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Performance Analysis of VLSI Programs 

E. van de Sluis A.F. van der Stappen 

Eindhoven University of Technology 
Dept. of Mathematics and Computing Science 

P.O. Box 513,5600 MB Eindhoven, The Netherlands 

Abstract 

The CP-O programming language is described as an interface between the design 
of a system and its implementation as a VLSI layout. Before its translation into a 
VLSI layout, a Cp·O program is translated into a so-called handshake circuit. This 
circuit is optimised and its speed and size are estimated. The translation method 
and the optimisations are described. Furthermore, a formal method is introduced 
to compare CP-O programs, by estimating their size and speed when implemented 
as handshake circuits. The method is applied to two CP-O designs for dynamic 
programming. 

1 Introduction 

A VLSI program is the description of a VLSI circuit in an algorithmic language [BK91]. 
It is the task of a silicon compiler to translate VLSI programs into VLSI layouts. The 
language should be such, that VLSI programs can be written without any knowledge of 
the underlying communication protocol or implementation medium. This has as advantage 
that the programmer only needs to cope with the problem of writing a correct program 
that satisfies a given specification. Given this specification, the programmer makes a design 
of the VLSI program. This design step results in a network of Communicating Sequential 
Processes (CSP). To specify the processes, a CSP-like notation is adopted (cf. [Mar86, 
Pee90a, BK91]). 

In general, there is not just one program that satisfies a given specification, but several. 
Therefore, we need criteria to compare programs. In traditional programming, programs 
are compared by estimating the amount of time and memory a program requires during 
execution. This finds its analogy in VLSI programming, where we can compare programs 
by estimating the size and speed of the programs, when implemented as VLSI layouts. 

Just as performance analysis of traditional programs is done on an abstract, imple
mentation independent level, we do not want to bother the VLSI programmer with the 
intricate details of VLSI circuits. Therefore, the performance analysis method should be 
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based on the VLSI programs, and not on their translation to VLSI layouts. However, such a 
method requires some knowledge of this translation to give useful results. So, what we need 
is an interface between the (high-level) VLSI programming language and its translation to 
(low-level) VLSI layouts. 

In [BS88j and [BK91j Van Berkel et al. propose such an interface. They do not translate 
VLSI programs directly to VLSI layouts, but use an intermediate representation. Their 
approach is summarized in Figure 1. 

VLSI Programmer 

Statistics VLSI program 

-~~~~~~-----------1------------------------

Analysis 

L 
Compiler 

1 
Handshake 

Circuits 

1 

Layout 

Silicon Foundry 

Test Trace 

Figure 1: The development of VLSI circuits 

A VLSI program consists of a number of concurrent processes that communicate via 
message passing over common channels. Each process of a VLSI program is first translated 
to an abstract or handshake circuit. Such a circuit consists of a list of basic or handshake 
components. Via a number of channels, each component communicates with other com
ponents on the list, or with the environment of the circuit. In the second step of the 
translation, each component is replaced by its corresponding implementation as a VLSI 
circuits, and the overall layout is generated. In this step, also a test trace can be generated 
to test a chip after fabrication. 
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In this paper, we introduce a method that estimates size and speed of single processes 
of VLSI programs. This method is based on the translation of these processes to handshake 
circuits. Therefore, our method is only useful to compare different VLSI processes, and 
should not be used to estimate the actual size and speed of VLSI layouts. 

This paper is organised as follows. In Section 2 we describe the CP-O programming lan
guage, which is a CSP-like language to specify VLSI processes. A complete CP-O program 
consists of a finite number of these processes that communicate via common channels of the 
processes. We describe how CP-O programs can be translated into handshake circuits. This 
translation can result in rather inefficient circuits, so two post-optimisations are applied 
to make them more efficient. In Section 3 we present our (formal) performance analysis 
method. This method results in formulae for both size and speed, which express the size 
and speed of a VLSI process in size and speed estimates of the handshake components. 
Given the formal framework of Section 3, it was straightforward to make an implemen
tation of our method. This implementation was applied to the two different designs for 
dynamic programming of [MS89]. The results of this comparison are given in Section 4. 
We end this paper with some concluding remarks in Section 5. To illustrate the application 
of our method, an example of a size and speed derivation is included in the appendix. 

2 Translation and optimisation of CP-O processes 

We first describe in Section 2.1 the CP-O programming language by giving a BNF-grammar. 
Furthermore, we discuss how processes specified in this language can be translated into 
networks of "components" that interact by handshake signaling. Such networks are called 
abstract or handshake circuits (cf. [BS88], and [BK91]). The translation of CP-O processes 
requires a relatively small set of different handshake components, basically one for each 
primitive concept of the language. This set of components is described in Section 2.2. 
Given this set, we describe a translation method in Section 2.3. This method consists of 
a sequence of syntax-directed decompositions until the level of the handshake components 
is reached. This method can result in rather inefficient circuits. Inefficiences can be 
eliminated by applying a number of post-optimisations. In Section 2.4 we describe two 
possible optimisations. These optimisations are incorporated in our performance analysis 
method of Section 3. 

2.1 The Cp·O language 

The CP-O language was introduced by Van Berkel et at. in [BS88] as a notation for VLSI 
programs. In this paper, we consider a restricted class of this language. The processes 
that we consider are generated by the BNF-grammar of Table 1. In this grammar the 
semicolon expresses sequential composition. The comma, which takes priority over the 
semicolon, expresses concurrency. We have omitted any declaration part in this grammar, 
but it should be noticed that all variables and constants must be declared locally, while 
channels can be used to communicate with the environment of the process. 
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Program .. - StatList 
StatList .. - Atom 

StatList ; ... ; StatList 
StatList , ... , StatList 
(StatList )n 

Atom .. - Ass 
Ocomm 
Icomm 

Ass .. - Var:= Exp 
Ocomm .. - Chan I Exp 
lcomm .. - Chan? Var 
Exp .. - Con 

Var 
Exp 0 ... o Exp 

Table 1: The CP-O grammar 

A sequence of statements S can be repeated n times by applying the so-called repetition 
operator. This is denoted by sn. 

At the heart of any CP-O process lie the so-called atomic statements, or simply atoms. 
From the grammar we see that we distinguish three kinds of atoms: input actions, output 
actions, and assignment statements. With an input action, an incoming message on a 
channel a can be received in a variable x. This is denoted by a?x. With an output 
action we can send an evaluated expression E along a channel, as denoted by alE. We 
also have the Pascal-like assignment statement to assign an expression to a variable. An 
expression consists of variables and constants, which can composed by binary operators 
(e.g. addition). The binary operators are represented by the '0' symbol. 

2.2 The handshake components 

The translation method of Section 2.3 consists of a sequence of decompositions until the 
level of the so-called handshake components is reached. In this section we give a specification 
of our set of components. For this specification we adopt the notation of [BS88]. The 
implementation of components is discussed in [Kam90J. 

