
PERFORMANCE ANALYSIS THROUGH SYNTHETIC TRACE GENERATION

Lieven Eeckhout∗ Koen De Bosschere Henk Neefs

Department of Electronics and Information Systems (ELIS),Ghent University
Sint-Pietersnieuwstraat 41, B-9000 Gent, Belgium
{leeckhou,kdb,neefs}@elis.rug.ac.be

ABSTRACT

Most research in the area of microarchitectural perfor-
mance analysis is done using trace-driven simulations. Al-
though trace-driven simulations are fairly accurate, they
are both time- and space-consuming which makes them
sometimes impractical. Modeling the execution of a com-
puter program by a statistical profile and generating a syn-
thetic benchmark trace from this statistical profile can be
used to accelerate the design process. Thanks to the statis-
tical nature of this technique, performance characteristics
quickly converge to a steady state solution during simu-
lation, which makes this technique suitable for fast design
space explorations. In this paper, it is shown how more de-
tailed statistical profiles can be obtained and how the syn-
thetic trace generation mechanism should be designed to
generate syntactically correct benchmark traces. As a re-
sult, the performance predictions in this paper are far more
accurate than those reported in previous research.

I. INTRODUCTION

Trace-driven simulations are are generally accurate [1].
However, there are serious practical shortcomings with
trace-driven simulations. First, tracing complete bench-
mark executions is infeasible as this requires the storage
of billions of instructions. Second, simulation time is also
prohibitive for such huge traces; especially if traces are
used to evaluate various processor configurations for vari-
ous workloads, which requires many simulation runs.

In practice, researchers try to limit the size of traces by
storing only a part of them. One can either take a contigu-
ous part of the trace (preferably not a part that belongs
to the initialization sequence of the program), or apply
trace sampling [3]. Recently, statistical modeling [2, 7]
was presented as a technique to accelerate the simulation
process. First, a statistical profile or a set of statisticalpro-
gram characteristics is extracted from a program execu-
tion. This statistical profile is then used to generate a syn-
thetic trace which is subsequently fed into a trace-driven
simulator, which will estimate the attainable performance

∗Lieven Eeckhout is supported by a grant from the Flemish Institute
for the Promotion of the Scientific-Technological Researchin the Indus-
try (IWT).

for the microarchitecture modeled. This approach has two
major advantages. First, due to the statistical nature of
the synthetic trace generation process, performance char-
acteristics will quickly converge, and hence the number of
clock cycles to simulate can be limited. As a result, this
methodology can be used to perform a quick design space
exploration in an early design stage. Second, by assum-
ing statistical independence of various program character-
istics, the statistical profile will be much more compact
than a trace, and does (generally) not depend on the size
of the trace.

A statistical profile includes many relevant properties of
a benchmark execution except for dynamic properties, e.g.
different phases in a program execution. The evaluation of
our technique does however not reveal that this is a serious
practical problem. If this effect would ever prohibit accu-
rate performance modeling, a dynamic program execution
could easily be segmented, and a separate statistical profile
per segment could be measured.

Another disadvantage of current statistical modeling
techniques, is that they cannot be used to study applica-
tion locality. The effects of caches, TLBs and branch pre-
dictors cannot be scaled down to smaller traces and hence
synthetic traces are inadequate to study them. A straight-
forward solution to this problem is to model cache, TLB
and branch behaviour statistically as well, as is done in this
paper.

This paper has two major contributions. First of all,
we show how more detailed statistical profiles can be ob-
tained by measuring conditional distributions and by in-
cluding memory dependencies. The second contribution
is that we propose a synthetic trace generation algorithm
which guarantees syntactically correct synthetic traces,i.e.
stores and conditional branches should not have a destina-
tion operand. Syntactical correctness of synthetic tracesis
motivated by the fact that we want to simulate synthetic
traces on existing simulation tools. Both the more en-
hanced statistical profiles and the modified synthetic trace
generator will lead to more representative synthetic traces
and to far more accurate performance predictions than pre-
viously reported by Carl and Smith in [2]: the relative er-
ror between the predicted and the actual IPC reported here
ranges from -8% to 14% for the SPECint95 benchmarks
for a 16-issue out-of-order processor configuration with an

real trace

program statistics

synthetic trace

SPROG

SPROFbranch profiling cache profiling

branch statistics cache statistics

trace-driven simulator

performance characteristics

microarchitecture-
dependent

microarchitecture-
dependent

microarchitecture-
independent

statistical
profile

Figure 1: The SPROF/SPROG performance modeling en-
vironment. The coloured boxes are tools; the white boxes
are intermediate files.

