

Performance analysis of VLSI programs

Citation for published version (APA):
van de Sluis, E., & van der Stappen, A. F. (1991). Performance analysis of VLSI programs. (Computing science
notes; Vol. 9104). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1991

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 22. Aug. 2022

https://research.tue.nl/en/publications/359aaa87-6489-4253-9216-acec657fc5a5

Performance Analysis of VLSI Programs

E. van de Sluis

by

A.F. van der Stappen

91/04

April, 1991

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.
Since many of these notes are preliminary
versions or may be published elsewhere, they
have a limited distribution only and are not
for review.
Copies of these notes are available from the
author or the editor.

Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB EINDHOVEN
The Netherlands
All rights reserved
editors: prof.dr.M.Rem

prof.dr.K.M.van Hee.

Performance Analysis of VLSI Programs

E. van de Sluis A.F. van der Stappen

Eindhoven University of Technology
Dept. of Mathematics and Computing Science

P.O. Box 513,5600 MB Eindhoven, The Netherlands

Abstract

The CP-O programming language is described as an interface between the design
of a system and its implementation as a VLSI layout. Before its translation into a
VLSI layout, a Cp·O program is translated into a so-called handshake circuit. This
circuit is optimised and its speed and size are estimated. The translation method
and the optimisations are described. Furthermore, a formal method is introduced
to compare CP-O programs, by estimating their size and speed when implemented
as handshake circuits. The method is applied to two CP-O designs for dynamic
programming.

1 Introduction

A VLSI program is the description of a VLSI circuit in an algorithmic language [BK91].
It is the task of a silicon compiler to translate VLSI programs into VLSI layouts. The
language should be such, that VLSI programs can be written without any knowledge of
the underlying communication protocol or implementation medium. This has as advantage
that the programmer only needs to cope with the problem of writing a correct program
that satisfies a given specification. Given this specification, the programmer makes a design
of the VLSI program. This design step results in a network of Communicating Sequential
Processes (CSP). To specify the processes, a CSP-like notation is adopted (cf. [Mar86,
Pee90a, BK91]).

In general, there is not just one program that satisfies a given specification, but several.
Therefore, we need criteria to compare programs. In traditional programming, programs
are compared by estimating the amount of time and memory a program requires during
execution. This finds its analogy in VLSI programming, where we can compare programs
by estimating the size and speed of the programs, when implemented as VLSI layouts.

Just as performance analysis of traditional programs is done on an abstract, imple
mentation independent level, we do not want to bother the VLSI programmer with the
intricate details of VLSI circuits. Therefore, the performance analysis method should be

1

based on the VLSI programs, and not on their translation to VLSI layouts. However, such a
method requires some knowledge of this translation to give useful results. So, what we need
is an interface between the (high-level) VLSI programming language and its translation to
(low-level) VLSI layouts.

In [BS88j and [BK91j Van Berkel et al. propose such an interface. They do not translate
VLSI programs directly to VLSI layouts, but use an intermediate representation. Their
approach is summarized in Figure 1.

VLSI Programmer

Statistics VLSI program

-~~~~~~-----------1------------------------

Analysis

L
Compiler

1
Handshake

Circuits

1

Layout

Silicon Foundry

Test Trace

Figure 1: The development of VLSI circuits

A VLSI program consists of a number of concurrent processes that communicate via
message passing over common channels. Each process of a VLSI program is first translated
to an abstract or handshake circuit. Such a circuit consists of a list of basic or handshake
components. Via a number of channels, each component communicates with other com
ponents on the list, or with the environment of the circuit. In the second step of the
translation, each component is replaced by its corresponding implementation as a VLSI
circuits, and the overall layout is generated. In this step, also a test trace can be generated
to test a chip after fabrication.

2

In this paper, we introduce a method that estimates size and speed of single processes
of VLSI programs. This method is based on the translation of these processes to handshake
circuits. Therefore, our method is only useful to compare different VLSI processes, and
should not be used to estimate the actual size and speed of VLSI layouts.

This paper is organised as follows. In Section 2 we describe the CP-O programming lan
guage, which is a CSP-like language to specify VLSI processes. A complete CP-O program
consists of a finite number of these processes that communicate via common channels of the
processes. We describe how CP-O programs can be translated into handshake circuits. This
translation can result in rather inefficient circuits, so two post-optimisations are applied
to make them more efficient. In Section 3 we present our (formal) performance analysis
method. This method results in formulae for both size and speed, which express the size
and speed of a VLSI process in size and speed estimates of the handshake components.
Given the formal framework of Section 3, it was straightforward to make an implemen
tation of our method. This implementation was applied to the two different designs for
dynamic programming of [MS89]. The results of this comparison are given in Section 4.
We end this paper with some concluding remarks in Section 5. To illustrate the application
of our method, an example of a size and speed derivation is included in the appendix.

2 Translation and optimisation of CP-O processes

We first describe in Section 2.1 the CP-O programming language by giving a BNF-grammar.
Furthermore, we discuss how processes specified in this language can be translated into
networks of "components" that interact by handshake signaling. Such networks are called
abstract or handshake circuits (cf. [BS88], and [BK91]). The translation of CP-O processes
requires a relatively small set of different handshake components, basically one for each
primitive concept of the language. This set of components is described in Section 2.2.
Given this set, we describe a translation method in Section 2.3. This method consists of
a sequence of syntax-directed decompositions until the level of the handshake components
is reached. This method can result in rather inefficient circuits. Inefficiences can be
eliminated by applying a number of post-optimisations. In Section 2.4 we describe two
possible optimisations. These optimisations are incorporated in our performance analysis
method of Section 3.

2.1 The Cp·O language

The CP-O language was introduced by Van Berkel et at. in [BS88] as a notation for VLSI
programs. In this paper, we consider a restricted class of this language. The processes
that we consider are generated by the BNF-grammar of Table 1. In this grammar the
semicolon expresses sequential composition. The comma, which takes priority over the
semicolon, expresses concurrency. We have omitted any declaration part in this grammar,
but it should be noticed that all variables and constants must be declared locally, while
channels can be used to communicate with the environment of the process.

3

Program .. - StatList
StatList .. - Atom

StatList ; ... ; StatList
StatList , ... , StatList
(StatList)n

Atom .. - Ass
Ocomm
Icomm

Ass .. - Var:= Exp
Ocomm .. - Chan I Exp
lcomm .. - Chan? Var
Exp .. - Con

Var
Exp 0 ... o Exp

Table 1: The CP-O grammar

A sequence of statements S can be repeated n times by applying the so-called repetition
operator. This is denoted by sn.

At the heart of any CP-O process lie the so-called atomic statements, or simply atoms.
From the grammar we see that we distinguish three kinds of atoms: input actions, output
actions, and assignment statements. With an input action, an incoming message on a
channel a can be received in a variable x. This is denoted by a?x. With an output
action we can send an evaluated expression E along a channel, as denoted by alE. We
also have the Pascal-like assignment statement to assign an expression to a variable. An
expression consists of variables and constants, which can composed by binary operators
(e.g. addition). The binary operators are represented by the '0' symbol.

2.2 The handshake components

The translation method of Section 2.3 consists of a sequence of decompositions until the
level of the so-called handshake components is reached. In this section we give a specification
of our set of components. For this specification we adopt the notation of [BS88]. The
implementation of components is discussed in [Kam90J.

A specification of a handshake component is based on its interface to the external
world. This interface consists of a set of named ports. Ports are either passive or active,
depending on their role during a handshake. When a channel a connects two components,
then a must connect an active port with an passive port. A communication is requested
by the active side of the channel and subsequently acknowledged by the other side. The
communication interval a' denotes the communication at the active side, and aO the com
munication at the passive side of channel a. The active communication interval a' begins
with sending a request and ends with the receipt of the corresponding acknowledgement.
The passive interval aO starts with the receipt of the request and ends with the issue of an

4

acknowledgement. It is clear that the passive interval aO is enclosed in time by the active
interval a'.

Now, a specification of a handshake component consists of a specification of the commu
nication intervals, which are either passive or active. A specification can be made according
to the following rules (d. [Pee90b)):

• For communication channel a, aO is an active, and aO a passive communication inter
val.

• If A and B are passive and active intervals respectively, then A : B denotes the
interval that starts with the receipt of requests on all channels in A, followed by
interval B, and ends with the sending of acknowledgements on all channels in A. We
say that B is "enclosed in time" by A. The communication interval A : B is passive.