A specification of a handshake component is based on its interface to the external 
world. This interface consists of a set of named ports. Ports are either passive or active, 
depending on their role during a handshake. When a channel a connects two components, 
then a must connect an active port with an passive port. A communication is requested 
by the active side of the channel and subsequently acknowledged by the other side. The 
communication interval a' denotes the communication at the active side, and aO the com
munication at the passive side of channel a. The active communication interval a' begins 
with sending a request and ends with the receipt of the corresponding acknowledgement. 
The passive interval aO starts with the receipt of the request and ends with the issue of an 
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acknowledgement. It is clear that the passive interval aO is enclosed in time by the active 
interval a'. 

Now, a specification of a handshake component consists of a specification of the commu
nication intervals, which are either passive or active. A specification can be made according 
to the following rules (d. [Pee90b)): 

• For communication channel a, aO is an active, and aO a passive communication inter
val. 

• If A and B are passive and active intervals respectively, then A : B denotes the 
interval that starts with the receipt of requests on all channels in A, followed by 
interval B, and ends with the sending of acknowledgements on all channels in A. We 
say that B is "enclosed in time" by A. The communication interval A : B is passive. 

• If A and B are intervals of the same activity, then A • B defines an execution of A 
and B such that the two intervals overlap. The interval A • B has the same activity 
as A and B. 

• If A and B are intervals of the same activity, then A; B denotes the sequential order 
of A and B. The interval is of the same activity as A and B. 

• If A and B are intervals of the same activity, then A, B is the interval in which A 
and B may occur in either order, but may overlap as well. The interval has the same 
activity as A and B. 

• For passive intervals A and B, A I B defines the execution of either A or B. The 
environment makes the choice which interval is activated. No overlap of A and B is 
allowed. The interval AlB is passive. 

• For an interval A, An denotes the interval of the same activity in which A is activated 
exactly n times. 

• For an interval A, [A] denotes the interval of the same activity in which A is repeatedly 
activated; completion of this communication interval will never occur. 

Similar to [Pee90b], we divide the handshake components into three classes: the control 
components, the data-manipulation components, and the data-control components. 

In this paper, we distinguish four different control components. Their specification 
is given in Table 2. Each control component has an activation channel a, which is used 
to trigger the component. When triggered, control signals are sent according to their 
specification. 

The sequencer is a component that, after receiving a request via its a-channel, communi
cates once over all its b-channels, in sequential order, and finally sends an acknowledgement 
via its a-channel. It is used to implement the semicolon in CP-O processes. The concursor, 
when initiated via its a-channel, independently triggers its b-channels in any order. After 
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Name Specification Notation 
sequencer lao : (bo; ... ; bk_t )] seq(k) 
concursor lao : (bo, ... , bk_t )] conc(k) 
repeater [aO: w)n] rep" 
mixer [(a(jl· .. Iak_t) : b'] mix(k) 

Table 2: The control components 

completion of communication on all b-channels, the concursor sends an acknowledgement 
via its a-channel. When triggered, the repeater component communicates exactly n times 
via its b-channel, after which an acknowledgement is sent via its a-channel. The mixer 
communicates via its b-channel if one of its a-channels is triggered; the choice is left to 
the environment. However, the control communication on the k input channels must be in 
mutual exclusion. 

The data-manipulation components are used for the distribution, gathering, storage, 
and operation of data. We distinguish six different data-manipulation components. They 
are specified in Table 3. 

Name Specification Notation 
multiplexer [(a(j?vl ... laZ-t ?v) : b'!v] mux(k) 
demultiplexer [(a(j!vl· . . lak_t!V) : b'?v] dmx(k) 
constant c [(c.w(j!c]' ... , [c.Wk_t !cll con(k) 
variable x [x.rO?xl([x.w(j!x]' ... , [x.wZ_t!x])] var(k) 
passivator [aO?v _ bO!v] pass 
k-ary oper. 0 [aO?( voD ... DVk_tl : (b~?vo - ...• bt t ?Vk-tl] D(k) 

Table 3: The data-manipulation components 

The multiplexer component is used to merge k data channels on one data channel. 
The data communication on the k input channels must be in mutual exclusion. The 
demultiplexer is the counterpart of the multiplexer. It is used for the splitting of data on 
k output channels. Communication is initiated by the demanding side. These demands 
must be in mutual exclusion. 

To allow storage of data, we have two handshake components. The constant is a 
component that upon request on one of its c. w channels, sends its value over the same 
channel. The variable can store data via its x.r channel, and send this data via one of its 
x.w channels. 

The passivator is used as a connector for communication channels between two active 
communication partners. It is used to connect the communicating channels of different 
processes. In our translation method, the two sides of such channels are active, so they 
cannot be connected directly. 

Operators are used to perform operations on data. They have k input channels and one 
output channel to communicate the result of the operation. The k-ary operator is triggered 
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by the input side. We do not have the reverse component, as in [BS88J, i.e., where the 
activities are reversed. 

There is only one data-control component, viz. the transferrer. Is is used to trigger 
data flow by connecting a control component with two data-manipulation components. It 
is specified as follows: 

laO : (b·?v. c·!v)J. 

The transferrer is denoted by trf. When triggered via its a-channel, its reads data via 
its &'channel, and transfers this data via its c-channel. 

2.3 The translation method 

The first step in the translation of CP-O processes consists of two program transforma
tions. The first transformation concerns assignment statements x := E where x appears 
in E. To avoid read/write conflicts, the following transformation must be applied to these 
assignment statements (cf. [BS88]): 

x := E 9 (xO:= x; x := E:o). 

The second transformation concerns multiple occurrences of an expression E in a process, 
where E = EoD ... DEn _ l . Due to the second optimisation that we apply (single realisation 
of expressions, see Section 2.4), these occurrences cannot be evaluated concurrently, as for 
instance in the process 

(a!x+y, b!x+y). 

This kind of processes has to be transformed such, that concurrent evaluation of the same 
expression cannot take place. The example above could for instance be transformed to 

(a!x + y, b!y + x) or (xy := x + y; a!xy, b!xy), 

since x + y and y + x are considered different expressions, and concurrent read from the 
same variable is possible. We note that, strictly speaking, a similar transformation has 
to be performed with respect to the first optimisation of Section 2.4, i.e., single realisa
tion of atoms. However, the reader can check that atoms that have multiple concurrent 
occurrences can simply be replaced by a single occurrence. 

We illustrate the translation of CP-O processes with an example. This example is the 
following process S, which is not a very meaningful process, but shows most features of 
the CP-O language: 

S= (a?x, b?y; z:= (x max y); d!(x+y+z)t 

Process S concurrently stores values from channels a and b in variables x and y respectively, 
then assigns the maximum of x and y to z, and finally outputs the sum of the three variables 
via channel d. This process is repeated n times (n > 0). 
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After application of the above program transformation, the following (informally de
scribed) translation of a CP-O process results in a circuit of handshake components. Such 
a circuit is called a handshake circuit. 

1. Make a parse tree of the process via a syntax directed decomposition. The result of 
this step for process S is shown in Figure 2. 

