IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 11, NOVEMBER 2001 1309

Performance and Power Effectiveness in Embedded
Processors—Customizable Partitioned Caches

Peter Petrov and Alex Orailoglivember, IEEE

Abstract—This paper explores an application-specific cus- embedded processors. We present an architecture capable of in-

tomization technique for the data cache, one of the foremost corporating the application-specific information in a postmanu-

area/power consuming and performance determining microarchi- facturing fashion, utilizing a reprogrammable data path.
tectural features of modern embedded processors. The automated Applicati ’ ifi tomizati f bedded
methodology for customizing the processor microarchitecture PRiication=specHic CUSomizaton or eMmbedtea-processor

that we propose results in increased performance, reduced power Microarchitectures is a novel technique that transfers appli-
consumption and improved determinism of critical system parts cation information to the processor microarchitecture. In this
while the fixed design ensures processor standardization. The case, the microarchitecture can perform informed decisions
resulting improvements help to enlarge the significant role of a5 4 how to handle various architecture-specific actions.
embedded processors in modern hardware—software codesign . S .
techniques by leading to increased processor utilization and re- Fundamentally,_ this approach extends t_he communication “_nk
duced hardware cost. A novel methodology for static analysis and between compiler and processor architecture by transferring
a microarchitecturally field-reprogrammable implementation ofa application information directly to the microarchitecture

customizable cache controller thatimplements a partitioned cache without modifying the existent instruction set. Consequently,

structure is proposed. Partitioning the load/store instructions .4 itional mainstream compiler algorithms remain unaffected
eliminates cache interference; hence, precise knowledge about the

hit/miss behavior of the references within each partition becomes _by the proposed cust_omlzatlon t_echnlque. Th_e_statlc analysis
available, resulting in significant reduction in tag reads and information transfer is accomplished by utilizing a repro-

comparisons. Moreover, eliminating cache interference naturally grammable data path. The reprogrammable implementation we
leads to a significant reduction in the miss rate. The paper presents propose allows application changes to be effected in field by

an algorithm for defining cache partitions, hardware supportfor 44ing the new application information in a manner similar
customizable cache partitions, and a set of experimental results.

The experimental results indicate significant improvements in to program _reloadlng. The reprogrammability is achieved on
both power consumption and miss rate. a microarchitectural level rather than through gate-level ap-
Index Terms—Application-specific processors, cache memories proaches such as field-programmable gate arrays (FPGAS), thus

embedded processors, low-power processors, partitioned caches. aCh'eV'_ng cost-efficient performance and power Consumptlon.
In this paper, we present a methodology for application-spe-

cific customization of the data cache of embedded processors
. INTRODUCTION for improved power and performance. In a typical embedded

ROCESSOR performance, power consumption, and detg_nvironm_ent, the gpplicatiop v_vorlﬂoad is fi)fed for extended pe-
Pministic execution time impose significant constraints offods of time, making specialization techniques even more vi-
modern hardware—software codesigned systems [1]. The pafle. Consequently, more aggressive application-specific opti-
tioning of hardware and software is a major issue in these syBization techniques can be applied in order to significantly re-
tems [2]. Implementing larger parts of the system as softwaf{§iCe power consumption and increase performance.
results in reduced cost, improved time to market, system mainPOWer consumption is becoming an ever more impor-
tainability, and flexibility. However, reduced performance anfnt characteristic in modern embedded applications. The
increased power consumption are typically observed due to gria-cache subsystem constitutes a significant fraction of the
nature of the general-purpose processors. Yet processor c&p&d number of transistors in a modern microprocessor and
with all their attendant benefits of flexibility, maintainability, Consumes a large part of the total power. Aniillustrative example
and high volumes are natural candidates for further utilizatiol§, the StrongArm-110 architecture [3], wherein the cache con-
if the performance and power limitations were to be alleviate8UMes 43% of the total power. It is evident that new techniques
In this paper, we propose a methodology for application-sp@€ needed to leverage the available application information
cific customization of the data cache, one of the foremost perféff0 @ power and performance efficient embedded-processor

mance and power stipulating components of modern high-eRghitecture. . _ _
The domain of numerical algorithms, the cornerstone of
image and voice processing and various wireless applications,

Manuscript received April 16, 2001; revised June 29, 2001. This work wagffers from significantly elevated cache miss rates, as associ-
supported by an IBM Graduate Fellowship and by the National Science Fou

dation under Grant 0082325. This paper was recommended by Guest Editc@r}le.d algorlthms Operate on a number of arrays of data with Iarge
Marwedel. volume. Consequently, high interference amongst memory
The authors are with the Computer Science and Engineering Departmq@ferencesl frequently residing in nested |00p3' and cache
University of California at San Diego, La Jolla, CA 92093-0114 USA (e-mail; . . .
ppetrov@cs.ucsd.edu; alex@cs.ucsd.edu). pollution caused by sequential array references are typically

Publisher Item Identifier S 0278-0070(01)09990-0. observed. Furthermore, a high amount of redundancy exists

0278-0070/01$10.00 © 2001 IEEE

1310 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 11, NOVEMBER 2001

in reading and comparing tags for references with hit/miss Il. RELATED WORK
behavior that can be predetermined well in advance because (\fl

. : o arious techniques have been proposed in the compiler and
their regularity. General-purpose cache organizations hanggamputer architecture communities to attack the problem of
neither of these problems. It is difficult to find an effective

. L R . . cache conflicts and cache pollution for data-intensive applica-
solution unless significant application information can bﬁ ns. Loop interchange, skewing, and tiling [4]-[6] all consti-
utilized by the cache subsystem. New more sophisticat, ’ ’

caching schemes are needed. canable of utilizing applicat e compiler optimization techniques for improving data lo-
. ng . » cap utiizing appll 'gaﬂity in loop nests. While useful in exploiting a large amount
information for the particularities of the specific memory]

finherent reuse, controlling the data interference inside the tile
reference pattern.