• If A and B are intervals of the same activity, then A • B defines an execution of A
and B such that the two intervals overlap. The interval A • B has the same activity
as A and B.

• If A and B are intervals of the same activity, then A; B denotes the sequential order
of A and B. The interval is of the same activity as A and B.

• If A and B are intervals of the same activity, then A, B is the interval in which A
and B may occur in either order, but may overlap as well. The interval has the same
activity as A and B.

• For passive intervals A and B, A I B defines the execution of either A or B. The
environment makes the choice which interval is activated. No overlap of A and B is
allowed. The interval AlB is passive.

• For an interval A, An denotes the interval of the same activity in which A is activated
exactly n times.

• For an interval A, [A] denotes the interval of the same activity in which A is repeatedly
activated; completion of this communication interval will never occur.

Similar to [Pee90b], we divide the handshake components into three classes: the control
components, the data-manipulation components, and the data-control components.

In this paper, we distinguish four different control components. Their specification
is given in Table 2. Each control component has an activation channel a, which is used
to trigger the component. When triggered, control signals are sent according to their
specification.

The sequencer is a component that, after receiving a request via its a-channel, communi
cates once over all its b-channels, in sequential order, and finally sends an acknowledgement
via its a-channel. It is used to implement the semicolon in CP-O processes. The concursor,
when initiated via its a-channel, independently triggers its b-channels in any order. After

5

Name Specification Notation
sequencer lao : (bo; ... ; bk_t)] seq(k)
concursor lao : (bo, ... , bk_t)] conc(k)
repeater [aO: w)n] rep"
mixer [(a(jl· .. Iak_t) : b'] mix(k)

Table 2: The control components

completion of communication on all b-channels, the concursor sends an acknowledgement
via its a-channel. When triggered, the repeater component communicates exactly n times
via its b-channel, after which an acknowledgement is sent via its a-channel. The mixer
communicates via its b-channel if one of its a-channels is triggered; the choice is left to
the environment. However, the control communication on the k input channels must be in
mutual exclusion.

The data-manipulation components are used for the distribution, gathering, storage,
and operation of data. We distinguish six different data-manipulation components. They
are specified in Table 3.

Name Specification Notation
multiplexer [(a(j?vl ... laZ-t ?v) : b'!v] mux(k)
demultiplexer [(a(j!vl· . . lak_t!V) : b'?v] dmx(k)
constant c [(c.w(j!c]' ... , [c.Wk_t !cll con(k)
variable x [x.rO?xl([x.w(j!x]' ... , [x.wZ_t!x])] var(k)
passivator [aO?v _ bO!v] pass
k-ary oper. 0 [aO?(voD ... DVk_tl : (b~?vo - ...• bt t ?Vk-tl] D(k)

Table 3: The data-manipulation components

The multiplexer component is used to merge k data channels on one data channel.
The data communication on the k input channels must be in mutual exclusion. The
demultiplexer is the counterpart of the multiplexer. It is used for the splitting of data on
k output channels. Communication is initiated by the demanding side. These demands
must be in mutual exclusion.

To allow storage of data, we have two handshake components. The constant is a
component that upon request on one of its c. w channels, sends its value over the same
channel. The variable can store data via its x.r channel, and send this data via one of its
x.w channels.

The passivator is used as a connector for communication channels between two active
communication partners. It is used to connect the communicating channels of different
processes. In our translation method, the two sides of such channels are active, so they
cannot be connected directly.

Operators are used to perform operations on data. They have k input channels and one
output channel to communicate the result of the operation. The k-ary operator is triggered

6

by the input side. We do not have the reverse component, as in [BS88J, i.e., where the
activities are reversed.

There is only one data-control component, viz. the transferrer. Is is used to trigger
data flow by connecting a control component with two data-manipulation components. It
is specified as follows:

laO : (b·?v. c·!v)J.

The transferrer is denoted by trf. When triggered via its a-channel, its reads data via
its &'channel, and transfers this data via its c-channel.

2.3 The translation method

The first step in the translation of CP-O processes consists of two program transforma
tions. The first transformation concerns assignment statements x := E where x appears
in E. To avoid read/write conflicts, the following transformation must be applied to these
assignment statements (cf. [BS88]):

x := E 9 (xO:= x; x := E:o).

The second transformation concerns multiple occurrences of an expression E in a process,
where E = EoD ... DEn _ l . Due to the second optimisation that we apply (single realisation
of expressions, see Section 2.4), these occurrences cannot be evaluated concurrently, as for
instance in the process

(a!x+y, b!x+y).

This kind of processes has to be transformed such, that concurrent evaluation of the same
expression cannot take place. The example above could for instance be transformed to

(a!x + y, b!y + x) or (xy := x + y; a!xy, b!xy),

since x + y and y + x are considered different expressions, and concurrent read from the
same variable is possible. We note that, strictly speaking, a similar transformation has
to be performed with respect to the first optimisation of Section 2.4, i.e., single realisa
tion of atoms. However, the reader can check that atoms that have multiple concurrent
occurrences can simply be replaced by a single occurrence.

We illustrate the translation of CP-O processes with an example. This example is the
following process S, which is not a very meaningful process, but shows most features of
the CP-O language:

S= (a?x, b?y; z:= (x max y); d!(x+y+z)t

Process S concurrently stores values from channels a and b in variables x and y respectively,
then assigns the maximum of x and y to z, and finally outputs the sum of the three variables
via channel d. This process is repeated n times (n > 0).

7

After application of the above program transformation, the following (informally de
scribed) translation of a CP-O process results in a circuit of handshake components. Such
a circuit is called a handshake circuit.

1. Make a parse tree of the process via a syntax directed decomposition. The result of
this step for process S is shown in Figure 2.

Figure 2: The parse tree of process S

2. Replace each node in the parse tree by its corresponding handshake component. For
the nodes that correspond with control and arithmetic operators, this step is straight
forward. The input, output, and assignment symbols ('?', 'P, and ':=' respectively)
are replaced by transferrers. For process S, this step is depicted in Figure 3. From
this figure we see that the arcs of the parse tree are replaced by channels, which
connect active and passive ports of components. The active ports are indicated by
small filled circles, the passive ports by open ones.

3. Replace each leave in the tree by either channels, variables, or constants. If a variable
(constant) is read k times (k > 0) in the process, then a var(k) (con(k» component
is introduced. Furthermore, if we write to a variable k times, with k > 1, then we
have to place a mux(k) component in front of the variable. Similarly, if the process
contains k "writes" to a channel, then a mux(k) component is also required. Finally,

8

Figure 3: The parse tree of S after step 2

9

• b d +(3)

Figure 4: The handshake circuit of S

10

for k "reads" from a channel a dmx(k) component is introduced. For process S, this
final step results in the handshake circuit of Figure 4.

For process S, we had to introduce three components: two var(2) components for
variables x and y, and a var(l) component for variable z. Note that for the trans
lation of S no (de)multiplexers are required. In Section 2.4 we give examples where
(de)multiplexers are required.

Steps one and two in our method are similar to the command and expression decomposition
steps of [BS88j. Step three also consists of two steps in [BS88], and are called variable and
channel decomposition there.

The translation strategy above applies only to the translation of single CP-O processes.
Remember that CP-O programs consist of a number of these processes that communicate
over common channels. So, these programs can be translated by translating their processes,
and connecting their common channels. Since all channels are active in our translation,
this connection cannot be done directly. This problem is solved by making one adding
passivator components to these channels.

2.4 Optimisation of handshake circuits

In this section we discuss two possible optimisations that can be applied to a handshake
circuit that is the result of a translation as described in Section 2.3. These optimisations
concern multiple occurrences of atoms and expressions in a CP-O process. Since these
introduce "expensive" data components in the handshake circuit, we want to realise them
only once, and realise multiple invocations by introducing "cheap" control components.
The optimisations are described in subsequent sections, and are illustrated with small
examples.

2.4.1 Single realisation of atoms

Suppose we have a CP-O process that contains the atom a!x three times, and the atom a!y
just once. Here we assume that these atoms occur in mutual exclusion. When we follow
our translation method, the data-flow of these statements would result in a circuit as given
in Figure 5. Notice the demultiplexer (dmx(4)) for the multiple writes to channel a.

Figure 6 shows a different translation of the same program. It is not difficult to see
that this circuit performs the same function. Since we replaced a considerable part of the
area-consuming data components by less expensive control components, this translation
yields a considerable reduction of the size (area) of the circuit, especially when a large
wordlength is used (e.g. 16 bits).