Figure 2: The parse tree of process S 

2. Replace each node in the parse tree by its corresponding handshake component. For 
the nodes that correspond with control and arithmetic operators, this step is straight
forward. The input, output, and assignment symbols ('?', 'P, and ':=' respectively) 
are replaced by transferrers. For process S, this step is depicted in Figure 3. From 
this figure we see that the arcs of the parse tree are replaced by channels, which 
connect active and passive ports of components. The active ports are indicated by 
small filled circles, the passive ports by open ones. 

3. Replace each leave in the tree by either channels, variables, or constants. If a variable 
(constant) is read k times (k > 0) in the process, then a var(k) (con(k» component 
is introduced. Furthermore, if we write to a variable k times, with k > 1, then we 
have to place a mux(k) component in front of the variable. Similarly, if the process 
contains k "writes" to a channel, then a mux(k) component is also required. Finally, 
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Figure 3: The parse tree of S after step 2 
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• b d +(3) 

Figure 4: The handshake circuit of S 
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for k "reads" from a channel a dmx(k) component is introduced. For process S, this 
final step results in the handshake circuit of Figure 4. 

For process S, we had to introduce three components: two var(2) components for 
variables x and y, and a var(l) component for variable z. Note that for the trans
lation of S no (de )multiplexers are required. In Section 2.4 we give examples where 
(de )multiplexers are required. 

Steps one and two in our method are similar to the command and expression decomposition 
steps of [BS88j. Step three also consists of two steps in [BS88], and are called variable and 
channel decomposition there. 

The translation strategy above applies only to the translation of single CP-O processes. 
Remember that CP-O programs consist of a number of these processes that communicate 
over common channels. So, these programs can be translated by translating their processes, 
and connecting their common channels. Since all channels are active in our translation, 
this connection cannot be done directly. This problem is solved by making one adding 
passivator components to these channels. 

2.4 Optimisation of handshake circuits 

In this section we discuss two possible optimisations that can be applied to a handshake 
circuit that is the result of a translation as described in Section 2.3. These optimisations 
concern multiple occurrences of atoms and expressions in a CP-O process. Since these 
introduce "expensive" data components in the handshake circuit, we want to realise them 
only once, and realise multiple invocations by introducing "cheap" control components. 
The optimisations are described in subsequent sections, and are illustrated with small 
examples. 

2.4.1 Single realisation of atoms 

Suppose we have a CP-O process that contains the atom a!x three times, and the atom a!y 
just once. Here we assume that these atoms occur in mutual exclusion. When we follow 
our translation method, the data-flow of these statements would result in a circuit as given 
in Figure 5. Notice the demultiplexer (dmx(4)) for the multiple writes to channel a. 

Figure 6 shows a different translation of the same program. It is not difficult to see 
that this circuit performs the same function. Since we replaced a considerable part of the 
area-consuming data components by less expensive control components, this translation 
yields a considerable reduction of the size (area) of the circuit, especially when a large 
wordlength is used (e.g. 16 bits). 

Above, we have only discussed the optimisation for an output action. It is not difficult 
to see that for the other atoms (input actions and assignments) similar optimisations 
can be applied, which means that demultiplexers can be smaller, or sometimes disappear 
completely. 
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where 

ad(E) = { 0 
admx(#,(E)) + ae(E) E = Eo 0 ... 0 E n- 1 

EEVarUCon 

and 

ae(E) = { 
o 
aO(n) + (Ei: 0 ~ i < n: ae(E;)) 

E E VarUCon 
E = Eo 0 ... 0 En - 1 

o 

We assume that amux(l) = admx(l) = am;x(l) = o. 

3.3 Speed estimates 

The timing analysis for the optimised realisation is based on the syntax of the process. An 
estimate for the 'speed of a CP-O process' is given by a function r : (StatListUExp) -+ 'R. 
Here we mean by the speed> of a CP-O process the time that is spent within the handshake 
components. So, no delays are included for wires or communication with the environment. 

The speed estimates for sequential composition, concurrent composition, and repetition 
is rather straightforward. They equal the internal switching time of the (control) compo
nent, plus a speed estimate for the statements that are activated. Since we assume that 
the statements in a concurrent composition are executed in parallel, this estimate equals 
the maximum of all the speed estimates of these statements. 

The speed estimates for input actions, output actions, and assignment statements de
pend on the multiplicity functions. If, for example, an atom appears n times, n > 1, in a 
CP-O process S then the speed estimate for this atom is increased by a delay tmix(n) for 
an n-ary mixer. A delay ttr! is always included for a transferrer. In case of an n-ary write 
to a single variable or a single channel, a delay tmux(n) is added. Similarly, we add a delay 
tdmx(n» in case of a n-ary read from a single channel. A delay tread(n) is added in case of an 
n-ary read from a variable or constant. Similarly, the delay for writing to a n-ary variable 
is denoted by twr;te(n). As will be explained in Section 4, variables Can be implemented 
such, that the write delay depends on the number of read ports of a variable. 

For expressions, we assume that the evaluation of all operands of an n-ary 0 expression 
(e.g. an n-ary sum) start at the same time. A delay tdmx(n) is added for a multiplicity n of 
each expression. When we denote the delay in component D(n) by to(n)' we Can now give 
the definition of speed estimate function r. 

Definition 3.12 (Speed estimate function r) 

r(So; ... ; Sn-l) = tseq(n) + (E i : 0 S i < n : r(S;)) 

r(So, ... , Sn_,) = tconc(n) + (MAX i : 0 ~ i < n : r(S;)) 
r((s)n) = t repn + n· r(S) 
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optimisation again with an example. Consider the following CP-O process: 

(a!x+y; b!x+y) 

With our translation method, the data-flow part of this process is translated to the circuit 
of Figure 7. We see that the area-consuming addition operator is duplicated . 

. -----.... '" 

b _____ .... '" 

Figure 7: Two additions with two addition operators 

In Figure 8 another translation for the same program is depicted. With respect to area, 
this circuit is an optimisation, since we need only one addition operator. However, the 
introduction of a demultiplexer means that the circuit is slower. We decided to apply this 
(area) optimisation, since we think that in this case the loss of speed is neglect able when 
compared with the gain in area . 

. ------1.'" 
DMX(2) 

b ------1. '" 

Figure 8: Two additions with just one addition operator 

Note that a demultiplexer requires the demanding sides to be in mutual exclusion. For 
multiple invocations of expressions, this is guaranteed by our second program transforma
tion of Section 2.3. 
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Note also that this optimisation is applied only if complete expressions on the right 
hand sides of output or assignment statements are duplicated. So, we apply no common 
subexpression elimination, which is suggested in [Mak90] as an optimisation. 

3 Performance analysis of CP-O processes 

Now that we have a unique translation for an arbitrary CP-O program into its optimised 
realisation, we can use this translation for the performance analysis of CP-O programs. The 
method that we describe in this section is only applicable to single CP-O processes. To 
derive size and speed estimates for complete CP-O programs, we have to add size and speed 
estimates for the passivators, which are necessary to connect the communicating channels 
of the processes. 

