof-of-concept, and has not been optimised for such a use.

Therefore, it retrieves the content in an aggressive way, using

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 10 20 30 40 50 60 70

W
a
tt
s

Seconds

Libswift
YouTube

Fig. 13: The power consumption of Libswift and YouTube

when playing a 720p video stream on an Android smart

phone.

fewer resources, but leading to a higher power consumption

during playback. The aim of this experiment is not to prove

the superiority of Libswift over the commercial application;

instead, we want to show that Libswift, if optimised, can be a

valuable alternative to provide the same QoE while distributing

the content over a P2P network.

VI. CONCLUSIONS AND FUTURE WORK

It this paper we have introduced the new P2P Streaming

Protocol Libswift, which is a proposed IETF standard, ex-

plaining its design characteristics and goals. Furthermore, we

have presented a download algorithm specifically crafted for

retrieving streaming content that reaches a high level of QoE

by exploiting the information available at the transport layer.

We have validated the efficiency of our download algorithm

by running realistic experiments on a multicluster machine,

simulating a media player that consumes the content in real

time. Results show that requesting urgent data to peers that

provide a good end-to-end network link leads to a better QoE,

reducing the occurrence and duration of stalls during playback.

To investigate the performance of Libswift in general terms

of content retrieval and streaming capabilities, we provide a

comparison with two of the most popular BitTorrent-based

clients, uTorrent and Libtorrent, in several scenarios. We show

that Libswift outperforms the compared clients when the ratio

of seeders to leechers is relatively low, and in general provides

more consistent results among all peers of the swarm. On

the other hand, it is yet not fully optimised, and it does not

reach the same level of scalability as the highly optimised

libtorrent. Future work will focus in improving the scalability

of Libswift, by investigating different strategies to keep track

of the availability of data in the swarm in high churn scenarios.

We also analyse the time it takes to start retrieving the content,

and provide detailed results that prove the low start-up time

required by Libswift, making it an ideal candidate for time-

critical applications.

111

We demonstrate that Libswift is a valuable alternative to

standard P2P systems in terms of speed and efficiency, while

still providing the key functionalities of a streaming protocol

such as low warm-up times. Finally, we provide an evaluation

of Libswift’s performance when run on hardware-limited de-

vices, such as mobile phones and set-top boxes, demonstrating

its adaptability as a transport protocol in different environ-

ments.

ACKNOWLEDGMENT

The authors would like to thank Victor Grishchenko for

the initial design and implementation of the Libswift protocol,

Arno Bakker for comments and suggestions, and the Pioneer

Digital Design Center in London for the results of the ex-

periments regarding the STB. This work is supported in part

by the European Commission in the context of the P2P-Next

project (FP7-ICT-216217) [26].

REFERENCES

[1] Deluge torrent. http://deluge-torrent.org/.

[2] Libtorrent. http://www.libtorrent.org/.

[3] Limewire. http://www.limewire.com/.

[4] Miro. http://www.getmiro.com/.

[5] Opentracker. http://erdgeist.org/arts/software/

opentracker.

[6] the utorrent bt client. http://www.utorrent.com/.

[7] A. Bakker and R. Petrocco. Peer-to-peer streaming peer

protocol (ppspp), June 2012. IETF draft.

[8] Arno Bakker. Merkle hash torrent extension. BitTorrent

Enhancement Proposal 30, Mar 2009. http://bittorrent.

org/beps/bep 0030.html.

[9] Giovanna Carofiglio, Luca Muscariello, Dario Rossi, and

Silvio Valenti. The quest for ledbat fairness. CoRR,

abs/1006.3018, 2010.

[10] Cisco. Cisco visual networking index: Forecast and

methodology, 2010-2015. White paper, June 2011. http:

//www.cisco.com.

[11] B. Cohen. Bittorrent protocol 1.0. http://www.bittorrent.

org.

[12] A. Demers, S. Keshav, and S. Shenker. Analysis and

simulation of a fair queueing algorithm. SIGCOMM

Comput. Commun. Rev., 19:1–12, August 1989.

[13] T T Do, K A Hua, and M A Tantaoui. P2vod: providing

fault tolerant video-on-demand streaming in peer-to-peer

environment. 2004 IEEE International Conference on

Communications IEEE Cat No04CH37577, 3pp(c):1467–

1472, 2004.

[14] A. Sentinelli et al. A survey on P2P overlay streaming

clients. In Towards the Future Internet - A European

Research Perspective, pages 273–282, 2009.