instruction window of 128 instructions.
This paper is organized as follows. Section II presents a

general overview of our performance modeling environ-
ment called SPROF/SPROG. In section III it is shown
which statistical characteristics are extracted from bench-
mark traces to form a viable statistical profile. Section
IV presents the synthetic trace generation algorithm being
used. Our performance modeling environment is validated
in section V. Section VI discusses related work and, finally,
we will conclude in section VII.

II. THE SPROF/SPROG FRAMEWORK

Our general framework for performance modeling
is depicted in Figure 1. First, a real program
trace, for example a SPEC benchmark trace, is ana-
lyzed by two microarchitecture-dependent profiling tools
and one microarchitecture-independent profiling tool.
The microarchitecture-independent profiling tool called
SPROF1 extracts statistics concerning the instruction mix
and the dependencies between instructions through reg-
ister values as well as through memory values. The
microarchitecture-dependent profiling tools extract statis-
tics concerning the branch and cache behaviour of the pro-
gram trace for a specific branch predictor and a specific
cache organization. This is done by simulating the de-
sired aspect, namely the branch or the cache behaviour.
The complete set of statistics (program, branch and cache
statistics) which are generated by trace profiling, is called
astatistical profile.

Note that a statistical profile can be computed from an
actual trace as is shown in Figure 1, but it is more conve-
nient to compute it on-the-fly from either an instrumented
functional simulator, or from an instrumented version of
the benchmark program running on a real system without
the need to store huge traces. A second important note

1Statistical PROFiler

is that although computing a statistical profile might take
a long time, it should be done only once for each bench-
mark. And since performance analysis based on a statis-
tical profile is fast, computing a statistical profile will be
worthwhile.

Once a statistical profile is computed, SPROG2 gener-
ates asynthetic traceusing this statistical profile. This syn-
thetic trace can now be simulated on a trace-driven simula-
tor. If the synthetic trace captures the right execution char-
acteristics, the performance characteristics of the original
and the synthetic trace should be comparable when simu-
lated on the same simulator modeling the same architec-
ture.

The next section discusses statistical profiling; section
IV provides details on the synthetic trace generation pro-
cess.

III. STATISTICAL PROFILING

While searching for a viable statistical profile, three major
goals have to be fulfilled. First, the performance charac-
teristics of the synthetic trace on a particular architecture
should be comparable to the performance characteristics
of the corresponding original trace. Second, the statistical
profile should not be too complicated, i.e. the number of
distributions involved should be limited while preserving
high levels of performance prediction accuracy. A third
goal is to generate benchmark traces which are syntacti-
cally correct. More specifically, a store operation should
not have a destination operand—which cannot be guaran-
teed in [2, 7]—and an integer operation should not have
four or five source operands. The underlying motivation
for this goal is that we should be able to simulate the syn-
thetic trace on the existing trace-driven simulator, see Fig-
ure 1. This goal can be fulfilled by both carefully selecting
the statistical profile distributions and by carefully design-
ing the synthetic trace generator, as will become clear in
this paper.

Section A describes which microarchitecture-
independent program statistics are measured by SPROF.
The microarchitecture-dependent execution statistics are
detailed in section B.

A. Microarchitecture-independent statistics
The program execution statistics which are measured by
SPROF, are microarchitecture-independent.

The first program characteristic which we identified, is
the instruction-mixdistribution. We have measured the
probability that the typeTx of instructionx equalst, for t

one of theNinstr instruction types included in the model.
Formally stated, we measuredProb [Tx = t]. In
our model, we identify nine instruction classes (Ninstr =
9) because of their varying execution latencies and se-
mantics3: integer, load, store, conditional branch, jump,

2Statistical PROGram trace generator
3These nine instruction classes were identified for the AlphaISA.