Above, we have only discussed the optimisation for an output action. It is not difficult
to see that for the other atoms (input actions and assignments) similar optimisations
can be applied, which means that demultiplexers can be smaller, or sometimes disappear
completely.

11

where

ad(E) = { 0
admx(#,(E)) + ae(E) E = Eo 0 ... 0 E n- 1

EEVarUCon

and

ae(E) = {
o
aO(n) + (Ei: 0 ~ i < n: ae(E;))

E E VarUCon
E = Eo 0 ... 0 En - 1

o

We assume that amux(l) = admx(l) = am;x(l) = o.

3.3 Speed estimates

The timing analysis for the optimised realisation is based on the syntax of the process. An
estimate for the 'speed of a CP-O process' is given by a function r : (StatListUExp) -+ 'R.
Here we mean by the speed> of a CP-O process the time that is spent within the handshake
components. So, no delays are included for wires or communication with the environment.

The speed estimates for sequential composition, concurrent composition, and repetition
is rather straightforward. They equal the internal switching time of the (control) compo
nent, plus a speed estimate for the statements that are activated. Since we assume that
the statements in a concurrent composition are executed in parallel, this estimate equals
the maximum of all the speed estimates of these statements.

The speed estimates for input actions, output actions, and assignment statements de
pend on the multiplicity functions. If, for example, an atom appears n times, n > 1, in a
CP-O process S then the speed estimate for this atom is increased by a delay tmix(n) for
an n-ary mixer. A delay ttr! is always included for a transferrer. In case of an n-ary write
to a single variable or a single channel, a delay tmux(n) is added. Similarly, we add a delay
tdmx(n» in case of a n-ary read from a single channel. A delay tread(n) is added in case of an
n-ary read from a variable or constant. Similarly, the delay for writing to a n-ary variable
is denoted by twr;te(n). As will be explained in Section 4, variables Can be implemented
such, that the write delay depends on the number of read ports of a variable.

For expressions, we assume that the evaluation of all operands of an n-ary 0 expression
(e.g. an n-ary sum) start at the same time. A delay tdmx(n) is added for a multiplicity n of
each expression. When we denote the delay in component D(n) by to(n)' we Can now give
the definition of speed estimate function r.

Definition 3.12 (Speed estimate function r)

r(So; ... ; Sn-l) = tseq(n) + (E i : 0 S i < n : r(S;))

r(So, ... , Sn_,) = tconc(n) + (MAX i : 0 ~ i < n : r(S;))
r((s)n) = t repn + n· r(S)

20

optimisation again with an example. Consider the following CP-O process:

(a!x+y; b!x+y)

With our translation method, the data-flow part of this process is translated to the circuit
of Figure 7. We see that the area-consuming addition operator is duplicated .

. -----.... '"

b _____ '"

Figure 7: Two additions with two addition operators

In Figure 8 another translation for the same program is depicted. With respect to area,
this circuit is an optimisation, since we need only one addition operator. However, the
introduction of a demultiplexer means that the circuit is slower. We decided to apply this
(area) optimisation, since we think that in this case the loss of speed is neglect able when
compared with the gain in area .

. ------1.'"
DMX(2)

b ------1. '"

Figure 8: Two additions with just one addition operator

Note that a demultiplexer requires the demanding sides to be in mutual exclusion. For
multiple invocations of expressions, this is guaranteed by our second program transforma
tion of Section 2.3.

13

Note also that this optimisation is applied only if complete expressions on the right
hand sides of output or assignment statements are duplicated. So, we apply no common
subexpression elimination, which is suggested in [Mak90] as an optimisation.

3 Performance analysis of CP-O processes

Now that we have a unique translation for an arbitrary CP-O program into its optimised
realisation, we can use this translation for the performance analysis of CP-O programs. The
method that we describe in this section is only applicable to single CP-O processes. To
derive size and speed estimates for complete CP-O programs, we have to add size and speed
estimates for the passivators, which are necessary to connect the communicating channels
of the processes.

In order to give the formulae for speed and size estimation, we need to define a number
of sets and functions that formalise the notions of different atoms and multiple read/write
that are used in the description of the translation strategy. This will be done in Sec
tion 3.1. Then in Section 3.2, we present our method to estimate size of CP-O processes.
In Section 3.3, we give our method for speed estimates. The method expresses the size
and speed estimate of a process in estimates for the handshake components that are used
in the translation of the process. Therefore we give in Section 4 the size and speed of each
handshake component. We conjecture that the values we give are not very realistic, but
they are necessary to show an application of our method in Section 4.

In this section we use the following notation:

• S, So, . .. ,Sn-l: statements, denoted by S, So, . .. , Sn-l E StatList,

• E,Eo, ... ,En _ 1 : expressions, denoted by E,Eo, ... ,En_1 E Exp,

• x, y: variables, denoted by x, y E Var, and

• a: a channel, denoted by a E Chan.

The number of elements of a set X is denoted by IXI. The formal framework that we
introduce in Section 3.1 consists of the definition of a number of recursive functions. One
of the arguments of these functions is a statement (an element of StatList). As a notational
convenience, we allow ourselves to omit this argument when we give a complete process as
an argument.

3.1 The formal framework

The first step of the translation strategy is the realisation of all variables, constants and
channels in the CP-O process. We introduce a function ChanSet : StatList -> P(Chan).
Set ChanSet(S) contains all channels that are used in CP-O process S.

Definition 3.1 (ChanSet)

14

ChanSet(a?x) = {a}
ChanSet(a!E) = {a}
ChanSet(x:= E) = 0
ChanSet(So; ... ; Sn-tl = (Ui : 0 ~ i < n : ChanSet(S;))
ChanSet(So, ... , Sn-l) = (Ui : 0 ~ i < n : ChanSet(S;))
ChanSet(sn) = ChanSet(S)

o

A second function VarSet : StatList U Exp --+ P(Var) gives the set of all variables and
constants that occur in a process.

Definition 3.2 (VarSet)

VarSet(a?x)
VarSet(a!E)
VarSet(x := E)
VarSet(So; ... ; Sn-l)
VarSet(So, ... , Sn-l)
VarSet(sn)

VarSet(E)

= {x}
= VarSet(E)
= {x}UVarSet(E)
= (Ui: 0 ~ i < n : VarSet(S;))
= (Ui: 0 ~ i < n: VarSet(S;))
= VarSet(S)

= { ~~}: 0 ~ i < n : VarSet(E;))
E E VarU Con
E = EoO ... OEn _ 1

o

The second step of the translation strategy realises all different input actions, output
actions, and assignment statements in a CP-O process S. Let AtomSet : StatList --+

P(Atom); AtomSet(S) is the set of all input actions, output actions, and assignment
statements in S.

Definition 3.3 (AtomSet)

AtomSet(a?x) = {a?x}
AtomSet(aIE) = {alE}
AtomSet(x:= E) = {x := E}
AtomSet(So; ... ; Sn-l) = (Ui : 0 ~ i < n : AtomSet(Si))
AtomSet(So, ... , Sn-tl = (Ui : 0 ~ i < n : AtomSet(S;))
AtomSet(sn) = AtomSet(S)

o

Function ExpSet : Stat List --+ P(Exp) computes the collection of right-hand sides of
assignment statements and output actions. However, only right-hand sides that contain
operators are included in the collection. The function is defined as follows:

15

Definition 3.4 (ExpSet)

ExpSet(a?x)

ExpS et(alE)

ExpSet(x := E)

=0

= { ~E} E E VarUCon
E = Eo 0 ... 0 En - 1

= { ~E} EE VarUCon
E = Eo 0 ... 0 En - 1

ExpSet(So; ... ; Sn-tl = (Ui : 0 ~ i < n : ExpSet(S;))
ExpSet(So, ... ,Sn_l) = (Ui: 0 ~ i < n: ExpSet(S;))
ExpSet(sn) = ExpSet(S)

o

These four sets facilitate the definition of functions that express the multiplicity of read
and write operations from/to variables and channels, and the multiplicity of atoms (input
actions, output actions, assignment statements) in CP-O processes. These functions offer us
the possibility to count the number and determine the arity of multiplexers, demultiplexers,
variables, constants, and mixers. The multiplicity functions are denoted by '#' symbols.
First we give two functions for the multiplicity of channels; #?, #! : Chan x Stat List -t N.
They are defined as follows:

Definition 3.5 (Channel Multiplicities)

Let a E Chan. Then:

#?(a, S) = I{x : x E VarSet(S) /\ a?x E AtomSet(S) : x}1

#!(a,S) = I{x: x E VarSet(S) /\ alx E AtomSet(S): x}1

+
I{E : E E ExpSet(S) /\ alE E AtomSet(S) : E}I

o

To compute read and write multiplicities of variables (and constants), we next define
#w : Var x Stat List -t N, and #r : (Var U Con) X (StatList U Exp) -t N. Note that we
do not distinguish between variables and constants and consider a constant as a variable
with a zero write multiplicity, so without a write port.