In this paper. we demonstrate an alaorithm that partitions thsestill a significant challenge. Loop transformations introduce
paper, 9 P extra control code as well, which may preclude their usage in

memory access instructions of a nested loop into groups. E%Cgplications with stringent time and power budgets.,

roup corresponds to a set of load/store instructions exhibitin . o L
group P / Architectural support for distinguishing between memory

data reuse amongst them and is mapped éache partition references that exhibit spatial, temporal, or no reuse whatsoever
within a partitioned cachestructure. The size of the cache par; P ’ poral,

titions is determined according to the type of reuse and spatbaes been proposed through the_|n_troduct|on of the o!gal (_jata
needed to exploit it. Moreover, it is shown how the tag arraXaChe [7]. The a_pproach results in |mproyed cache ut|I|zat|o_n,
and tag comparisons can be completely turned off for most it th? cache Interference_ problem still remains. A static
the load/store instructions belonging to such partitions as tAB21YSiS approach for avoiding data-cache interference is
hit/miss outcome for each instruction in the partition can g¥esented in [8]. Therein, memory references that can cause
determined well in advance regardless of its address tag figfdche conflicts are annotated as noncacheable. Additionally, a
This leads to a significant amount of power reduction and §#che volume (CV) analysis for facilitating the feasibility of

the same time to a highly improved miss rate. Furthermore, BifPloiting particular data reuse is described. o
eliminating cache interference and pollution, a significant re- Various optimization techniques for reducing energy dissi-
duction in miss rate is achieved, which leads to a reduction Rtion in the cache subsystem have been proposed recently. A
the number of accesses to the power-hungry second level ca@A#er optimization technique applied during behavioral syn-
or system memory, thus, reducing both power and improvitigesis for memory intensive applications has been presented in
performance. [9]. The behavior of the memory access patterns is utilized to
The proposed technique is highly beneficial on loop nesfinimize the number of transitions on the address bus and de-
containing references to several arrays with large amountscemer, thus reducing power consumption. In [10], a small LO
temporal data reuse, but nonetheless suffering from significagtruction cache is proposed to store the most frequently exe-
data-cache interference and pollution. This is a typical situatighited basic blocks in order to reduce the energy dissipation of
for a large number of loops contained within applications fdhe larger L1 I-cache. A technique for turning off associativity
numerical computing and modeling. The benchmarks utilizedys in a set-associative cache architecture is proposed in [11].
in our experimental results are representative applications affte proposed approach represents a tradeoff between power re-
kernels from the aforementioned application domains. duction versus performance. A set of memory array implemen-
While we target a single program execution model in our efation techniques for minimizing power in the cache subsystem
position, the proposed methodology can be readily extendeddgresented in [12]. The authors propose subbanking, bitline
multiprogram environments by mapping the task partitions insegmentation, and multiple line buffers in order to minimize the
separate cache regions. Not only are the benefits from cache arergy dissipated when accessing the memory array. A fast reg-
titioning for a single task preserved, but also further possibilitigster-transfer level power-estimation methodology has been pre-
for extending the scope of the proposed framework to contr@lented in [13]. The methodology accurately estimates the power
ling the interprogram cache pollution and interferences can bénsumption for both the controller and data path. A new energy
achieved. A separate region of the cache can be dedicate@d@mation framework for microprocessors has been proposed
each task and the task partitions can be inserted within the tagkently in [14]. The simulation environment employs a tran-

cache region. The task cache regions can be organized in §iin-based power model and rapidly achieves highly precise
same way as the normal cache partitions and their size def@wer estimations.

mined by the cache utilization of each task. While extensions of
the ideas we propose for multiprogramming environments can,
thus, be entertained, we concentrate in this paper on illustrating
the fundamental ideas of cache partitioning within the essentialA typical numerical algorithm consists of matrix and/or array
domain of uniprogramming environments. operations grouped in several nested loops. For example, Fig. 1
We complement this paper with a discussion of an efficieshows an excerpt from tlsvimSPEC95fp benchmark. One can
hardware implementation for partitioned caches. Not only iotice that the references & and V' exhibit only spatial lo-
the proposed implementation efficient, but it is also repraality. All references to the array PSI utilize spatial locality as
grammable, thus, providing high flexibility to recustomize thevell, but there is also a temporal locality betwd&8l[:, j + 1]
embedded processor infield. Hence, the proposed implemergad PSI[i + 1, j + 1]. These references reuse a row of the ma-
tion constitutes a unified microarchitectural solution that is natix PSI along the outer loop. The reference®SI[:, j + 1]
confined to a particular application, but is capable of handlirnd PSI[: + 1, 5] will always result in hits if the data brought
diverse workloads through infield recustomization. by PSI[i + 1, j + 1] is judiciously preserved in the cache. Not

I1l. M OTIVATION

PETROV AND ORAILOGLU: PERFORMANCE AND POWER EFFECTIVENESS IN EMBEDDED PROCESSORS 1311

for i=1 to N The group of references to the matrix PSI exhibits temporal
for j=1 to M L . reuse along iteration Namely, the usage of rowRSI[:] and
Uli,j+1]=-(PSI[i+1,3+1}-PSI[i,j+1])/DY; PSIi+ 111 | dinth tati | dert
V0i+l,i]= (PSI[i+1,3+41]-PSI[i+1,3])/DX; [L.—i-].|s overlapped in the computation process. In order to
exploit this reuse, the rows need to be protected from interfer-

end for : : e k
end for ences by andV, which might affect them during iteratign
Having isolated the references to PSI from other unrelated refer-
Fig. 1. Excerpt from thewimbenchmark. ences, the tag operations associated with the referenB&3[td

can be completely eliminated. Due to interference and volume
limitations, a conventional cache organization fails to exploit the

only do such judicious data preservations promote performance - :
reuse and to eliminate the unnecessary tag operations.

and power improvements through the evident miss rate reduc- s . . - -
P P 9 The fundamental difficulty in achieving higher reuse utiliza-

tion, but, furthermore, a large number of power-consuming ta q ficient fthe t is the inabilit
operations can be completely avoided, if knowledge regardiH n and power etmcient usage of the tag arrays IS the inability
a conventional cache to prevent interferences amongst un-

whether a particular array reference will indeed hit in the cacfl - . e
can be captured related references, thus avoiding cache pollution. Utilizing ap-
Consider, for example, the write reference&itandV’. They plication-specific information can result in separation of inter-

. Lo fering references and elimination of the cache pollution intro-
are brought into the cache and a new cache line is used whgn d by ref th 1o t | but onl al
the previous one is filled. This situation occurs when an arr ced by reterences with no temporal, but only spatial reuse.