However, this does not affect the generality of the technique presented

integer multiply, floating-point operation, floating-point
divide single-precision and floating-point divide double-
precision.

The second distribution which we identified, is the
number-of-operandsdistribution or the probability that in-
structionx hasOx source operands. Since the number
of operands of an instruction is dependent on its type, we
have actually measuredProb [Ox = o | Tx = t].
The variable number of operands is caused by the fact that
some instructions occur in a register-register as well as in
a register-immediate format, while belonging to the same
instruction classt in our classification.

We have also measured theage-of-register-operands
distribution [4] for each register operand of each instruc-
tion type. Indeed, we measured the probability that thei-th
register operand of an instructionx of typeTx havingOx

operands, is producedδ instructions before it in the trace;
i.e. instructionx − δ produces a register instance which is
consumed by instructionx. Formally stated, we measured
Prob [Ai,x = δ | Tx = t , Ox = o], with i = 1, 2
andAi,x the age of thei-th register operand of instruction
x. Notice that in these distributions only real (RAW) data
dependencies were considered.

From the experiments presented in section V, it became
clear that these distributions are not sufficient to accu-
rately predict the attainable performance of out-of-order
processors. Therefore, we decided to measure these dis-
tributions conditionally on the types of then instructions
before instructionx in the trace, withn ranging from0
(which corresponds to the distributions described above)
to 3. The resulting distributions then are, e.g. forn = 2:
Prob [Tx = t | Tx−1 = t′ , Tx−2 = t′′], Prob [Ox =
o | Tx = t , Tx−1 = t′ , Tx−2 = t′′] andProb [Ai,x =
δ | Tx = t, Ox = o, Tx−1 = t′ , Tx−2 = t′′], for i = 1, 2.
These distributions will be further denoted for arbitraryn

asPT,n, PO,n andPA,n, respectively.
Since we also wanted to model memory dependen-

cies, we identified the probability that a load ismemory-
dependenton the δ-th store before it in the trace. In
other words, we measured theread-after-writedistribu-
tion, Prob [Mx = δ | Tx,δ = ST , Tx = LD], with
Tx,δ theδ-th memory operation before instructionx in the
trace.

Note that most of the distributions mentioned here are
theoretically infinite. But for practical purposes, they can
be truncated at a certain limitNmax. This limit imposes a
constraint on the window size of the out-of-order architec-
tures being modeled. In this paper, we choseNmax = 128
which allows the exploration of all contemporary out-of-
order architectures.

As stated in section III, the amount of storage required
to store a statistical profile should be limited. The total
number of probabilities to be stored here isO(Nmax ×
Nn+1

instr), which is exponential inn, wheren specifies what
conditional distributionsPT,n, PO,n andPA,n are being

here.

used. However, for small values ofn—in our case,n
ranges from0 to 3—this is quite acceptable since the
number of instruction classesNinstr = 9 is small as
well. Noonburg and Shen [7] on the other hand, used
the following distribution to determine the typeTx and
the dependent instruction distanceDx of an instruction
x: Prob [Tx = t , Dx = δ | Tx−1 = t ′ , Dx−1 =
δ ′ , Tx−2 = t ′′ , Dx−2 = δ ′′]. These distributions re-
quireN3

max × N3
instr probabilities to be stored in a statis-

tical profile. This is feasible for performance modeling of
architectures with small instruction windows whereNmax

can be restricted, e.g.Nmax = 5 in [7]. But in our case
this would require1283 × 93 ≈ 1.5 G probabilities to be
stored, which is impractical.

B. Microarchitecture-dependent statistics

The microarchitecture-dependent statistics are the branch
and the cache statistics, see Figure 1. These were collected
by simulating the traces on simple simulators which mea-
sured the branch and cache behaviour, respectively.

