PERFORMANCE ANALYSISTHROUGH SYNTHETIC TRACE GENERATION

Lieven Eeckhotit Koen De Bosschere Henk Neefs

Department of Electronics and Information Systems (ELG)ent University
Sint-Pietersnieuwstraat 41, B-9000 Gent, Belgium
{l eeckhou, kdb, neefs}@l is.rug. ac. be

ABSTRACT for the microarchitecture modeled. This approach has two
major advantages. First, due to the statistical nature of
Most research in the area of microarchitectural perfor-the synthetic trace generation process, performance char-
mance analysis is done using trace-driven simulations. Al-acteristics will quickly converge, and hence the number of
though trace-driven simulations are fairly accurate, theyclock cycles to simulate can be limited. As a result, this
are both time- and space-consuming which makes theninethodology can be used to perform a quick design space
sometimes impractical. Modeling the execution of a com-exploration in an early design stage. Second, by assum-
puter program by a statistical profile and generating a syn-ng statistical independence of various program character
thetic benchmark trace from this statistical profile can beistics, the statistical profile will be much more compact
used to accelerate the design process. Thanks to the statighan a trace, and does (generally) not depend on the size
tical nature of this technique, performance charactessti of the trace.
quickly converge to a steady state solution during simu- A statistical profile includes many relevant properties of
lation, which makes this technique suitable for fast designg henchmark execution except for dynamic properties, e.g.
space explorations. In this paper, it is shown how more dedifferent phases in a program execution. The evaluation of
tailed statistical profiles can be obtained and how the synpyr technique does however not reveal that this is a serious
thetic trace generation mechanism should be designed tgractical problem. If this effect would ever prohibit accu-
generate syntactically correct benchmark traces. As a rerate performance modeling, a dynamic program execution
sult, the performance predictions in this paper are far morecould easily be segmented, and a separate statisticalgorofil

accurate than those reported in previous research. per segment could be measured.
Another disadvantage of current statistical modeling
| INTRODUCTION techniques, is that they cannot be used to study applica-

tion locality. The effects of caches, TLBs and branch pre-

Trace-driven simulations are are generally accurate [1].dictors cannot be scaled down to smaller traces and hence
However, there are serious practical shortcomings withsynthetic traces are inadequate to study them. A straight-
trace-driven simulations. First, tracing complete bench-forward solution to this problem is to model cache, TLB
mark executions is infeasible as this requires the storagend branch behaviour statistically as well, as is done & thi
of billions of instructions. Second, simulation time is@ls paper.
prohibitive for such huge traces; especially if traces are This paper has two major contributions. First of all,
used to evaluate various processor configurations for variywe show how more detailed statistical profiles can be ob-
ous workloads, which requires many simulation runs. tained by measuring conditional distributions and by in-

In practice, researchers try to limit the size of traces by cluding memory dependencies. The second contribution
storing only a part of them. One can either take a contigu-is that we propose a synthetic trace generation algorithm
ous part of the trace (preferably not a part that belongswhich guarantees syntactically correct synthetic traices,
to the initialization sequence of the program), or apply stores and conditional branches should not have a destina-
trace sampling [3]. Recently, statistical modeling [2, 7] tion operand. Syntactical correctness of synthetic trices
was presented as a technique to accelerate the simulatiofotivated by the fact that we want to simulate synthetic
process. First, a statistical profile or a set of statisficat traces on existing simulation tools. Both the more en-
gram characteristics is extracted from a program execuhanced statistical profiles and the modified synthetic trace
tion. This statistical profile is then used to generate a syngenerator will lead to more representative synthetic sace
thetic trace which is subsequently fed into a trace-drivenand to far more accurate performance predictions than pre-
simulator, which will estimate the attainable performancevious|y reported by Carl and Smith in [2] the relative er-

