
Performance Analysis using Coloured Petri Nets

Lisa Wells
CPN Centre, Dept. of Computer Science, University of Aarhus

Åbogade 34, 8200 Århus N, Denmark
wells@daimi.au.dk

Abstract

This paper provides an overview of improved facili-
ties for performance analysis using coloured Petri nets.
Coloured Petri nets is a formal method that is well suited
for modeling and analyzing large and complex systems. The
paper describes steps that have been taken to make a dis-
tinction between modeling the behavior of a system and ob-
serving the behavior of a model. Performance-related facil-
ities are discussed, including facilities for collecting data,
running multiple simulations, generating statistically reli-
able simulation output, and comparing alternative system
configurations.

1 Introduction

A large body of research is concerned with using formal
methods for performance analysis [1]. Most of this research
focuses on the use of sophisticated methods for generat-
ing and solving analytical models, such as continuous-time
Markov chains, for performance analysis. An advantage of
using analytical models is that they can provide exact an-
swers regarding the performance of a model. However, for
even small configurations of a system it may be impossible
to generate the analytical models needed for performance
analysis due to the state explosion problem. Furthermore, it
can be difficult to create accurate and understandable mod-
els of industrial-sized systems when using, e.g. low-level
Petri nets.

Coloured Petri nets [9, 11] (CP-nets or CPN) is a formal
method that is well suited for modeling and analyzing large
and complex systems for several reasons: hierarchical mod-
els can be constructed, complex information can be repre-
sented in the token values and inscriptions of the models,
and mature and well-tested tools exist for creating, simulat-
ing, and analyzing CPN models. In the past, simulation of
CP-nets has primarily been used for debugging, validation,
and checking of logical correctness.

CP-nets and the Design/CPN tool [3, 6] have been used
to analyze many computer and telecommunication systems.

Verification studies have analyzed the functionality of pro-
tocols, e.g. WAP [8] and RSVP [15]. A few performance
studies have also been done, e.g. in the areas of web servers
[16], ATM network algorithms [4], and bank transaction
processing [2]. Design/CPN can be compared to tools such
as GreatSPN and ExSpect (see [14] for references and addi-
tional tools).

This paper provides an overview of improved facilities
for simulation-based performance analysis using coloured
Petri nets. This paper will focus on how CP-nets can be
used to analyze network protocols, but the facilities dis-
cussed here can be used to analyze any kind of system. Net-
work protocols are particularly interesting because it is of-
ten important to analyze both the functionality and the per-
formance of a protocol. One of the strengths of CP-nets is
that they can be used for both functional and performance
analysis. A general-purpose simulation tool such as Arena
[10] provides sophisticated and excellent support for ana-
lyzing the performance of many kinds of systems, including
networks. However, it is virtually impossible to analyze the
functionality of a system using such a simulation package.

The paper is structured as follows. Section 2 introduces
a CPN model of a stop-and-wait protocol that will be used
as an example throughout the paper. Section 3 discusses
steps that have been taken to separate modeling the behavior
of a system from observing the behavior of the model in
Design/CPN. Section 4 presents the improved performance
facilities for Design/CPN and related tools. Future work is
discussed in Sect. 5.

2 Example: Stop-and-Wait Protocol

This section briefly introduces a CPN model of a stop-
and-wait protocol from the data link control layer of the OSI
network architecture. The protocol is quite simple, but it is
sufficient for introducing the basic concepts related to using
CP-nets for performance analysis. The following descrip-
tion of the model is taken from [11] which provides both a
thorough description of the model and a practical introduc-
tion to CP-nets.

Proceedings of the 10th IEEE Int�l Symp. on Modeling, Analysis, & Simulation of Computer & Telecommunications Systems (MASCOTS�02)
1526-7539/02 $17.00 © 2002 IEEE

Send

PacketBuffer

Sender
HS

Receiver
HS

Communication Channel
HS

Received

PacketBuffer

TransmitData

Frame

ReceiveAck

Frame

TransmitAck

Frame

ReceiveData

Frame

Upper Layers Send
HS

Upper Layers Recv
HS

Figure 1. Stop-and-wait CPN model.

Figure 1 shows an overview of a timed, hierarchical CPN
model of the stop-and-wait protocol. The system consists
of a sender transmitting data packets to a receiver across
an unreliable, bi-directional communication channel. The
sender accepts data packets from protocols in the upper lay-
ers of the OSI network architecture. Similarly, the receiver
passes packets that have been properly received to the upper
layers of the protocol stack. The Upper Layers Send mod-
ule generates packets on-the-fly during a simulation of this
CPN model. The Communication Channel module provides
a simple model of an unreliable network in which packet
loss and overtaking can occur. The stop-and-wait protocol
is modeled in detail in the Sender and Receiver modules.