Definition 3.6 (Read and Write Multiplicities)

Let x E VarUCon. Then:

16

#w(x,S) = j{a: a E ChanSet(S) /I a?x E AtomSet(S): a}1

+
I{Y: Y E VarSet(S) /I x:= y E AtomSet(S): Y}I
+
I{E: E E ExpSet(S) /I x := E E AtomSet(S) : E}I

#r(X,S) = I{a: a E ChanSet(S) /I a!x E AtomSet(S): a}1

+

Where:

#r(x,E) =

I{Y: Y E VarSet(S) /I y:= x E AtomSet(S): y}1
+
(~E : E E ExpSet(S) : #r(x, E))

{ ~~i: O:s: i < n: #r(X,Ei))

E E Var U Con /I x = E
E E Var U Con /I x # E
E = EoD ... DEn _ 1

o

Function # : Atom x StatList -> N gives the multiplicity of each atom in a CP-O process.

Definition 3.7 (Atom Multiplicities)

Let 9 E Atom. Then:

#(g,a?x) { ~ 9 = a?x
9 # a?x

#(g,a!E) { ~ g=a!E
- g#a!E

#(g,x:= E) { ~ 9 = (x:= E)
-

9 # (x:= E)

#(g, So; ... ; Sn-l) = (~i : 0 :s: i < n : #(g, Sill
#(g, So,··., Sn-d = (Ei : 0 :s: i < n : #(g, Sill
#(g, sn) = #(g, S)

o

Function #e : Exp x Stat List -> N gives the multiplicity of each expression in a CP-O
process. With the definition we have to be careful not to count expressions more than
once when they appear in atoms that have several occurrences. For this purpose we use
function AtomSet in the definition.

Definition 3.8 (Expression Multiplicities)

17

Let E E ExpSet(S). Then:

#e(E,S)

3.2 Size estimates

S = (a!E)
S=(x:=E)
S = (a?x)
otherwise

o

The multiplicity functions make it quite easy to give the number and arityof multiplexers,
demultiplexers, variables (constants), and mixers in a translated CP-O process. The func
tions are defined in a way that takes into account the optimisation of single realisation of
atoms and expressions. Our size estimates 'only' include the handshake components that
are used in a CP-O process, not the wires that are used in an actual VLSI layout. This is
because we do not have any knowledge at this level (the level of the VLSI programmer)
about this layout.

The number of occurrences of control components in the realisation of a CP-O process S,
and the arities of these occurrences depend on the structure of S. They are not influenced
by our optimisations. The estimate for the total size of all elements of these components
in S will be given by ac(S).

In contrast to the control components, the number of occurrences and the arities of
data manipulation components and transferrers are influenced are influenced by our opti
misations. The estimate for the total size of all these components is given by ad(S). The
size estimate a(S) for a process S is the sum of both estimates ac(S) and ad (S).

Definition 3.9 (Size estimate function a)

o

Function a c : StatList -+ ./If depends on the syntactic structure of the process. It gives
the total area of all repetitors, sequencers, and concursors. The definition of a c is straight
forward. We denote the area of a handshake component p by ap •

Definition 3.10 (a c)

Let 9 E Atom. Then:

ac(g)
ac(So; ... ; Sn-l)
ac(So, ... , Sn-,)
ac(sn)

=0
= aseq(n) + (Ei: 0:::; i < n: ac(S;))
= aconc(n) + (E i : 0 :::; i < n : ac(S;))
= arep• + ac(S)

18

o

Function ad : (Stat List U Exp) -+.N is somewhat more complex. It does not depend on
the syntactic structure of the process, but uses the multiplicity functions. In order to give
a formal definition of ad we need to examine the number of occurrences and arities of each
of the remaining handshake components.

• Variables
The realisation of a CP-O process S contains a var(#r(x)) component for each x E
VarSet(S) n Var, and a con(#.(x)) for each x E VarSet(S) n Con.

• Multiplexers
The realisation of S contains a mux(#!(a)) for each a E ChanSet(S), with #!(a) > 1,
and a mux(#w(x)) for each x E VarSet(S), with #w(x) > 1.

• Demultiplexers
The realisation of S contains a dmx(#?(a)) for each a E ChanSet(S),#?(a) > 1
and a dmx(#e(E)) for each E E ExpSet(S) of the form E = EoD ... DEn_1 and

#e(E) > 1.

• Transferrers
The realisation of S contains a tr! for each 9 E AtomSet(S).

• Mixers
The realisation of S contains a mix(#(g)) for each 9 E AtomSet(S),with#(g) > 1.

• Arithmetic operators
For each E E ExpSet(S) of the form E = Eo 0 ... 0 En_1 with, n :::: 1, the
realisation of CP-O process S contains a D(n) component.

Combining these results we can easily deduce the following definition for ad:

Definition 3.11 (ad)

= (E c: c E ChanSet(S) : amux(#,(c)) + admx(#,(c)))
+
(E x: x E VarSet(S) n Var : amux(#w(X)) + avar(#.(E)))
+
(E x : x E VarSet(S) n Con: acon(#r(E)))
+
(Eg : 9 E AtomSet(S) : amix(#(g)) + at.!)
+
(EE: E E ExpSet(S): ad(E))

19

where

ad(E) = { 0
admx(#,(E)) + ae(E) E = Eo 0 ... 0 E n- 1

EEVarUCon

and

ae(E) = {
o
aO(n) + (Ei: 0 ~ i < n: ae(E;))

E E VarUCon
E = Eo 0 ... 0 En - 1

o

We assume that amux(l) = admx(l) = am;x(l) = o.

3.3 Speed estimates

The timing analysis for the optimised realisation is based on the syntax of the process. An
estimate for the 'speed of a CP-O process' is given by a function r : (StatListUExp) -+ 'R.
Here we mean by the speed> of a CP-O process the time that is spent within the handshake
components. So, no delays are included for wires or communication with the environment.

The speed estimates for sequential composition, concurrent composition, and repetition
is rather straightforward. They equal the internal switching time of the (control) compo
nent, plus a speed estimate for the statements that are activated. Since we assume that
the statements in a concurrent composition are executed in parallel, this estimate equals
the maximum of all the speed estimates of these statements.

The speed estimates for input actions, output actions, and assignment statements de
pend on the multiplicity functions. If, for example, an atom appears n times, n > 1, in a
CP-O process S then the speed estimate for this atom is increased by a delay tmix(n) for
an n-ary mixer. A delay ttr! is always included for a transferrer. In case of an n-ary write
to a single variable or a single channel, a delay tmux(n) is added. Similarly, we add a delay
tdmx(n» in case of a n-ary read from a single channel. A delay tread(n) is added in case of an
n-ary read from a variable or constant. Similarly, the delay for writing to a n-ary variable
is denoted by twr;te(n). As will be explained in Section 4, variables Can be implemented
such, that the write delay depends on the number of read ports of a variable.

For expressions, we assume that the evaluation of all operands of an n-ary 0 expression
(e.g. an n-ary sum) start at the same time. A delay tdmx(n) is added for a multiplicity n of
each expression. When we denote the delay in component D(n) by to(n)' we Can now give
the definition of speed estimate function r.

Definition 3.12 (Speed estimate function r)

r(So; ... ; Sn-l) = tseq(n) + (E i : 0 S i < n : r(S;))

r(So, ... , Sn_,) = tconc(n) + (MAX i : 0 ~ i < n : r(S;))
r((s)n) = t repn + n· r(S)

20

r(x := E) = tmux(#w(x)) + twr;te(#r(X)) + ttrj+

t + { tread(#r(E)) E E Var U Con
m.x(#(x,=E)) r(E) + tdmx(#.(E)) E = EoO ... OEn _ 1

r(a!E) _ . { tread(#r(E)) E E Var U Con
- tmux(#,(a)) + ttr! + tm.x(#(a!E)) + r(E) + t E = E 0 DE

dmx(#.(E)) 0 •.. n-l

r(a?x) = tdmx(#,(a)) + ttrj + tmux(#w(x)) + twr;te((#r(x)) + tm;x(#(a?x))

Where:

r(E) = { tread(#r(E)) .. E E Var U Con
to(n) + (MAX z : 0 ~ z < n : r(E;)) E = Eo 0 .. , 0 E n- l

o

3.4 Size and speed of the handshake components

When we apply our performance analysis method to a CP-O process, this results in two
expression: one for the size, and one for the speed of the corresponding handshake circuit.
To get actual speed and size estimates, we have to substitute in these expressions the values
for the size and speed of the handshake components. Clearly, these values depend on the
design and implementation of the components. The components can be designed as single
standard cells that consist of transistors (cf. [BK91]). Important factors that influence the
size and speed are the design of these cells and the I C-technology that is used for their
implementation. We only touch upon the design decisions that we made with respect to
our set of handshake components.