[15] Henri Bal et al. The distributed asci supercomputer

project. SIGOPS Oper. Syst. Rev., 34(4):76–96, October

2000.

[16] J.J.D. Mol et al. Give-to-Get: Free-riding-resilient video-

on-demand in P2P systems. In Multimedia Computing

and Networking, volume 6818, San Jose, USA, 2008.

[17] N. Capovilla et al. An architecture for distributing scal-

able content over peer-to-peer networks. InMMEDIA’10,

pages 1–6, June 2010.

[18] Z. Liu et al. LayerP2P: Using layered video chunks in

P2P live streaming. IEEE Trans. on MM, 11(7):1340–

1352, August 2009.

[19] V. Grishchenko et all. On the design of a practical

information-centric transport. Technical report, TUDelft,

Deft, The Netherlands, 2011.

[20] P. M. Glatz, L. B. Hoermann, C. Steger, and R. Weiss. A

System for Accurate Characterization of Wireless Sensor

Networks with Power States and Energy Harvesting

System Efficiency. In Proceedings of the Sixth IEEE

International Workshop on Sensor Networks and Systems

for Pervasive Computing, page 468 473, 2010.

[21] Yang Guo, Saurabh Mathur, Kumar Ramaswamy,

Shengchao Yu, and Bankim Patel. Ponder: Performance

aware p2p video-on-demand service. In GLOBECOM,

pages 225–230, 2007.

[22] L. B. Hoermann, P. M. Glatz, K. B. Hein, and

R. Weiss. State-of-Charge Measurement Error Simu-

lation for Power-Aware Wireless Sensor Networks. In

Proceedings of the IEEE Wireless Communications and

Networking Conference Mobile and Wireless Track,

2012.

[23] Libswift. http://libswift.org/.

[24] Ralph Charles Merkle. Secrecy, authentication, and

public key systems. Stanford, CA, USA, 1979. Stanford

University. Ph.D. Thesis.

[25] PPSTream. http://www.ppstream.com.

[26] The P2P-Next Project. Fp7-ict-216217. http://www.

p2p-next.org.

[27] S. Shalunov. Low extra delay background transport

(ledbat). In IETF Draft, March 2009.

[28] SOPCast. http://www.sopcast.org.

[29] TVAnts. http://www.tvants.com.

[30] G. Simo U. Abbasi and T. Ahmed. Differentiated chunk

scheduling for p2p video-on-demand system. In 8th IEEE

International Consumer Communication & Networking

Conference, Las Vegas, USA, January 2011.

[31] Johan Pouwelse Victor Grishchenko. Binmaps: Hybridiz-

ing bitmaps and binary trees. Technical report, TUDelft,

Deft, The Netherlands, 2011.

[32] Chao Zhang, Prithula Dhungel, Di Wu, and Keith W.

Ross. Unraveling the bittorrent ecosystem. IEEE Trans.

Parallel Distrib. Syst., 22(7):1164–1177, July 2011.

112

Summary Review Documentation for

“Performance Analysis of the Libswift P2P Streaming Protocol”

Authors: Riccardo Petrocco, Johan A. Pouwelse, Dick Epema

REVIEWER #1

Comments essentially relate to presentation issues.
Strengths: The strengths are (1) the importance of the

work to the very relevant task of streaming media; and (2) the
presentation of the paper, which is well written and generally
easy to understand.

Weaknesses: The weaknesses are (1) the incomplete
evaluation as authors admittedly compare a resource hungry
implementation of BitTorrent to Libswift, and there does
not seem to be a clear conclusion from the energy usage
comparison on the mobile phone; (2) the fact that the paper
compares Libswift to standard BitTorrent clients, and not those
adapted/modified for use in video streaming (ce.g., ompletion
time is not directly relevant to media streaming); and (3)
the lack of comparison of Libswift to other media streaming
systems in the literature.

REVIEWER #2

Comments expand with additional details on the weaknesses
of the paper.

Strengths: The main strength is (1) the implementation
of a complete system with a realistic evaluation.

Weaknesses: The weaknesses are (1) the unclear benefits
with respect the current state of the art (engineering details
vs. conceptual contribution); (2) the too narrative style of the
paper; and (3) the lack of characterization of what are the
conceptual innovations brought by the paper.

REVIEWER #3

The comparison with UTorrent is unfair because the stream-
ing mode was off, avoiding the use of a piece selection
algorithm specific for streaming.