Figure 2 shows the Sender part of the CPN model. The
states of a CP-net are represented by a number of tokens po-
sitioned on places, which are drawn as ellipses. Each token
carries a data value, such as an integer, a string, or a list of
booleans. No tokens are shown in Fig. 2. The events of a
CP-net are represented by means of transitions, which are
drawn as rectangles. The arc inscriptions determine which
tokens are removed and added when transitions occur.

Let us consider what happens when the sender accepts
a packet from the upper layers. Incoming packets from the
upper layers are added to a packet buffer (Send). A token
on the place Send models the buffer, and the token carries
a data value that is a list of strings, where each string rep-
resents the contents of a packet. The sender can only ac-
cept (Accept) a new packet from the upper layer after an
acknowledgment has been received for the previous packet.
If an acknowledgment has been received, then status of the
sender (NextSend) indicates the sequence number for the
next packet. When a packet is accepted, a sequence num-
ber is added to the packet to form a data frame which then
is ready to be sent (Ready). The status of the sender is
changed to reflect that it is sending a packet that has not
yet been acknowledged. It takes 5 units of time to process

ReceiveAck
Frame

P InTransmitData
Frame

P Out

Send

PacketBuffer

P I/O

Receive
AckFrame
@+5

Accept

@+5

Waiting

DataFrame

1‘(0,"")

TimeOut

NextSend

1‘(0,acked)

SeqxStatus

Send
DataFrame

Ready

DataFrame

ackframe rn

(sn,p)

dframe

dframe@ignore

p::packets

(sn,acked)

(sn,status)

if (rn > sn)
then (rn,acked)
else (sn, status)

(sn,notacked)

packets

dframe

(dataframe dframe)@+5

dframe

dframe
@+TExpire()

(sn,notacked)

Figure 2. Sender module.

each incoming packet from the upper layers. A parameter
in the model indicates whether the periods between packet
arrivals are constant or exponentially distributed. Another
parameter indicates the average amount of time that passes
between the arrival of two successive packets. The rest of
the Sender module works in a similar manner.

For this system, there are several performance measures
of interest, including average queue length of packets wait-
ing to be sent, average packet delay and network utilization.
Packet delay is the time from which a packet is put in the
Send buffer on the sender side until it is properly received
by the receiver. The utilization of each direction of the bi-
directional channel can be measured. Changing the values
of parameters in the model will have profound effects on
the performance of the model. Section 4 describes how the
performance of systems can be analyzed using CP-nets.

3 Monitoring Model Behavior

A number of libraries and tool extensions (see [6] for
references) have been developed for Design/CPN during the
past decade. These libraries include support for message
sequence charts (MSC), updating domain-specific graphics,
and data collection. These facilities can be used both to
inspect and to control a simulation of a CP-net. While there
are many advantages to having this extra functionality, there
are a number of disadvantages as well. The most serious
problem is that it is often necessary to modify a CPN model
in order to be able to use the libraries mentioned above.
Modifying a model may have unexpected and undesirable
effects on the behavior of the model.

Ideally in a simulation tool, there should be a clear dis-
tinction and separation between modeling the behavior of
the system and monitoring the behavior of the model. With

Proceedings of the 10th IEEE Int�l Symp. on Modeling, Analysis, & Simulation of Computer & Telecommunications Systems (MASCOTS�02)
1526-7539/02 $17.00 © 2002 IEEE

new so-called monitors, it possible to inspect or control a
simulation of a CP-net without having to modify the model.
A monitor is activated after each step in a simulation, and if
certain conditions are met, then it will observe the current
state of the model and/or the event that occurred most re-
cently, and it will take appropriate actions based on the ob-
servation just made. Each monitor contains three functions,
check, observe, and act, that perform these services.
These functions can be either predefined or user-defined. A
number of standard monitors that can be used for any CP-
net have been defined. It is also possible for a user to define
monitors that are tailor-made for a specific CP-net.
Simulation Breakpoint Monitor. A simulation breakpoint
monitor can be used to control a simulation. Any number
of monitors can be defined for a given CP-net, and moni-
tors can interact with each other. For example, one stan-
dard monitor can count the number of times the sender re-
transmits a data frame, a second monitor can reset the first
monitor each time a new packet is accepted from the upper
layers, and a third monitor can stop a simulation when it ob-
serves that the sender has retransmitted a data frame three
times.