(or matrix) is traversed sequentially. In this type of access, orl] ferences requiring a larger number of cache lines for temporal

spatial locality exists and it is not necessary to use more th Iqality exploitation can benefit from the partitioned .cache. At
one cache line to capture this locality. Such reference behaigf Same time for the references, thus, separated, it can be ob-
leads to significant cache pollution and interference with the ré€rved that their hitmiss cache outcomes can be analyzed in
maining working set, as using more than one cache line ledfivance, thus, obviating both tag lookups and comparisons.
to no benefits in terms of reuse. The inherent spatial reuse caache interference and pollution problems can be resolved
be exploited using a single cache line, if a more sophisticat#jan application-specific environment, wherein more precise
caching technique were to be utilized. A similar problem of iidformation about the inherent reusability can be provided to
terference may occur when temporal reuse with overlapping &€ cache controller. If the memory instructions were to be
cesses in the data cache amongst more than one array ex#guped according to the inherent reuse characteristics amongst
the overlapping accesses may prevent the temporal reuse ftfgm and each group subsequently mapped to a dedicated cache
being utilized. partition, behaving in the same way as a distinct cache, all
A conventional cache organization suffers from the inabilit9°”f|iCt3 would be obliterated and redundant tag manipulations
to distinguish different types of reuse along the loop iterationgomPpletely avoided. The size of each cache partition can, thus,
All references are treated identically; thus, significant interfeRe reduced to no larger than the minimal sufficient size for
ence between unrelated data arrays and cache pollution is infi¥Ploitation of the inherent reuse for that particular group of
duced. Caching the data intelligently by avoiding interferencé¥structions.
and pollution would be highly beneficial in terms of both perfor-
mance and energy dissipation gains. At the same time, a signif-
icant number of tag reads and comparisons can be eliminated if
the interference are to be avoided. For example, it is evident thaThe proposed partitioning analysis utilizes information about
thePSI[i+ 1, j] andPSI[¢, j + 1] would always hit in the cache the type of reuse of each reference. A formal methodology for
because oPSI[i + 1, j + 1]. Consequently, a significant powerdetermining the reuse type of array references with affine in-
reduction can be achieved through elimination of the tag opefexes is presented in [5]. Since the methodology we propose
ations and reduction of the miss rate (which will lead to fewertilizes information about reuse type in a loop nest, we briefly
accesses to the even more power-consuming L2 cache or maiview the relevant terminology.
memory). Solving these problems of performance and powerA memory reference instruction is said to haedf-temporal
simultaneously is a rather difficult task for a general-purpogst) reuse if in a subsequent loop iteration it accesses the same
cache controller. memory address. Aelf-spatial(s9 reuse refers to an instruc-
The sole purpose of the tag in the cache subsystem is to véitin that accesses data inside a single cache line in two sub-
date whether the data being accessed resides in the cache, yeteheent loop iterations. Two load/store instructions are said to
tag array operations are some of the most power-consuming bavegroup-temporalgt) reuse if both of them access the same
tivities within the cache. Thus, exploiting regularities and elinmemory address; they are denotedjsmip-spatial(gs) if both
inating a large number of tag reads and comparisons would pascess memory addresses that map to the same cache line.
vide significant benefits in terms of reducing power consump- The reuse type varies across loop dimensions. A reuse occurs
tion. For a large number of data-intensive and numerical loops,a particular loop dimension and is qualified by the number of
the miss/hit behavior of the memory references can be analyztedations within which the reuse is exploited.
well in advance. As the example in Fig. 1 suggests, intelligentUnder the assumption that the reference analysis operates
avoidance of the cache interference on the basis of advance@p-perfectly nested loops where all the references to a data
plication knowledge obviates most of the tag operations. array reside in the innermost loop dimension and have indexes

IV. PARTITIONING ANALYSIS

1312 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 11, NOVEMBER 2001

with the same multiplicative coefficieatjt is straightforward for i=1 to N

to guarantee the absence of any cache consistency probler £(a[31,A[1+1]1,A[1+4],A[1+7],A[1+8],A[i+12]);
Further affine-linear analysis can be performed to identify gig%ﬂg%i:g;

whether a consistency problem can occur in the cases 'end for ! !

imperfectly nested loops and for nonidentical multiplicative

coefficie_nts. If the absence of cqnsistency problems is, _thlgg_ 2. Example of group temporal reuse.

ascertained, the same partitioning methodology mentione

above can be applied. In the case of possible consistency

issues, the corresponding references are not further considdpecflgorithm Overview

for partitioning. In any case, references with nonidentical
multiplicative coefficients in indexing the same array are quite) . .
uncommon in practice and in none of the benchmarks t mory instructions with data reuse amongst them and map

we have considered in our experimental study were any sdgfp group to a qache F’af.““of‘ with approprlate size. From
instances encountered. a DRG perspective, this implies selecting DRG edges and

By isolating a group of load/store instructions from other urgrouping the neighboring selected edges together into parti-

related and possibly interfering groups of memory referencé@,ns' Wh|le each edge sele_cted provides a constant benefit in
the detrimental effects of cache conflicts can be minimize&‘?‘pturmg areuse, the costin term_s Of. CVio accommodat_e an
The grouped instructions can be considered as a set compdeagf Varies. Consequently, the objective of the algorithm is to
of a leading reference and severatailing references. The MaXimize the number of selected DRG edges. _

leading reference does fetch data from memory, but misses € algorithm starts from the innermost loop dimension, as
only once per cache line. Al theailing references invariably the frequency of the data reuse there is maximal. The data reuse
hit in the cache. Consequently, no tag operations are neeg&guency wanes as the traversgl proceeds tovv_ard the outermost
for the trailing references within a partition. Furthermore, if thimension. Therefore, the algorithm proceeds iteratively on the
data access is single-strided, the leading reference would niR@P dimensions starting from the innermost loop.

only in the beginning of a cache line. Therefore, in this case, AN €xample of group-temporal reuse can be seen in Fig. 2.

no tag operations are needed for the leading reference as w&lf€ assume a cache line size of one word to simplify the ex-
planation. Fig. 3(a) shows the DRG for the example in Fig. 2.