In Table 4 the size and speed estimates for our set of handshake components is given.
Since the goal of our performance analysis method is to compare different CP-O processes,
we express the size and speed in the abstract measures "F" and "T" respectively.

We decided to implement the sequencer as a binary tree of seq(2) components. The size
and speed of this components is estimated as F and T, respectively. The concursor, mixer,
(de)multiplexer, and the operator components are implemented similarly, but the size
and speed may differ somewhat. Note that the size of the data-manipulation components
depend not only on k, but also on the wordlength that is used. Note also that the sequencer
the shape of the binary tree does not influence the speed, whereas for the other components
it does. For these components (i.e., the concursor, mixer, (de)multiplexer, and operator)
the speed is proportional to the depth of the tree. Since the depth of a binary tree with
k leaves (k > 1) lies between rlog k 1 and k - 1, the lower and upper bounds on the speed
of the components follow. We decided to take the lower bound for the mixer and the
(de)multiplexer, while the upper bound was taken for the concursor and the operator.

The estimates for the repetitor, constant, passivator, and transferrer are due to [Mak90]
and [Sch91]. Note that the speed and size of a repn component is assumed to be indepen
dent of n.

Furthermore, a variable component var(k) is implemented such, that delay of a read
action is independent of k. However, the delay of a write action does depend on k. Accord
ing to [Sch91], a variable is implemented such, that on a write action the written values is

21

I Component I Size Speed

seq(k) (k - 1) . F (k - 1) . T
conc(k) (k - 1) . F (k - 1) . T
repn F T
mix(k) (k-1)·F flog kl . T
mux(k) (k - 1) . F/bit flog kl . T
dmx(k) 2(k - 1)· F/bit flog kl . T
con(k) (1.25 + 0.75k) . F/bit T

var(k) (1.25 + 0.75k) . F/bit { tread(kj = T
twrite(kj = flog (k + 1)l . T

pass 2· F/bit T
D(k) 3(k -1) . Ffbit (k - 1) . 8T
trf OF T

Table 4: Size and speed of handshake components

distributed to the k read ports. Again this distribution is done by using a tree, which is
assumes to be balanced, resulting in a lower bound on the delay.

We do not know whether the values of Table 4 are realistic. Currently, it is not known
what the best implementation of the handshake components is, so realistic values cannot
be given [Sch91]. However, note that, in order to compare processes, the ratios between
the values matter, not the values themselves.

4 The cOlnparison of two CP-O programs

In this section we compare the two different CP-O programs for dynamic programming
of [MS89] by giving size and speed estimates for their processes. Both programs consist
of a network of processes that can be specified in the CP-O language. We call these two
programs SDP and SDDP. An example of an actual derivation of a size and speed estimate
is given in the appendix. The estimates that we give in this section were not derived by
hand, but are determined by a small program that is a straightforward implementation of
our performance analysis method of Section 3.

Program SDP consists of processes Sij (0 :S i :S j :S N, N the problem size). Three
cases are distinguished in [MS89j:

case 1 O:S i = j :S N,

case 2 0 :S i < j :S N, where (j - i) mod 2 = 0, and

case 3 0 :S i < j :S N, where (j - i) mod 2 = 1.

In this section we restrict ourselves to cases 2 and 3. We denote the corresponding CP-O
processes by SDP' and SDP" respectively.

22

Program SDDP is meant as an optimisation, and is constructed by combining four
neighbouring processes of SDP (two SDP' and two SDPu cells). In order to get a fair
comparison, we should take one process of SDDP and compare its performance with the
performance of a cluster of four neighbouring SDP processes.

4.1 Size and speed estimates for SDP

Using the multiplicity tables and the size estimate formulae of the previous section, we
deduce a size estimate for a cluster of two processes SDP' and two processes SDPu. The
size of the cluster is the sum of the sizes of the four processes, increased by the size of a
number of passivators: one for each output (or input) channel in each of the four processes.
Hence, we should add the size of 16 passivators.
For SDP" assuming a 16 bit wordlength, this gives the following size:

a(SDP') = 1203F.

For S Dpu we obtain the following size:

a(SDPu) = 1141F.

The size of a cluster of four processes (twice case 2, twice case 3) equals 2 . a(SDP') +
2 . a(S DPU) plus the size of 16 passivators: one for each output (or input) channel in
each of the four cells. We assume that the size of a passivator is 2F/bit, so for a 16
bit wordlength we get 32F per passivator. Hence, the size of a cluster of four cells is:
2· 1203F + 2· 1141F + 16· 32F = 5200F.

With respect to the speed of a cluster, we assume that the four processes work in
parallel, so the speed is determined by the 'slowest' process. Since S DP' is of the form
So; SI; S2; S3; S. and SDPu is of the form So; S2; S3; S. (see [MS89]), we conclude that the
speed of SDPu is less than the speed of SDP" Therefore, we assume that the speed of the
cluster of four processes equals r(SDP')' For SDP" we obtain the following speed estimate:

r(SDP') = (28· (j - i) + 10)T.

In order to compare this speed with the speed of SDDP, we should compute the maximum
value for r(SDP')' It is easy to see that this results in taking j = Nand i = 0, which gives
the following speed estimate for program SDP:

r(SDP) = (28· N + 10)T.

4.2 Size and speed estimates for SDDP

For an SDDP process SDDP(i,j) (0 ::; i ::; j ::; ~), again assuming a 16 bit wordlength, we
get the following size: .

a(SDDP(i,j») = 4680F.

23

This size estimate should be increased by the size of four passivators (one for each output
channel). Taking these into account, the total size of SDDP(i,j) becomes 46S0F + 4· 32F =
4S0SF. With respect to speed, we get the following result for process SDDP(i,j):

r(SDDP(i,j)) = (169· (j - i) + 13)T.

If we want to compare this speed with r(SDP), we should take j - '¥ and i = O. This
results in:

r(SDDP) = (S4.5· N + 13)T.

Comparing the speed and size estimates for both systolic designs, we conclude that the
size of the clustered design is about S% smaller than the size of the 'fine-grained' design,
whereas it is three times slower.

5 Conclusion

We presented a method for performance analysis of processes of CP-O programs. With this
method these processes can be compared by estimating their size and speed. The method
was developed such that it could be implemented quite easily. As a test case, the resulting
program was applied to the systolic designs for dynamic programming of [MSS9j.

Our method features the single realisation of atoms and expressions as optimisations.
For the second optimisation we have to perform a program transformation that establishes
mutual exclusion of expression evaluations. Since this might not be desirable in all situa
tions, the optimisations should be made optional when the performance analysis method
is incorporated in a VLSI programming environment.

We have tried to make our method independent from the implementation of the hand
shake components. If the implementation of a component changes, this should only affect
the size and speed estimates of the component, and not the entire method. However, this
independence has its limitations. If, for instance, variables are implemented with only one
read channel (as is suggested in [Pee90b]), this would require a change in the translation
method, and would therefore also require a change in the performance analysis method.

We suppose that our method can be extended with a number of language constructs,
like selection ("if-then") and iteration ("while-do"). This extension is a topic for future
research. Another extension could be the addition of more (post-)optimisations, e.g. com
mon subexpression elimination. However, we conjecture that the introduction of more
optimisations will lead to more program transformations, something we consider undesir
able. A way to avoid these transformations is to introduce new handshake components
(e.g., the fork component of [Pee90a]). A disadvantage of this approach is that it might
make our performance analysis rather complex.

24

Acknowledgements

We would like to thank Martin Rem and Huub Schols for introducing us to the subject. Ad
Peeters is acknowledged for his suggestions and stimulating discussions on earlier versions
of this paper. Finally, we are specially grateful to Alex Jansen, who implemented our
method.

