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Abstract—This work investigates the downlink performance
of a multi-cell massive multiple-input multiple-output (MIMO)
system that employs one-bit analog-to-digital converters (ADCs)
and digital-to-analog converters (DACs) in the receiving and
transmitting radio frequency (RF) chains at each base station
(BS) in order to reduce the power consumption. We utilize
Bussgang decomposition to derive the minimum mean squared
error (MMSE) channel estimates at each BS based on the quan-
tized received uplink training signals, and the asymptotic closed-
form expressions of the achievable downlink rates under one-bit
quantized zero-forcing (ZF) precoding implemented using the
estimated channels. The derived expressions explicitly show the
impact of quantization noise, thermal noise, pilot contamination,
and interference, and are utilized to study the number of
additional antennas needed at each BS of the one-bit MIMO
system to perform as well as the conventional MIMO system.
Numerical results verify our analysis, and reveal that despite
needing more antennas to achieve the same sum average rate,
the one-bit massive MIMO system is more energy-efficient than
the conventional system, especially at high sampling frequencies.

Index Terms—Multi-cell massive MIMO, one-bit ADCs and
DACs, Bussgang decomposition, ZF precoding, achievable rates.

I. INTRODUCTION
While the benefits of massive MIMO scale with the num-

ber of antennas M deployed at the base station (BS) [1],
the power consumption and hardware cost associated with
active components, like power amplifiers, analogue-to-digital
converters (ADCs) and digital-to-analogue converters (DACs),
that constitute the radio frequency (RF) chain connected
to each antenna, also scale with M . Moreover the power
consumption of ADCs and DACs increases exponentially
with their resolution (in bits) and linearly with the sampling
frequency [2], [3], with commercially available converters
having 12 to 16 bits resolution consuming on the order of
several watts [4]. The resolution of each ADC and DAC
should therefore be limited to keep the power consumption at
the massive MIMO BSs within tolerable levels.

Motivated by this discussion, we will consider the simplest
possible scenario of a one-bit massive MIMO cellular network
with BSs employing one-bit ADCs and DACs, that consist of
a simple comparator and consume very low power [4], and
characterize the downlink achievable rates under zero-forcing
(ZF) precoding implemented using imperfect channel state
information (CSI). While linear precoding schemes like max-
imum ratio transmission (MRT) and ZF have been shown to
yield competitive performance to the optimal high-complexity
dirty paper coding scheme in conventional massive MIMO

downlink where BSs employ full-resolution (FR) ADCs and
DACs [5], very little has been reported on the impact of low-
resolution ADCs and DACs on their performance.

In this context, the works in [6] and [7] studied the
achievable rates, considering MRT precoding and imperfect
CSI, in a single-cell one-bit massive MIMO and a cell-free
one-bit massive MIMO system respectively. The authors in
[3] derived asymptotic analytical expressions of the signal-to-
quantization-plus-interference-plus-noise ratio (SQINR) and
symbol error rate under one-bit quantized ZF precoding
assuming perfect CSI and a single cell. Very recently, the au-
thors in [8] considered a full-duplex massive MIMO cellular
network with low-resolution ADCs and DACs at each BS, and
derived spectral efficiency expressions under MRT precoding.
To the best of our knowledge, the downlink performance of
one-bit quantized ZF precoding under imperfect CSI has not
been analyzed before in a single- or multi-cell setting.

In this work, we investigate the downlink sum average rate
performance of a multi-cell one-bit massive MIMO system
under ZF precoding and imperfect CSI. The analysis is based
on Bussgang decomposition [9] that reformulates the non-
linear quantizer operation as a statistically equivalent linear
system. We first derive the minimum mean squared error
(MMSE) channel estimates at each BS based on the received
uplink training signals quantized by one-bit ADCs. Next the
estimated CSI is used to implement ZF and generate the
transmit signals, which are quantized by one-bit DACs. For
this setting, we derive asymptotic closed-form expressions of
the ergodic achievable downlink rates and study the extent of
performance deterioration introduced by one-bit quantization.
The derived expressions are used to study the ratio of the
number of antennas at each BS in the one-bit cellular system
to that at each BS in the conventional cellular system, required
for both systems to achieve the same sum average rate. The
ratio turns out to be 2.5 at low signal-to-noise ratio (SNR)
values, while it is seen to decrease to one for any given SNR
as the number of antennas grows large. Further, the numerical
results reveal that despite needing more antennas to achieve
the same sum rate, the one-bit system is more energy efficient
than the conventional system at high sampling frequencies.