The number of cache lines needed to capture the corresponding

. .) group reuse is therein shown. The initially appealing solution of
We capture the information about the inherent reuse forzagirect greedy approach is unfortunately inadequate in deter-

particular loop dimension by constructing a data reuse grapfining the optimal number of partitions, as illustrated immedi-
(DRG). Each node in the DRG corresponds to a particulgfe|y hereafter. If we assume an available CV of nine cache lines,
!oad/store instruction or to an already formed group. The edg&airect greedy approach leads to the result shown in Fig. 3(b). It
in the DRG represent data reuse between the correspondilgyident though that a solution consisting of a single partition
nodes. Each edge is annotated with the particular type Qfyering all references to the array A, butthe last one[ofA2]
reuse it represents. Addmonally,. an mteg’ens'aSSOCIa'feOI is superior in that it covers instead four temporal reuses in A and
to every temporal reuse denotation, representing the numMRgthermore utilizes all nine cache lines exactly. The latter so-
of iterations needed to exploit the temporal reuse denoted Byion evidently constitutes an improvement, as a combination
the edge. The n_umber of iterations in turn determines the GY o edges with a common node in a single partition “saves”
needed to exploit the reuse. . _ the storage of the overlapping node. As the counterexample il-
The optimal cache partition size, CV, varies depending on thesirates that the straightforward greedy approach is inadequate
reuse type. It is evident that a spatial reuse necessitates onjy giaining a consistently optimal result, we proceed to outline
single cache line. In the case of temporal reuse though, a fixgdimproved model of representation that takes into account the

(but varying amongst memory instructions) number of cachg,se of the inadequacy, to wit, the overlap between the nodes
lines are needed in order to exploit the reuse and prevent jRihe DRG.

terference.

For example, a pair of load4[i] and A[i + k], representing
an array traversal with loop index requires[k/l] + 1 cache C. Overlap Considerations
lines on a cache with line siZeto exploit the group-temporal
reuse between these references. If the reuse occurs in the outé8 discussed in Section IV-B, the inherent overlap of CV for
loop iterations, such @SI[i + 1, j + 1] andPSI[i, j + 1] from WO edges in the DRG with common npdes prevents the d_|rect
the example in Fig. 1, all data referred along iteragidoy both ~9reedy approach from consistently finding the optimal solution.
instructions need to be preserved. Intuitively, this correspon§ Present an efficient algorithm that quickly finds an optimal

to keeping theéPSI[i] row in the cache whil®SI[i + 1,5 + 1] solution for a loop dimension with unit overlap between the
is “prefetching” the next row. | nodes in the DRG. The partitioning methodology consists of

two steps, the first step constituting a mapping to a group rep-
resentation that precisely denotes the semantics of overlap and

1Such as, for example, the reference ptji] andA[i + 3], but notA[i + 2] the latter step performing an algorithm for the optimal solution
andA[3 i + 2]. of the problem posed.

The objective of the partitioning algorithm is to group

A. Algorithm Fundamentals

PETROV AND ORAILOGLU: PERFORMANCE AND POWER EFFECTIVENESS IN EMBEDDED PROCESSORS 1313

(@) (b)

(©)
Fig. 3. DRG and ODT for group-temporal reuse. (a) DRG. (b) Greedy nonoptimal DRG partitioning. (c) ODT.

In the first phase, the algorithm separates the connectefdr all vi in V & vi is a root
edges while keeping track of the overlap by building overlap if CV(vi) > CacheVolume then return(Par-
dependence trees (ODTs) as shown in Fig. 3(c). The purpossitions);
of the ODT is to represent the overlap dependencies amongsSelect vi; ODT —={vi }; V —={vi };
the edges in the DRG and to show the exact CV needed toCacheVolume —= CV(vi);
cover a particular edge in the DRG after removing the overlapend for
Each node in the ODT corresponds to an edge in the DRG. Thepeat
edges in the ODT represent the overlap relation between therind vk in V with minimal
corresponding edges in the DRG. The following pseudocode npymber of ancestral nodes:

describes the ODT construction algorithm formally. for w in Path to vk from the root
if CV(w) > CacheVolume then return(Par-

repeat titions);

e = FindEdge with min CV in DRG; Select(w); ODT —={w}; V —={w}
Decrement CV of Neighbors(e); CacheVolume —= CV(w);

ODT(e) = CreateNode in ODT for e€; end for

for all n in Neighbors(e) and n in ODT until V is empty

Connect ODT(e) as a child of ODT(n); end while

until no edges left in DRG end procedure

A tie in the minimal CV value in the DRG can be partially While minimal CV nodes are invariably root nodes of the
resolved by giving reduced priority to the edges on the boundar o . Y : .
of the reuse chain; any remaining ties can be resolved randorﬂ%?‘ph initially, minimal nodes can be found at arbitrary positions
with no impact on optimality. The ODT for the example in Fig. 3" the ODT in later iterations. Th|_s nonstraightforward case,
is shown in Fig. 3(c). Each node in the ODT is annotated wifR0Ugh, can be handled by observing that ancestors of the min-

the updated CV. imal nonroot node cannot exceed it by more than one unit. Se-
lecting the root from the tree that contains a minimal node with
D. Generation of Optimal Solution the smallest number of ancestors maintains optimality while

Given the ODT, the purpose of the algorithm is to find th8aving the route for eventually incorporating the truly minimal
maximum subset of nodes subject to the constraints that the t& node into the partition. The algorithm terminates when there
available CV not be exceeded and that overlap dependencesggains insufficient CV to accommodate any further reuse.
preserved. The following pseuodocode defines this part of thelnformally, the correctness of the algorithm can be illustrated

algorithm. by observing that the more general problem with no edge
overlap is optimally solved by a greedy approach. The ODT

procedure FormPartitions ensures that the dependence between the overlapped edges in
CacheVolume = TotalCacheVolume; the constructed solution is preserved during the application
while true of the greedy steps. While the prioritization of nodes in the
V={vl, ..., vn } =FindNodes with min CV in ODG may violate the optimality of the greedy approach, the

ODT; particular property of the ODG that ancestors of minimal

1314 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 11, NOVEMBER 2001

nonroot node cannot exceed it by more than one unit ensures offset | n [st]

the optimal applicability of the greedy like approach. ‘
The algorithm that we have presented exhibits a linear exe- PC [PIT Ind. i .