Monitors are easy to create. Typically, a user must select
relevant parts of a CPN model by clicking on the appropri-
ate places and transitions in the GUI of the CPN tool. Then
template code can be generated for the check and ob-
serve functions. The user can then modify the template
code to obtain the desired functionality. It is often unneces-
sary to modify the code that is generated for standard mon-
itors. For example, a standard monitor can count how many
times the sender retransmits packets in the stop-and-wait
model. In this case the user must just select the TimeOut
transition and then indicate that a simple counter monitor
must be created. This monitor will increment a counter each
time the sender retransmits a packet. An example of code
for a monitor will be shown in the next section.
Message Sequence Chart Monitor. Monitors can also be
used to create MSCs which are particularly useful when an-
alyzing the behavior of network protocols, since they can
be used to illustrate the transmission of messages. They
are also very useful for debugging CPN models. Figure 3
shows an MSC that was generated during a simulation of the
stop-and-wait model in Design/CPN. The MSC contains a
new type of arrow which is drawn after two different events
have occurred. The slope of the arrows indicate the passage
of time. Arrows in traditional MSCs are always horizontal,
and they are drawn when one event occurs.

When using monitors to draw MSCs, all of the functions
that are used to update an MSC are gathered together, rather
than being spread throughout the CP-net. With monitors, it
is possible for the user to get an overview of the places and
transitions that a monitor observes without having to exam-
ine all places and transitions in the CP-net. With monitors it

.Sender Network Receiver

SendAck1

SendAck 1

Sending 1

Sending 1
Receiving Packet 1

Transmitting Ack 1

Sending 1

Receiving Ack 1

Sending 2
Receiving Packet 1

Transmitting Ack 1

Receiving Ack 1

Figure 3. Message sequence chart.

is also very easy to inspect the state of a CPN model during
a simulation, whereas in the past it was only possible to ob-
serve the events that occurred. It is not necessary to modify
a CP-net to use monitors.

4 Performance Analysis using CP-nets

This section discusses the new facilities that provide sup-
port for doing simulation-based performance analysis using
CP-nets. Since a typical CPN user is not likely to be an
experienced data analyst, the new facilities have been de-
signed to assist CPN users in defining and running statisti-
cally reliable simulation experiments.

4.1 Data Collection

Each performance measure is calculated by a data col-
lection monitor. The simulator and performance facili-
ties for Design/CPN are implemented in Standard ML [13]
(SML). Figure 4 shows the code (that has been edited for
clarity) for a data collection monitor that calculates the av-
erage number of packets in the sender’s packet buffer. The
monitor is named PacketQueue.

It is not important to understand the details of Fig. 4, but
the functionality of the monitor will be described in general
terms. In order to calculate the average number of packets
in the buffer it is sufficient to measure the number of pack-
ets in the buffer only when the number of packets changes,
i.e. either when a new packet is added to the buffer or when
a packet is removed from the buffer. The Event data type
shows that this monitor only observes two kinds of events:
Generate and Accept events. The monitor will be activated
only when the transitions Generate (in the Upper Layers
Send module, not shown) and Accept occur. For this mon-
itor, the check function only needs to return true each
time it is evaluated, i.e. it will return true when either the
Generate event or the Accept event occurs. The observe
function is then called to measure the number of packets in
the buffer, and this is achieved by measuring the length of

Proceedings of the 10th IEEE Int�l Symp. on Modeling, Analysis, & Simulation of Computer & Telecommunications Systems (MASCOTS�02)
1526-7539/02 $17.00 © 2002 IEEE

structure PacketQueue = struct 1
datatype Event = 2

Generate of int * {i, packets} 3
| Accept of int * {sn, packets, p, dframe} 4

5
fun check (event, (SendMark: PacketBuffer list)) = 6

true; 7
8

fun observe (event, (SendMark: PacketBuffer list)) = 9
if (length SendMark)>0 10

then length(hd SendMark) 11
else 0; 12

13
fun act (observedval, (SendMark: PacketBuffer list)) = 14

DataCollection.update(index, observedval); 15
16

fun monitor (event: Event, moduleInstance) = 17
let val SendMark = 18

PlaceSend.getMarking(moduleInstance) 19
in if check(event, SendMark) 20

then act(observe(event, SendMark), 21
(SendMark)) 22

else () 23
end; 24

end 25

Figure 4. Data collection monitor.

the one list that is found on the place Send. Most of the code
in Fig. 4 is generated completely automatically. The user is
only responsible for defining the bodies of the check and
observe functions, represented by lines 7 and 10-12, re-
spectively.