II. SYSTEM MODEL

We consider a multi-cell massive MIMO system consisting
of L > 1 cells, with one M -antenna BS and K ≤M single-
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Fig. 1: Multi-cell one-bit massive MIMO system model.

antenna users in each cell. BS j wants to send information at
rate Rjk to user k in cell j. To do this, it constructs codewords
with symbols sjk ∈ C and combines them in a transmit
signal vector xj ∈ CM×1 given as xj = Wjsj , where
Wj ∈ CM×K is the linear precoder that BS j applies to the
vector of data symbols sj = [sj1, . . . , sjK ]T ∈ CK×1, with
the latter satisfying E[sjs

H
j ] = IK . The RF chain associated

with each antenna at each BS is equipped with a pair of one-
bit ADCs and DACs as shown in Fig. 1, one for each of the
real and imaginary parts of the signal. The real and imaginary
parts of the transmit signal xj are therefore converted into one
bit representation (element-wise) based on the sign of each
component, and then converted to analog using one-bit DACs.
The final transmit signal from BS j is then written as

x̃j = Q(xj) = Q(Wjsj), (1)

where Q(.) is the one-bit quantization operation defined as

Q(a) =
1√
2

sign(<(a)) + j
1√
2

sign(=(a)), (2)

where <(a) and =(a) represent the real and imaginary parts
of a, and sign(·) is the sign of their arguments. The elements
of x̃j will belong to R = 1√

2
{1 + j, 1− j,−1 + j,−1− j}.

The received signal at all users in cell j will be given as

yj =

L∑
l=1

√
ηlH

H
lj x̃l + nj , (3)

where Hlj = [hlj1, . . . ,hljK ] ∈ CM×K , hljk ∈ CM×1 is the
channel from BS l to user k in cell j, nj = [nj1, . . . , njK ]T ∈
CK×1, and njk ∼ CN (0, σ2) is the received noise at user
k in cell j. Moreover ηl is a normalization constant chosen
to satisfy the average transmit power constraint at BS l as
E[||√ηlx̃l||2] = Pt. Since E[||x̃l||2] = M due to (2), we
obtain ηl = Pt

M . The channel matrix Hlj is modeled as

Hlj = GljD
1/2
lj , (4)

where Glj = [glj1, . . . ,gljK ] ∈ CM×K captures the small-
scale fading, and Dlj = diag(βlj1 . . . , βljK) ∈ CK×K
captures the large-scale fading. The entries of gljk are inde-
pendently and identically distributed (i.i.d.) complex Gaussian
random variables, with zero mean and unit variance. The
coefficients βljk represent the channel attenuation factors.

In the next section, we will outline the channel estimation
done at BS j to obtain an estimate Ĥjj of the channel matrix

Hjj = [hjj1, . . . ,hjjK ] to the users in its cell. This CSI is
needed by the BS to implement precoding and construct the
quantized transmit signal in (1). We consider ZF precoding
in this work, which is well-known for its interference sup-
pression capability, and is implemented using the estimated
channels from the next section, as Wj = Ĥjj(Ĥ

H
jjĤjj)

−1.

III. UPLINK CHANNEL ESTIMATION

BS j obtains an estimate of Hjj = [hjj1, . . . ,hjjK ] ∈
CM×K in an uplink training phase of length τp symbols at
the start of each coherence block, in which the K users in cell
j transmit mutually orthogonal pilot sequences, represented
as Φj = [φj1, . . . ,φjK ] ∈ Cτp×K , satisfying ΦH

j Φj = IK .
The same set of pilot sequences is transmitted by the K users
in every cell resulting in the channel estimate to be corrupted
by pilot contamination. The received training signal Yp

j ∈
CM×τp at BS j is given as Yp

j =
∑L
l=1

√
ρpτpHjlΦ

T
l +Np

j ,
where ρp is the uplink SNR and Np

j ∈ CM×τp has i.i.d.
CN (0, IM ) columns representing the noise. Next we write
ypj = vec(YP

j ) as

ypj =

L∑
l=1

Φ̄lhjl + npj , (5)

where Φ̄l = (Φl⊗
√
ρpτpIM ) ∈ CMτp×MK , hjl = vec(Hjl),

npj = vec(Np
j ), and ⊗ represents the Kronecker product.

