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Abstract Atmospheric modeling is considered an important

tool with several applications such as prediction of air pollution

levels, air qualitymanagement, and environmental impact assess-

ment studies. Therefore, evaluation studies must be continuously

made, in order to improve the accuracy and the approaches of the

air quality models. In the present work, an attempt is made to

examine the air pollutionmodel (TAPM) efficiency in simulating

the surface meteorology, as well as the SO2 concentrations in a

mountainous complex terrain industrial area. Three configura-

tions under different circumstances, firstly with default datasets,

secondly with data assimilation, and thirdly with updated land

use, ran in order to investigate the surface meteorology for a 3-

year period (2009–2011) and one configuration applied to predict

SO2 concentration levels for the year of 2011.Themodeled hour-

ly averaged meteorological and SO2 concentration values were

statistically compared with those from five monitoring stations

across the domain to evaluate the model’s performance.

Statistical measures showed that the surface temperature and

relative humidity are predicted well in all three simulations, with

index of agreement (IOA) higher than 0.94 and 0.70 correspond-

ingly, in all monitoring sites, while an overprediction of extreme

low temperature values is noted, with mountain altitudes to have

an important role. However, the results also showed that the

model’s performance is related to the configuration regarding

the wind. TAPM default dataset predicted better the wind vari-

ables in the center of the simulation than in the boundaries, while

improvement in the boundary horizontal winds implied the per-

formance of TAPM with updated land use. TAPM assimilation

predicted the wind variables fairly good in the whole domain

with IOA higher than 0.83 for the wind speed and higher than

0.85 for the horizontal wind components. Finally, the SO2 con-

centrations were assessed by the model with IOA varied from

0.37 to 0.57, mostly dependent on the grid/monitoring station of

the simulated domain. The present study can be used, with rele-

vant adaptations, as a user guideline for future conducting simu-

lations in mountainous complex terrain.

1 Introduction

Atmospheric models are routinely used in several regions

around the globe in order to study the air quality and/or apply

environmental friendly policies. These models are also useful

as decision support systems in cases of pollution episodes

(e.g., San Jose et al. 2005) and/or accidents in industrial or

other facilities. The atmospheric air quality models can rough-

ly be categorized depending on the approach they follow into:

Box models, Gaussian models, Eulerian models, Lagrangian

models, and computational fluid dynamic (CFD) models

(Russell and Dennis 2000; Seaman 2000). The Box model is

the simplest approach, which uses an algorithm that assumes

that the air is shed in the shape of a homogenous box (e.g.,

Lettau 1970). Box models are used for studies focusing on

atmospheric chemistry alone; however, they lack significant

physical realism (e.g., horizontal and vertical transport, spatial

variation, etc., Russell and Dennis 2000). The Gaussian

models are the most common models in use, as they assume
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that the dispersion of pollutants by the wind is made according

to the normal statistical distribution (e.g., ISCST3,

AERMOD, US EPA 1995, 2004). These types of models are

computationally fast, but they need meteorological informa-

tion about the region of interest, which includes surface-based

and/or profiles of winds and temperature. An alternative ap-

proach in the absence of measurements is the model coupling

(e.g., Triantafyllou and Kassomenos 2002; Moussiopoulos

et al. 2004). In addition, it must be mentioned that the chem-

ical processes in Gaussian-type models are either ignored or

treated with the simplest form. The Eulerian models include

both single box models and multi-dimensional grid-based air

quality models. They solve the governing equations for each

cell of the simulation by dividing the modeling region into a

large number of cells, horizontally and vertically, to simulate

the various processes that influence the pollutants’ concentra-

tions, including chemistry, diffusion, advection, and deposi-

tion (wet and dry). Lagrangian models are used to represent

the dispersion of pollutants based on a reference point/grid by

the prevailing wind or the direction of the dust plume.

Lagrangian models are appropriate for the simulation of stack

emissions, provided that the user is aware of the number of

released particles from the stack, as well as the size distribu-

tion of pollutants. Lastly, the CFD models apply an integrated

approach to the model domain by solving the Navier-Stokes

partial differential equation system by using state-of-the-art

numerical methods. In addition, they are considered suitable

for representing more complex flows such as those that may

develop in open-pit mines (Silvester et al. 2009). A review

about the recent techniques in CFD models can be found in

Tominaga and Stathopoulos (2013).

One major fact that concerns the scientific community,

however, is the validity of the results of the aforementioned

models and how they can represent the reality in urban areas

and/or complex terrain. Another continuously debating issue

is that the measurements used for the model’s evaluation are

usually case-dependent and thus potential errors and/or biases

are not revealed in such cases. Practically, the evaluation of the

model is the ability of the latter to reproduce an observed

situation; thus, no absolute criteria can exist whether the mod-

el can be characterized as successful or not, for a variety of

reasons. One precondition for such an evaluation is the reli-

ability of the experimental data that are used for the evalua-

tion, while another can be their representativeness. Therefore,

all measured parameters in a dataset should be supplemented

with their estimated error and/or uncertainty, both statistical

and systematic, which must be taken into consideration during

the evaluation procedure. Unfortunately, for a non-case-

dependent evaluation, including the present one, such infor-

mation is not available. For that reason, in our case, the ob-

servations are assumed to represent the Breality^ and com-

ments and discussions are given in cases when their reliability

or representativeness is questioned. Several scientists have

addressed this issue of the evaluation of the models, both in

case-dependent and non-case-dependent evaluations (e.g.,

Papalexiou and Moussiopoulos 2006; Sokhi et al. 2006;

Shiang-Yuh et al. 2008; Srinivas et al. 2011). A recent step-

by-step review about the techniques applied for characterizing

the model’s performance, by identifying the key features so

that the modelers can make a suitable choice for their situa-

tion, can be found in Bennett et al. (2013). Furthermore, tools

to evaluate in a qualitative and quantitative way the atmo-

spheric models, applicable in several modeling software, have

also been developed recently (e.g., Appel et al. 2011).

This paper focuses on the evaluation of the performance of

the air pollution model (TAPM) in the region of Western

Macedonia, Greece. Despite some attempts to evaluate

TAPM in a mountainous terrain (Triantafyllou et al. 2011;

Aidaoui et al. 2014; Matthaios et al. 2016), from the current

bibliography and as far as the authors are aware, this is the first

detailed and long-term attempt to evaluate TAPM in a moun-

tainous complex terrain area. However, there have been sev-

eral studies concerning the model’s performance in a coastal

and/or flat terrain. More specifically, Luhar and Hurley (2003)

applied and evaluated TAPM for two tracer cases over a flat

terrain, and they compared the results with several other

models. They found that TAPM performs equally well as the

best of these models, even in extreme concentration statistics.