cution time in terms of the number of edges in the DRG. The —l—~ v

. . . . PMIT § sov— J

input size corresponds to the number of load/store instructions PIT

within the loop nest, which in practice is limited to 40-50. Con-
sequently, the running times of the algorithm are exceedindfig- 4. Partition identification logic.
small, which makes this algorithm particularly useful for design

space exploration in hardware—software partitioning schemegeheme needs to be effected. Depending on the size of the cache
In the innermost loop iteration, the overlap consists of ongartition, thecache indeyart of the address is divided into two
cache line, i.e., a unit overlap. When the algorithm proceegarts. If the size of the corresponding cache partiti@¥ighen
onto the next (outer) loop dimension, the overlap between tthe n least significant bits from theache indexare used to
nodes in the DRG corresponds to the size of the previous loopftirm the new index. The remaining most significant bits from
mension, i.e., the memory volume needed for an iteration of tHe cache index are replaced by a constant in the newly formed
inner loop dimension. In terms of matrix traversal, the overlggche partition indexThe value of this constant determines the
corresponds to one row from the matrix. When proceeding to tAisetof the cache partition in the original cache. _
outer loop dimensions, though, the normalized overlap might beTh€ above reasoning evinces that each cache parti-
slightly less than a unit because there may be a partition formii} With size 2" ‘is identified by a pair of numbers

in the embedded loop dimension of size negligible compared {BL2¢t: cache partition index size(n)}. The cache parti-

the new dimension overlap unit. This deviation can in rare cast('aon indexis formed by concatenating tiudfsetand then least
P ’ . s@nificant bits from the cache index.

result in a globally nonoptimal partition definition. For the in- The hardware support for the partitioned cache has to resolve
nermost loop iteration, of course, which typically contaiqs MOgi e following problems: identification of the mapping between
of the data reuse, the overlap between the DRG edges is alwgyemory instruction and a particular cache partition; identi-
one cache line as shown in Fig. 3(a); hence, the practical ggation of thetrailing load instructions that can avoid the tag
timality of the algorithm. The experimental studies undertakggad and comparison and calculation of¢hehe partition index
have consistently identified solutions not only locally, but alsgsing the pair of numbers identifying the partition.
globally optimal, thus, further emphasizing the superiority of The approach targets loop nests. Therefore, a solution is
the algorithm in an empirical sense. needed that can efficiently handle the load/store instructions per
loop nest. The partition mapping identification is achieved by
a hardware architecture utilizing two tables: the partition map-
ping identification table (PMIT) and the partition identification
The proposed partitioning methodology requires speciglble (pit). Fig. 4 presents this structure. The PMIT is used to
hardware support from the cache controller. The hardwagigfine the mapping between load/store instructions and cache
needs to be able to capture the information provided artitions. The PMIT is indexed using the least significant PC
the compiler about load/store instruction partitioning and fgits of the load/store instruction from the loop. The size of the
effectively map these references to the corresponding partFNIIT corresponds to the total number of instructions within the
the partitioned cache. Information also needs to be captulggp nest. In practice, the size of a loop nest in data intensive
regarding the memory references that will not need to perforgplications is rarely large, thus, leading to implementations
tag reads and comparisons. with a small number of entries. When a load/store instruction
In this paper, we consider direct-mapped cache organizatiopsdecoded, the PMIT is indexed with the least significant bits
but the approach can be generalized to set-associative structgf@ie PC. An entry in PMIT contains a value that represents an
as well by mapping each partition across all the associativifydex into the PIT, which in turn contains a partition-defining
ways. The straightforward implementation generalization relig@§ormation. An additional bitr is also stored in the PMIT
on the same architecture that we describe in this section. Whlgtry to indicate whether the instruction igrailing reference
set-associative organizations can be used within a partition, fa@ the partition. The main purpose of this organization is to
strong rationale for such an organization exists, as the traditioagbid associative lookups, which are expensive in terms of
benefits of miss rate reduction in set-associative caches do pefver. The tables described above are directly indexed; their
hold in the proposed partitioned caches due to the lack of cajize, negligible compared to the size of the tag memory arrays,
flict misses within a partition. ensures that no significant amount of energy dissipation is
In either case, the cache is virtually partitioned into sulintroduced The timing impact on the access time is discussed
caches, each of them accommodating a group of load/st@dger in this section.
instructions. Each cache partition is identified by two param- All memory references in a loop nest that are left unparti-
eters: the number of cache lines (size) and offset (position)tiBned by the reference analysis are mapped to a dedicated cache

V. IMPLEMENTATION

the original cache array. partition. This special partition is treated in the same way as the
remaining cache partitions. The only difference is that no tag
A. Identifying the Cache Partitions optimizations are performed for it. One of the entries in PIT is

In order to address a particular cache partition as a distinCrhe impact of the tables on power consumption is nonetheless fully ac-
cache, a slight modification of the traditional cache indexingunted for in the experimental studies of Section VI.

PETROV AND ORAILOGLU: PERFORMANCE AND POWER EFFECTIVENESS IN EMBEDDED PROCESSORS 1315

Cache Index Template (CIT) Effective Address Cache Index (EACI)
v x } Enable Enable
offset V0 I [i
’ : Ext tag D
n n ata arra
Tag arra y
. Data Cache Cache index 8 army array
Clil SN
n
EACI] o N A D _| rakche |gm
CITIi) offset
Enable
S— Pt I SRR U
ache Index (CD Address Tag
i >’ Tag Comparator | To data mux
Fig. 5. Partition cache index calculation.
Hit/Miss

dedicated forthis_ special part_ition and all unpartitioned MEMORY, 6 Extended tag array and enabling logic.
references are directed to this entry through the PMIT.
The partition information is stored in the PIT. A PIT entry
is shown in Fig. 4. The first two fields contain the partitionof nonsingle stride access pattetns/arious approaches for
defining information—effsetandn as explained earlier. The in-implementing these wider tags can be entertained. One pos-
formation from this table is used to calculate the partition caclsiility is to have an additional extended tag array that can
index. Thestfield specifies whether the access stride for the pape disabled at the bitlines level. For example, if only two
tition is one. If this is the case, theadingreference misses only additional tag bits are required for a particular partition (with
in the beginning of the cache line; hence, the hit/miss signal csize one fourth of the cache array) in a loop nest, only two
be determined from the least significant bits of the address cbitlines will be enabled in the extended tag array. Although
responding to the cache line index. optimal in minimizing the tag bits usage, this approach re-
PMIT and PIT contents are loaded onto the processor at {f\gires a somewhat complex control logic. The approach that
same time when the code of the embedded application is stoy@sl have followed in our experimental study, shown in Fig. 6,
in the main memory. This reprogrammable hardware soluti@filizes again an additionaixtended tag arraybut is not con-
facilitates flexibility across various embedded applications aRghjjable on bitline level. The size of thextended tag arrajs