The RF chain with each antenna at the BS is equipped with
a pair of one-bit ADCs as shown in Fig. 1, that separately
quantize the real and imaginary parts of the received signal
to one-bit representation based on their sign. The quantized
received training signal after one-bit ADCs is thus given as

rpj = Q(ypj ) = Q

(
L∑
l=1

Φ̄lhjl + npj

)
, (6)

where Q(.) is defined in (2), and rpj takes values from R.

A. Bussgang Decomposition

Quantizing the training signal introduces a distortion
Q(ypj ) − rpj that is correlated with the input ypj to the
ADCs. However, for Gaussian inputs, Bussgang’s theorem
[9] allows us to decompose the quantized signal into a linear
function of the input to the quantizer and a distortion term
that is uncorrelated with the input [4], [5]. The resulting
linear representation of the non-linear quantization operation
is statistically equivalent up to the second moments of the data
and therefore facilitates ergodic rate analysis. Specifically, the
Bussgang decomposition of rpj in (6) is given as [4], [6]

rpj = Ap
jy

p
j + qpj , (7)

where the matrix Ap
j is the linear operator chosen to satisfy

E[ypjq
pH

j ] = 0 as Ap
j = RH

ypj r
p
j
R−1

ypjy
p
j

[4], and qpj is the
uncorrelated quantizer noise. Further, for one-bit quantization
and Gaussian inputs, Rypj r

p
j

=
√

2
πRH

ypjy
p
j
diag(Rypjy

p
j
)−1/2

[9], [10, Chap. 10], which yields

Ap
j =

√
2

π
diag(Rypjy

p
j
)−1/2, (8)



where RH
ypjy

p
j

is the auto-covariance matrix of ypj in (5), and
diag(C) denotes a diagonal square matrix with main-diagonal
elements equal to those of C. It is also useful to provide here
the covariance matrix of qpj , that can be written for a one-bit
quantizer using the arcsin law as [3], [4], [7]

Rqpjq
p
j

=
2

π
(arcsin(B) + j arcsin(C))− 2

π
(B + jC), (9)

where B = diag(Rypjy
p
j
)−1/2<(Rypjy

p
j
)diag(Rypjy

p
j
)−1/2

and C = diag(Rypjy
p
j
)−1/2=(Rypjy

p
j
)diag(Rypjy

p
j
)−1/2.

Next we utilize these results to complete the Bussgang
decomposition of the quantized training signal in (6). We
substitute (5) in (7) to write the Bussgang decomposition as

rpj =

L∑
l=1

Ap
j Φ̄lhjl + Ap

jn
p
j + qpj , (10)

where to find Ap
j using (8), we compute Rypjy

p
j

as Rypjy
p
j

=

E
[
ypjy

pH

j

]
=
∑L
l=1 Φ̄lD̄jlΦ̄

H
l + IMτp , where D̄jl = Djl ⊗

IM ∈ CMK×MK and Djl is defined in (4). The expression
of Rypjy

p
j

indicates that the choice of Φl’s will affect the
linear operator Ap

j as well as the quantization noise. In order
to obtain analytically tractable expressions for Ap

j and the
channel estimates, we consider τp = K and choose the K-
dimensional identity matrix as each pilot matrix as done in
[6], [7]. Note that investigating the impact of different choices
of τp and Φl on the quality of channel estimates under one-bit
ADCs is an interesting research direction [4], but is beyond
the scope of this work. Using Φl = IK , we obtain Rypjy

p
j

=∑L
l=1KρpD̄jl + IMK , and compute Ap

j as

Ap
j = Āp

j ⊗ IM , (11)

where Āp
j is a diagonal matrix with entries [Āp

j ]kk = ājk =√
2

π(
∑L
l=1Kρpβjlk+1)

. Further using Rypjy
p
j

in (9), we have

Rqpjq
p
j

=

(
1− 2

π

)
IMK . (12)

This completes the Bussgang decomposition of the quantized
training signal rpj , with (10) being the statistically equivalent
linear representation of (6) under the definition of Ap

j in (11).