In another study, where TAPM was applied to predict hourly

urban air pollution concentrations, it was found that the model

is capable of predicting the yearlong smog and particle con-

centrations well both with and without data assimilation

(Hurley et al. 2003). In addition, concerning the evaluation

of TAPM in a coastal region, in a study made by Zawar-

Reza et al. (2005a), it was found that TAPM performs well

with good statistical indices for meteorology and pollution;

however, the authors also found that TAPM tends to overes-

timate surface wind speed over urban areas during stagnant

nocturnal conditions. This particular study attempts to exam-

ine the model’s performance for the wind flow, meteorology,

and updated land use and pollution in the mountainous com-

plex terrain area of Western Macedonia in Greece. In detail,

simulations were carried out for three continuous years (2009,

2010, and 2011) for meteorology under specific circum-

stances, with the intention of investigating the model’s perfor-

mance with and without data assimilation, as well as with

updates in land use. Moreover, a comparison of the modeled

and observed data was made and the frequencies of the local

circulations from the lake breeze as well as from mountain

flows were also presented and compared. Section 2 of the

paper describes briefly the area under investigation. In

Section. 3, a brief outline of the model and the prescribed

configurations for the simulations are illustrated, while a ref-

erence to the statistical measures used for this occasion is also

made. Section 4 describes the results both in qualitative and

quantitative way, with plots and the statistical indices that
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were used and compares the results from the model perfor-

mances with observations at the monitoring sites in the area.

Finally, in Section. 5, the conclusions of this work are given.

2 Site description

The area that was simulated in this study covers the geo-

graphical axis of Amyntaio-Ptolemaida-Kozani basin

(APKB), which is a mountainous complex terrain area of

Western Macedonia, located in the Northwestern part of

Greece. It is characterized as broad, relatively flat-bottom

basin surrounded by tall mountains with heights from 600m

to more than 2000 m above mean sea level. More particu-

larly, in the eastern sides of the area, located are the tall

mountains of Voras (2525 m) and Vermio (2100 m), while

in the western sides, situated are the tall mountains of Vitsi

(2128 m), Askio (2111 m), and Burinos (1866 m), and in the

southern part are the mountains of Pieria (2190m). APKB is

approximately 50 km in length and the width ranges from

10 km (center part) to 25 km (boundaries), and it has also

sloping terrain geometry of 2° every 1050 m from south to

north. The sides of the basin are covered with wooded lands,

isolated trees, scrubs, and sparse vegetation. Furthermore,

in the south part of the basin, the artificial lake of Polifitos is

located, which is about 3 kmwide and 25 km long. This lake

together with the four natural lakes of Petron, Vegoritida,

Ximaditida, and Zazari in the north and northwest part char-

acterizes the topography as fairly complex.

The area can be categorized as a heavily industrialized

area, since four lignite power plant stations (PPS) of

4000 MW in total (Fig. 1) operate in the basin, producing

the greatest amount of the total electrical energy produced in

Greece. The lignite used by these PPSs is mined in the near-

by open-pit mines and transported to the stations via a net-

work of trucks and conveyor belts. One lignite power station

675 MW (PPS5) also operates in Bitola/FYROM, close to

the border of the area of interest. In particular, the most

significant emissions arising from the combustion of lignite

and from mining of the lignite coal, as well as from the

transport of lignite ash, are mainly particles (fly ash and

fugitive dust) and sulfur dioxide (SO2) (Triantafyllou and

Kassomenos 2002).

The climate of the area is continental Mediterranean with

low temperatures during winter and high ones during sum-

mer, signifying rather strong temperature inversions during

the whole year (Triantafyllou et al. 1995). The prevailing

blowing winds in the center of the basin are weak to mod-

erate and are mostly from the NW/SE direction due to

channeling of the synoptic wind, since the NW/SE axis co-

incides with the major geographical axis of the basin

(Triantafyllou 2001, 2003). In the basin, more than

150,000 people live and work mainly in the two major

towns of Kozani and Ptolemaida, with about 60,000 and

40,000 inhabitants, respectively. There are also several vil-

lages with populations ranging from numerous 100s to

1000s of inhabitants. Figure 1 below depicts the topography

of the investigated area, including the two major cities, the

power plant stations (PPS), as well as the peripheral moni-

toring stations that were used for this study.

3 Model overview and simulation details

3.1 Overview of the model TAPM

The air pollution model (TAPM) developed by Commonwealth

Scientific and Industrial Research Organization (CSIRO) is an

operational, coupled prognostic meteorological and pollutant dis-

persion model. It is a three-dimensional (3D) terrain following

sigma-coordinate, PC-based, nestable, prognostic meteorological

and air pollution model driven by a graphical user interface. It

uses global input databases of terrain height, land use, leaf area

index, sea-surface temperature, and synoptic meteorological

analyses and can be used in one-way nestable mode to improve

efficiency and resolution. TAPM uses the fundamental equations

of atmospheric flow, thermodynamics, moisture conservation,

turbulence, and dispersion, wherever is practical. TAPM also

consists of coupled prognostic meteorological and air pollution

concentration components, eliminating the need to have site-

specific meteorological observations. For computational

Fig. 1 Topography of the APKB greater area showing the power plant

stations in the region (PPS1 to PPS5). PS3, the oldest PS, stopped

operating since 2014. The two major cities (white square, Kozani and

Ptolemaida) and themonitoring stations (white triangle) used in this study

are also showed as well as the artificial lake of Polifitos and the major

mountains. Elevations are in meters

Performance and evaluation of a coupled prognostic model 887



efficiency, it includes a nested approach for meteorology and air

pollution, with the pollution grids optionally being able to be

configured for a subregion and/or at finer grid spacing than the

meteorological grid, which allows a user to zoom-in to a local

region of interest quite rapidly.

More specifically, the meteorological component of

TAPM predicts the local-scale flow against a background

of larger-scale meteorology provided by input synoptic

analyses (or forecasts) that drive the model at the bound-

aries of the outer grid. It solves momentum equations for

horizontal wind components; the incompressible continui-

ty equation for the vertical velocity in a terrain-following

coordinate system; and scalar equations for potential virtu-

al temperature, specific humidity of water vapor, cloud

water/ice, rain water, and snow. Explicit cloud microphys-

ical processes are included. Pressure is determined from

the sum of hydrostatic and optional non-hydrostatic com-

ponents, and a Poisson equation is solved for the non-

hydrostatic component. The non-hydrostatic option is im-

portant if there are cases with significant vertical accelera-

tions (e.g., steep terrain, fronts, and deep convection). In

this study, we use the hydrostatic option, which is appro-

priate for the present application and takes into accaunt low

winds. Measurements of wind speed and direction can op-

tionally be assimilated into the momentum equations as

nudging terms. The turbulence closure terms in the mean

equations use a gradient diffusion approach, including a

counter-gradient term for the heat flux, with eddy diffusiv-

ity determined using prognostic equations for E-ε. A veg-

etative canopy, soil scheme, and urban scheme are used at

the surface, while radiative fluxes, both at the surface and

at upper levels, are also included. Surface boundary con-

ditions for the turbulent fluxes are determined via the

Monin-Obukhov surface-layer scaling variables and pa-

rameterizations for stomatal resistance. The air pollution

component of TAPM uses the predicted meteorology and

turbulence from the meteorological component and con-

sists of an Eulerian grid-based set of prognostic equations

for pollutant concentration and an optional Lagrangian par-

ticle mode that can be used on the inner-most nest for

pollution from selected point sources to allow a more de-

tailed account of near-source effects, including gradual

plume rise. The Lagrangian mode uses Hurley’s (1994)