*Lieven Eeckhout is supported by a grant from the Flemistitirist ror between the predicted and the aCtua.I IPC reported here
for the Promotion of the Scientific-Technological Researctne Indus- fanges from -8% to 14% for the SPECint95 benchmarks
try (IWT). for a 16-issue out-of-order processor configuration with an

real trace ‘

;1 ;| A
‘ branch profiling‘ ‘ cache profiling ‘ SPROF statistical
T v

profile

‘ branch statistics‘ ‘cache statistics ‘ ‘ program statistics ‘

microarchitecture- l

microarchitecture-

microarchitecture-
dependent independent

dependent

SPROG |

synthetic trace

L

‘ trace-driven simulator ‘

performance characteristics

is that although computing a statistical profile might take
a long time, it should be done only once for each bench-
mark. And since performance analysis based on a statis-
tical profile is fast, computing a statistical profile will be
worthwhile.

Once a statistical profile is computed, SPRQf@ner-
ates assynthetic traceising this statistical profile. This syn-
thetic trace can now be simulated on a trace-driven simula-
tor. If the synthetic trace captures the right executiorrcha
acteristics, the performance characteristics of the oali
and the synthetic trace should be comparable when simu-
lated on the same simulator modeling the same architec-
ture.

The next section discusses statistical profiling; section

_ . IV provides details on the synthetic trace generation pro-
Figure 1: The SPROF/SPROG performance modeling engagg.

vironment. The coloured boxes are tools; the white boxes

are intermediate files. I11. STATISTICAL PROFILING

])])] While searching for a viable statistical profile, three majo
instruction window of 128 instructions. goals have to be fulfilled. First, the performance charac-
This paper is organized as follows. Section Il presents aeristics of the synthetic trace on a particular architegtu
general overview of our performance modeling environ- should be comparable to the performance characteristics

ment called SPROF/SPROG. In section Ill it is shown of the corresponding original trace. Second, the stadistic
which statistical characteristics are extracted from benc profile should not be too complicated, i.e. the number of
mark traces to form a viable statistical profile. Section djstributions involved should be limited while preserving
IV presents the synthetic trace generation algorithm beinghigh levels of performance prediction accuracy. A third
used. Our performance mOdeIing environmentis Va”date(boaj is to generate benchmark traces which are Syntacti_
in section V. Section Vi discusses related work and, finally, cally correct. More specifically, a store operation should
we will conclude in section VII. not have a destination operand—which cannot be guaran-
teed in [2, 7]—and an integer operation should not have
four or five source operands. The underlying motivation
for this goal is that we should be able to simulate the syn-
thetic trace on the existing trace-driven simulator, seg Fi

II. THE SPROF/SPROG FRAMEWORK
Our general framework for performance modeling

is depicted in Figure 1. First, a real program - i X
P . prog ure 1. This goal can be fulfilled by both carefully selecting

trace, for example a SPEC benchmark trace, is ana o s e)
lyzed by two microarchitecture-dependent profiling tools f[he statistical profile distributions and by carefully dgsi

and one microarchitecture-independent profiling tool. N9 the synthetic trace generator, as will become clear in
The microarchitecture-independent profiling tool called thiS pPaper.

SPROE extracts statistics concerning the instruction mix . Section A describes which ~microarchitecture-
and the dependencies between instructions through regndependent program statistics are measured by SPROF.
ister values as well as through memory values. The he microarchitecture-dependent execution statisties ar

microarchitecture-dependent profiling tools extractistat detailed in section B.

tics concerning the branch and cache behaviour of the proa icroar chitectur e-independent statistics

gram trace for a specific branch predictor and a SloeCiﬁcThe rogram execution statistics which are measured b
cache organization. This is done by simulating the de_§PR(p)Fgare microarchitecture-independent y
sired aspect, namely the branch or the cache behaviour: ; L . " L
The complete set of statistics (program, branch and CaChﬁw(;rihnestfrILSétE rr?.?rr]?xrgig?&r{?ﬁ;ﬂSt{/(\:/gvng\?ewrﬁégizggihg
statistics) which are generated by trace profiling, is calle probability that the typé’, of in'structionx equalst, for t

a statistical profile . : . :
Note that a statistical profile can be computed from an2n® of theNiy,.. instruction types included in the model.
Formally stated, we measurddrob [T, = t |. In

actual trace as is shown in Figure 1, but it is more conve- . i e .
g our model, we identify nine instruction classe$;{;. =

nient to compute it on-the-fly from either an instrumented ; . : :
. . . . 9) because of their varying execution latencies and se-
functional simulator, or from an instrumented version of S ")
mantic$: integer, load, store, conditional branch, jump,

the benchmark program running on a real system without
the need to store huge traces. A second important note 2siatistical PROGram trace generator