B. MMSE Estimation
The MMSE estimate of the channel vector hjj at BS j

based on the quantized training signal rpj is presented next.
Lemma 1: BS j estimates hjj = [hTjj1, . . . ,h

T
jjK ]T ∈

CMK×1 using the quantized training signal in (10) as

ĥjj =
√
ρpKD̄jjA

pH

j rpj (13)

where D̄jj = Djj ⊗ IM , and Ap
j is defined in (11).

Proof: The proof follows by applying the standard defi-
nition of the MMSE estimate [7, equation (14)].

Although the channel estimate in (13) is not Gaussian in
general due to the quantization noise qpj that appears in rpj ,
we can approximate it as Gaussian using the Cramer’s central
limit theorem assuming M is sufficiently large [4], [6], [11].
Thus we consider the channel estimate to be distributed as

ĥjj ∼ CN (0,Rĥjj ĥjj
), where the covariance matrix of the

estimate Rĥjj ĥjj
is given as Rĥjj ĥjj

= Tjj ⊗ IM , where
Tjj is a diagonal matrix with entries

[Tjj ]k,k = tjjk =
2β2

jjkρpK

π(
∑L
l=1Kρpβjlk + 1)

. (14)

Under orthogonality property of MMSE estimate, the channel
estimate and the estimation error defined as h̃jj = hjj− ĥjj ,
are uncorrelated, with h̃jj ∼ CN (0, D̄jj −Rĥjj ĥjj

).
To facilitate the analysis, we can extract the estimate of the

channel from BS j to user k in cell j from (13) as ĥjjk =√
ρpKβjjkājkr

p
jk, where rpjk =

∑L
l=1

√
ρpKājkhjlk +

ājkn
p
jk + qpjk, and npjk and qpjk are vectors of (k− 1)M + 1

to kM entries of npj and qpj respectively. It then follows that
ĥjjk ∼ CN (0, tjjkIM ) where tjjk is defined in (14), and
h̃jjk ∼ CN (0, t̃jjkIM ), where t̃jjk = βjjk − tjjk.

Corollary 1: When BSs have full-resolution (FR) ADCs,
the estimate of the channel from BS j to user k in cell j is

ĥFR
jjk =

√
ρpKβjjkr

p
jk (15)

where rpjk =
∑L
l=1

√
ρpKhjlk + npjk. It follows that ĥFR

jjk ∼
CN (0, tFR

jjkIM ) where tFR
jjk =

β2
jjkρpK∑L

l=1Kρpβjlk+1
, and h̃FR

jjk ∼
CN (0, t̃FR

jjkIM ) where t̃FR
jjk = βjjk − tFR

jjk.
Proof: The corollary follows from [1, Sec. II-C].

It is straightforward to see that tjjk = 2
π t

FR
jjk, and therefore

t̃jjk > t̃FR
jjk. The use of one-bit ADCs in the RF chains at the

BSs therefore deteriorates the accuracy of channel estimation,
which will decrease the system performance.

IV. DOWNLINK ACHIEVABLE RATE ANALYSIS

In this section, we analyze the ergodic achievable downlink
rates under one-bit quantized ZF precoding.

A. Bussgang Decomposition of Transmit Signal

We again utilize Bussgang decomposition to obtain a linear
representation of the quantized transmit signal in (1). Even
though the entries of xj = Wjsj , which is the input to the
quantizer in (1), are not necessarily Gaussian, each element
of xj is formed as a result of the linear mixture of K
i.i.d. elements of the vector sj and can be approximated
as Gaussian using Cramer’s central limit theorem [11] for
large K [3], [6]. We therefore apply Bussgang theorem to
decompose the quantized signal in (1) into a linear function
of the input xj to the quantizer and a quantization noise term
qj that is uncorrelated with input as [3], [6], [5, Theorem 2]

x̃j = Q(xj) = Ajxj + qj , (16)

where Aj =
√

2
πdiag

(
Rxjxj

)−1/2
, and Rxjxj =

Esj [xjx
H
j ] = Esj [Wjsjs

H
j WH

j ] = WjW
H
j [5,

Corollary 3]. Moreover using the arcsin law, the
autocovariance matrix of qj can be obtained as
Rqjqj = 2

π (arcsin(B̄) + j arcsin(C̄)) − 2
π (B̄ + jC̄),

where B̄ = diag(Rxjxj )
−1/2<(Rxjxj )diag(Rxjxj )

−1/2 and
C̄ = diag(Rxjxj )

−1/2=(Rxjxj )diag(Rxjxj )
−1/2 [5], [7].