In order to give the formulae for speed and size estimation, we need to define a number 
of sets and functions that formalise the notions of different atoms and multiple read/write 
that are used in the description of the translation strategy. This will be done in Sec
tion 3.1. Then in Section 3.2, we present our method to estimate size of CP-O processes. 
In Section 3.3, we give our method for speed estimates. The method expresses the size 
and speed estimate of a process in estimates for the handshake components that are used 
in the translation of the process. Therefore we give in Section 4 the size and speed of each 
handshake component. We conjecture that the values we give are not very realistic, but 
they are necessary to show an application of our method in Section 4. 

In this section we use the following notation: 

• S, So, . .. ,Sn-l: statements, denoted by S, So, . .. , Sn-l E StatList, 

• E,Eo, ... ,En _ 1 : expressions, denoted by E,Eo, ... ,En_1 E Exp, 

• x, y: variables, denoted by x, y E Var, and 

• a: a channel, denoted by a E Chan. 

The number of elements of a set X is denoted by IXI. The formal framework that we 
introduce in Section 3.1 consists of the definition of a number of recursive functions. One 
of the arguments of these functions is a statement (an element of StatList). As a notational 
convenience, we allow ourselves to omit this argument when we give a complete process as 
an argument. 

3.1 The formal framework 

The first step of the translation strategy is the realisation of all variables, constants and 
channels in the CP-O process. We introduce a function ChanSet : StatList -> P(Chan). 
Set ChanSet(S) contains all channels that are used in CP-O process S. 

Definition 3.1 (ChanSet) 

14 



ChanSet(a?x) = {a} 
ChanSet(a!E) = {a} 
ChanSet(x:= E) = 0 
ChanSet(So; ... ; Sn-tl = (Ui : 0 ~ i < n : ChanSet(S;)) 
ChanSet(So, ... , Sn-l) = (Ui : 0 ~ i < n : ChanSet(S;)) 
ChanSet(sn) = ChanSet(S) 

o 

A second function VarSet : StatList U Exp --+ P(Var) gives the set of all variables and 
constants that occur in a process. 

Definition 3.2 (VarSet) 

VarSet(a?x) 
VarSet(a!E) 
VarSet(x := E) 
VarSet(So; ... ; Sn-l) 
VarSet(So, ... , Sn-l) 
VarSet(sn) 

VarSet(E) 

= {x} 
= VarSet(E) 
= {x}UVarSet(E) 
= (Ui: 0 ~ i < n : VarSet(S;)) 
= (Ui: 0 ~ i < n: VarSet(S;)) 
= VarSet(S) 

= { ~~}: 0 ~ i < n : VarSet(E;)) 
E E VarU Con 
E = EoO ... OEn _ 1 

o 

The second step of the translation strategy realises all different input actions, output 
actions, and assignment statements in a CP-O process S. Let AtomSet : StatList --+ 

P(Atom); AtomSet(S) is the set of all input actions, output actions, and assignment 
statements in S. 

Definition 3.3 (AtomSet) 

AtomSet(a?x) = {a?x} 
AtomSet(aIE) = {alE} 
AtomSet(x:= E) = {x := E} 
AtomSet(So; ... ; Sn-l) = (Ui : 0 ~ i < n : AtomSet(Si)) 
AtomSet(So, ... , Sn-tl = (Ui : 0 ~ i < n : AtomSet(S;)) 
AtomSet(sn) = AtomSet(S) 

o 

Function ExpSet : Stat List --+ P(Exp) computes the collection of right-hand sides of 
assignment statements and output actions. However, only right-hand sides that contain 
operators are included in the collection. The function is defined as follows: 
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Definition 3.4 (ExpSet) 

ExpSet(a?x) 

ExpS et( alE) 

ExpSet(x := E) 

=0 

= { ~E} E E VarUCon 
E = Eo 0 ... 0 En - 1 

= { ~E} EE VarUCon 
E = Eo 0 ... 0 En - 1 

ExpSet(So; ... ; Sn-tl = (Ui : 0 ~ i < n : ExpSet(S;)) 
ExpSet(So, ... ,Sn_l) = (Ui: 0 ~ i < n: ExpSet(S;)) 
ExpSet(sn) = ExpSet(S) 

o 

These four sets facilitate the definition of functions that express the multiplicity of read 
and write operations from/to variables and channels, and the multiplicity of atoms (input 
actions, output actions, assignment statements) in CP-O processes. These functions offer us 
the possibility to count the number and determine the arity of multiplexers, demultiplexers, 
variables, constants, and mixers. The multiplicity functions are denoted by '#' symbols. 
First we give two functions for the multiplicity of channels; #?, #! : Chan x Stat List -t N. 
They are defined as follows: 

Definition 3.5 (Channel Multiplicities) 

Let a E Chan. Then: 

#?(a, S) = I{x : x E VarSet(S) /\ a?x E AtomSet(S) : x}1 

#!(a,S) = I{x: x E VarSet(S) /\ alx E AtomSet(S): x}1 

+ 
I{E : E E ExpSet(S) /\ alE E AtomSet(S) : E}I 

o 

To compute read and write multiplicities of variables (and constants), we next define 
#w : Var x Stat List -t N, and #r : (Var U Con) X (StatList U Exp) -t N. Note that we 
do not distinguish between variables and constants and consider a constant as a variable 
with a zero write multiplicity, so without a write port. 

Definition 3.6 (Read and Write Multiplicities) 

Let x E VarUCon. Then: 
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#w(x,S) = j{a: a E ChanSet(S) /I a?x E AtomSet(S): a}1 

+ 
I{Y: Y E VarSet(S) /I x:= y E AtomSet(S): Y}I 
+ 
I{E: E E ExpSet(S) /I x := E E AtomSet(S) : E}I 

#r(X,S) = I{a: a E ChanSet(S) /I a!x E AtomSet(S): a}1 

+ 

Where: 

#r(x,E) = 

I{Y: Y E VarSet(S) /I y:= x E AtomSet(S): y}1 
+ 
(~E : E E ExpSet(S) : #r(x, E)) 

{ ~~i: O:s: i < n: #r(X,Ei)) 

E E Var U Con /I x = E 
E E Var U Con /I x # E 
E = EoD ... DEn _ 1 

o 

Function # : Atom x StatList -> N gives the multiplicity of each atom in a CP-O process. 

Definition 3.7 (Atom Multiplicities) 

Let 9 E Atom. Then: 

#(g,a?x) { ~ 9 = a?x 
9 # a?x 

#(g,a!E) { ~ g=a!E 
- g#a!E 

#(g,x:= E) { ~ 9 = (x:= E) 
-

9 # (x:= E) 

#(g, So; ... ; Sn-l) = (~i : 0 :s: i < n : #(g, Sill 
#(g, So,··., Sn-d = (Ei : 0 :s: i < n : #(g, Sill 
#(g, sn) = #(g, S) 

o 

Function #e : Exp x Stat List -> N gives the multiplicity of each expression in a CP-O 
process. With the definition we have to be careful not to count expressions more than 
once when they appear in atoms that have several occurrences. For this purpose we use 
function AtomSet in the definition. 