across versions of the same application. determined by the size of thminimal cache partitiorallowed
for the particular implementation. Each time an access in a
B. Computing the Cache Index cache partition is performed and this access requires a tag

comparison, the whole tag field from tlextended tag array

The lookup into the PMIT and PIT is the first step in deterig ;sed. The width of the extended tag array is four and five

mining thecache partition indexand is performed early in the 1o, g and 16-kB DM caches respectively, with a minimal
pipeline, thus, not affecting the cache access time. Right aff{tition size of 32 cache Iinés. ’

the load/store is decoded, the lookup is performed in parallel
with the effective address calculation. Fig. 5 shows the implﬁ)-
mentation of thecache partition indexcalculation. The cache)) .
index template (CIT) and control signai4:] are computed be- The mapping .be.tweeln. the Iqad/stpre instructions and the
fore the actual cache access pipeline stage using the partitiorG@che partitions is identified by indexing into PMIT and PIT.
formation found in PIT. The CIT is defined as having tféset This task can start right after the load/store instruction is
value in its most significant bits and zeroes invitieast signif- decoded. Computation of the template CIT and the control
icant bits resulting in control signaig[i] defined asC[i] = 1 signalsC[i] shown in Flg. 5is !ndependent of the effective
for0 < i < nandC[i] = 0 for i > n. The effective address address of the memory instructions; hence, the two computa-
cache index (EACI) is the traditional cache index field in thONs can be overlapped in the pipeline. Only the computation
effective address. The cache index (Cl) is computed using @fthe final cache index is performed after the effective address
simple combinatorial logic depicted in Fig. 5. The delay of the0mputation stage. Consequently, the access to the PMIT and
two gates shown in this figure is the sole, evidently insignificarif)® PIT tables is decoupled from the cache access logic, which

increase in the path delay of the cache access data path. happens typically later in the pipeline. In the cache access
stage, only the addition of the final cache index computation

logic is introduced. To compute the final cache index, the
combinatorial logic from Fig. 5 needs to be utilized. Effec-

Since the cache partitions are subsets of the original cadiv€ly. only the delay of the two gates is added to the path that
array, the tag field needed to accommodate a particular caélggermines the cache access time. Depending on the critical
partition will have larger size. For example, if a partitiorPaths of the pipeline stages for cache access and effective ad-
occupies half of the cache array, the tags associated to #i§Ss computation, this small logic can be balanced amongst
partition should have width one bit larger than that of the orighese two pipe stages.
inal tags as the cache block size is unchanged. Yet this larger
tag is needed only for the unpartitioned load/store inStrl"Ctionﬁ‘For the cold cache misses, the invalid bit constitutes an identification
and for theleading references for the partitions in the casér cache miss.

Impact on the Cache Access Time

C. Tag Support for the Partitioned Cache

1316 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 11, NOVEMBER 2001

TABLE |
CACHE PERFORMANCE FOR THEBASE CONFIGURATIONS

8K DM cache 8K 2-SA cache 16K DM cache 16K 2-SA cache Total
#Misses MR #Misses MR #Misses MR #Misses MR #references
swim || 2,542,560 | 28.51% || 2,050,160 | 22.99% || 2,539,666 | 28.47% || 2,044,689 | 22.92% 8,919,264
tri 295,920 | 39.20% 237,601 | 31.48% 295,904 | 39.20% 237,579 | 31.47% 754,831
ej 2,833,890 | 31.84% || 1,613,469 | 18.13% || 2,830,276 | 31.80% | 1,606,027 | 18.05% 8,899,826
Sor 8,690 | 2.22% 8,690 | 2.22% 8,682 | 2.22% 8,682 | 2.22% 391,132

E. Covering Multiple Loop Nests TABLE I
. .. PARTITION INFORMATION
The proposed methodology works on an individual loop-nest

level. A typical numerically intensive embedded application Loopl Loop2
contains several loop nests. In order to be able to perform the MI | PMI | #Part | MI | PMI | #Part
cache partitioning methodology for all loop nests, multiple 3112006) | 43)
. . : . i || 12| 6 10 6 2
partition mappings associated with each loop nest have to be . o 11 - - -
stored. A straightforward solution consists of having multiple Sor 5 5
PMITs. Each time the application finishes with one loop nest
and proceeds to another, a switch between the PMITs needstlkgo

be performed. An alternative approach is to have larger PMI e PMIT contains 64 entries, each of them with a size 4 bits,

and PIT tables, multibanked for energy savings; by redefini lle the PIT contains eight entrie; With size 9 and 1.0 bits for
the index mapping into them, an effective switch to a ne -kB and 16-kB data-cache configurations, respectively. The

partition configuration can be effected minimal partition size is set to 32; consequently, the width of

During a switch between loop nests, the cache content jgg extended tag array is 4 and 5 bits, respectively. The energy

to be invalidated because a new partition mapping is defin qr the main memory is based on the data presented in [17] and
sumes 4.95 nJ per access.

Th itch of iti i h i iff) . .
e switch of partition mappings when proceeding to differe The following benchmarks are used in our experiments: 1)

loop nests can be controlled by software using a special control. X .
register that determines the active partition mapping. swim benchmark (swim), part of the SPEC95fp benchmark suit,