3These nine instruction classes were identified for the AllBA.
However, this does not affect the generality of the techmiptesented

1statistical PROFiler

integer multiply, floating-point operation, floating-pvin used. However, for small values @f—in our case,n
divide single-precision and floating-point divide double- ranges from0 to 3—this is quite acceptable since the
precision. number of instruction classe¥;,,.;, = 9 is small as
The second distribution which we identified, is the well. Noonburg and Shen [7] on the other hand, used
number-of-operanddistribution or the probability thatin- the following distribution to determine the typgg, and
structionz hasO, source operands. Since the number the dependent instruction distand@, of an instruction
of operands of an instruction is dependent on its type, wer: Prob [T, = t, Dy = 6 | Ty—1 = t', Dy—q =
have actually measureBrob | O, = o | T, = t |. 60", Tu—a =t", Dy—o = 8"]. These distributions re-
The variable number of operands is caused by the fact thatiuire N3, x N3 . probabilities to be stored in a statis-
some instructions occur in a register-register as well as intical profile. This is feasible for performance modeling of
a register-immediate format, while belonging to the samearchitectures with small instruction windows wheéyg, .
instruction classg in our classification. can be restricted, €.V, = 5in [7]. Butin our case
We have also measured tlege-of-register-operands this would requirel 282 x 93 ~ 1.5 G probabilities to be
distribution [4] for each register operand of each instruc- stored, which is impractical.
tion type. Indeed, we measured the probability thagttte)) o
register operand of an instructianof type T}, havingO, ~ B. Microarchitecture-dependent statistics
operands, is producexinstructions before it in the trace; The microarchitecture-dependent statistics are the branc
i.e. instructionz — ¢ produces a register instance which is and the cache statistics, see Figure 1. These were collected
consumed by instruction. Formally stated, we measured by simulating the traces on simple simulators which mea-
Prob [Ajp, =0 | T, =t, 0, =0],withi = 1,2 sured the branch and cache behaviour, respectively.
and4; , the age of the-th register operand of instruction The branch statistics used in this paper consist of two
z. Notice that in these distributions only real (RAW) data probabilities only, namely the probability that a branch is
dependencies were considered. correctly predicted by the branch predictor (commonly de-
From the experiments presented in section V, it becamehoted as the branch prediction accuracy) and the probabil-
clear that these distributions are not sufficient to accu-ity that the branch target address is correctly predicted by
rately predict the attainable performance of out-of-orderthe branch target buffer (BTB). The reason to distinguish
processors. Therefore, we decided to measure these digretween these two probabilities is that the penalties intro
tributions conditionally on the types of theinstructions duced by a branch target misprediction and a branch mis-
before instructionz in the trace, withn ranging from0 prediction are completely different [5]. A branch which
(WhICh Corresponds to the distributions described above)s Correcﬂy predicted but whose target iS not, 0n|y intro-

to 3. The resulting distributions then are, e.g. for= 21 duces a single-cycle bubble in the pipeline; a mispredicted
Prob [Ty =t|Tp1 =t , Tyo =1"], Prob[O, = pranch will cause the entire pipeline to be flushed and to
o|T,=t, T, 1=1t,T, o=t"]andProb [Ai. = pe refilled when the branch is executed.