PARTPUFF approach, whereby the released mass at a

given instant is represented as a circular puff in the

horizontal plane, and the vertical motion of this puff is

determined via a Lagrangian particle approach. More

information about the model’s equations and parameteri-

zations, including the numerical methods and a summary

of some verification studies, can be found in Hurley et al.

2001; Hurley et al. 2005; Hurley et al. 2008, while the

application of the model in light-winds can be found in

Luhar and Hurley (2012).

3.2 Model configurations

The model’s version 4.0.5 ran for 3-year period (2009, 2010

and 2011) in Western Macedonia for meteorology and 1 year

(2011) for air pollution. For the meteorology simulations, the

model ran with three different configurations (described be-

low in detail) and for air pollution simulations, one configu-

ration was used (also described in detail below). The input

synoptic fields of the horizontal wind components, tempera-

ture, and moisture required in TAPM for the aforementioned

years were derived from the US National Centers for

Environmental Prediction (NCEP) reanalysis, which were

available on a global scale with a resolution of 2.5° longi-

tude × 2.5° latitude on 17 pressure levels (the lowest five

being 1000, 925, 850, 700, and 600 hPa) every 6 h (Luhar

and Hurley 2012). For the topography, global terrain height

data on a longitude/latitude grid at 30-s grid spacing (approx-

imately 1 km) based on public domain data available from the

US Geological Survey; Earth Resources Observation Systems

(EROS) was used. Soil characterization of the area was de-

rived from the global soil texture types on a longitude/latitude

grid at 2-degree grid spacing (approximately 4 km) based on

FAO/UNESCO soil classes dataset. As far as the meteorolog-

ical simulations are concerned, three configurations were

made as already mentioned above. The first configuration

with the default datasets of the model (TAPM-D) ran for a

3-year period with three nested grid domains of 45 × 45 hor-

izontal grid points at 18, 6, and 2 km (see Fig. 2). The vertical

levels of the model are fixed and ranging from 10 to 8 km. In

the current study, we selected 25 vertical levels to capture the

synoptic circulation at 10 m, 25 m, 50 m, 100 m, 150 m,

200 m, 250 m, 300 m, 400 m, 500 m, 600 m, 750 m, 1 km,

1.25 km, 1.5 km, 1.75 km, 2 km, 2.5 km, 3 km, 3.5 km, 4 km,

5 km, 6 km, 7 km, and 8 km. For this model configuration,

147 h were required for the integration of the run on an

Intel(R)Core(TM)2DuoCPU E8400@3.00GHz, 1.96GB

RAM. The selected outputs for this run were five monitoring

stations in order to cover the whole latitude and longitude of

the area, named as Amyntaio (AMY), Pentavrysos (PENT),

Pontokomi (PONT), Kato Komi (K.KOMI), and Koilada

(KOIL) (see Figs. 1 and 2). The second configuration

(TAPM-A) was made by adding an additional parameter, data

assimilation in winds, for four places (AMY, PENT, PNT and

K.KOMI), while keeping all the other parameters (vertical

levels, domains, grid spacing, synoptic datasets, topography,

and land use) unchanged. It should be mentioned here that

although KOIL station was selected as output in this run, no

assimilation was inputted. The exclusion of data assimilation

for this monitoring station was made on purpose. The inten-

sion was to see the influence of data assimilation in the results

of predicted winds from the model in a monitoring site which

is affected not only from mountain flows but also from ter-

rain’s rotated winds. The second simulation took 162 h of run
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time in the same hardware. The third configuration (TAPM-

LU) was made by applying updates in land use to the inner-

most grid domain (2-km resolution) while keeping the other

characteristics the same as the default configuration without

data assimilation. The basic modified variables that were

changed in TAPM-LU were the vegetation roughness length

with values 0.55 m (Forests –low sparse, woodland), 0.06 m

(Grassland, mid-dense tussock), and 0.045 m (Pasture/herb-

field, mid-dense, seasonal), while for urban and industrial cat-

egories (wherever added), the roughness length that was cho-

sen was 1 and 1.5 m and the anthropogenic heat flux Au was

30 and 150 Wm−2 respectively. The types for the land use/

vegetation are based on Graetz (1998), while the chosen urban

category can be regarded as one of medium-density urban

conditions, with parameters specified by Oke (1988). The

above changes were considered necessary since industrial ac-

tivity of the PPSs and restored areas from the nearby open-pit

mines, as well as the most populated city (Kozani), are not

included in the default land use database. Figure 3 depicts the

updates in land use characterization that was made for this

configuration. The completion of this simulation required

the same run time (147 h) as the default configuration. The

pollution configuration had the same horizontal and vertical

grid spacing as the above three meteorological configurations,

and for pollution/dispersion, the horizontal points were

77 × 113 at 9-, 3-, and 1-km spacing (note that pollution grid

can be a nested subset to the meteorological grid at finer grid

spacing). Eleven stacks from the four power plants in the area

were selected as pollution sources, while Lagrangian plus

Eulerian approaches were also selected to represent the dis-

persion near the sources more accurately. In the Lagrangian

mode, the travel time of particles before conversion to

Eulerian mode was 900 s (default value). This value is long

enough to allow the maximum ground level concentration

from elevated point sources to be represented by the

Lagrangian particle module, while keeping the run time to a

minimum. As already stated above in the area, there are sev-

eral other sources (e.g., open pit mines) emitting uncontrolled

fugitive dust emissions in the atmosphere (Triantafyllou 2000,

Samara 2005). Thus, this study focuses on the SO2 which is

considered to be mainly emitted from power plants rather than

the open-pit mines, representing a rather Btracer-gas^ pollut-

ant. Table 1 illustrates the stack characteristics that were used

for the simulation. Emission rates are a critical parameter re-

garding the air-pollution simulations. The available emission

rates in our study were average daily values, which were taken

by the Greek Public Power Corporation from measurements

made in stacks. The model has two options for the simulation

of the emission rates: constant and cycled. In this study, the

second option was chosen (216 h) for the air-pollution simu-

lations and practically repeated 41 times in order to cover

1 year of simulation. From the data available, the emissions

Fig. 2 a Grid domains of the

simulation. b Inner grid of the

simulation (2-km resolution)

depicting the topography of the

area as well as the monitoring

stations. Elevations are in meters
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from the power plants were variable and mainly dependent on

the demand of the energy consumption. Furthermore, it was

also observed from the data that there were days where not all

the stacks were in operation due to maintenance and therefore

the second option was preferred (hourly) over the first one

(constant). The simulations for pollution were carried out with

1-day spin up, while the duration of each run lasted about

47 h.