Definition 3.8 (Expression Multiplicities) 
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Let E E ExpSet(S). Then: 

#e(E,S) 

3.2 Size estimates 

S = (a!E) 
S=(x:=E) 
S = (a?x) 
otherwise 

o 

The multiplicity functions make it quite easy to give the number and arityof multiplexers, 
demultiplexers, variables (constants), and mixers in a translated CP-O process. The func
tions are defined in a way that takes into account the optimisation of single realisation of 
atoms and expressions. Our size estimates 'only' include the handshake components that 
are used in a CP-O process, not the wires that are used in an actual VLSI layout. This is 
because we do not have any knowledge at this level (the level of the VLSI programmer) 
about this layout. 

The number of occurrences of control components in the realisation of a CP-O process S, 
and the arities of these occurrences depend on the structure of S. They are not influenced 
by our optimisations. The estimate for the total size of all elements of these components 
in S will be given by ac(S). 

In contrast to the control components, the number of occurrences and the arities of 
data manipulation components and transferrers are influenced are influenced by our opti
misations. The estimate for the total size of all these components is given by ad(S). The 
size estimate a( S) for a process S is the sum of both estimates ac( S) and ad (S). 

Definition 3.9 (Size estimate function a) 

o 

Function a c : StatList -+ ./If depends on the syntactic structure of the process. It gives 
the total area of all repetitors, sequencers, and concursors. The definition of a c is straight
forward. We denote the area of a handshake component p by ap • 

Definition 3.10 (a c) 

Let 9 E Atom. Then: 

ac(g) 
ac(So; ... ; Sn-l) 
ac(So, ... , Sn-,) 
ac(sn) 

=0 
= aseq(n) + (Ei: 0:::; i < n: ac(S;)) 
= aconc(n) + (E i : 0 :::; i < n : ac(S;)) 
= arep• + ac( S) 
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o 

Function ad : (Stat List U Exp) -+.N is somewhat more complex. It does not depend on 
the syntactic structure of the process, but uses the multiplicity functions. In order to give 
a formal definition of ad we need to examine the number of occurrences and arities of each 
of the remaining handshake components. 

• Variables 
The realisation of a CP-O process S contains a var( #r( x)) component for each x E 
VarSet(S) n Var, and a con(#.(x)) for each x E VarSet(S) n Con. 

• Multiplexers 
The realisation of S contains a mux(#!(a)) for each a E ChanSet(S), with #!(a) > 1, 
and a mux(#w(x)) for each x E VarSet(S), with #w(x) > 1. 

• Demultiplexers 
The realisation of S contains a dmx(#?(a)) for each a E ChanSet(S),#?(a) > 1 
and a dmx(#e(E)) for each E E ExpSet(S) of the form E = EoD ... DEn_1 and 

#e(E) > 1. 

• Transferrers 
The realisation of S contains a tr! for each 9 E AtomSet(S). 

• Mixers 
The realisation of S contains a mix(#(g)) for each 9 E AtomSet(S),with#(g) > 1. 

• Arithmetic operators 
For each E E ExpSet(S) of the form E = Eo 0 ... 0 En_1 with, n :::: 1, the 
realisation of CP-O process S contains a D(n) component. 

Combining these results we can easily deduce the following definition for ad: 

Definition 3.11 (ad) 

= (E c: c E ChanSet(S) : amux(#,(c)) + admx(#,(c))) 
+ 
(E x: x E VarSet(S) n Var : amux(#w(X)) + avar(#.(E))) 
+ 
(E x : x E VarSet(S) n Con: acon(#r(E))) 
+ 
(Eg : 9 E AtomSet(S) : amix(#(g)) + at.!) 
+ 
(EE: E E ExpSet(S): ad(E)) 
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where 

ad(E) = { 0 
admx(#,(E)) + ae(E) E = Eo 0 ... 0 E n- 1 

EEVarUCon 

and 

ae(E) = { 
o 
aO(n) + (Ei: 0 ~ i < n: ae(E;)) 

E E VarUCon 
E = Eo 0 ... 0 En - 1 

o 

We assume that amux(l) = admx(l) = am;x(l) = o. 

3.3 Speed estimates 

The timing analysis for the optimised realisation is based on the syntax of the process. An 
estimate for the 'speed of a CP-O process' is given by a function r : (StatListUExp) -+ 'R. 
Here we mean by the speed> of a CP-O process the time that is spent within the handshake 
components. So, no delays are included for wires or communication with the environment. 

The speed estimates for sequential composition, concurrent composition, and repetition 
is rather straightforward. They equal the internal switching time of the (control) compo
nent, plus a speed estimate for the statements that are activated. Since we assume that 
the statements in a concurrent composition are executed in parallel, this estimate equals 
the maximum of all the speed estimates of these statements. 

The speed estimates for input actions, output actions, and assignment statements de
pend on the multiplicity functions. If, for example, an atom appears n times, n > 1, in a 
CP-O process S then the speed estimate for this atom is increased by a delay tmix(n) for 
an n-ary mixer. A delay ttr! is always included for a transferrer. In case of an n-ary write 
to a single variable or a single channel, a delay tmux(n) is added. Similarly, we add a delay 
tdmx(n» in case of a n-ary read from a single channel. A delay tread(n) is added in case of an 
n-ary read from a variable or constant. Similarly, the delay for writing to a n-ary variable 
is denoted by twr;te(n). As will be explained in Section 4, variables Can be implemented 
such, that the write delay depends on the number of read ports of a variable. 

For expressions, we assume that the evaluation of all operands of an n-ary 0 expression 
(e.g. an n-ary sum) start at the same time. A delay tdmx(n) is added for a multiplicity n of 
each expression. When we denote the delay in component D(n) by to(n)' we Can now give 
the definition of speed estimate function r. 

Definition 3.12 (Speed estimate function r) 

r(So; ... ; Sn-l) = tseq(n) + (E i : 0 S i < n : r(S;)) 

r(So, ... , Sn_,) = tconc(n) + (MAX i : 0 ~ i < n : r(S;)) 
r((s)n) = t repn + n· r(S) 
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r(x := E) = tmux(#w(x)) + twr;te(#r(X)) + ttrj+ 

t + { tread(#r(E)) E E Var U Con 
m.x(#(x,=E)) r(E) + tdmx(#.(E)) E = EoO ... OEn _ 1 

r(a!E) _ . { tread(#r(E)) E E Var U Con 
- tmux(#,(a)) + ttr! + tm.x(#(a!E)) + r(E) + t E = E 0 DE 

dmx(#.(E)) 0 •.. n-l 

r(a?x) = tdmx(#,(a)) + ttrj + tmux(#w(x)) + twr;te((#r(x)) + tm;x(#(a?x)) 

Where: 

r( E) = { tread(#r(E)) .. E E Var U Con 
to(n) + (MAX z : 0 ~ z < n : r(E;)) E = Eo 0 .. , 0 E n- l 

o 

3.4 Size and speed of the handshake components 

When we apply our performance analysis method to a CP-O process, this results in two 
expression: one for the size, and one for the speed of the corresponding handshake circuit. 
To get actual speed and size estimates, we have to substitute in these expressions the values 
for the size and speed of the handshake components. Clearly, these values depend on the 
design and implementation of the components. The components can be designed as single 
standard cells that consist of transistors (cf. [BK91]). Important factors that influence the 
size and speed are the design of these cells and the I C-technology that is used for their 
implementation. We only touch upon the design decisions that we made with respect to 
our set of handshake components. 