References

[NB88)

[BS88)

[BK91)

[Kam90)

[Mar86)

[MS89)

[Mak90)

[Pee90a)

[Pee90b]

[Sch91]

C. Niessen, C.H. (Kees) van Berkel, M. Rem, and R.W.J.J. Saeijs. VLSI Pro
gramming and Silicon Compilation; A Novel Approach from Philips Research,
Proceedings ICCD '88, 1988.

C.H. (Kees) van Berkel, and R.W.J.J. Saeijs. Compilation of Communicating
Processes into Delay-Insensitive Circuits, Proceedings ICCD '88, 1988.

K. van Berkel, J. Kessels, M. Roncken, R. Saeijs, and F. Schalij. The VLSI
programming language Tangram and its translation into handshake circuits,
submitted to EDAC '91.

M. Kamps. Translation of Basic Components into Gate Circuits, In: Designing
Delay-Insensitive Circuits, ISBN 90-5282-076-7.

Alain J. Martin. Compiling communicating processes into delay-insensitive cir
cuits, Distributed Computing, 1, pp. 247-260, 1986.

R.H. Mak and P. Struik. A Systolic Design for Dynamic Programming, In:
Proceedings CSN 89, eds. P.M.G. Apers, D. Bosman, J. van Leeuwen, pp.
355-375, 1989.

R.H. Mak. Private communication.

A. Peeters. A Notation for Systolic Computations In: Designing Delay
Insensitive Circuits, ISBN 90-5282-076-7.

A. Peeters. Syntax-Directed Translation of the Regular Language Acceptors,
Ibidem.

F. Schalij. Private communication.

A An example of a derivation

In this appendix we consider CP-O program SDP of [Mak89]. For the example derivation,
we restrict ourselves to case 2, so process S DP', The statements of this process are given

25

below:
SDP' = SO; Sl; S2; S3; S4

where:

SO - a?ya,b?xb,d?yd,e?xe
Sl a!xb, b!xb, d!xe, e!xe
S2 m:= (w+ya+xe) min (w+xb+yd)
S3 = (a?xa,b?xb,d?xd,e?xe

; a!ya, b!xb, d!yd, e!xe
; (mO := m; m:= mO min (w + xa+ xe) min (w + xb + xd)),ya:= xa,yd:= xd
)~(j-;)-1

S4 = a!ya, b!m, d!yd, elm

In order to apply our method, we need to determine sets ChanSet, VarSet, AtomSet and
ExpS et, and the multiplicity functions for this process. We do this by constructing three
tables:

• A table in which for each variable x E VarSet(SDP')' the values #r(x) and #w(x)
are given. Set VarSet(SDP') is the set of all elements in the left column of the table.
The values #r(x) for x E ExpSet(SDP') n Con are also given.

• A table in which for each channel a E ChanSet(SDP')' the values #?(a) and #!(a)
are given. Set ChanSet(SDP') is the set of all elements in the left column of the
table.

• A table in which for each atom of 9 E AtomSet(SDP')' the value #(9) is given.
Set ExpSet(SDP') is the set of right-hand sides of assignment statements in the left
column of the table; AtomSet(SDP') is the set of all elements in the left column.

Below we give these three tables for the CP-O process SDP" All multiplicities are given,
except the expression multiplicities. It is not difficult to see that no expression occurs more
than once, so these multiplicities are omitted.

a 2 2
b 1 2
d 2 2
e 1 2

Table 5: Channels and their multiplicities

U sing these tables and the size estimate formulae, we derive a size estimate for S DP'. This
derivation is given below, with some hints.

26

I x II #w(x) I #r(X) I
m 2 3
mO 1 1
xa 1 2
xb 1 4
xd 1 2
xe 1 4
ya 2 2
yd 2 2
w - 4

Table 6: Variables and their write and read multiplicities

x II #(x) I

a? ya 1
xa 1

b? xb 2
d? yd 1

xd 1
e? xe 2
a! xb 1

ya 2
b! xb 2

m 1
d! xe 1

yd 2
e! xe 2

m 1
m o

- (w + ya + xe) min (w + xb + yd) 1
mO min (w + xa + xe) min (w + xb + xd) 1

mO:= m 1
ya:= xa 1
yd:= xd 1

Table 7: Atoms, expressions, and atom multiplicities

27

= { Definition 3.9 }
ac(SDP') + ad(SDP')

= ac(SO; Sl; S2; S3; S4)
= { Definition 3.10 }

aseq(5) + (E i : 0 ::; i < 5 : ac(S;))
= ac(a?ya, b?xb, d?yd, e?xe)
= { Definition 3.10 }

aconc(4) + ac(a?ya)+ac(b?xb)+ac(d?yd)+ac(e?xe)
= { Definition 3.10 }

aConc(4) + 0 + 0 + 0 + 0
= aconc(4)

= ac(a!xb, b!xb, d!xe, e!xe)
= { Definition 3.10 }

aconc(4)

= ac(m := (w + ya + xe) min (w + xb + yd))
= { Definition 3.10 }

o
= a c((S30; S31; S32)W-;)-I)
= { Definition 3.10 }

arep!U_iJ_l + ac(S30; S31; S32)
= { Definition 3.10 }

arep!U_iJ_l + aseq(3) + ac(S30) + a c(S3.) + a c(S32)

= ac(a!ya, b!m, d!yd, elm)
= a conc(4)

= ac(a?xa, b?xb, d?xd, e?xe)
= aconc(4)

= ac(a!ya, b!xb, d!yd, e!xe)
= aconc(4)

= ac(S320, S32!, S322)

= ac(mO := m; m := mO min (w + xa + xe) min (w + xb + xd))
= aseq(2) + ac(mO := rn) +ac(rn := rnO min (w + xa + xe) min (w + xb + xd))
= aseq(2) + 0 + 0
= aseq(2)

= ac(ya := xa)
=0
= ac(yd := xd)
=0

ad(SDP') = { Definition 3.11 }

28

(~c: c E ChanSei(SDP'): amux(#,(c)) + admx(#,(c)))+

(~V : v E VarSei(SDP') : amux(#w(u)) + aUar(#r(U)))+
(~b: bE AiomSei(SDP'): amix(#(b)) + atrJ)+

(~e: e E ExpSei(SDP'): a(e))

= a min(3) + a min(2) + 4ap lu,(3) +

6amix(2) + 19atr J+

7 a mux(2) + 2admx(2) +

2auar(4) + a con(4) + a uar(3) + 4auar(2) + aUar(l)

For process SDP" assuming a 16 bit wordlength, we get the following size:

a(SDP') = 1203F

Using the same tables and the speed estimate formulae, we deduce a speed estimate for
SDP'.

r(SDP') = r(SO;Sl;S2;S3;S4)

= { Definition 3.12 }
i,eq(5) + (~i : 0 ::; i < 5 : r(Si))

r(So) = r(a?ya, b?xb, d?yd, e?xe)
= { Definition 3.12 }

i conc(4) + max{ r(a?ya), r(b?xb), r(d?yd), r(e?xe)}

= i conc(4) + max {itrJ + i write(2) + idmx(2) + i mux(2) + imix(l)

, itr! + iwrite(4) + idmx(l) + imux(l) + i mix(2)

, itr! + iwrite(2) + idmx(2) + i mux(2) + imix(l)

, itr! + i write(4) + idmx(l) + imux(l) + i mix(2)}

= i conc(4) + itr! + max {iwrite(2) + i dmx (2) + i mux(2)

, i write(4) + idmx(l) + imux(l) + i m ix(2)}

r(St) = r(a!xb, b!xb, d!xe, e!xe)
= { Definition 3.12 }

i conc(4) + max{ r(a!xb), r(b!xb), r(d!xe), r(e!xe)}
= i conc(4) + max {i tr! + iread(4) + i mux(2) + imix(l)

, i'r! + iread(4) + i mux(2) + imix(2)

, i'r! + iread(4) + i mux(2) + imix(l)

, itr! + i read(4) + i mux(2) + i mix(2)}

= i conc(4) + itr! + i mux(2) + max {iread(4) + imix(l)

, iread(4) + imix(2)

, iread(4) + imix(l)

, iread(4) + i m ix(2)}

= i conc(4) + itr! + iread(4) + i mux(2) + imix(2)

29

T(S2) = T(m := (w + ya + xe) min (w + xb + yd))
= { Definition 3.12 }

T((W + ya + xe) min (w + xb + yd))+ttr! + t wr ;'e(3) + t mux(2) + t m ;x(l)