3.3 Model performance indices

Statistical measures for model evaluation are of great im-

portance, because they reveal both to the user and the

developer of the model potential errors and biases. Such

statistical measures are proposed by several researchers

(e.g., Willmott 1981, Pielke 1984, Hanna 1989, Hanna

and Chang 2012) in order to evaluate the model’s

Fig. 3 a Land use cover in TAPM from default database USGS. b

Updated land use cover in TAPM. Definition of colors: orange:

pasture-mid-dense (seasonal), blue: water, light-blue: forest-mid-dense,

turquoise: forest-low sparse (woodland), light-green: grassland-mid-

dense tussock, red: urban, pink: industrial

Table 1 Stack’s characteristics

included in the simulation of

pollution

Height (m) Radius (m) Exit temperature (K) Exit velocity (m/s)

PPS1 Stack 1 200 4.6 423 19a

24b

Stack 2 200 4.6 423 19a

24b

Stack 3 200 4.6 423 19a

24b

PPS2 Stack 1 200 3.2 415 14.6a

16.1b

Stack 2 200 3.2 415 14.6a

16.1b

Stack 3 200 3.2 415 18.5a

19.8b

Stack 4 200 3.2 415 18.5a

19.8b

PPS3 Stack 1 115 3.6 495 15a

15.2b

Stack 2 115 3.6 495 15.3a

15.6b

Stack 3 150 4.6 495 15.2a

15.2b

PPS4 Stack 1 200 4.6 422 14a

18b

Source: Greek Power Public Corporation (2011, personal communication)
aAverage value January–May
bAverage value July–December
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performance. In the present study, the calculated statistics

for the TAPM performance for average hourly data are

based on the recommendations by Willmott (1981) and

Pielke (1984). More specifically, for meteorology, we

used Pearson correlation coefficient (Cor) between ob-

served (O) and predicted (P) values, mean value, standard

deviation (σ), root mean square error (RMSE) = P−Oð Þ
h

2�1=2, index of agreement (IOA) = 1− �P−Oð Þ
�

2= P−O
�

�

�

�

�

þ

O−O
�

�

�

�Þ 2�, SKILLR = RMSE/σ
ο
, and SKILLV = σP/σO,

where σO and σP is the standard deviation of observations

and predictions, respectively. Especially, the IOA is a

measure of how well the predicted variations around the

mean observations are represented, with ranges from 0 to

1, and as reported in the literature, a number greater than

0.5 generally indicates a good prediction (Hurley et al.

2001, P. Zawar-Reza et al. 2005a). As far as pollution

statistics are concerned, the applied statistic measures

were the same as the meteorological evaluation but also

added measures such as Bias = O−P, fractional bias

(FB) = 2 O−P
� �

= Oþ P
� �

, fraction of predictions within

a factor of two of the observations (FAC2), and robust

highest concentration (RHC) = C Rð Þ þ C−C Rð Þ
� �

ln

3R−1ð Þ½ =2�, where C(R) is the Rth highest concentration

and C is the mean of the top R–1 concentrations. The

RHC, is a more robust statistic for judging the perfor-

mance of the model in simulating the extreme end of the

concentration distribution than the actual peak value, mit-

igating in that way the undesirable influence of unusual

events while still representing the magnitude of the max-

imum concentration (Cox and Tikvart 1990). The value of

R = 11 is used here to include the average of the top ten

concentrations, which is considered an acceptance statistic

for model performance evaluation (Hanna 1989).

4 Results and discussion

4.1 Prediction of surface meteorology

TAPM was configured and ran for a 3-year period from 1

January 2009 until 31 December 2011 for meteorology with

three different configurations (see Sect. 3.2). The selected out-

puts were taken at five selected places in order to be compared

with the observations. In order to examine the behavior of the

modeled winds towards APKB wind roses between the ob-

served and modeled values were constructed for the entire

available data (Fig. 4). It is encouraging to note that the model

is able to simulate the prevailing flow patterns in all three con-

figurations for all stations apart from the station of KOIL. This

exception is attributed, probably, to the fact that the station’s

location is idiomorphic (see Figs. 1 and 2, for the location).

More specifically, for the station of AMY (northern bound-

aries), the TAPM-D is able to calculate the prevailing N flow,

with an underestimation of south sector in general and over-

estimation of NE winds. Data assimilation performance im-

proves the calculated winds for the station significantly.

TAPM-A performance predicts the prevailing N wind and

the magnitude of the winds from E, SE, and S direction, which

were underestimated by the TAPM-D. However, TAPM-A

also tends to overestimate NE flows as the TAPM-D. The flow

patterns from the third configuration (TAPM-LU) perform

likewise the default. For the station of PENT (center of the

simulation domain), the TAPM-D simulates the prevailing

winds coming from the N and S directions and also represents

well the magnitudes of NE and SW flows. Nevertheless, the

model seems to overestimate for the station the NW flows by

10% and the W winds by 5%. For the same station, TAPM-A

predicts both the magnitude and the sequences of the domi-

nant N and S flows, and a better prediction is evident for the

NW flows, which were overestimated by 10% in TAPM-D.

The TAPM-LU winds here have the same behavior as in

TAPM-D simulation with a slight improvement in the NE

flows. For the station of PONT (center of the simulation do-

main), TAPM-D predicts both the sequence and the magni-

tude of the dominant wind for the station which comes mainly

from the NW direction. It is worth mentioning that TAPM-D

simulates also the N, SE, and S flows for the station, which

occur less frequently than NW flows. Yet, the model overes-

timates the westerly flows as it does in the PENT station.