The branch statistics used in this paper consist of two
probabilities only, namely the probability that a branch is
correctly predicted by the branch predictor (commonly de-
noted as the branch prediction accuracy) and the probabil-
ity that the branch target address is correctly predicted by
the branch target buffer (BTB). The reason to distinguish
between these two probabilities is that the penalties intro-
duced by a branch target misprediction and a branch mis-
prediction are completely different [5]. A branch which
is correctly predicted but whose target is not, only intro-
duces a single-cycle bubble in the pipeline; a mispredicted
branch will cause the entire pipeline to be flushed and to
be refilled when the branch is executed.

The cache statistics include two sets of distributions:
the D-cache and the I-cache statistics. The D-cache statis-
tics contain two probabilities, namely the probability that
a load operation needs to access the L2 cache (L1 cache
miss) and main memory (L2 cache miss) to get its data.
The I-cache statistics consists of two probabilities as well,
namely the probability that the fetch unit needs to access
the L2 cache and main memory to get an instruction.

IV. SYNTHETIC TRACE GENERATION

The synthetic trace generator SPROG takes as input a sta-
tistical profile. A synthetic trace is generated à la Monte
Carlo: a random number is generated, which will deter-
mine a program characteristic using the cumulative distri-
bution function.

The generation of a synthetic trace itself works on an
instruction-by-instruction basis. Consider the generation
of thex-th instruction in the instruction stream:

1. Determine the instruction typeTx using the
instruction-mix distribution.

2. Determine the number of source operandsOx using
the number-of-operands distribution.

-1.5%

-1.0%

-0.5%

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

1 2 3 4 5 6 7 8 9 10

n = 0

n = 1

n = 2

n = 3

dependency distance d

e
rr

o
r

(i
n

 p
ro

b
a

b
ili

ty
)

Figure 2: The deviation between the marginal age-of-
register-operands distribution of the original and the syn-
thetic trace (for theli benchmark) as a function of the
dependency distanced and the number of instructionsn
which are used in the conditional distributions.

3. For each source operand, determine the instruction
which produces this register instance using the age-
of-register-operands distribution. In this step, syntac-
tical correctness is guaranteed as follows: look for
register dependencies until we get a register instance
which is not created by a store or a branch opera-
tion. If after a certain maximum number of trails,
10,000 in our case, still no valid dependency is found,
instruction x is made dependent on an instruction
which comes at leastNmax instructions before it in
the trace. For processors with an instruction window
size less thanNmax, this means that the dependency
is simply squashed. We made this design option in or-
der not to eliminate too many register dependencies.

4. If instructionx is a load operation, use the read-after-
write distribution to determine which store operation
accesses the same memory address as instructionx

does.

5. If instruction x is a branch instruction, determine
whether the branch and its target will be correctly pre-
dicted using the branch statistics.

6. If instructionx is a load operation, determine whether
the load will get its data from L1 cache, L2 cache or
main memory using the D-cache statistics.

7. Determine whether or not instructionx will cause an
I-cache miss at the L1 or L2 level.

The method proposed here to enforce syntactical cor-
rectness has some serious implications on the representa-
tiveness of the synthetic trace. In Figure 2, the deviation
is shown between the desired marginal age-of-register-
operands distribution—measured from the real program
trace—and the marginal age-of-register-operands distribu-
tion of the generated synthetic trace as a function ofn
which specifies the conditional distributionsPT,n, PO,n

andPA,n used. Forn = 0, we observe that the distribu-
tion resulting from synthetic trace generation (generally)

benchmark input Nskipped Ninstrs
li train.lsp 0 226
go 50 9 2stone9.in 250 200
compress < train.in (50K) 0 217
gcc gcc.i -O 0 182
m88ksim -c< train.in 350 200
ijpeg penguin.ppm 100 170
perl scrabbl.pl< scrabbl.in 600 200
vortex vortex.in (persons.250) 800 200

Table 1: The SPECint95 benchmarks used, the input files,
the number of initial instructions skipped, and the number
of instructions incorporated in the trace.

lies under the distribution of the real trace4. This is due to
the fact that if no dependency is found which is not suppos-
edly created by a store or a conditional branch, the instruc-
tion is made dependent on an instruction which comes at
leastNmax instructions before it in the trace. Forn > 0,
the distribution of the synthetic trace lies above the desired
distribution for dependency distancesd ≤ n. This can be
explained as follows: when a dependency needs to be es-
tablished, it will be more probable than specified in the
original distributions that instructionx will be made de-
pendent on instructionx − i, with i = 1, . . . , 3 given the
fact that instructionx−i is neither a store nor a conditional
branch. And since it is more probable that an instruction is
neither a store nor a conditional branch, the probabilities
for d < n will be higher for the synthetic trace than for the
original one.