6| Te=1,0,=0,Tpy =t Tp o =1t"] fori=1,2. The cache statistics include two sets of distributions:
These distributions will be further denoted for arbitrary the D-cache and the I-cache statistics. The D-cache statis-
asPrn, Pon andPa,,, respectively. tics contain two probabilities, namely the probabilitytha

~Since we also wanted to model memory dependen- |oad operation needs to access the L2 cache (L1 cache
cies, we identified the probability that a loadri@mory- mjss) and main memory (L2 cache miss) to get its data.
dependenbn the j-th store before it in the trace. In The |-cache statistics consists of two probabilities ad,wel
other words, we measured thead-after-writedistribu- namely the probability that the fetch unit needs to access

tion, Prob [My = 6 | Tp5 = ST, T, = LD |, With the | 2 cache and main memory to get an instruction.
T..s thed-th memory operation before instructiorin the

trace. o . IV. SYNTHETIC TRACE GENERATION
Note that most of the distributions mentioned here are
theoretically infinite. But for practical purposes, theywca The synthetic trace generator SPROG takes as input a sta-
be truncated at a certain limi¥,,,... This limitimposesa tistical profile. A synthetic trace is generated a la Monte
constraint on the window size of the out-of-order architec- Carlo: a random number is generated, which will deter-
tures being modeled. In this paper, we chdsg,, = 128 mine a program characteristic using the cumulative distri-
which allows the exploration of all contemporary out-of- bution function.
order architectures. The generation of a synthetic trace itself works on an
As stated in section Ill, the amount of storage requiredinstruction-by-instruction basis. Consider the generati
to store a statistical profile should be limited. The total of thez-th instruction in the instruction stream:
number of probabilities to be stored here@§ N, ¥
N™L) which is exponential im, wheren specifies what

nstr

conditional distributionsPr ,, Po,, and P, ,, are being

1. Determine the instruction typel, using the
instruction-mix distribution.

2. Determine the number of source operanygsusing
here. the number-of-operands distribution.

35% benchmark input Nskipped Ninstrs
_ 3.0% ——n=0 li train.Isp 0 226
2 25% ----n=1 go 50 9 2stone9.in 250 200
S 20%)\ . n=2 compress < train.in (50K) 0 217
e 18% 1\ n=3 gce gcc.i -0 0 182
S 0% oy m88ksim -c< train.in 350 200
< 05% iipeg penguin.ppm 100 170
2 O'OZA’ L Toiooommee e perl scrabbl.pk scrabbl.in 600 200
© ?g;’ y /‘_ﬁ\f»_-,if” vortex vortex.in (persons.250) 800 200
5% T Table 1: The SPECIint95 benchmarks used, the input files,

1 2 3 4 5 6 7 8 9 10

the number of initial instructions skipped, and the number
dependency distance d

of instructions incorporated in the trace.
Figure 2: The deviation between the marginal age-of-

register-operands distribution of the original and the-syn jies ynder the distribution of the real trdcéhis is due to

thetic trace (for the i benchmark) as a function of the the fact that if no dependency is found which is not suppos-

dependency distaneéand the number of instructions egly created by a store or a conditional branch, the instruc-

which are used in the conditional distributions. tion is made dependent on an instruction which comes at
leastN,, ., instructions before it in the trace. Far> 0,

3. For each source operand, determine the instructiorihe distribution of the synthetic trace lies above the dekir
which produces this register instance using the age-distribution for dependency distancés< n. This can be
of-register-operands distribution. In this step, syntac-explained as follows: when a dependency needs to be es-
tical correctness is guaranteed as follows: look for tablished, it will be more probable than specified in the
register dependencies until we get a register instanceriginal distributions that instructiom will be made de-
which is not created by a store or a branch opera-pendent on instructiom — 4, with¢ = 1,...,3 given the
tion. If after a certain maximum number of trails, factthatinstruction:—i is neither a store nor a conditional
10,000 in our case, still no valid dependency is found, branch. And since it is more probable that an instruction is
instruction = is made dependent on an instruction neither a store nor a conditional branch, the probabilities
which comes at leasV,,,,,, instructions before itin for d < n will be higher for the synthetic trace than for the
the trace. For processors with an instruction window original one.
size less thav,, .., this means that the dependency From these considerations we can conclude that it can
is simply squashed. We made this design option in or-not be guaranteed that the statistical profile of the syn-
der not to eliminate too many register dependenciesthetic trace equals the statistical profile of the real paogr

trace. Therefore, we usastantaneous positive-erralis-
tributions. An instantaneous positive-error distributis
attained by computing the errors between the desired prob-
abilities and the probabilities at that time during the syn-
thetic trace generation process, only keeping the positive
errors and normalizing them to a distribution. When de-