TAPM-A simulation represents better the flow patterns for

the station, but still, a slight overestimation of westerly flows

by 5% remains. The third configuration’s TAPM-LU flow

patterns have the same behavior for the direction as in the

simulation of TAPM-D with a slight difference in wind mag-

nitude. On one hand, the reason for the overestimation of

westerly wind is not quite clear, since both stations (PENT,

PONT) are located in the center part of the basin and there are

no physical obstacles to change the direction of the wind. On

the other hand, experiments made by a tethered balloon in the

area showed the existence of weak westerly flows in the center

of the basin mostly above the stagnant calm layer near the

surface and mainly after sunset (Triantafyllou et al. 1995). It

is also worth mentioning that this calculated westerly flow

overestimation was also found by other researchers (see

Zawar-Reza et al. 2005a), who applied the model in a coastal

complex terrain. Specifically, Zawar-Reza et al. 2005a found

that TAPM, instead of calculating calms, produces weak west-

erly (drainage) winds by gentle sloping. Furthermore, one

must also note that other mesoscale numerical models have

the similar problems in sloping complex terrains (Zawar-Reza

et al. 2005b). As far as the K.KOMI station is concerned

(southern boundary), TAPM-D calculates the flow patterns

for the station, with an overprediction in the dominant NW

flow by about 15% and a minor underestimation in easterlies
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Fig. 4 Wind roses constructed from hourly averaged data for 2009, 2010, and 2011, observed and modeled data by TAPM-D, TAPM-A, and TAPM-LU

for the five monitoring sites of the region

Fig. 4 (continued)
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(5%) and SE winds by about 12%. The magnitude of the

station’s flows is also slightly underestimated by the model.

TAPM-A simulation flow patterns display a better calculation

than TAPM-D simulation regarding the observed values, with

only a slight underprediction in N and SE flows by about 5%.

In the last configuration of TAPM-LU, the calculated flow

pattern of the station is slightly different from the other two

simulations. In detail, TAPM-LU slightly underestimates the

W winds by about 4%, while simultaneously overestimating

faintly the SE by about 5%. The station’s location is affected

by the thermal circulation of the lake of Polifitos (about 5 km

in horizontal distance), and detailed hourly frequencies of

winds from observed values against all three simulations are

presented in Sect. 4.2. Finally, in the station of KOIL, the

TAPM-D performance illustrates an underestimation of the

W flow by 15%. This flow comes from the rotations of the

prevailing N and NW flow in the center of the basin due to the

idiomorphic topography, and it is hard to be calculated.

Moreover, as it can be seen from the wind roses TAPM-D

overpredicts the E flows. The SE, S, and SW flows are esti-

mated well, with a small underprediction in SE by about 7%.

These flows are attributed to orographic flows from the moun-

tains, and detailed frequencies are discussed below in Sect.

4.2. The same behavior occurs in the other two performances

of TAPM-A and TAPM-LU.

As far as the surface temperature is concerned, the time

series of the hourly averaged temperature between the ob-

served and the calculated values from the three simulations

are illustrated in Fig. 5. From this figure, it is rather obvious

that the model is able to capture the variations of temperature

in all simulations for all the monitoring stations. On the other

hand, an overprediction is evident in the extreme low temper-

atures, which increases in the lower temperatures. Typical

winter (February 2009) and summer (June 2010) cases with

extreme low and extreme high temperatures are presented in

Fig. 6. One reason for this difference maybe has to do with

some of the model input parameters. So, soil texture charac-

terization remained default and parameters such as snow, deep

soil volumetric moisture constants, and deep soil temperature

were unchanged in all simulations (see Sect. 3.2 for

configuration details), mainly due to unavailable experimental

data. However, such data influence the model’s performance

and they would rather improve the predicted results. Another

possible reason for the difference in the low temperatures is

that the temperature is measured in all monitoring stations at

about 3 m AGL, while the predicted values are at 10 m AGL

(first model level). It should be mentioned here that other

mesoscale prognostic models reveal differences in

temperature both in summer and winter cases in complex

mountainous terrains, which in fact are higher than those

found in our case (e.g., Seaman et al. 1995, Zhang et al.

2011, De Meij et al. 2009). More particularly, the study of

Seaman et al. (1995), who used MM5 in a coastal and

mountainous complex terrain (San Joaquin valley) in summer

simulations, found that in some cases, local terrain effects

(mainly in coastal range ridge areas) can lead to errors in

temperature to as much as 10 °C. The more recent study made

by Zhang et al. (2011), who also used and evaluated MM5 in

China, found that the largest bias in the model’s simulated

temperature occurred in winter predictions. Zhang et al.

(2011) also highlighted that the meteorological predictions

of MM5 agree more closely with observations at urban sites

than those at coastal and mountain sites where the model

performance deteriorates because of complex terrains, influ-

ences of urban heat island effect, and land/sea breezes, as well

as higher elevations and snow cover. Additionally, De Meij

et al. 2009 evaluated MM5 and WRF models in a mountain-

ous complex terrain of Po valley and found that both models

underestimate the temperature, and that WRF predicts higher

temperature averages than MM5. In our case, the largest dif-

ference in hourly extreme low temperatures during winter

months was 8.7 °C in December 2011 (not shown here) in a

monitoring station, which has the lowest altitude and it is

located close to the artificial lake of Polifitos at about

4.5 km, horizontal distance and close to the mountains of

Burinos at about 5.6 km, horizontal distance (K.KOMI).

During the winter months, the lake’s temperature is warmer

than the land’s temperature and there is more moisture in the

air; therefore, the temperature at night will not have a signif-

icant cool down. Nevertheless, the monitoring station is also

nearby the tall mountains of Burinos (see Fig. 1, westerly from

the monitoring site) with altitude near 1860 m AGL, and a

potential downslope density-driven cold flow in the case when

the mountain’s ridges are covered with snow might result into

this difference in extreme low temperatures. Detailed frequen-

cies in the winds for the monitoring site are depicted and

discussed later on (see Sect. 4.2.). The modeled temperature

during winter months also differs in the rest of the stations but

with smaller modifications regarding the observed tempera-

ture. As for the summer extreme high temperatures, the vari-

ation of modeled temperature is generally good in most of the

monitoring sites. The days, in which there are differences

between the observed and simulated temperatures, in all the

monitoring sites during the night hours, are due to the quick

passage of a surface depression (e.g., 14 and 18 June 2010).

However, some almost permanent difference is depicted in

PENT monitoring station also in the lower temperatures.

The biggest difference was found in July 2010 and it was

7.5 °C. PENT monitoring site is located close to the foothills

of the Vermio mountain with the highest altitude in the area,

more than 2000mAGL (see Fig. 1e from the monitoring site),

and a potential downslope flow after the sunset and the rapid

cooling of the valley (Triantafyllou et al. 1995) in summer

months might result into this difference. The above issues,

which indicate the complexity of the simulated terrain, are

challenging scientific subjects and address objectives for
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future work. Evaluation and sensitivity analysis by adding or

changing parameters that might influence the model’s results

(based on measurements) will be made (e.g., deep soil mois-

ture or temperature parameters), and, additionally, numerical

simulations and comparison with other prognostic models will

be conducted as a part of an additional forthcoming work.