Next we approximate Rxjxj = WjW
H
j as a deterministic



quantity under ZF precoding and find Aj to complete the
Bussgang decomposition in (16).

Lemma 2: Under ZF precoding, the Bussgang decomposi-
tion of the quantized transmit signal in (1) for large (M,K)
values such that the ratio M/K = c <∞, is given as

x̃j = AjWjsj + qj (17)

where Aj =
√

2K(c−1)2

πζj
IM , Rqjqj =

(
1− 2

π

)
IM , and ζj =

1
K

∑K
k=1

1
tjjk

, where tjjk is defined in Lemma 1.
Proof: We utilize [3, (34)] to obtain an asymptotic

approximation for Rxjxj = WjW
H
j = Ĥj(Ĥ

H
j Ĥj)

−2ĤH
j

under ZF precoding, which is very tight for moderate system
sizes as well, and use it to compute Aj and Rqjqj .

B. Achievable Rates
We now outline the achievable rates at the users and

develop closed-form expressions for them under one-bit and
conventional massive MIMO settings. To this end, we utilize
the decomposition of x̃j in (17) to write the received signal at
user k in cell j using (3) as yjk =

∑L
l=1

√
ηlh

H
ljkAlWlsl +∑L

l=1

√
ηlh

H
ljkql + njk. Since the users do not have channel

estimates, we provide an ergodic achievable rate based on
the technique developed in [12], that exploits the fact that the
effective channel hHjjkAjwjk of user k in cell j approaches
its average value E[hHjjkAjwjk] as M grows large due to
channel hardening. Hence, asymptotically it is sufficient for
each user to only have statistical CSI (i.e. knowledge of
E[hHjjkAjwjk]). The main idea then is to decompose yjk as

yjk =
√
ηjE[hH

jjkAjwjk]sjk︸ ︷︷ ︸
Desired signal

+
√
ηj(h

H
jjkAjwjk−E[hH

jjkAjwjk])sjk︸ ︷︷ ︸
Channel gain uncertainty

+
∑

(l,m)6=(j,k)

√
ηlh

H
ljkAlwlmslm︸ ︷︷ ︸

Inter-user interference

+

L∑
l=1

√
ηlh

H
ljkql︸ ︷︷ ︸

Quantization noise

+ njk︸︷︷︸
Thermal noise

(18)

and assume that the average effective channel E[hHjjkAjwjk]
can be perfectly learned at user k in cell j. The sum of the last
four terms in (18) is considered as effective additive noise.
Treating this noise as uncorrelated Gaussian as a worst-case,
user k in cell j can achieve the ergodic rate [12, Theorem 1]

Rjk = log2(1 + γjk) (19)

where γjk is the associated SQINR obtained using (18) as

γjk =
DSjk

CUjk + QNjk + IUIjk + TNjk
(20)

where DSjk = ηj |E[hHjjkAjwjk]|2 is the power of the
average desired signal, CUjk = ηjVar[hHjjkAjwjk] is
the average channel gain uncertainty power, QNjk =∑L
l=1 ηlE[hHljkCqlqlhljk] is the average quantization noise

power, IUIjk =
∑

(l,m) 6=(j,k) ηlE[|hHljkAlwlm|2] is the av-
erage inter-user interference power, and TNjk = σ2 is the
thermal noise power. The sum average rate is then given as

Rsum =

L∑
j=1

K∑
k=1

Rjk. (21)

Note that these definitions of the ergodic achievable downlink
rate in (19) and SQINR in (20) will be used for performance
evaluation based on Monte-Carlo simulations in Sec. V. To
yield explicit theoretical insights into the impact of one-
bit quantization on the sum average rate, we derive the
expectations in (20) in closed-form, resulting in an analytical
expression for (19) that is presented in the following theorem.