Strengths: The strengths are (1) the importance of the
paper, which proposes a downloading scheme fundamental for
VoD; (2) the prototype used to show experimentally that the
VoD implementation provides reasonable performance; and (3)
the fact that Libswift is associated with standardization work
within IETF PPSP WG, which may broaden the applicability
of results.

Weaknesses: The weaknesses are (1) the poor separation
between novel content and what has been /proposed elsewhere,
e.g., in the draft describing PPSP; (2) the focus of performance
evaluation that does not study VoD streaming as would be
expected, but instead mixes different goals of streaming and
file sharing; and (3) the lack of analysis and comparison with
related work.

REVIEWER #4

The paper does a good job at discussing the design ra-
tionale of Libswift and, most importantly, evaluating it and
comparing it against BitTorrent implementations. The power

consumption study is particularly interesting. Some points
are not sufficiently explained. For instance, parameters and
values in the 3 equations shown in the paper, as well as
their rationale, should be clarified. The assumption that all
peers are selfish is too strict. It would be more realistic to
have peers stay for a given time distribution (e.g., many leave
immediately, some stay longer). Considering additional experi-
mental scenarios would greatly improve the paper (distribution
of arrivals/departures, larger number of leechers, peers with
heterogeneous bandwidth, behavior under churn, comparison
with other P2P protocols specifically designed for streaming).

Strengths: The strengths are (1) the sound design and
performance of Libswift; (2) the experimental evaluation of a
real implementation; and (3) the comparison with BitTorrent
and study of the power consumption.

Weaknesses: The weaknesses are (1) the incomplete
discussion of related work; and (2) the small number of
scenarios that have been used for evaluation.

REVIEWER #5

The paper is well written and the evaluation is pleasantly
through. One detail that was unclear is how the availability
tree is maintained under churn. Doing so is likely to be very
challenging. When all is said and done, the work is incremental
in nature; it does push down known functionality into lower
layers but there is obviously no reason this could not exist
higher up (as it does today). What does this mechanism enable
while being at the transport layer? That was entirely unclear. It
would be helpful to see the bandwidth received (or continuity
or stall periods) over time, it would paint a more thorough
picture than just the number of stalls.

Strengths: The strengths are (1) the very good startup
times; (2) the performance that is faster than state-of-the-art
in some cases; and (3) the fairly thorough evaluation.

Weaknesses: The weaknesses are (1) the incremental
nature of the work; (2) the fact that it is not strictly better
than state-of-the-art (not sure it is lack of optimization to
blame); and (3) lack of details on how the availability tree
is maintained under churn

RESPONSE FROM THE AUTHORS

We thank the reviewers for their useful comments that
helped improve the camera-ready version of this paper. We
now state the novelty introduced by this work more clearly
and extend the experimental results of the VoD comparison.
Furthermore, we will address the lack of optimization and
scalability of Libswift, which is mostly due to the management
of the availability tree in high churn, as part of our future work.

In this paper, we aimed to present a comparison of Libswift
with different P2P streaming systems, but we encountered
several problems during the process. The first one is the

113

lack of availability of the open-source code of popular P2P
streaming systems presented in the literature. The solution
of reverse engineering those systems, as done in previous
work, would not give us sufficient insight to draw valid
conclusions. The main open-source P2P VoD system available
is the Tribler client, which has the same download engine as
the NextShareTV. The nature of our testing infrastructure, in
which we coded the network limitations needed to replicate
the realistic environment setting presented in Section 5-a,
does not allow us to impose limitations on the network link
itself. Therefore, for P2P systems such as PULSE, non-trivial
modifications to the source code would be needed to provide
a fair comparison with Libswift. Those modifications include
an implementation of a player simulating the consumption of
video content, and several changes to the code needed to apply
the network link limitations.

The problems introduced by non-optimized code can be
noticed in the experimental evaluation, where Libswift outper-
forms the compared clients in swarms with a small proportion
of leechers to seeders. However, Libswift does not scale as
well with high churn, mostly because of the non-optimized
management of the availability tree.

With regard to the fairness of the comparison of the start-
up times presented in Section 5-b, we clearly explain how
disabling the streaming feature in the uTorrent and Libtorrent
clients gives them a big advantage over Libswift. While
Libswift retrieves the data for the initial player’s buffer in-
order, thus greatly increasing the competition between leechers
of the same swarm, uTorrent and Libtorrent are free to retrieve
data pieces from the entire content in any order, thus filling
the player’s buffer with data that does not represent the initial
content needed for playback. Furthermore, our experiments
show that the performance of Libtorrent dramatically decreases
if the in-order data retrieval policy is enforced.

114