Table 2 presents the statistical performance measures ob-

tained for TAPM-D, TAPM-A, and TAPM-LU using hourly

averaged data of wind speed (WS), horizontal wind compo-

nents (U, V), temperature (T), and relative humidity (RH), all

at 10 m AGL, measured for 3-year period at the five afore-

mentioned stations (see Fig. 2 for location). In particular, for

the station of AMY, which is located at the north boundaries of

the domain, there are differences between the modeled and

observed values for the wind speed and wind components

(U, V), with the model to overestimate the mean WS by

1 m/s. The mean temperature (T) is predicted well and the

RMSE is lower than the standard deviation, while

IOA = 0.95 indicates that skill is shown by the model.

Temperature scoring a higher IOA is a fairly typical result

for TAPM as reported in the literature (Hurley et al. 2001,

2003). The IOA for the winds is near the threshold with scores

0.55, 0.49, and 0.53 for the WS and components U and V,

respectively. For the same station, TAPM-A scores are better.

In detail, TAPM-A predicts very well the mean WS of the

station with only 0.1 m/s difference. The RMSEs are lower

than the standard deviations of the observations, and the

model shows skill in predicting the WS, as well as the com-

ponents (U, V) of the station, a fact which is also verified by

the higher correlation coefficient and IOA. The scores for

those indices are >0.71 (Cor) and >0.83 (IOA) for all wind

variables. The temperature predictions remained largely unaf-

fected and as good as the TAPM-D. The third simulation

(TAPM-LU) scores for AMY are almost the same as TAPM-

D, with a slight improvement in all statistical measures.

For the station of PENT, which is located in the center of

the simulation, TAPM-D estimates the mean WS and wind

component V well, with their RMSEs to be lower than their

standard deviations and with correlation coefficient values

>0.60 and IOA >0.70. As for component U, the IOA score

is at the threshold 0.50. The other meteorological values of the

station (RH, T) are predicted well by the model, with IOA

values 0.73 and 0.95 for relative humidity and temperature,

respectively. TAPM-A statistical performance for the same

station is enhanced. The correlation coefficient and the IOA

are higher than 0.83 and 0.89 for all wind variables, while

temperature and relative humidity scores remained almost

the same as TAPM-D. In the TAPM-LU, all statistical indices

for the station of PENT follow the same pattern as TAPM-D.

The performance of TAPM-D for the station of PONT,

which is also located in the center of the simulation domain,

illustrates a very good prediction of the mean WS with only

0.1 m/s difference. The horizontal wind components are also

predicted well. The IOA score for the wind variables is 0.62

Fig. 5 Time series of the hourly average temperature at 10 m AGL between observed and predicted values by TAPM-D, TAPM-A, and TAPM-LU for

2009–2011
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(WS), 0.66 (U), and 0.78 (V), while for temperature and rel-

ative humidity is 0.98 and 0.77. The TAPM-A scores are

enhanced in all wind predictions, comparing to those by

TAPM-D. The model demonstrates better skill, which is also

verified by correlation coefficient as well as IOA, with their

values being higher than 0.85 and 0.90 for all wind variables,

correspondingly. For the meteorological variables of temper-

ature and relative humidity, the model’s score was mainly

unchanged and as good as the first simulation. For the same

station, TAPM-LU performance indicates a light decrease in

WS scores, but simultaneously a slight improvement in com-

ponents U and V, with the temperature and relative humidity

to score the same values with the previous two simulations.

As far as the K.KOMI is concerned, a station which is

located close to the southern boundaries of the simulation’s

domain, TAPM-D, predicts well both the mean WS with

0.4 m/s difference and the horizontal component U with

0.1 m/s difference. However, an underestimation is evident

in the model’s performance in predicting the mean horizontal

component V, a fact which is also supported by the low cor-

relation coefficient and IOA (0.36, below threshold of 0.5).

Temperature and relative humidity scores remain as high as in

the other stations with their IOA being 0.96 and 0.74. TAPM-

A results signify a rather good prediction in all meteorological

variables of the station. The scores of IOA are 0.87 and 0.93

for the wind speed and horizontal component U, and particularly

component V, which was underpredicted in the previous simu-

lation scores an IOA = 0.92. TAPM-LU statistical measures

show the same scores as TAPM-D for the variables of wind

speed, temperature, and relative humidity, and a fair improve-

ment is scored for the horizontal components U and V. The

improvement of the wind components is also verified by the

improvement of the correlation coefficient as well as the IOA.

Concerning the station of KOIL, TAPM-D slightly overes-

timates the mean wind speed by 0.8 m/s. The IOA is near or at

the threshold for all the wind variables, while the scores of

temperature and relative humidity are as good as in the other

stations. For this station, the other two simulations (TAPM-A

and TAPM-LU) generally follow the same statistical patterns

and scores as TAPM-D, but as mentioned, no assimilation was

included in TAPM-A for this station (see Sect. 3.2.). The

SKILLR and SKILLV are generally within the value limits,

while the low SKILLR ≈ 0.40 regarding the temperature per-

formance was also found by other verification studies of

TAPM (e.g., Hurley et al. 2001; Hurley et al. 2003; Hurley

et al. 2005; Zawar-Reza et al. 2005a; Zawar-Reza et al.

vi)i)

ii) vii)

Fig. 6 Hourly averaged time series representing typical cases for the extreme temperature variation in Fig. 5. Plots i, ii, iii, iv, v are for winter case and vi,

vii, viii, ix and x are for summer case
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2005b). In summary, from the hourly average data series and

the statistical measures of all three simulations, TAPM is able

to predict well the overall surface temperature in all stations of

the region. Relative humidity is also predicted well with IOA

higher than 0.70 in all simulations. The wind speed and the

horizontal components U and V are predicted better in the

stations located in the center of the simulation, which also

score the higher IOA. The stations that are located in the

boundaries of the simulation score IOA lower than or at the

threshold, a fact which can be improved when data assimila-

tion is included. It should be mentioned here that the above

analyses concerning the behavior of the wind variables is in

agreement with the grid sensitivity analysis of TAPMmade by

Zoras et al. 2007, who found that the model’s uncertainty is

higher in the boundaries and lower in the center of the simu-

lation domain.

viii)iii)

ix)
iv)

Fig. 6 (continued)

v) x)

Fig. 6 (continued)
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4.2 TAPM predictions over lake breezes and mountain

flows

Local atmospheric circulations from lake/sea breezes and/or

anabatic and katabatic flows can play an important role in the

wind flow and consequently in the concentrations of air pol-

lutants. As it was observed by earlier studies in the APKB, the

artificial lake of Polifitos (Fig. 1) plays a critical role to the

determination of concentration levels. This lake creates an

easterly, southeasterly flow, which develops mainly during

noon and afternoon hours and affects the concentrations of

pollutants in the area (Triantafyllou 2001). This section exam-

ines TAPM performance in predicting the frequencies of such

flows in a mountainous complex terrain, by comparing the

observed and modeled frequencies of the wind. In particular,

for the lake breeze mechanism, we examine the monitoring

site of K.KOMI, which is near the lake, and for the mountain

flows, the monitoring site of KOIL (see Fig. 1 for the exact

location).