From these considerations we can conclude that it can
not be guaranteed that the statistical profile of the syn-
thetic trace equals the statistical profile of the real program
trace. Therefore, we useinstantaneous positive-errordis-
tributions. An instantaneous positive-error distribution is
attained by computing the errors between the desired prob-
abilities and the probabilities at that time during the syn-
thetic trace generation process, only keeping the positive
errors and normalizing them to a distribution. When de-
pendencies are generated using the instantaneous positive-
error distribution, dependency distances whose instanta-
neous probability is lower than the desired probability,
will be benefited. At the same time, dependency distances
whose instantaneous probability is higher than the desired
probability, will be harmed. In fact, the use of the instan-
taneous positive-error distribution introduces a feedback
loop in the synthetic trace generation algorithm. As a re-
sult, the synthetic trace will have the same statistical pro-
file as the original trace, which has been verified.

V. EVALUATION

A. Benchmarks

The traces used to collect program execution statistics, see
Table 1, were generated from the SPECint95 benchmarks

4Note that this is only true for small values of dependency distances;
for higher dependency distances, in our case more thanNmax, the op-
posite will be true since distributions sum to one.

on a DEC 500au station with an Alpha 21164 processor.
The Alpha architecture is a load/store architecture and has
32 integer and 32 floating-point registers, each of which
is 64 bits wide. The SPECint95 benchmarks have been
compiled with the DECcc compiler version 5.6 with the
optimization flag set to-O4. The traces were carefully
selected not to include initialization code.

B. Out-of-order architecture
To validate our performance modeling methodology, con-
temporary out-of-order superscalar architectures were as-
sumed. The architectures considered are organized as fol-
lows: an instruction window of 32, 64 and 128 instruc-
tions; an issue width of 4, 8 and 16; 2, 4 and 8 memory
units; 3, 5 and 10 non-memory units, respectively. The
fetch bandwidth and the reorder bandwidth were chosen
to be the same as the issue bandwidth. The latencies of
the instruction types are: integer 1 cycle, load 3 cycles
(this includes address calculation and L1 D-cache access),
multiply 8 cycles, FP operation 4 cycles, single and dou-
ble precision FP divide 18 and 31 cycles, respectively. All
operations are fully pipelined, except for the divide.

A dynamic memory disambiguation strategy is as-
sumed; re-execution is implemented to recover from mis-
speculated loads, which re-executes the instructions which
are dependent (directly or indirectly) on the misspeculated
load.

The branch predictor is a hybrid predictor with a 4K
meta predictor choosing between a 4K bimodal predictor
and an 8-bit gshare that indexes into a 4K predictor [6].
The branch target buffer contains 512 sets and has an as-
sociativity of 4. The return address stack contains four
entries. The pipeline in front of the instruction window
contains four stages: a fetch stage, a decode stage, a reg-
ister renaming stage and a dispatch stage which inserts the
instructions in the instruction window.

The processor configurations simulated have a 32K di-
rect mapped L1 I-cache and a 64K 2-way set-associative
L1 D-cache, both having a block size of 32 bytes. The L2
cache is a unified 512K 4-way set-associative cache with
a block size of 32 bytes. A load which needs to access L2
cache or main memory takes 11 or 81 cycles, respectively.