= { Definition 3.12 }
ttr! + t wr;'e(3) + t mux(2) + t m ;n(2) + max {T(W + ya + xe)

,T(W + xb + yd)}
= { Definition 3.12 }

ttr! + t wr;te(3) + t mux(2) + t m;n(2) + max {tp/u8(3) + max{ T(W), T(ya), T(xe)}

,tp/u8(3) + max{ T(W), T(xb), T(yd)}}
= ttr! + twr;te(3) + t mux(2) + t m ;n(2) + max {tp/u;(3) + max{tread(4), t read(2) , t read(4)}

,tp/u8(3) + max{ tread(4b tread(4)' t read(2)} }

= ttr! + t wr;te(3) + t mux(2) + t m ;n(2) + tp/us(3) + t read(4)

T(S3) = T((S30; S31; S32)W-;)-1

= { Definition 3.12 }
trep~ .. + (W - i) - 1) . (t"q(3) + T(S30) + T(S31) + T(S32))

2(J-I)-1

T(S4) '= T(a!ya, b!m, d!yd, elm)
= { Definition 3.12 }

t conc(4) + max{ T(a!ya), T(b!m), T(d!yd), T(elm)}
= t conc(4) + max {ttr! + tread(2) + t mux(2) + t m ;x(2)

,ttr! + tread(3) + t mux(2) + t m ;x(l)

, ttr! + t read(2) + t mux(2) + t m;x(2)

, ttr! + tread(3) + t mux(2) + t m ;x(l)}

= t conc(4) + ttr! + t mux(2) + max {t read(2) + t m ;x(2)

T(S30) = T(a?xa, b?xb, d?xd, e?xe)
= { Definition 3.12 }

, t read(3}}

t conc(4) + max{ T(a?xa), T(b?xb), T(d?xd), T(e?xe)}

= t conc(4) + max {ttr! + tdmx(2) + t mux(l) + t m ;x(l) + t wr;te(2)

,ttr! + t dmx(l) + t mux(l) + t m ;x(2) + t wr;'e(4)

,ttr! + tdmx(2) + t mux(l) + t m ;x(l) + t wr ;'e(2)

,ttr! + tdmx(1) + tmux(l) + t m;x(2)} + t wr ;,e(4)

= t conc(4) + ttr! + t mux(1) + max {t dmx (2) + t wr;te(2)

T(S31) = T(a!ya, b!xb, d!yd, e!xe)
= { Definition 3.12 }

, tdmx(l) + t m ix(2) + t write(4)}

t conc(4) + max{ T(a!ya), T(b!xb), T(d!yd), T(e!xe)}

= t conc(4) + max {ttr! + t read(2) + t mux(2) + t m;x(2)

,ttr! + t read(4) + t mux(2) + t m ;x(2)

, t tr! + tread(2) + t mux(2) + t mix(2)

,ttr! + t read(4) + t mux(2) + t m ;x(2)}

= tconc(4) + t tr! + tread(4) + t mux(2) + t m ;x(2)

30

r(832) = r(8320 , 8321 , 8322)

= { Definition 3.12 }
tconc(3) + max{ r(8320), r(8321), r(8322)}

r(8320) = r(mO := m; m := mO min (w + xa + xe) min (w + xb + xd))
= t seq(2) + r(mO := m)+r(m := mO min (w + xa + xe) min (w + xb + xd))
= t.eq(2) + r(m)+ttr! + twrite(l) + tmux(l) + tmix(l)+

r(m := mO min (w + xa + xe) min (w + xb + xd))
= t seq(2) + t read(3) + ttr! + twrite(l) + tmux(l)+

r(m := mO min (w + xa + xe) min (w + xb + xd))
= t seq(2) + tread(3) + ttr! + twrite(l) + t mux(l)+

r(mO min (w + xa + xe) min (w + xb + xd))+ttr! + twrite(3) + t mux(2) + i mix(l)

= tseq(2) + tread(3) + 2t tr! + twrite(l) + tmux(l)+
t mux(2) + tmin(3) + t write(3) + max {r(mO)

,r(w+xa+xe)
,r(w + xb + xd)}

= tseq(2) + tread(3) + 2t tr! + twrite(l) + tmux(l)+

t mux(2) + tmin(3) + twrite(3) + max {r(mO)

,tplu,(3) + max{ r(w), r(ya), r(xe)}

,tplus(3) + max{ r(w), r(xb), r(yd)}}
= tseq(2) + tread(3) + 2ttr! + t write(l) + tmux(l)+

t mux(2) + tmin(3) + twrite(3) + max {tread(l)

, t p1u,(3) + max { t read(4), t read(2) , tread(4)}

,tplus(3) + max {tread(4) , t read(4» t read(2)}}

= t seq(2) + 2i tr! + tmin(3) + tplus(3) + t read(4) + t read(3) + t mux(2) + t mux(l)

T(S321) = r(ya := xa)
= r(xa)+ttr! + t mux(2) + tmix(l)

= t write(2) + t read(2) + t tr! + t mux(2)

r(8322) = r(yd := xd)
= r(xd)+ttr! + i mux(2) + t mix(l)

= t write(2) + t read(2) + itr! + i mux(2)

For 8DP' process (i,j), this gives the following speed estimate:

r(8DP') = (28· (j - i) + 10)T

31

In this series appeared :

No. Author(s)

85/01 RH. Mak

85/02 W.M.C.J. van Overveld

85/03 W.J.M. Lemmens

85/04 T. Vernoeff
H.M.L.J.Schols

86/01 R. Koymans

86/02 G.A. Bussing
K.M. van Hee
M. V oorhoeve

86/03 Rob Hoogerwoord

86/04 G.J. Houben
J. Paredaens
K.M. van Hee

86/05 J.L.G. Dietz
K.M. van Hee

86/06 Tom Verhoeff

86/07 R. Gerth
L. Shira

86/08 R. Koymans
R.K. Shyamasundar
W.P. de Roever
R. Gerth
S. Arun Kumar

86/09 C. Huizing
R. Gerth
W.P. de Roever

86/10 J. Hooman

86/11 W.P. de Roever

86/12 A. Boucher
R Gerth

86/13 R Gerth
W.P. de Roever

Title

The formal specification and derivation of CMOS-circuits.

On arithmetic operations with M-out-of-N-codes.

Use of a computer for evaluation of flow films.

Delay insensitive directed trace structures satisfy the foam
the foam rubber wrapper postulate.

Specifying message passing and real-time systems.

ELISA, A language for formal specification of
information systems.

Some reflections on the implementation of trace structures.

The partition of an information system in several
systems.

A frameworl<: for the conceptual modeling of
discrete dynamic systems.

Nondeterminism and divergence created by
concealment in CSP.

On proving communication closedness of distributed
layers.

Compositional semantics for real-time distributed
computing (Inf.&Control 1987).

Full abstraction of a real-time denotational
semantics for an OCCAM-like language.

A compositional proof theory for real-time
distributed message passing.

Questions to Robin Milner - A responder's
commentary (IFIP86).

A timed failures model for extended communicating
processes.

Proving monitors revisited: a first step towards
verifying object oriented systems (Fund. Informatica
IX-4).

86/14 R. Koymans

87/01 R Gerth

87/02 Simon J. Klaver
Chris P.M. Verberne

87/03 G.J. Houben
J .Paredaens

87/04 T.Vemoeff

87/05 RKuiper

87/06 R.Koymans

87/07 RKoymans

87/08 H.M.J.L. Schols

87/09 J. Kalisvaart
L.RA. Kessener
W.J.M. Lemmens
M.L.P. van Lierop
F.J. Peters
H.M.M. van de Wetering

87/10 T.Vemoeff

87/11 P.Lemmens

87/12 K.M. van Hee and
A.Lapinski

87/13 J.C.S.P. van der Woude

87/14 J. Hooman

87/15 C. Huizing
R Gerth
W.P. de Roever

87/16 H.M.M. ten Eikelder
J.C.F. Wilmont

87/17 K.M. van Hee
G.-J.Houben
J.L.G. Dietz

Specifying passing systems requires extending
temporal logic.

On the existence of sound and complete axiomati
zations of the monitor concept.

Federatieve Databases.

A formal approach to distributed information
systems.

Delay-insensitive codes - An overview.

Enforcing non-determinism via linear time temporal logic
specification.

Temporele logica specificatie van message
passing en real-time systemen (in Dutch).

Specifying message passing and real-time
systems with real-time temporal logic.

The maximum number of states after projection.

Language extensions to study structures for raster
graphics.