characterized by a high cache miss rate due to a large amount
of interference [8]; 2) tri-diagonal system solver (tri), a fun-
damental part ofomcatvSPEC95fp benchmark and a major
In our experimental work, we evaluate and analyze the abiligpntributor to the high miss rate for themcatvbenchmark,
of the partitioned cache to reduce both the data-cache miss maitl matrix size of 128« 128; 3) extrapolated Jacobi-iterative
and the amount of energy consumption. We compare the perfaethod (ej) [18] on a 128 128 grid; 4) successive over-relax-
mance and power reduction parameters of the partitioned caalion (sor) [5], [18] on a matrix with size 256 256.
structure against a number of typical L1 cache configurations inTable | shows the miss rate for the base cache configurations.
modern embedded processors. Specifically, our base configuFae high miss rate fawim, tri, andej is due to the high amount
tions include 8- and 16-kB L1 data-cache configurations, bott interference and cache pollution. Ther does not exhibit a
direct-mapped and two-way set associative. All cache configigh miss rate, as the algorithm works only on a single matrix.
rations contain blocks with a size of four words. Increased cacNevertheless, the power reduction in terms of eliminating al-
associativity is a classical approach for reducing the confliatsost all of the tag operations is significant.
in the cache; we, therefore, include in our experimental studyTable Il contains information about the partitions for each
two-way set-associative cache configurations. Two configurhenchmark. The first column in each subtable shows the total
tions for a partitioned cache, 8- and 16-kB direct mapped wittumber of memory instructions (Ml). The second column gives
line size of four words, are examined. the number of partitioned memory instructions (PMI), corre-
The SimpleScalar toolset [15] has been used to examine #ponding to the instructions for which no tag operations are per-
cache behavior for the baseline cache architectures and the faimed. The third column displays the total number of partitions
titioned cache has been modeled by a specially developed tdof,the loop nest, not counting the special partition for the re-
utilizing traces produced by SimpleScalar. maining unpartitioned memory instructions. The data pertains
The Cacti tool [16] has been used to obtain the enerdy both 8- and 16-kB caches; for the few cases when the results
consumption for all the data-cache components. A technolodjfer for the two caches, the 8 kB results are shown in paren-
process of 0.35um and 2.6 V is assumed. The Cacti tootheses.
models in detail all the cache componeht$e model the Table Ill shows the results for the partitioned cache. Within
PMIT and PIT tables as static random access memory blockach cache partition, the number of conflict misses is reduced
to zero. This follows directly from the way the cache partitions
4In utilizing this tool, we excluded for all partitioned instructions the enare formed. Consequently, only the cold misses for the refer-
ergy consumed in the tag address decoder, tag wordline selection, tag bitligggoes within the partitions need to be considered in terms of
precharge, tag sense amps, and the tag comparator in order to reflect the fact . .
he miss behavior. Furthermore, one can observe that only

that the tag operations for these references are turned off in the architectur) - v)
propose. theleadingreference of the partition exhibits cold misses, due

swim || 25 19

PN L N

VI. EXPERIMENTAL RESULTS

PETROV AND ORAILOGLU: PERFORMANCE AND POWER EFFECTIVENESS IN EMBEDDED PROCESSORS 1317

TABLE Il tag array, and the slight overhead of the partitioned cache in

PARTITIONED CACHE MISS-RATE RESULTS terms of PMIT and PIT. This benchmark is a worst case scenario

8K DM p-cache 16K DM p-cache in terms of power for a partitioned cache with no tag-related

#Misses MR || #Misses MR power optimization support, since it includes a large number

swim || 1,533,664 | 17.19% || 1,257,046 | 14.09% of array references utilizing the extended tag array with no de-
tri 173,044 | 22.92% || 165,142 | 21.88% crease in the miss rate. Nevertheless, when the tag optimizations
e || 1,254,990 | 14.01% || 1245372 | 13.99% we propose are included, the energy savings for this benchmark

sor 8,690 | 2.22% 8.682 | 222% are not only significant, but exhibit the highest level of power

reductions for both 8- and 16-kB caches.
TABLE IV In comparing our results to related approaches for power opti-
ENERGY CONSUMPTION (MJ) FOR 8-kB CACHES mizations and performance improvement, one can immediately
see that the proposed scheme improves both power and perfor-
mance instead of performing a tradeoff between them. In [11],
. energy reductions in the range of 10%—25% for 32-kB four-way
tri 258 | 270 || 2.08 | 1938 | 22.97 | 1.99 | 22.87 | 26.30 I
o [27.16 [25.90 || 2149 | 2088 | 17.03 | 19.19 | 2935 | 2591 set-associative c.ach.es are reported, yet at the cost of a perfor-
sor 1 0621 0831 07111452 | 1446 | 0541 1291 | 3494 Mance degradation in the range of 2%—-6%. In [8], the authors
achieve a miss rate reduction in the range of 5%-8%, while in-
troducing additional opcode bits and hardware support for tem-
TABLE V poral and spatial reuse utilization. Evidently, judicious utiliza-
ENERGY CONSUMPTION (MJ) FOR 16-kB CACHES tion of application-specific information enables avoidance of
DM | 25A T PC-T | %DM | %2sa T PC | %DM | %2sa this tradeoff space and delivers improvements in both perfor-
swim || 3107 | 33.02 || 26.54 | 14.68 | 19.63 || 24.59 | 20.36 | 2553 mance and power simultaneously.
tri 3.03| 311]| 261 1387 | 1608 || 240 20.80 [22.83

e || 3246 | 30.80 [23.99 | 26.10 | 22.12 || 24.27 | 25.24 | 21.21 VIl. CONCLUSION
sor | 0.85| 105 097 |-1411| 762 0.75] 13.77 | 28.58

DM [2SA || PC-T | %DM | %2SA PC | %DM | %2SA
swim [} 25.75 | 28.11 | 22.34 | 13.24 [20.53 |[20.59 | 20.04 | 26.68

We have presented a novel methodology for application-spe-
cific customization of the cache subsystem of embedded pro-
to its inherent role in bringing data into the partition for subsesessors in this paper. A precise static analysis of the application
guent spatial reuse for itself and temporal reuse fotriing has been demonstrated to be capable of identifying the optimal
references. We can conclude, therefore, that the conflict missetution for grouping memory access instructions and mapping
for the arrays targeted by partitions have been completely elithem to cache partitions with optimal size. Preventing cache
inated and reduced to zero; only a single memory referenggerference and cache pollution by utilizing precise applica-
within the partition exhibits cold misses when bringing in a newon information and subsequently eliminating a large number
cache line. of power devouring tag operations in addition to reducing the

The reduced miss rate has two major implications. First, diiss rate have constituted the main objectives of the proposed
leads to performance improvement and second, it results ifmathodology. The achievement of these goals has been con-
significant power reduction from the L2 cache or main memorjjymed through extensive experimental results. A significant in-
The reduction in energy dissipation is proportional to the redugrease in the cache hit rate and a decrease in power consumption
tion in the miss rate. _ ~ have been demonstrated through a representative set of simula-
_ Tables IVand V show the energy consumption results (in i, results. The proposed technique has significantimplications
lijoules) for 8- and 16-kB caches, respectively. The first twQ, gy stem-on-chip designs utilizing embedded-processor cores,
columns represent the energy consumption for direct-mappedit significantly reduces the number of system bus transac-
and two-way set associative caches. The third column (PClds thus, resuiting in higher system performance and reduced
shows the energy for the partitioned cache, but with no tag Swer.

timization. The next two columns display the power improve- Customizing the embedded-processor architecture utilizing a

ments in percentages, compared to the direct-mapped andrg}?rogrammable hardware promises to be a powerful technique

two-way set associative caches. The sixth column (PC) reps . . o
) . ward lower power consumption and higher and deterministic
resents the energy consumption for the partitioned cache |n-

cluding both the miss rate reduction and the tag optimizatio erformance in hardware—software systems. At the same time,

Finally, the last two columns present the total improvement }ﬁhelps retain the processor-centric paradigm and extends its

percentages. The energy consumption improvements vary frg%vantages to a large class of modern embedded applications.