Considering the lake breeze, Fig. 7 shows the frequencies

of the winds for the monitoring station of K.KOMI. TAPM-D

calculates the variation of the prevailing NW flow, which has

the same development pattern to the observations, with high

frequencies during morning and night hours and a decline

during the noon and early afternoon hours. At noon and after-

noon hours as already mentioned above, eastern and south-

eastern flows develop in the area from the thermal circulation

of the artificial lake of Polifitos. TAPM-D predicts the east-

erlies with lower frequency. Despite the capture of the time

development of those flows, since those flows both in the

observations and in the TAPM-D predictions appear at late

morning until late afternoon hours, TAPM-D underestimates

SE flows. Nevertheless, TAPM-D follows the patterns of N

flow, since it predicts both the magnitude of the frequencies

and the peak that occurs between 09:00–10:00. As far as the

westerlies are concerned, TAPM-D predictions for the devel-

opment of those winds differ from the observations. Those

westerly flows are attributed to mountain Bourinos and since

they differ from the observations; this fact explains well the

above overprediction in temperature’s extreme low values as it

was discussed earlier (see Sect. 4.1). In the second simulation,

TAPM-A predicts the main NW flow of the station, both in

time and in frequency comparable to the observed values. In

parallel, the wind frequencies in TAPM-A are predicted better

than the TAPM-D simulation. The E flows are calculated bet-

ter than the TAPM-D simulation, and generally, they have the

Fig. 7 Hourly variation frequencies of the wind flow in the station of K.KOMI for the entire data
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same behavior as the observations. These easterly flows de-

velop between 13:00 at noon and 18:00 at the afternoon with

scalar intensity both in the model and in the observations. As

for the SE flows, TAPM-A simulates their time development

and their frequencies better than TAPM-D; however, a minor

difference in comparison to the observed frequency magni-

tude is evident. All other flow frequencies in TAPM-A are

simulated with similar behavior and development as the ob-

servations. Finally, in the third simulation, TAPM-LU predicts

the development of the dominant NW flow as the previous

two simulations and similar to the observations. The frequen-

cies of the easterlies are estimated better than the TAPM-D but

not as good as in the TAPM-A and measurements. It is worth

mentioning that the development of the SE flow in this simu-

lation is calculated better; however, the peak in these flows has

a longer duration compared to the measurement values. In

general, it can be highlighted from the above results that the

model is capable in predicting the development of the breeze

coming from the artificial lake of Polifitos in all simulations,

since it captures the shifts that occur in the prevailing NWand

in E flows from the lake and vice versa.

Concerning the mountain flows, the station which might be

affected the most is the station of KOIL. It was observed from

the detailed frequencies that all three runs had the same be-

havior; in Fig. 8, the depicted wind frequencies are for the

observed and the calculated by the TAPM-D values. The sta-

tion’s location is very idiomorphic due to the specific orogra-

phy, and the prevailing W wind in the station (Fig. 4) comes

by the terrain-forced rotations of the prevailing NW wind in

the center of the APKB. This wind is very hard to be calcu-

lated by the model, and as it is evident from the detailed

frequencies of the station, the model partly predicts this W

flow as a NW flow. The local mountain flows in the station

are attributed to the mountain Skopos with elevation of more

than 900 m AGL, which is located southern from the station

(see Figs. 1 and 2). Additionally, the mountain Vermio, which

is located northeastern from the monitoring station with more

than 2000m of elevation, also influences the winds. The flows

from the mountain Skopos have directions from SE, S, and

SW, and they develop according to the observations during

late afternoon - early night hours, while the flows from the

mountain Vermio have NE direction, and they develop during

early to late afternoon hours (Fig. 8). The model, as shown

from the Fig. 8, predicts the overall variation pattern and the

development of the observations for the northeastern flows in

the higher altitudes (mountain Vermio); however, it underes-

timates their frequency and misses the peak during the late

afternoon hours. Additionally, TAPM captures the overall var-

iation of southerly flows which are attributed to the mountain

Skopos; however, it misses their general development, espe-

cially during late afternoon and early night hours. In general, it

can be underlined that TAPM is able to capture the lake breeze

development; however, it underestimates the development of

some mountain orographic flows.

4.3 Prediction of surface pollution

As clarified earlier, the hourly averaged modeled SO2 concen-

trations are extracted from the innermost nested domain at the

nearest grid point of each of the five monitoring stations and

compared with average hourly observations. Despite the fact

that the air pollution problem in the area is focused mainly on

PM concentrations which exceed the air quality standards

(Triantafyllou 2001, 2003), in this work, SO2 concentrations

are analyzed. Given that the problem regarding the PM is

more complicated, due to the large number of emission

sources in the area (lignite power plants, open mines, quarries,

agricultural activities, biomass burning, and even Saharan

dust), the SO2 is actually used in the frame of the present study

as a kind of Btracer gas^ emitted from the stacks. This

Fig. 8 Hourly variation frequencies of the wind flow in the station of KOIL for the entire data
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pollutant was also used for the evaluation of TAPM in other

industrial areas of flat terrain (Hurley et al. 2008). The hourly

values from which the observed concentrations of SO2 were

less than or equal to 2.7 μg/m3 were excluded for the compar-

ison. The above value is the detection limit of the model in

SO2 concentrations (Luhar and Hurley 2004). All the remain-

ing predicted and observed concentrations were grouped and

then sorted, and therefore, there was no time correspondence

between the two groups. The Quantile-Quantile plot in Fig. 9

depicts the sorted predicted concentrations against the sorted

observed SO2 concentrations, in order to examine any bias

over the value distribution. This plot is suitable according to

Chang and Hanna (2004), because it quickly reveals biases at

low or high concentrations, since it ranks each of the observed

Fig. 9 Quantile-Quantile plots of TAPM predicted vs. observed SO2 concentrations for the stations of AMY, PENT, PONT, KOIL, and PETR
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and predicted data separately from the lowest to the highest.