Standard data collection monitors that can be used to
calculate a variety of different performance measures have
been defined. For example, one standard data collection
monitor calculates the average number of tokens on a place
during a simulation, another counts the number of times a
particular transition occurs. The individual data values that
are observed by a data collection monitor can be saved in
an observation log file, and they can be used to calculate
statistics.

4.2 Analysis of One System

Performances measures that are calculated via simula-
tion modeling are only estimates of the true performance
measures. One of the dangers of using simulation for per-
formance analysis is accepting the output statistics from a
single simulation of a model as the “true answers”. To
compound the problem even further, analysis of output data
from one simulation is sometimes done using statistical for-
mulas that assume independence when in fact the data is
dependent. New features have been developed that provide
support for properly analyzing the performance of a CP-net.

Multiple Simulations. One of the desirable features for
simulation modeling tools is a single command to make
several simulation runs of a given model. A new batch
script (which is just an SML function) can be used to run
a given number of independent, terminating simulations in
Design/CPN. Data is automatically collected and saved dur-
ing each simulation. Each terminating simulation can pro-
vide one estimate for each of the performance measures that
have been defined for a particular model.
Confidence Intervals. Confidence intervals1, which indi-
cate how precise estimates of performance measures are, are
calculated when using the batch script from above. Batch
data collection monitors are created before running a num-
ber of simulations, are updated after each simulation, and
are then used to calculate confidence intervals which will
be saved in a batch performance report.
Simulation Output. Simulation output is used both for an-
alyzing the performance of the system and for presenting
the results of the analysis. At the end of a single simulation,
all statistics from the simulation can be saved in a simula-
tion performance report. Both simulation and batch per-
formance reports can now be saved in plain text, LATEX and
HTML formats. Additional facilities can be used to create
a simple, yet organized directory system containing simula-
tion output. Several gnuplot [7] scripts are now generated
for plotting the contents of observation log files. Additional
new files contain the IID1 data that is used for calculating
confidence intervals.

4.3 Comparing Alternative Configurations

Another batch script has been developed for running
simulations for a number of different configurations of a
CPN model, assuming that a new configuration can be spec-
ified by changing numerical parameters in the model. The
user must specify a range of values that one or more pa-
rameters should take on, and the batch script will ensure
that system parameters are changed between simulations,
and that a given number of simulations are run for all given
combinations of parameter values. A configuration status
file contains the values of the parameters for each configu-
ration, and it indicates which directory contains the output
for each configuration.

One well-known technique for comparing two alter-
native system configurations is to calculate the so-called
paired-t confidence interval1 for the expected difference for
a given performance measure. A paired-t confidence inter-
val reveals whether or not the performance of two configu-
rations are significantly different based on the available ob-
servations, and paired-t confidence intervals can easily be
calculated by post-processing standard output files with an
external application.

1For further details, see e.g. [12].

Proceedings of the 10th IEEE Int�l Symp. on Modeling, Analysis, & Simulation of Computer & Telecommunications Systems (MASCOTS�02)
1526-7539/02 $17.00 © 2002 IEEE

4.4 Variance Reduction

One of the drawbacks of simulation analysis is that it
can take a long time to run a simulation. This problem is
amplified if many simulations need to be run in order to
achieve desired confidence intervals. Variance-reduction
techniques1 (VRT) can sometimes be used to reduce the
number or length of simulations that need to be run. Com-
mon random numbers1 (CRN) is a useful and practical
variance-reduction technique when comparing alternative
system configurations . The idea of CRN is to use the same
random numbers for each of the configurations being stud-
ied. The effects of CRN may be improved if the simulator
can be forced to use the same random numbers for the same
purpose in each configuration. This process is called syn-
chronizing1 the random numbers. Not only is CRN a use-
ful VRT, but it also implies that a fairer comparison of the
configurations can be made because the experimental condi-
tions are the same for each configuration. Support has been
added for using CRN when simulating CP-nets precisely
because of the appeal of this notion of fairer comparisons.

The easiest way to implement synchronization is to use
different sources of random numbers for each random input
process. Therefore, the random number generator that is
used to generate random variates in Design/CPN has been
modified, such that it can provide 10 streams of random
numbers with one million independent random numbers in
each stream. The random seeds for each of the streams can
be reset. For example, in the stop-and-wait model a cer-
tain degree of synchronization can be achieved by using one
stream for generating arrival times and another stream for
generating network delays.