14% to 35%. The negative result fsorin comparison to a di-
rect-mapped cache in the case of no tag optimizations is due to REFERENCES
the lack of miss rate reduction for this benchmark, the extended1] W. H. Wolf, “Hardware-software co-design of embedded systems,”
Proc. |IEEE vol. 82, pp. 967-989, July 1992.
5This observation is generally true for single-strided loop traversals or a non-[2] J. Henkel and R. Ernst, “A Hardware/Software partitioner using a dy-
single-strided, but within the cache line size traversal, which is the case in all namically determined granularity,” iRroc. 34th Design Automation
the benchmarks we have utilized in our experimental results. In any case, the Conf, June 1997, pp. 691-696.

partitioned cache does not modify the number of cold misses compared to 3] J. et al, “A 160-MHz, 32-b, 0.5-W CMOS RISC microprocessor,” in
general-purpose cache organization. Proc. IEEE Int. Solid-State Circuits ConFeb. 1996, pp. 214-229.

1318

(4]

(5]

(6]
(7]

8]

El

(10]

(11]

(12]

(13]

(14]

(18]

[16]

(17]

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 11, NOVEMBER 2001

M. S. Lam, E. E. Rothberg, and M. E. Wolf, “The cache performance [18] S. NakamuraApplied Numerical Methods with SoftwareEnglewood
and optimizations of blocked algorithms,”Rroc. 4th Int. Conf. Archi- Cliffs, NJ: Prentice-Hall, 1991.

tectural Support for Programming Languages and Operating Systems

Apr. 1991, pp. 63-74.

M. E. Wolf and M. S. Lam, “A data locality optimizing algorithm,” in

Proc. ACM SIGPLAN Conf. Programming Language Design and Imple-

mentation June 1991, pp. 30-44.

M. J. Wolfe, “More iteration space tiling,” irProc. Supercomputing Peter Petrovreceived the B.S. and M.S. degrees in
Nov. 1989, pp. 655-664.) . computer science from Sofia University, Sofia, Bul-
A. Gonzalez, C. Aliagas, and M. Valero, “A data cache with multiple garia, in 1996 and 1998, respectively. He is currently
caching strategies tuned to different types of localityPic. Int. Conf. working toward the Ph.D. degree in computer engi-
Supercomputingluly 1995, pp. 338—347.))) neering at the University of California, San Diego.

J. Sanchez, A. Gonzalez, and M. Valero, “Static locality analysis fc His current research interests include appli-
cache management,” iroc. Conf. Parallel Architectures and Compi- cation-specific embedded processors, embedded
lation TechniqueNov. 1997, pp. 261-271. systems, and hardware—software codesign.

P. R. Panda and N. D. Dutt, “Low-power memory mapping throug
reducing address bus activity)EEE Trans. VLSI Systvol. 7, pp.
309-320, Sept. 1999.

N. Bellas, I. Hajj, and C. Polychronopoulos, “Using dynamic cache man-
agement techniques to reduce energy in a high-performance processor,”
in Proc. Int. Symp. Low Power Electronics and Desigag. 1999, pp.
64-69.

D. H. Albonesi, “Selective cache ways: On-demand cache resource al-
location,” inProc. 32nd Annu. Int. Symp. Microarchitectuiéov. 1999,
pp. 248-259.

K. Ghose and M. B. Kamble, “Reducing power in superscalar process
caches using subbanking, multiple line buffers and bit-line segment
tion,” in Proc. Int. Symp. Low Power Electronics and Designg. 1999,
pp. 70-75.

J. Zhu, P. Agrawal, and D. D. Gajski, “RT level power analysisPioc.
Asia South Pacific Design Automation Coldfan. 1997, pp. 517-522.
N. Vijaykrishnan, M. Kandemir, M. J. Irwin, H. S. Kim, and W. Ye, University of California, San Diego, where he is cur-
“Energy-driven integrated hardware-software optimizations using sir rently a Professor with the Computer Science and En-
plePower,” inProc. 27th Annu. Int. Symp. Computer Architeciuiene gineering Department. His current research interests
2000, pp. 95-106. include digital and analog test, fault-tolerant computing, computer-aided design,
D. Burger and T. M. Austin, “The SimpleScalar tool set, version 2.0,and embedded processors.

Comput. Sci. Dept., Univ. Wisconsin-Madison, Madison, WI, Tech. Prof. Orailoglu is a Member of the IEEE Test Technology Technical Council

Alex Orailoglu (M'84) received the S.B. degree
(cum laudé in applied mathematics from Harvard
University, Cambridge, MA, and the M.S. and Ph.D.
degrees in computer science from the University of
lllinois, Urbana-Champaign.

From 1983 to 1987, he was a Senior Member of
Technical Staff with the Gould Research Laborato-
ries, Rolling Meadows, IL. In 1987, he joined the

Rep. 1342, June 1997. (TTTC) Executive Committee and currently serves as Technical Activities Com-
G. Reinman and N. Jouppi, “An integrated cache timing and powenittee Chair and Planning Co-Chair of TTTC. He serves in numerous technical
model,” Western Res. Lab., Palo Alto, CA, Tech. Rep., 1999. and organizing committees, including the International Test Conference and the

W.-T. Shiue and C. Chakrabarti, “Memory exploration for low powerVLS| Test Symposium, and has served as the Technical Program Chair of the
embedded systems,” Proc. 36th Design Automation ConJune 1999, 1998 High Level Design Validation and Test (HLDVT) Workshop and as the
pp. 140-145. General Chair of the 1999 HLDVT Workshop.