Three families of maximally nondeterministic
automata.

Eldorado ins and outs. Specifications of a data base manage
ment toolkit according to the functional model.

OR and AI approaches to decision support systems.

Playing with patterns - searching for strings.

A compositional proof system for an occam-like
real-time language.

A compositional semantics for statecharts.

Normal forms for a class of formulas.

Modelling of discrete dyoamic systems
framework and examples.

87/18 C.W.A.M. van Overve1d An integer algorithm for rendering curved
surfaces.

87/19 A.J.Seebregts Optimalisering van fIle allocatie in
gedistribueerde database systemen.

87/20 G.J. Houben The R2 -Algebra: An extension of an algebra
J. Paredaens for nested relations.

87/21 R. Gerth Fully abstract denotational semantics for concurrent
M. Codish PROLOG.
Y. Lichtenstein
E. Shapiro

88/01 T. Vernoeff A Parallel Program That Generates the M1lbius Sequence.

88/02 K.M. van Hee Executable Specification for Information Systems.
G.J. Houben
L.J. Somers
M. Voorhoeve

88/03 T. Vernoeff Settling a Question about Pythagorean Triples.

88/04 G.J. Houben The Nested Relational Algebra: A Tool to Handle
J .Paredaens Structured Information.
D.Tahon

88/05 K.M. van Hee Executable Specifications for Information Systems.
G.J. Houben
L.J. Somers
M. V oorhoeve

88/06 H.M.J.L. Schols Notes on Delay-Insensitive Communication.

88/07 C. Huizing Modelling Statecharts behaviour in a fully abstract
R. Gerth way.
W.P. de Roever

88/08 K.M. van Hee A Formal model for System Specification.
G.J. Houben
L.J. Somers
M. V oorhoeve

88/09 A.T.M. Aerts A Tutorial for Data Modelling.
K.M. van Hee

88/10 J.C. Ebergen A Formal Approach to Designing Delay Insensitive Circuits.

88/ll G.J. Houben A graphical interface formalism: specifying nested
J .Paredaens relational databases.

88/12 A.E. Eiben Abstract theory of planning.

88/13 A. Bijlsma A unified approach to sequences, bags, and trees.

88/14 H.M.M. ten Eikelder Language theory of a lambda-calculus with
R.H. Mak recursive types.

88/15 R. Bos
C. Hemerik

88/16 C.Hemerik
J.P.Katoen

88/17 K.M. van Hee
G.J. Houben
L.J. Somers
M. Voorhoeve

88/18 K.M. van Hee
P.M.P. Rambags

88/19 D.K. Hammer
K.M. van Hee

88/20 K.M. van Hee
L. Somers
M.Voorhoeve

89/1 E.Zs.Lepoeter-Molnar

89/2 R.H. Mak
P.Struik

89/3 H.M.M. Ten Eikelder
C. Hemerik

89/4 J.Zwiers
W.P. de Roever

89/5 Wei Chen
T.Vemoeff
J.T.Udding

89/6 T.Vemoeff

89n P.Struik

89/8 E.H.L.Aarts
A.E.Eiben
K.M. van Hee

89/9 K.M. van Hee
P.M.P. Rambags

89/10 S.Ramesh

89/11 S.Ramesh

89/12 A.T.M.Aerts
K.M. van Hee

An introduction to the category theoretic solution
of recursive domain equations.

Bottom-up tree acceptors.

Executable specifications for discrete event systems.

Discrete event systems: concepts and basic results.

Fasering en documentatie in software engineering.

EXSPECT, the functional part.

Reconstruction of a 3-D surface from its normal vectors.

A systolic design for dynamic programming.

Some category theoretical properties related to
a model for a polymorphic lambda-calculus.

Compositionality and modularity in process
specification and design: A trace-state based
approach.

Networks of Communicating Processes and their
(De-)Composition.

Characterizations of Delay-Insensitive
Communication Protocols.

A systematic design of a paralell program for
Dirichlet convolution.

A general theory of genetic algorithms.

Discrete event systems: Dynamic versus static
topology.

A new efficient implementation of CSP with output guards.

Algebraic specification and implementation of infinite
processes.

A concise formal framework for data modeling.

89/13

89/14

89/15

89/16

89/17

90/1

90/2

90/3

90/4

90/5

90/6

90/7

90/8

90/9

90/10

90/11

90/12

A.T.M.Aens
K.M. van Hee
M.W.H. Hesen

H.C.Haesen

J.S.C.P. van der Woude

A.T.M.Aens
K.M. van Hee

M.J. van Diepen
K.M. van Hee

W.P.de Roever-H.Barringer
C.Courcoubetis-D.Gabbay
R.Gerth-B.Jonsson-A.Pnueli
M.Reed-J.Sifalds-J.Vytopil
P.Wolper

K.M. van Hee
P.M.P. Rambags

R. Gerth

A. Peeters

J.A. Brzozowski
J.C. Ebergen

A.J.J .M. Marcelis

A.J.J.M. Marcelis

M.B. Josephs

A.T.M. Aens
P.M.E. De Bra
K.M. van Hee

M.J. van Diepen
K.M. van Hee

P. America
F.S. de Boer

P.America
F.S. de Boer

90/13 K.R. Apt
F.S. de Boer
E.R. Olderog

90/14 F.S. de Boer

90/15 F.S. de Boer

A program generator for simulated annealing
problems.

ELDA, data manipulatie taal.

Optimal segmentations.

Towards a framework for comparing data models.

A formal semantics for Z and the link between
Z and the relational algebra.

Formal methods and tools for the development of
distributed and real time systems, pp. 17.

Dynamic process creation in high-level Petri nets,
pp. 19.

Foundations of Compositional Program Refinement
- safety properties - , p. 38.

DecompoSition of delay-insensitive circuits, p. 25.

On the delay-sensitivity of gate networks, p. 23.

Typed inference systems : a reference document, p. 17.

A logic for one-pass, one-attributed grammars, p. 14.

Receptive Process Theory, p. 16.

Combining the functional and the relational model,
p. 15.

A formal semantics for Z and the link between Z and the
relational algebra, p. 30. (Revised version of CSNotes 89/17).

A proof system for process creation, p. 84.

A proof theory for a sequential version of POOL, p. 1l0.

Proving termination of Parallel Programs, p. 7.

A proof system for the language POOL, p. 70.

Compositionality in the temporal logic of concurrent systems,
p.17.

90/16 F.S. de Boer
C. Palamidessi

90/17 F.S. de Boer
C. Palamidessi

90/18 J.Coenen
E. v .d.Sluis
E. v .d. Velden

90/19 M.M. de Brouwer
P.A.C. Verlwulen

90/20 M.Rem

90/21 K.M. van Hee
P.A.C. Verkoulen

91/01 D. Alstein

91/02 R.P. Nederpelt
H.C.M. de Swart

91/03 J.P. Katoen
L.A.M. Schoenmakers

91/04 E. v.d. Sluis
A.F. v.d. Stappen

91/05 D. de Reus

91/06 K.M. van Hee

A fully abstract model for concurrent logic languages. p. 23.

On the asynchronous nature of communication in concurrent
logic languages: a fully abstract model based on sequences.
p.29.

Design and implementation aspects of remote procedure calls.
p. 15.

Two Case Studies in ExSpect. p. 24.

The Nature of Delay-Insensitive Computing. p.18.

Data. Process and Behaviour Modelling in an integrated
specification framework. p. 37.

Dynamic Reconfiguration in Distributed Hard Real-Time
Systems. p. 14.

Implication. A survey of the different logical analyses of .. if ...•
then p. 26.

Parallel Programs for the Recognition of P-invariant Segments.
p. 16.

Performance Analysis of VLSI Programs. p. 3l.

An Implementation Model for GOOD. p. 18.

SPECIFICATIEMETHODEN. een overzicht. p. 20.

	Abstract
	1. Introduction
	2. Translation and optimization of CP-0 processes
	2.1 The CP-0 language
	2.2 The handshake components
	2.3 The translation method
	2.4 Optimization of handshake circuits
	2.4.1 Single realisation of atoms
	3.3 Speed estimates
	3. Performance analysis of CP-0 processes
	3.1 The formal framework
	3.2 Size estimates
	3.3 Speed estimates
	3.4 Size and speed of the handshake components
	4. The comparison of two CP-0 programs
	4.1 Size and speed estimates for SDP
	4.2 Size and speed estimates for SDDP
	5. Conclusion
	Acknowledgements
	References
	A: An example of a derivation