In Table 4 the size and speed estimates for our set of handshake components is given. 
Since the goal of our performance analysis method is to compare different CP-O processes, 
we express the size and speed in the abstract measures "F" and "T" respectively. 

We decided to implement the sequencer as a binary tree of seq(2) components. The size 
and speed of this components is estimated as F and T, respectively. The concursor, mixer, 
(de)multiplexer, and the operator components are implemented similarly, but the size 
and speed may differ somewhat. Note that the size of the data-manipulation components 
depend not only on k, but also on the wordlength that is used. Note also that the sequencer 
the shape of the binary tree does not influence the speed, whereas for the other components 
it does. For these components (i.e., the concursor, mixer, (de)multiplexer, and operator) 
the speed is proportional to the depth of the tree. Since the depth of a binary tree with 
k leaves (k > 1) lies between rlog k 1 and k - 1, the lower and upper bounds on the speed 
of the components follow. We decided to take the lower bound for the mixer and the 
(de)multiplexer, while the upper bound was taken for the concursor and the operator. 

The estimates for the repetitor, constant, passivator, and transferrer are due to [Mak90] 
and [Sch91]. Note that the speed and size of a repn component is assumed to be indepen
dent of n. 

Furthermore, a variable component var(k) is implemented such, that delay of a read 
action is independent of k. However, the delay of a write action does depend on k. Accord
ing to [Sch91], a variable is implemented such, that on a write action the written values is 
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I Component I Size Speed 

seq(k) (k - 1) . F (k - 1) . T 
conc(k) (k - 1) . F (k - 1) . T 
repn F T 
mix(k) (k-1)·F flog kl . T 
mux(k) (k - 1) . F/bit flog kl . T 
dmx(k) 2(k - 1)· F/bit flog kl . T 
con(k) (1.25 + 0.75k) . F/bit T 

var(k) (1.25 + 0.75k) . F/bit { tread(kj = T 
twrite(kj = flog ( k + 1)l . T 

pass 2· F/bit T 
D(k) 3(k -1) . Ffbit (k - 1) . 8T 
trf OF T 

Table 4: Size and speed of handshake components 

distributed to the k read ports. Again this distribution is done by using a tree, which is 
assumes to be balanced, resulting in a lower bound on the delay. 

We do not know whether the values of Table 4 are realistic. Currently, it is not known 
what the best implementation of the handshake components is, so realistic values cannot 
be given [Sch91]. However, note that, in order to compare processes, the ratios between 
the values matter, not the values themselves. 

4 The cOlnparison of two CP-O programs 

In this section we compare the two different CP-O programs for dynamic programming 
of [MS89] by giving size and speed estimates for their processes. Both programs consist 
of a network of processes that can be specified in the CP-O language. We call these two 
programs SDP and SDDP. An example of an actual derivation of a size and speed estimate 
is given in the appendix. The estimates that we give in this section were not derived by 
hand, but are determined by a small program that is a straightforward implementation of 
our performance analysis method of Section 3. 

Program SDP consists of processes Sij (0 :S i :S j :S N, N the problem size). Three 
cases are distinguished in [MS89j: 

case 1 O:S i = j :S N, 

case 2 0 :S i < j :S N, where (j - i) mod 2 = 0, and 

case 3 0 :S i < j :S N, where (j - i) mod 2 = 1. 

In this section we restrict ourselves to cases 2 and 3. We denote the corresponding CP-O 
processes by SDP' and SDP" respectively. 
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Program SDDP is meant as an optimisation, and is constructed by combining four 
neighbouring processes of SDP (two SDP' and two SDPu cells). In order to get a fair 
comparison, we should take one process of SDDP and compare its performance with the 
performance of a cluster of four neighbouring SDP processes. 

4.1 Size and speed estimates for SDP 

Using the multiplicity tables and the size estimate formulae of the previous section, we 
deduce a size estimate for a cluster of two processes SDP' and two processes SDPu. The 
size of the cluster is the sum of the sizes of the four processes, increased by the size of a 
number of passivators: one for each output (or input) channel in each of the four processes. 
Hence, we should add the size of 16 passivators. 
For SDP" assuming a 16 bit wordlength, this gives the following size: 

a(SDP') = 1203F. 

For S Dpu we obtain the following size: 

a(SDPu) = 1141F. 

The size of a cluster of four processes (twice case 2, twice case 3) equals 2 . a(SDP') + 
2 . a( S DPU) plus the size of 16 passivators: one for each output (or input) channel in 
each of the four cells. We assume that the size of a passivator is 2F/bit, so for a 16 
bit wordlength we get 32F per passivator. Hence, the size of a cluster of four cells is: 
2· 1203F + 2· 1141F + 16· 32F = 5200F. 

With respect to the speed of a cluster, we assume that the four processes work in 
parallel, so the speed is determined by the 'slowest' process. Since S DP' is of the form 
So; SI; S2; S3; S. and SDPu is of the form So; S2; S3; S. (see [MS89]), we conclude that the 
speed of SDPu is less than the speed of SDP" Therefore, we assume that the speed of the 
cluster of four processes equals r(SDP')' For SDP" we obtain the following speed estimate: 

r(SDP') = (28· (j - i) + 10)T. 

In order to compare this speed with the speed of SDDP, we should compute the maximum 
value for r(SDP')' It is easy to see that this results in taking j = Nand i = 0, which gives 
the following speed estimate for program SDP: 

r(SDP) = (28· N + 10)T. 

4.2 Size and speed estimates for SDDP 

For an SDDP process SDDP(i,j) (0 ::; i ::; j ::; ~), again assuming a 16 bit wordlength, we 
get the following size: . 

a(SDDP(i,j») = 4680F. 
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This size estimate should be increased by the size of four passivators (one for each output 
channel). Taking these into account, the total size of SDDP(i,j) becomes 46S0F + 4· 32F = 
4S0SF. With respect to speed, we get the following result for process SDDP(i,j): 

r(SDDP(i,j)) = (169· (j - i) + 13)T. 

If we want to compare this speed with r(SDP), we should take j - '¥ and i = O. This 
results in: 

r(SDDP) = (S4.5· N + 13)T. 

Comparing the speed and size estimates for both systolic designs, we conclude that the 
size of the clustered design is about S% smaller than the size of the 'fine-grained' design, 
whereas it is three times slower. 

5 Conclusion 

We presented a method for performance analysis of processes of CP-O programs. With this 
method these processes can be compared by estimating their size and speed. The method 
was developed such that it could be implemented quite easily. As a test case, the resulting 
program was applied to the systolic designs for dynamic programming of [MSS9j. 