5 Conclusions and Future Work

This paper has presented an overview of improved fa-
cilities supporting simulation-based performance analysis
using coloured Petri nets. With monitors it is possible to
make an explicit separation between modeling the behav-
ior of a system and observing the behavior of a system.
As a result, cleaner, more understandable CPN models can
be created, and the risk of introducing undesirable behav-
ior into a model is reduced. New facilities have been cre-
ated for running multiple simulations, generating statisti-
cally reliable simulation output, comparing alternative sys-
tem configurations, and reducing variance when comparing
configurations. Most of the facilities presented here have
been implemented, however, some have been implemented
for Design/CPN and others for CPN Tools [5], which will
eventually replace Design/CPN. Therefore, not all of them
work together. Since CPN Tools will be the successor to
Design/CPN, a current project is working on updating and
porting the facilities from Design/CPN to CPN Tools, and

the performance-related facilities will be incorporated into
CPN Tools as part of this project.

There are certain disadvantages associated with using
simulation based performance analysis: no definitive an-
swers can be provided, and it may take a long time to run
enough simulations in order to calculate sufficiently accu-
rate performance measures. However, it is the best alterna-
tive for analyzing the behavior of industrial-sized models.

References

[1] E. Brinksma, H. Hermanns, and J.-P. Katoen, editors. Lec-
tures on Formal Methods and Performance Analysis, volume
2090 of Lecture Notes in Computer Science. Springer, 2001.

[2] L. Cherkasova, V. Kotov, and T. Rokicki. On scalable net
modeling of OLTP. In Proceedings of 5th International
Workshop on Petri Nets and Performance Models, pages
270–279. IEEE Computer Society Press, 1993.

[3] S. Christensen et al. Design/CPN - a computer tool for
coloured Petri nets. In E. Brinksma, editor, Tools and Al-
gorithms for the Construction and Analysis of Systems -
TACAS’97, volume 1217 of Lecture Notes in Computer Sci-
ence, pages 209–223. Springer-Verlag, 1997.

[4] H. Clausen and P. R. Jensen. Analysis of Usage Parameter
Control algorithms for ATM networks. In S. Tohmé and
A. Casada, editors, Broadband Communications II (C-24),
pages 297–310. Elsevier Science Publishers, 1994.

[5] CPN Tools. Online: http://wiki.daimi.au.dk/cpntools/.
[6] Design/CPN. Online: http://www.daimi.au.dk/designCPN/.
[7] gnuplot. Online: http://www.gnuplot.info/.
[8] S. Gordon and J. Billington. Analysing the WAP class 2

wireless transaction protocol using coloured Petri nets. In
M. Nielsen and D. Simpson, editors, Application and The-
ory of Petri Nets 2000, volume 1825 of Lecture Notes in
Computer Science, pages 207–226, 2000.

[9] K. Jensen. Coloured Petri Nets: Basic Concepts, Analysis
Methods and Practical Use. Vol. 1, Basic Concepts. Mono-
graphs in Theoretical Computer Science. Springer-Verlag,
1997. 2nd corrected printing.

[10] W. D. Kelton, R. P. Sadowski, and D. A. Sadowski. Simula-
tion with Arena. McGraw-Hill, 2nd. edition, 2002.

[11] L. M. Kristensen, S. Christensen, and K. Jensen. The prac-
titioner’s guide to coloured Petri nets. International Journal
on Software Tools for Technology Transfer, 2:98–132, 1998.

[12] A. M. Law and W. D. Kelton. Simulation Modeling & Anal-
ysis. McGraw-Hill, 3rd edition, 2000.

[13] L. C. Paulson. ML for the Working Programmer. Cambridge
University Press, 2nd edition, 1996.

[14] Petri Nets Tool Database.
Online: http://www.daimi.au.dk/PetriNets/tools/db.html.

[15] M. Villapol and J. Billington. Modelling and the initial anal-
ysis of the Resource Reservation Protocol using coloured
Petri nets. In K. Jensen, editor, Proceedings of the Workshop
on Practical Use of High-Level Petri Nets, DAIMI PB-547,
2000.

[16] L. Wells et al. Simulation based performance analysis of
web servers. In R. German and B. Haverkort, editors, Pro-
ceedings of the 9th International Workshop on Petri Nets and
Performance Models, pages 59–68. IEEE, 2001.

Proceedings of the 10th IEEE Int�l Symp. on Modeling, Analysis, & Simulation of Computer & Telecommunications Systems (MASCOTS�02)
1526-7539/02 $17.00 © 2002 IEEE