Theorem 1: Consider a one-bit massive MIMO cellular
network with BSs equipped with one-bit ADCs and DACs.
Then under ZF precoding and large (M,K) values such that
M
K = c is finite, the ergodic achievable rate in (19) and SQINR
in (20) at user k in cell j are given in closed-form as
Rone
jk = log2(1 + γone

jk ), (22)

γone
jk =

1

CU
one

jk + QN
one

jk + IUI
one
jk + PC

one

jk + TN
one
jk

, (23)

where CU
one

jk =
βjjk−tjjk

(M−K)tjjk
is the normalized average channel

gain uncertainty power, QN
one

jk =
∑L
l=1

(
1− 2

π

) πMβljkζj
2K(c−1)2

is the normalized average quantization noise power,
IUI

one
jk =

∑K
m 6=k

(βjjk−tjjk)
tjjm(M−K) +

∑L
l 6=j
∑K
m6=k

ζjβljk
ζltllm(M−K) +∑L

l 6=j
ζjβljk

ζltllk(M−K)

(
1− tllkβljk

β2
llk

)
is the normalized average

inter-user interference power, PC
one

jk =
∑L
l 6=j

ζjβ
2
ljk

ζlβ2
llk

is the

normalized average pilot contamination power, and TN
one
jk =

πMσ2ζj
2KPt(c−1)2 is the normalized average thermal noise power
(all normalized by the power of the average desired signal).

Proof: The proof follows by using Aj =
√

2K(c−1)2

πζj
IM ,

ηj = Pt
M , the channel in (4), the estimates in Lemma 1,

HH
jjWj = IK + H̃H

jjWj , and the observation that the
estimates of the channels at BS l to user k in cell l and to
user k in cell j are correlated due to pilot contamination, to
compute the terms in (20). All terms in the denominator of the
resulting expression are divided by the expression of DSjk,
and represented as CUjk, QNjk, IUIjk, PCjk, and TNjk.

Next we present the closed-form expression of the achiev-
able rate in (19) for the conventional massive MIMO network.

Corollary 2: Consider the conventional massive MIMO
cellular network employing FR ADCs and DACs. Then under
ZF precoding, the ergodic rate Rjk in (19) and the associated
SINR γjk of user k in cell j are given in closed-form as

Rconv
jk = log2(1 + γconv

jk ), (24)

γconv
jk =

1

CU
conv

jk + IUI
conv
jk + PC

conv

jk + TN
conv
jk

, (25)

where CU
conv

jk =
βjjk−tFR

jjk

(M−K)tFR
jjk

, IUI
conv
jk =∑K

m 6=k
(βjjk−tFR

jjk)

tFR
jjm(M−K)

+
∑L
l 6=j
∑K
m6=k

ζFR
j βljk

ζFR
l tFR

llm(M−K)
+∑L

l 6=j
ζFR
j βljk

ζFR
l tFR

llk (M−K)

(
1− tFR

llkβljk
β2
llk

)
, PC

conv

jk =
∑L
l 6=j

ζFR
j β2

ljk

ζFR
l β2

llk

,

and TN
conv
jk =

σ2KζFR
j

Pt(M−K) , with tFR
jjk defined in Corollary 1

and ζFR
j = 1

K

∑K
k=1

1
tFR
jjk

.
Comparing the results in Theorem 1 and Corollary 2,

we see that using one-bit ADCs and DACs not only in-



troduces a quantization noise term QNjk in γjk, but it

also increases the noise and interference terms as
TNone

jk

TNconv
jk

=

π2M
4K(c−1) ≈

π2

4 ,
CUone

jk

CUconv
jk

= π
2

(
βjjk− 2

π t
FR
jjk

βjjk−tFR
jjk

)
> π

2 , and
IUIonejk

IUIconvjk

=

π
2

(M−K)IUIconvjk +
∑K
m6=k(1− 2

π )
tFR
jjk

tFR
jjm

+
∑
l6=j(1− 2

π )
ζFR
j β2ljk

ζFR
l

β2
llk

(M−K)IUIconvjk

> π
2 ,

resulting in reduced rates under the setting of Theorem 1.
Interestingly, pilot contamination to desired signal energy
ratio is unaffected by one-bit quantization as PC

one

jk = PC
conv

jk .
Finally we show that the performance under both settings

considered in Theorem 1 and Corollary 2 converges to the
same limit as M →∞ while the other variables are fixed.