C. Performance prediction accuracy
Figure 3 presents the relative error∆IPC ,

∆IPC =
IPCsynthetic trace− IPCreal trace

IPCreal trace

between the IPC value of the synthetic trace and the cor-
responding real trace. This is shown for several processor
configurations: instruction windows containing 32, 64 and
128 instructions and issue widths of 4, 8 and 16 in the first,
the second and the third column, respectively. The first
row presents the relative IPC error when only data depen-
dencies through register and memory values are consid-
ered; i.e. perfect branch prediction and perfect caches are

assumed. The various bars in the figures denote the vari-
ous statistical profiles and the two synthetic trace genera-
tion algorithms used. Theno fb andfb abbreviations in-
dicate whether or not the instantaneous positive-error dis-
tribution is used by the synthetic trace generator; in other
words, whether or not a feedback loop is used. The vari-
ousn values indicate the specific conditional probabilities
used in the statistical profiles:PT,n, PO,n andPA,n. Sev-
eral important conclusions can be taken from these graphs.
First, performance predictions are generally more accurate
for processors with smaller issue widths and smaller in-
struction windows. This is due to the fact that for these
processors, performance is more limited by machine par-
allelism than by program parallelism. Second, the feed-
back loop in the synthetic trace generator generally leads
to lower IPC values and more accurate performance pre-
dictions. This is a logical consequence of the fact that less
data dependencies are squashed to satisfy the syntactical
correctness of synthetic traces, as explained in section IV.
The third conclusion is that higher values ofn generally
lead to more accurate performance predictions what could
be expected since these statistical profiles contain more in-
formation than statistical profiles with lower values ofn.

The second row of Figure 3 shows results of experi-
ments on the original traces with a probabilistic branch
predictor and probabilistic D- and I-caches. These experi-
ments were conducted as follows: information is added to
the original trace as is done in the last three steps of the
synthetic trace generation algorithm, see section IV. The
three microarchitecture-dependent statistics are validated
here: the branch statistics, the D-cache and the I-cache
statistics. From these graphs we can conclude that a prob-
abilistic branch predictor never leads to significant perfor-
mance prediction inaccuracies. Probabilistic I-caches and
D-caches on the other hand, can lead to substantial inac-
curacies. This is probably due to the clustering of cache
misses in real program traces, which was first observed by
Voldmanet al. in [8] and which is not modeled here.

The third row of Figure 3 presents overall performance
prediction results: i.e. a synthetic trace with a probabilistic
branch predictor and probabilistic caches are considered.
The relative IPC error varies between -8% and 14% over
the SPECint95 benchmarks for the 16-issue processor with
a window size of 128 instructions. This is significantly
better than the results reported by Carl and Smith in [2].

VI. RELATED WORK

Noonburg and Shen [7] presented a framework which
models the execution of a program on a particular archi-
tecture as a Markov chain. The statistical profile used here
is less complex than the one presented in [7], see section
III, and the architecture is modeled as a trace-driven sim-
ulator which is much less complex than a corresponding
Markov chain. Moreover, Noonburg and Shen [7] did not
model memory dependencies and assumed only one de-
pendency per instruction.