Our method features the single realisation of atoms and expressions as optimisations. 
For the second optimisation we have to perform a program transformation that establishes 
mutual exclusion of expression evaluations. Since this might not be desirable in all situa
tions, the optimisations should be made optional when the performance analysis method 
is incorporated in a VLSI programming environment. 

We have tried to make our method independent from the implementation of the hand
shake components. If the implementation of a component changes, this should only affect 
the size and speed estimates of the component, and not the entire method. However, this 
independence has its limitations. If, for instance, variables are implemented with only one 
read channel (as is suggested in [Pee90b]), this would require a change in the translation 
method, and would therefore also require a change in the performance analysis method. 

We suppose that our method can be extended with a number of language constructs, 
like selection ("if-then") and iteration ("while-do"). This extension is a topic for future 
research. Another extension could be the addition of more (post- )optimisations, e.g. com
mon subexpression elimination. However, we conjecture that the introduction of more 
optimisations will lead to more program transformations, something we consider undesir
able. A way to avoid these transformations is to introduce new handshake components 
(e.g., the fork component of [Pee90a]). A disadvantage of this approach is that it might 
make our performance analysis rather complex. 
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A An example of a derivation 

In this appendix we consider CP-O program SDP of [Mak89]. For the example derivation, 
we restrict ourselves to case 2, so process S DP', The statements of this process are given 
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below: 
SDP' = SO; Sl; S2; S3; S4 

where: 

SO - a?ya,b?xb,d?yd,e?xe 
Sl a!xb, b!xb, d!xe, e!xe 
S2 m:= (w+ya+xe) min (w+xb+yd) 
S3 = (a?xa,b?xb,d?xd,e?xe 

; a!ya, b!xb, d!yd, e!xe 
; (mO := m; m:= mO min (w + xa+ xe) min (w + xb + xd)),ya:= xa,yd:= xd 
)~(j-;)-1 

S4 = a!ya, b!m, d!yd, elm 

In order to apply our method, we need to determine sets ChanSet, VarSet, AtomSet and 
ExpS et, and the multiplicity functions for this process. We do this by constructing three 
tables: 

• A table in which for each variable x E VarSet(SDP')' the values #r(x) and #w(x) 
are given. Set VarSet(SDP') is the set of all elements in the left column of the table. 
The values #r(x) for x E ExpSet(SDP') n Con are also given. 

• A table in which for each channel a E ChanSet(SDP')' the values #?(a) and #!(a) 
are given. Set ChanSet(SDP') is the set of all elements in the left column of the 
table. 

• A table in which for each atom of 9 E AtomSet(SDP')' the value #(9) is given. 
Set ExpSet(SDP') is the set of right-hand sides of assignment statements in the left 
column of the table; AtomSet(SDP') is the set of all elements in the left column. 

Below we give these three tables for the CP-O process SDP" All multiplicities are given, 
except the expression multiplicities. It is not difficult to see that no expression occurs more 
than once, so these multiplicities are omitted. 

a 2 2 
b 1 2 
d 2 2 
e 1 2 

Table 5: Channels and their multiplicities 

U sing these tables and the size estimate formulae, we derive a size estimate for S DP'. This 
derivation is given below, with some hints. 
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I x II #w(x) I #r(X) I 
m 2 3 
mO 1 1 
xa 1 2 
xb 1 4 
xd 1 2 
xe 1 4 
ya 2 2 
yd 2 2 
w - 4 

Table 6: Variables and their write and read multiplicities 

x II #(x) I 

a? ya 1 
xa 1 

b? xb 2 
d? yd 1 

xd 1 
e? xe 2 
a! xb 1 

ya 2 
b! xb 2 

m 1 
d! xe 1 

yd 2 
e! xe 2 

m 1 
m o

- (w + ya + xe) min (w + xb + yd) 1 
mO min (w + xa + xe) min (w + xb + xd) 1 

mO:= m 1 
ya:= xa 1 
yd:= xd 1 

Table 7: Atoms, expressions, and atom multiplicities 
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= { Definition 3.9 } 
ac(SDP') + ad(SDP') 

= ac(SO; Sl; S2; S3; S4) 
= { Definition 3.10 } 

aseq(5) + (E i : 0 ::; i < 5 : ac(S;)) 
= ac(a?ya, b?xb, d?yd, e?xe) 
= { Definition 3.10 } 

aconc(4) + ac(a?ya)+ac(b?xb)+ac(d?yd)+ac(e?xe) 
= { Definition 3.10 } 

aConc( 4) + 0 + 0 + 0 + 0 
= aconc(4) 

= ac(a!xb, b!xb, d!xe, e!xe) 
= { Definition 3.10 } 

aconc(4) 

= ac(m := (w + ya + xe) min (w + xb + yd)) 
= { Definition 3.10 } 

o 
= a c((S30; S31; S32)W-;)-I) 
= { Definition 3.10 } 

arep!U_iJ_l + ac(S30; S31; S32) 
= { Definition 3.10 } 

arep!U_iJ_l + aseq(3) + ac(S30) + a c(S3.) + a c(S32) 

= ac(a!ya, b!m, d!yd, elm) 
= a conc(4) 

= ac(a?xa, b?xb, d?xd, e?xe) 
= aconc(4) 

= ac(a!ya, b!xb, d!yd, e!xe) 
= aconc(4) 

= ac(S320, S32!, S322) 

= ac(mO := m; m := mO min (w + xa + xe) min (w + xb + xd)) 
= aseq(2) + ac(mO := rn) +ac(rn := rnO min (w + xa + xe) min (w + xb + xd)) 
= aseq(2) + 0 + 0 
= aseq(2) 

= ac(ya := xa) 
=0 
= ac(yd := xd) 
=0 

ad(SDP') = { Definition 3.11 } 
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(~c: c E ChanSei(SDP'): amux(#,(c)) + admx(#,(c)))+ 

(~V : v E VarSei(SDP') : amux(#w(u)) + aUar(#r(U)))+ 
(~b: bE AiomSei(SDP'): amix(#(b)) + atrJ)+ 

(~e: e E ExpSei(SDP'): a(e)) 

= a min(3) + a min(2) + 4ap lu,(3) + 

6amix(2) + 19atr J+ 

7 a mux(2) + 2admx(2) + 

2auar(4) + a con(4) + a uar(3) + 4auar(2) + aUar(l) 

For process SDP" assuming a 16 bit wordlength, we get the following size: 

a(SDP') = 1203F 

Using the same tables and the speed estimate formulae, we deduce a speed estimate for 
SDP'. 

r(SDP') = r(SO;Sl;S2;S3;S4) 

= { Definition 3.12 } 
i,eq(5) + (~i : 0 ::; i < 5 : r(Si)) 

r(So) = r(a?ya, b?xb, d?yd, e?xe) 
= { Definition 3.12 } 

i conc(4) + max{ r(a?ya), r(b?xb), r( d?yd), r(e?xe)} 

= i conc(4) + max {itrJ + i write(2) + idmx(2) + i mux(2) + imix(l) 