Corollary 3: The ergodic achievable downlink rates for both
settings above converge as Rjk −−−−→

M→∞
R∞jk , where R∞jk =

log2

(
1 + 1

PCjk

)
, PCjk =

∑L
l 6=j

ζ̄jβ
2
ljk

ζ̄lβ2
llk

represents the average
pilot contamination power to average desired signal power
ratio, ζ̄j =

∑K
k=1

1
cjjk

, and cjjk =
β2
jjk∑L

l=1Kρpβjlk+1
.

Therefore the effects of channel uncertainty, quantization
noise, thermal noise, and interference vanish as M → ∞,
while pilot contamination remains the only performance lim-
itation under both settings. This also implies that by using
a larger number of antennas equipped with low power one-
bit ADCs and DACs in the one-bit massive MIMO network,
we can compensate for quantization noise and approach the
performance of conventional massive MIMO as studied next.

C. How Many More Antennas are Needed in One-Bit MIMO?
We denote the number of antennas at each BS and the

achievable sum average rate of the one-bit and conventional
cellular systems as (Mone, Rone

sum) and (M conv, Rconv
sum ) respec-

tively. Our goal in this section is to study the ratio κ = Mone

Mconv

required for the one-bit massive MIMO system to achieve the
same sum average rate as the conventional massive MIMO
system with M conv antennas. In the low SNR regime, i.e. for
small values of Pt

σ2 , we obtain κ explicitly as follows.
Corollary 4: At low SNR values, the ratio κ required for

one-bit massive MIMO cellular system to achieve the sum
average rate of conventional massive MIMO cellular system
with M conv antennas at each BS is κ = Mone

Mconv ≈ π2

4 ≈ 2.5.
Proof: The proof follows by simplifying (23) and (25)

for small Pt
σ2 , and finding κ to guarantee Rone

sum = Rconv
sum .

While we can not get a closed-form expression for κ at
moderate to high SNR values, we will find it numerically
in the simulations through a simple search over the interval
[1,∞) to guarantee that Rone

sum = Rconv
sum , and will observe it

to be > 2.5 for moderate values of M conv. This is because
as the SNR increases, the quantization noise term comes into
play in γone

jk , and the channel gain uncertainty and inter-user
interference terms also become dominant and are significantly
increased under one-bit implementation. This results in an
overall larger decrease in achievable sum average rate in the
one-bit MIMO setting, requiring a higher κ to compensate for
it and achieve Rconv

sum . However as M conv increases to larger
numbers, κ decreases and approaches one as outlined next.

Remark 1: As M conv →∞, κ = Mone/M conv → 1 since
Rone

sum and Rconv
sum both converge to

∑L
l=1

∑K
j=1R

∞
jk as shown

in Corollary 3. Therefore the impact of one-bit quantization
becomes smaller as we work with larger antenna arrays.

V. SIMULATION RESULTS

We consider L = 4 cells (unless otherwise stated in the
figure) with Cartesian coordinates of the BSs set as (0, 0, 0),
(525, 0, 0), (0, 525, 0), and (525, 525, 0) (in metres). The BS
in each cell has M antennas serving K users distributed
uniformly on a circle of radius 250 metres around it [1].
Moreover σ2 = −80dBm, ρp = 1

σ2 , βjlk = 10−3

dαjlk
, α = 3,

and djlk is the distance between BS j and user k in cell l.
We first validate the closed-form expressions of the achiev-

able rates in Fig. 2, where we plot the sum ergodic rate per
user given as 1

KLRsum. The theoretical (Th) results are plotted
using the expressions of Rjk in Theorem 1 and Corollary 2
for the one-bit and conventional massive MIMO scenarios
respectively. The Monte-Carlo (MC) simulated curves are
plotted by computing Rjk in (19) for both scenarios. A perfect
match between the MC simulated and theoretical results can
be seen, even for moderate system dimensions. As expected,
there is a performance degradation when we use one-bit
ADCs and DACs, with the decrease being more significant
for a smaller number of cells. This is because the intra-cell
interference becomes noticeable when compared to inter-cell
interference for L = 2, and is more effectively combated by
conventional ZF than one-bit quantized ZF precoding.