5. If instruction z is a branch instruction, determine pendencies are generated using the instantaneous peositive
whether the branch and its target will be correctly pre- error distribution, dependency distances whose instanta-
dicted using the branch statistics. neous probability is lower than the desired probability,

6. Ifinstructionz is a load operation, determine whether will be t_)enefited. At the same _tim_e, d_ependency distan_ces
the load will get its data from L1 cache, L2 cache or whose instantaneous probability is higher than the desired
main memory using the D-cache statistics. probability, vx{ll_l be harme;d. _In fact, _the use of the instan-

taneous positive-error distribution introduces a fee#bac

7. Determine whether or not instructiorwill cause an |oop in the synthetic trace generation algorithm. As a re-
I-cache miss at the L1 or L2 level. sult, the synthetic trace will have the same statisticat pro

The method proposed here to enforce Syntactica| Cor.flle as the Orlglnal trace, which has been verified.

rectness has some serious implications on the representa-

tiveness of the synthetic trace. In Figure 2, the deviation

is shown b_etw_een_ the desired marginal age-of-registera genchmarks
operands distribution—measured from the real program

; ; . . The traces used to collect program execution statisties, se
trace—and the marginal age-of-register-operands distrib . '
tion of the generated synthetic trace as a functiom of Table 1, were generated from the SPECint95 benchmarks

which speC|f|es the conditional dlsmbuuoﬁvn’]-307.,1 “Note that this is only true for small values of dependencyadises;
and Py, used. Fom = 0, we observe that the distribu- o higher dependency distances, in our case more Mg, the op-
tion resulting from synthetic trace generation (genejally posite will be true since distributions sum to one.

4. Ifinstructionz is a load operation, use the read-after-
write distribution to determine which store operation
accesses the same memory address as instruction
does.

V. EVALUATION

on a DEC 500au station with an Alpha 21164 processorassumed. The various bars in the figures denote the vari-
The Alpha architecture is a load/store architecture and hasus statistical profiles and the two synthetic trace genera-
32 integer and 32 floating-point registers, each of whichtion algorithms used. Theo fb andfb abbreviations in-
is 64 bits wide. The SPECIint95 benchmarks have beerdicate whether or not the instantaneous positive-errar dis
compiled with the DEG:c compiler version 5.6 with the tribution is used by the synthetic trace generator; in other
optimization flag set teO4. The traces were carefully words, whether or not a feedback loop is used. The vari-
selected not to include initialization code. ousn values indicate the specific conditional probabilities
. used in the statistical profile$?r ,,, Po,, andPy ,,. Sev-
B. O_ut-of-order architecture) eral important conclusions can be taken from these graphs.
To validate our performance modeling methodology, con-First, performance predictions are generally more aceurat
temporary out-of-order superscalar architectures were asfor processors with smaller issue widths and smaller in-
sumed. The architectures considered are organized as foktryction windows. This is due to the fact that for these
|9WS: an .inStI‘UCti_On window of 32, 64 and 128 instruc- processors, performance is more limited by machine par-
tions; an issue width of 4, 8 and 16; 2, 4 and 8 memorya|lelism than by program parallelism. Second, the feed-
units; 3, 5 and 10 non-memory units, respectively. Thepack loop in the synthetic trace generator generally leads
fetCh bandW|dth a.nd the reorder bandW|dth were Choserto lower IPC values and more accurate performance pre_
to be the same as the issue bandwidth. The latencies dfictions. This is a logical consequence of the fact that less
the instruction types are: integer 1 cycle, load 3 cyclesgata dependencies are squashed to satisfy the syntactical
(this includes address calculation and L1 D-cache accesshorrectness of synthetic traces, as explained in section IV
multiply 8 cycles, FP operation 4 cycles, single and dou-The third conclusion is that higher valuesofgenerally
ble precision FP divide 18 and 31 cycles, respectively. All |ead to more accurate performance predictions what could
operations are fully pipelined, except for the divide. be expected since these statistical profiles contain mere in
A dynamic memory disambiguation strategy is as- formation than statistical profiles with lower valuesrof
sumed; re-execution is implemented to recover from mis- The second row of Figure 3 shows results of experi-
are dependent (directly or indirectly) on the misspeculate predictor and probabilistic D- and I-caches. These experi-
load. .]])] ments were conducted as follows: information is added to
The branch predictor is a hybrid predictor with a 4K the original trace as is done in the last three steps of the
meta predictor choosing between a 4K bimodal predictorsynthetic trace generation algorithm, see section IV. The
and an 8-bit gshare that indexes into a 4K predictor [6].three microarchitecture-dependent statistics are vialitia
The branch target buffer contains 512 sets and has an asgere: the branch statistics, the D-cache and the I-cache
sociativity of 4. The return address stack contains fourstatistics. From these graphs we can conclude that a prob-
entries. The pipeline in front of the instruction window apjjistic branch predictor never leads to significant perfo
contains four stages: a fetch stage, a decode stage, a regrance prediction inaccuracies. Probabilistic I-caches an
ister renaming stage and a dispatch stage which inserts thg_caches on the other hand, can lead to substantial inac-
instructions in the instruction window. curacies. This is probably due to the clustering of cache