-20%

-15%

-10%

-5%

0%

5%

10%

15%

20%

25% no fb; n = 0

fb; n = 0

fb; n = 1

fb; n = 2

fb; n = 3

-20%

-15%

-10%

-5%

0%

5%

10%

15%

20%

25% no fb; n = 0

fb; n = 0

fb; n = 1

fb; n = 2

fb; n = 3

-15%

-10%

-5%

0%

5%

10%

15%

20% probabilistic branch predictor

probabilistic I-cache

probabilistic D-cache

-15%

-10%

-5%

0%

5%

10%

15%

20% probabilistic branch predictor

probabilistic I-cache

probabilistic D-cache

-10%

-5%

0%

5%

10%

15%

20%

li

g
cc

co
m

p
re

ss g
o

ijp
e
g

vo
rt

e
x

m
8
8
ks

im p
e
rl

no fb; n = 0

fb; n = 0

fb; n = 1

fb; n = 2

fb; n = 3

-10%

-5%

0%

5%

10%

15%

20%

li

g
cc

co
m

p
re

ss g
o

ijp
e
g

vo
rt

e
x

m
8
8
ks

im p
e
rl

no fb; n = 0

fb; n = 0

fb; n = 1

fb; n = 2

fb; n = 3

-10%

-5%

0%

5%

10%

15%

20%

li

g
cc

co
m

p
re

ss g
o

ijp
e
g

vo
rt

e
x

m
8
8
ks

im p
e
rl

no fb; n = 0

fb; n = 0

fb; n = 1

fb; n = 2

fb; n = 3

-20%

-15%

-10%

-5%

0%

5%

10%

15%

20%

25% no fb; n = 0

fb; n = 0

fb; n = 1

fb; n = 2

fb; n = 3

-15%

-10%

-5%

0%

5%

10%

15%

20% probabilistic branch predictor

probabilistic I-cache

probabilistic D-cache

li

g
c
c

c
o

m
p

re
s
s

g
o

ijp
e

g

v
o

rt
e

x

m
8

8
k
s
im

p
e

rl li

g
c
c

c
o

m
p

re
s
s

g
o

ijp
e

g

v
o

rt
e

x

m
8

8
k
s
im

p
e

rl li

g
c
c

c
o

m
p

re
s
s

g
o

ijp
e

g

v
o

rt
e

x

m
8

8
k
s
im

p
e

rl

w=32; i=4 w=64; i=8 w=128; i=16

Figure 3: Performance prediction accuracy: the relative IPC error∆IPC between the IPC value of the synthetic trace and
the corresponding real trace. The first row: synthetic tracewith perfect branch predictor and perfect caches; second row:
real trace with probabilistic branch predictor and probabilistic caches; third row: synthetic trace with probabilistic branch
predictor and probabilistic caches.

Carl and Smith [2] proposed a hybrid approach, where
a synthetic instruction trace was generated based on exe-
cution statistics and fed into a trace-driven simulator, as
is done here. The work presented here is a continuation
of the work initiated by Carl and Smith [2] by suggesting
several improvements: incorporating memory dependen-
cies, using more detailed statistical profiles and guarantee-
ing syntactical correctness of the synthetic traces. As a
result, the performance predictions reported in this paper
are far more accurate than those reported in [2].

VII. CONCLUSION

In this paper, it was shown how the performance predic-
tion accuracy of statistical modeling can be increased by
enhancing the statistical profiles and by guaranteeing syn-
tactically correct synthetic traces. As a result, the rel-
ative prediction errors reported here range from -8% to
14% over the SPECint95 benchmarks for a 16-issue out-
of-order processor with an instruction window of 128 in-
structions, which are far more accurate predictions than
those reported by Carl and Smith in [2].

REFERENCES
[1] B. Black and J. P. Shen. Calibration of microprocessor performance

models.IEEE Computer, 31(5):59–65, May 1998.

[2] R. Carl and J. E. Smith. Modeling superscalar processorsvia statisti-
cal simulation. InWorkshop on Performance Analysis and its Impact
on Design (PAID), held in conjunction with the 25th Annual Inter-
national Symposium on Computer Architecture (ISCA), June 1998.

[3] T. M. Conte, M. A. Hirsch, and K. N. Menezes. Reducing state loss
for effective trace sampling of superscalar processors. InProceed-
ings of the International Conference on Computer Design (ICCD),
pages 468–477, October 1996.

[4] M. Franklin and G. S. Sohi. Register traffic analysis for streamlin-
ing inter-operation communication in fine-grain parallel processors.
In Proceedings of the 22nd Annual International Symposium on Mi-
croarchitecture (MICRO), pages 236–245, December 1992.

[5] J. L. Hennessy and D. A. Patterson.Computer Architecture: A
Quantitative Approach. Morgan Kaufmann Publishers, third edition,
2003.

[6] S. McFarling. Combining branch predictors. Technical Report WRL
TN-36, Digital Western Research Laboratory, June 1993.

[7] D. B. Noonburg and J. P. Shen. A framework for statisticalmodeling
of superscalar processor performance. InProceedings of the Third
International Symposium on High-Performance Computer Architec-
ture (HPCA), pages 298–309, February 1997.

[8] J. Voldman, B. Mandelbrot, L. W. Hoevel, J. Knight, and P.Rosen-
feld. Fractal nature of software-cache interaction.IBM Journal of
Research and Development, 27(2):164–170, March 1983.