, itr! + iwrite(4) + idmx(l) + imux(l) + i mix(2) 

, itr! + iwrite(2) + idmx(2) + i mux(2) + imix(l) 

, itr! + i write(4) + idmx(l) + imux(l) + i mix(2)} 

= i conc(4) + itr! + max {iwrite(2) + i dmx (2) + i mux(2) 

, i write(4) + idmx(l) + imux(l) + i m ix(2)} 

r(St) = r(a!xb, b!xb, d!xe, e!xe) 
= { Definition 3.12 } 

i conc(4) + max{ r(a!xb), r(b!xb), r( d!xe), r( e!xe)} 
= i conc(4) + max {i tr! + iread(4) + i mux(2) + imix(l) 

, i'r! + iread(4) + i mux(2) + imix(2) 

, i'r! + iread(4) + i mux(2) + imix(l) 

, itr! + i read(4) + i mux(2) + i mix(2)} 

= i conc(4) + itr! + i mux(2) + max {iread(4) + imix(l) 

, iread( 4) + imix(2) 

, iread( 4) + imix(l) 

, iread(4) + i m ix(2)} 

= i conc(4) + itr! + iread(4) + i mux(2) + imix(2) 
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T(S2) = T(m := (w + ya + xe) min (w + xb + yd)) 
= { Definition 3.12 } 

T((W + ya + xe) min (w + xb + yd))+ttr! + t wr ;'e(3) + t mux(2) + t m ;x(l) 

= { Definition 3.12 } 
ttr! + t wr;'e(3) + t mux(2) + t m ;n(2) + max {T(W + ya + xe) 

,T(W + xb + yd)} 
= { Definition 3.12 } 

ttr! + t wr;te(3) + t mux(2) + t m;n(2) + max {tp/u8(3) + max{ T(W), T(ya), T(xe)} 

,tp/u8(3) + max{ T(W), T(xb), T(yd)}} 
= ttr! + twr;te(3) + t mux(2) + t m ;n(2) + max {tp/u;(3) + max{tread(4), t read(2) , t read(4)} 

,tp/u8(3) + max{ tread(4b tread(4)' t read(2)} } 

= ttr! + t wr;te(3) + t mux(2) + t m ;n(2) + tp/us(3) + t read(4) 

T(S3) = T((S30; S31; S32)W-;)-1 

= { Definition 3.12 } 
trep~ .. + (W - i) - 1) . (t"q(3) + T(S30) + T(S31) + T(S32)) 

2(J-I)-1 

T(S4) '= T(a!ya, b!m, d!yd, elm) 
= { Definition 3.12 } 

t conc(4) + max{ T(a!ya), T(b!m), T( d!yd), T( elm)} 
= t conc(4) + max {ttr! + tread(2) + t mux(2) + t m ;x(2) 

,ttr! + tread(3) + t mux(2) + t m ;x(l) 

, ttr! + t read(2) + t mux(2) + t m;x(2) 

, ttr! + tread(3) + t mux(2) + t m ;x(l)} 

= t conc(4) + ttr! + t mux(2) + max {t read(2) + t m ;x(2) 

T(S30) = T(a?xa, b?xb, d?xd, e?xe) 
= { Definition 3.12 } 

, t read(3}} 

t conc(4) + max{ T(a?xa), T(b?xb), T( d?xd), T(e?xe)} 

= t conc(4) + max {ttr! + tdmx(2) + t mux(l) + t m ;x(l) + t wr;te(2) 

,ttr! + t dmx(l) + t mux(l) + t m ;x(2) + t wr;'e(4) 

,ttr! + tdmx(2) + t mux(l) + t m ;x(l) + t wr ;'e(2) 

,ttr! + tdmx(1) + tmux(l) + t m;x(2)} + t wr ;,e(4) 

= t conc(4) + ttr! + t mux(1) + max {t dmx (2) + t wr;te(2) 

T(S31) = T(a!ya, b!xb, d!yd, e!xe) 
= { Definition 3.12 } 

, tdmx(l) + t m ix(2) + t write(4)} 

t conc(4) + max{ T(a!ya), T(b!xb), T( d!yd), T(e!xe)} 

= t conc(4) + max {ttr! + t read(2) + t mux(2) + t m;x(2) 

,ttr! + t read(4) + t mux(2) + t m ;x(2) 

, t tr! + tread(2) + t mux(2) + t mix(2) 

,ttr! + t read(4) + t mux(2) + t m ;x(2)} 

= tconc( 4) + t tr! + tread( 4) + t mux(2) + t m ;x(2) 
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r(832 ) = r(8320 , 8321 , 8322 ) 

= { Definition 3.12 } 
tconc(3) + max{ r(8320 ), r(8321 ), r(8322 )} 

r(8320 ) = r(mO := m; m := mO min (w + xa + xe) min (w + xb + xd)) 
= t seq(2) + r(mO := m)+r(m := mO min (w + xa + xe) min (w + xb + xd)) 
= t.eq(2) + r(m)+ttr! + twrite(l) + tmux(l) + tmix(l)+ 

r(m := mO min (w + xa + xe) min (w + xb + xd)) 
= t seq(2) + t read(3) + ttr! + twrite(l) + tmux(l)+ 

r(m := mO min (w + xa + xe) min (w + xb + xd)) 
= t seq(2) + tread(3) + ttr! + twrite(l) + t mux(l)+ 

r(mO min (w + xa + xe) min (w + xb + xd))+ttr! + twrite(3) + t mux(2) + i mix(l) 

= tseq(2) + tread(3) + 2t tr! + twrite(l) + tmux(l)+ 
t mux(2) + tmin(3) + t write(3) + max {r(mO) 

,r(w+xa+xe) 
,r(w + xb + xd)} 

= tseq(2) + tread(3) + 2t tr! + twrite(l) + tmux(l)+ 

t mux(2) + tmin(3) + twrite(3) + max {r(mO) 

,tplu,(3) + max{ r(w), r(ya), r(xe)} 

,tplus(3) + max{ r(w), r(xb), r(yd)}} 
= tseq(2) + tread(3) + 2ttr! + t write(l) + tmux(l)+ 

t mux(2) + tmin(3) + twrite(3) + max {tread(l) 

, t p1u,(3) + max { t read( 4), t read(2) , tread( 4)} 

,tplus(3) + max {tread(4) , t read(4» t read(2)}} 

= t seq(2) + 2i tr! + tmin(3) + tplus(3) + t read(4) + t read(3) + t mux(2) + t mux(l) 

T(S321) = r(ya := xa) 
= r(xa)+ttr! + t mux(2) + tmix(l) 

= t write(2) + t read(2) + t tr! + t mux(2) 

r(8322 ) = r(yd := xd) 
= r(xd)+ttr! + i mux(2) + t mix(l) 

= t write(2) + t read(2) + itr! + i mux(2) 

For 8DP' process (i,j), this gives the following speed estimate: 

r(8DP') = (28· (j - i) + 10)T 
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