The processor configurations simulated have a 32K di-mjsses in real program traces, which was first observed by
rect mapped L1 I-cache and a 64K 2-way set-associativgg|gmanet al. in [8] and which is not modeled here.

L1 D-cache, both having a block size of 32 bytes. The L2 e third row of Figure 3 presents overall performance

cache is a unified 512K 4-way set-associative cache withyegiction results: i.e. a synthetic trace with a probatii

a block size of 32 bytes. A load which needs to access L%,ranch predictor and probabilistic caches are considered.
cache or main memory takes 11 or 81 cycles, respectivelyThe relative IPC error varies between -8% and 14% over
C. Performance prediction accuracy the SPECint95 benchmarks for the 16-issue processor with
a window size of 128 instructions. This is significantly

Figure 3 presents the relative eri pc, better than the results reported by Carl and Smith in [2].

1P Csynthetic trace™ 1 PCreal trace

VI. RELATED WORK

Noonburg and Shen [7] presented a framework which
between the IPC value of the synthetic trace and the cormodels the execution of a program on a particular archi-
responding real trace. This is shown for several processotecture as a Markov chain. The statistical profile used here
configurations: instruction windows containing 32, 64 and is less complex than the one presented in [7], see section
128 instructions and issue widths of 4, 8 and 16 in the first,lll, and the architecture is modeled as a trace-driven sim-
the second and the third column, respectively. The firstulator which is much less complex than a corresponding
row presents the relative IPC error when only data depenMarkov chain. Moreover, Noonburg and Shen [7] did not
dencies through register and memory values are considmodel memory dependencies and assumed only one de-
ered; i.e. perfect branch prediction and perfect caches arpendency per instruction.

Arpc =
IPCreq| trace

w=32; i=4 w=64; i=8 w=128; i=16
25% Enofb; n=0 25% mnofb;n=0 25% T—|mnofb; n=0
mf;n=0 B|fb;n=0 20% mfo;n=0
Ofb;n=1 Ofb;n=1 Ofb;n=1

15% Of;n=2 15% Ofb;n=2 Of;n=2
10% mfo;n=3 10% mfo;n=3 10% mfo;n=3
o i M e “TI ﬂhﬂﬂﬁﬂ [T
o m % LI = o
= = (LA

: o S B 1
; B =™ “M i

20% [branch predictor [20% 5 ilistic branch predictor [20% [branch predictor
@ probabilistic I-cache mprobabilistic Icache W probabilistic I-cache
Oprobabilistic D-cache 7 DOprobabilistic D-cache Oprobabilistic D-cache