Thus, for example, the third lowest predicted concentration

would be plotted versus the third lowest observed concentra-

tion. The plot indicates that the overall concentration distribu-

tion is generally good for all the stations across the simulated

domain, apart from AMY, where an underprediction is illus-

trated, and PONT, where the underprediction occurs in the

higher concentrations. Table 3 depicts the model performance

statistics between the observed and predicted concentration

levels for 2011, paired in both time and space, for the afore-

mentioned monitoring stations in the meteorology section,

while Fig. 10 shows the comparison of the RHC. According

to the statistical measures (Table 3), for the station of AMY

(located in the north boundaries of the basin), the model

underpredicts the SO2 concentrations, a fact which is also

shown by all other indices and the IOA = 0.37. However, this

underprediction of the model could be attributed to the PPS5

contribution (see Fig. 1), which is close to the border of the

area of interest. This specific PPS5, which was not included in

the simulations due to unavailable and uncertain emission

rates, is consisted of an outdated technology and in a typical

simulation case concerning the West Macedonia region,

Trianafyllou et al. (2000) using a Lagrangian particle disper-

sion model coupled to a mesoscale prognostic model showed

that pollutants were transported from this PPS5 to the south

and consequently into the north part of APKB. For the station

of PENT, the model predicts well the mean SO2 concentration,

but in the overall prediction, a slight underestimation is evi-

dent for the concentration levels that is also verified by the

IOA = 0.46. One possible reason for this slight underestima-

tion of the model might be the site’s location, since it is the

second northern monitoring station after AMY station (Figs. 1

and 2), and a possible contribution from the PPS5 might result

into this underprediction of the overall concentration levels.

On the other hand, the model is able to predict the extreme

SO2 concentrations for the station, as indicated by the RHC in

Fig. 10, where the predicted and observed values are almost

equal. For the station of PONT, the model also predicts well

the mean concentration of SO2. The IOA is 0.51, and the

scores of FAC2 and FB show that the overall predictions of

the concentration levels are fair. For the same station, the

model underestimates the RHC concentrations. As already

mentioned above, in the area and next to the power plant

stations, there are many hectares of land which are covered

by open-pit mining activities. Therefore, and since the station

is between two PPSs (Fig. 1), a potential random episode

which is probably caused by the trucks from a nearby traffic

road of the open pit-mines might result into this difference.

Instead of the K.KOMI station, where no SO2 concentrations

were available, we compared the modeled SO2 concentrations

for the station of PETR, which is located in about 8-km hor-

izontal distance from the station of K.KOMI (Fig. 1) and is

still under the influence of the lake breeze of Polifitos. The

predictions for the station of PETR are well with

IOA = 0.52. The model also predicts the mean and extreme

concentrations for the same station, as indicated by Table 3

and Fig. 10, respectively. Regarding the station of KOIL,

the model predicts well the mean and the overall SO2 con-

centrations of the station with IOA = 0.57. Moreover, the

RHC is also predicted well by TAPM with generally good

agreement. Finally, although the overall performance of the

model in predicting the SO2 concentrations for the region is

considered good, it is still lower than the typical examples of

simulation by TAPM from other regions (Hurley et al.

2003). We estimate that the uncertainties of the inputs such

as emission rates (hourly instead of daily) and stacks exit

velocity (averaged of 6 months), as well as the complexity

of the region in the physiographic characteristics in con-

junction with the open-pit mining activities (we updated

land use in restored areas of the open-pit mines, not the main

activities or the topography), are some possible reasons for

this discrepancy.

Table 3 Model performance

statistics for the hourly averaged

SO2 concentrations

Omean (μg/

m3)

Pmean (μg/

m3)

σO (μg/

m3)

σP (μg/

m3)

Bias (μg/

m3)

IOA COR FB FAC2

AMY 6.2 2.9 7.4 3.0 3.34 0.37 0.15 0.72 0.47

PENT 2.6 1.6 2.7 3.4 1.03 0.46 0.21 0.48 0.62

PONT 3.6 2.9 10.7 9.1 0.71 0.51 0.30 0.21 0.81

KOIL 2.3 1.6 2.8 3.0 0.73 0.57 0.48 0.35 0.70

PETR 1.2 0.8 3.9 3.5 0.44 0.51 0.33 0.40 0.67

Fig. 10 Robust highest concentrations between modeled and observed

data for all the monitoring stations
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5 Conclusions

The current study presented the performance and evaluation

of the mesoscale prognostic meteorological and air pollution

model TAPM in a mountainous complex terrain industrial

area in Greece for a 3-year period (2009–2011), under differ-

ent conditions.

For the meteorology, it was found that TAPM predicted

well the surface temperature and relative humidity. However,

TAPM underestimated the extreme low temperatures during

winter and occasionally the low temperatures during summer.

The biggest difference in extreme low temperatures (winter

period) was observed in a site close to both a lake and a

mountain. For the extreme high temperatures (summer peri-

od), the biggest difference was found in a site close to the

highest mountain.

TAPM simulated fairly well the dominant surface wind

flows across the domain. However, it overestimated the west-

erlies in the center of the simulation domain both with and

without data assimilation. This result merits further investiga-

tion. Default predictions are fair and better for all the wind

variables in the center of the simulation domain. Data assim-

ilation, wherever used, significantly improved the perfor-

mance of the model, both in the boundaries and in the center

of the simulation domain. Land use updates were considered

positive, since a significant improvement was evident, espe-

cially, for the boundary horizontal wind components.

The performance for the complex terrain local flows (lake

breeze and mountain flows) showed that TAPM simulated the

shifts which occurred between the development of the prevail-

ing wind and the flows from the lake in all simulations.

Default dataset underestimated the magnitude of the frequen-

cies of the lake flows, while an improvement occurred in

datasets with data assimilation and updated land use.

Regarding the local mountain flows, TAPM captured the over-

all variation and the development of such flows attributed to

higher altitudes, but it underestimated their frequency.

Furthermore, TAPM underestimated the development of the

mountain flows in the lower altitudes.

For the air pollution, TAPM predicted the mean and ex-

treme values of the SO2 in the simulated domain, while the

statistical measures showed fair agreement. TAPM’s perfor-

mance for the prediction of pollution is expected to be en-

hanced if more detailed/accurate data inputs of the pollution

sources were available and were taken into consideration.

From the above concluding results, it can be recommended

that TAPM can be used for operational year-long simulations

without data assimilation in order to save time. However, the

user should carefully choose the location of the outputs, since

they are more sensitive in the boundaries of the simulated

domain. Data assimilation is recommended for simulations

of short duration or for case studies since they significantly

improve the winds both in the center and in the boundaries of

the simulated domain. Updated land use, in the applied extent,

improves TAPM results and if combined with newly remote

sensing observations, they can give augmented predictions.

However, interesting is to see the combined use of updated

land use cover and data assimilation, a configuration which

requires much time in order to be build and it will be a forth-

coming work.

Finally, evaluation and comparison with other prognostic

models need to be made, in order to investigate the influence

of a new soil texture, as well as the parameters of snow. Deep

soil temperature and moisture based on experimental data

must be evaluated, followed by a sensitivity analysis, while

the emission inventories from potential attributed sources

(open pit mine and transboundary power stations) will also

be investigated.
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