Next in Fig. 3, we plot the sum average rate per user
against M for both one-bit and conventional massive MIMO
systems. For M = 800, one-bit quantized and conventional
ZF precoding are seen to achieve 73% and 88% of the
asymptotic sum average rate outlined in Corollary 3. The
performance gap between the two settings decreases with M
implying that the impact of quantization becomes increasingly
small as M → ∞. Further to achieve the rate of 3bps/Hz,
Mone = 540 antennas should be employed at each BS of a
one-bit system, compared with M conv = 150 antennas at each
BS of a conventional system, implying that κ = Mone

Mconv = 3.6.
The relationship between the number of antennas Mone

needed by the one-bit MIMO system to perform as well as the
conventional MIMO system with M conv antennas is further
illustrated in Fig. 4. We numerically find and plot the ratio
κ = Mone

Mconv needed to achieve |Rone
sum − Rconv

sum | ≤ ε for ε =
10−3 and different values of M conv. The ratio is around 2.5 at
low Pt (or SNR= Pt

σ2 ) values in accordance with Corollary 4,
while it increases to 3.79 for M conv = 100 as Pt increases to
20dB, due to reasons discussed in Sec. IV-C. The promising
observation is that even at moderate to high SNR values as
M conv increases, κ increases at a slower rate and eventually
starts to decrease and approach one, because the effect of
quantization decreases with M as discussed in Remark 1.

Next we study whether we gain in terms of energy effi-
ciency (EE) when we use one-bit ADCs and DACs instead
of FR ADCs and DACs. EE is defined in the downlink as
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Fig. 2: Sum average rate versus Pt for
M = 128 and K = 8.
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Fig. 3: Sum average rate versus M for
L = 4, K = 8, and Pt = 10dB.
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EE = Rsum

Ptot
, where Ptot = 1

ζPt+M(2PDAC +PRF), ζ is the
power amplifier efficiency, PDAC is the power consumption
of each DAC, and PRF is the power consumption per RF
chain given in [8]. PDAC scales linearly with the sampling
frequency fs, and exponentially with the number of bits b
and is given as PDAC = cfs2

b, where c = 494fJ/step/Hz.
To compute the EE of conventional massive MIMO cellular
system, we consider M conv = 128 antennas at each BS,
and assume that each DAC has a resolution of b = 10
bits to achieve nearly FR. For the one-bit massive MIMO
cellular system, we find that Mone = 486 antennas are needed
to achieve the same sum average rate as the conventional
system. Using this value, we compute Rone

sum, Ptot with b = 1,
and consequently the EE. The results are plotted against fs
in Fig. 5. The EE achieved by the one-bit MIMO system
exceeds that achieved by the conventional MIMO system for
fs > 100MHz, while achieving the same sum average rate.
The decrease in the EE of the conventional system with fs
is significant because the power consumption of FR ADCs
and DACs is quite dominant. This is a very promising result
especially for mmWave communication systems, that utilize
larger bandwidths and higher sampling rates. Thus one-bit
massive MIMO is an energy-efficient solution even under
linear ZF precoding and imperfect CSI for mmWave systems.

VI. CONCLUSION

This work studied a multi-cell massive MIMO system
employing one-bit ADCs and DACs under ZF precoding
and imperfect CSI. We derived closed-form expressions of
the MMSE channel estimates at each BS and the ergodic
achievable downlink rates at the users, utilizing the Buss-
gang decompositions of the quantized received training and
transmit signals respectively. We then studied the ratio of the
number of antennas at each BS in the one-bit cellular system
to that at each BS in the conventional system required for
both systems to achieve the same sum average rate. The ratio
turned out to be 2.5 at low SNR, while it was seen to decrease
to one for any given SNR as we consider larger antenna
arrays. We also observed one-bit MIMO to be more energy
efficient than conventional MIMO at higher bandwidths.
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L = 4, K = 8 and Pt = 10dB.
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