10% 10% 10%

5% J 5% 5% H H

0% = H = = ﬂ 0 .D—_ELL 0% 4 0% o !_u_‘ —
5% 1 5%

-5%

-10% -10% 0%

15% 5% -15%

20% mnof;n=0 20% mno fb; n=0 20% Hnof; n=0
mh;n=0 min= Wio:n=0

15% Ofin=1 15% Ofo;n=
Of;n=2 Omin=

15% Ofb;n=1
Ofo;n=2

:mmmmﬂmmm:m mmmzL Mmmh
g

5

-10% -10% -10%

gce
go
ijpeg
vortex
perl
gce
go
iipeg
vortex
perl
gce
go
vortex
perl

compress
m88ksim
compress
m88ksim
compress
m88ksim

Figure 3: Performance prediction accuracy: the relativ@ éorA; p between the IPC value of the synthetic trace and
the corresponding real trace. The first row: synthetic tnaitk perfect branch predictor and perfect caches; second ro
real trace with probabilistic branch predictor and proltiati¢c caches; third row: synthetic trace with probabitdiranch
predictor and probabilistic caches.

Carl and Smith [2] proposed a hybrid approach, where REFERENCES

a s_ynthetlg 'nStrUCt'on tra_ce was genergted b.aSEd ON €X§r) B. Black and J. P. Shen. Calibration of microprocessafqumance
cution statistics and fed into a trace-driven simulator, as = models.IEEE Computer31(5):59-65, May 1998.

is done her.e'. .The work presented .here IS a Contmu_atlork] R. Carl and J. E. Smith. Modeling superscalar processarstatisti-
of the work initiated by Carl and Smith [2] by suggesting " ¢4 simulation. InWorkshop on Performance Analysis and its Impact
several Improvements: Incorporating memory dependen- on Design (PAID), held in conjunction with the 25th Annuakt
cies, using more detailed statistical profiles and guagante ~ national Symposium on Computer Architecture (ISCléhe 1998.
ing syntactical correctness O_f t.he synthetic traces. AS 3] T.M. Conte, M. A. Hirsch, and K. N. Menezes. Reducingestass
result, the performance predictions reported in this paper for effective trace sampling of superscalar processorsPrateed-
are far more accurate than those reported in [2] ings of the International Conference on Computer DesigrCD},

pages 468-477, October 1996.

[4] M. Franklin and G. S. Sohi. Register traffic analysis ftreamlin-
ing inter-operation communication in fine-grain parallebgessors.
VIl. CONCLUSION In Proceedings of the 22nd Annual International Symposium bn M
croarchitecture (MICRQ)pages 236-245, December 1992.
'.” this paper, It was .Sh.own how t.he perform_ance predlc- 5] J. L. Hennessy and D. A. PattersonComputer Architecture: A
tion accuracy of statistical modeling can be increased by ~ quantitative ApproachMorgan Kaufmann Publishers, third edition,
enhancing the statistical profiles and by guaranteeing syn- 2003.
taf:tlca”y gor.reCt synthet|c traces. As a result, theo reI'[] S. McFarling. Combining branch predictors. Technicap@rt WRL
ative prediction errors reported here range fror_n -8% 10"~ TN-36, Digital Western Research Laboratory, June 1993.

14% over the SPECint95 benchmarks for a 16-issue out- -)
f-ord ith instructi ind £128 i [7] D.B. Noonburg and J. P. Shen. A framework for statisticaldeling
or-or .er proce§sor with an instrucuon win OW,O_ In- of superscalar processor performance.Phoceedings of the Third
StrUCtlonS, WhICh are far mOfe aCCUI'ate predICtlonS than International SympOS"Jm on High_Performance Computehm-

those reported by Carl and Smith in [2]. ture (HPCA) pages 298-309, February 1997.

[8] J. Woldman, B. Mandelbrot, L. W. Hoevel, J. Knight, andR@sen-
feld. Fractal nature of software-cache interactidBM Journal of
Research and DevelopmeR7(2):164-170, March 1983.

