
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 11, NOVEMBER 2001 1309

Performance and Power Effectiveness in Embedded
Processors—Customizable Partitioned Caches

Peter Petrov and Alex Orailoglu, Member, IEEE

Abstract—This paper explores an application-specific cus-
tomization technique for the data cache, one of the foremost
area/power consuming and performance determining microarchi-
tectural features of modern embedded processors. The automated
methodology for customizing the processor microarchitecture
that we propose results in increased performance, reduced power
consumption and improved determinism of critical system parts
while the fixed design ensures processor standardization. The
resulting improvements help to enlarge the significant role of
embedded processors in modern hardware–software codesign
techniques by leading to increased processor utilization and re-
duced hardware cost. A novel methodology for static analysis and
a microarchitecturally field-reprogrammable implementation of a
customizable cache controller that implements a partitioned cache
structure is proposed. Partitioning the load/store instructions
eliminates cache interference; hence, precise knowledge about the
hit/miss behavior of the references within each partition becomes
available, resulting in significant reduction in tag reads and
comparisons. Moreover, eliminating cache interference naturally
leads to a significant reduction in the miss rate. The paper presents
an algorithm for defining cache partitions, hardware support for
customizable cache partitions, and a set of experimental results.
The experimental results indicate significant improvements in
both power consumption and miss rate.

Index Terms—Application-specific processors, cache memories,
embedded processors, low-power processors, partitioned caches.

I. INTRODUCTION

PROCESSOR performance, power consumption, and deter-
ministic execution time impose significant constraints on

modern hardware–software codesigned systems [1]. The parti-
tioning of hardware and software is a major issue in these sys-
tems [2]. Implementing larger parts of the system as software
results in reduced cost, improved time to market, system main-
tainability, and flexibility. However, reduced performance and
increased power consumption are typically observed due to the
nature of the general-purpose processors. Yet processor cores
with all their attendant benefits of flexibility, maintainability,
and high volumes are natural candidates for further utilization,
if the performance and power limitations were to be alleviated.
In this paper, we propose a methodology for application-spe-
cific customization of the data cache, one of the foremost perfor-
mance and power stipulating components of modern high-end

Manuscript received April 16, 2001; revised June 29, 2001. This work was
supported by an IBM Graduate Fellowship and by the National Science Foun-
dation under Grant 0082325. This paper was recommended by Guest Editor P.
Marwedel.

The authors are with the Computer Science and Engineering Department,
University of California at San Diego, La Jolla, CA 92093-0114 USA (e-mail:
ppetrov@cs.ucsd.edu; alex@cs.ucsd.edu).

Publisher Item Identifier S 0278-0070(01)09990-0.

embedded processors. We present an architecture capable of in-
corporating the application-specific information in a postmanu-
facturing fashion, utilizing a reprogrammable data path.

Application-specific customization of embedded-processor
microarchitectures is a novel technique that transfers appli-
cation information to the processor microarchitecture. In this
case, the microarchitecture can perform informed decisions
as to how to handle various architecture-specific actions.
Fundamentally, this approach extends the communication link
between compiler and processor architecture by transferring
application information directly to the microarchitecture
without modifying the existent instruction set. Consequently,
traditional mainstream compiler algorithms remain unaffected
by the proposed customization technique. The static analysis
information transfer is accomplished by utilizing a repro-
grammable data path. The reprogrammable implementation we
propose allows application changes to be effected in field by
loading the new application information in a manner similar
to program reloading. The reprogrammability is achieved on
a microarchitectural level rather than through gate-level ap-
proaches such as field-programmable gate arrays (FPGAs), thus
achieving cost-efficient performance and power consumption.

In this paper, we present a methodology for application-spe-
cific customization of the data cache of embedded processors
for improved power and performance. In a typical embedded
environment, the application workload is fixed for extended pe-
riods of time, making specialization techniques even more vi-
able. Consequently, more aggressive application-specific opti-
mization techniques can be applied in order to significantly re-
duce power consumption and increase performance.

Power consumption is becoming an ever more impor-
tant characteristic in modern embedded applications. The
data-cache subsystem constitutes a significant fraction of the
total number of transistors in a modern microprocessor and
consumes a large part of the total power. An illustrative example
is the StrongArm-110 architecture [3], wherein the cache con-
sumes 43% of the total power. It is evident that new techniques
are needed to leverage the available application information
into a power and performance efficient embedded-processor
architecture.

The domain of numerical algorithms, the cornerstone of
image and voice processing and various wireless applications,
suffers from significantly elevated cache miss rates, as associ-
ated algorithms operate on a number of arrays of data with large
volume. Consequently, high interference amongst memory
references, frequently residing in nested loops, and cache
pollution caused by sequential array references are typically
observed. Furthermore, a high amount of redundancy exists

0278–0070/01$10.00 © 2001 IEEE

1310 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 11, NOVEMBER 2001

in reading and comparing tags for references with hit/miss
behavior that can be predetermined well in advance because of
their regularity. General-purpose cache organizations handle
neither of these problems. It is difficult to find an effective
solution unless significant application information can be
utilized by the cache subsystem. New more sophisticated
caching schemes are needed, capable of utilizing application
information for the particularities of the specific memory
reference pattern.

In this paper, we demonstrate an algorithm that partitions the
memory access instructions of a nested loop into groups. Each
group corresponds to a set of load/store instructions exhibiting
data reuse amongst them and is mapped to acache partition
within a partitioned cachestructure. The size of the cache par-
titions is determined according to the type of reuse and space
needed to exploit it. Moreover, it is shown how the tag array
and tag comparisons can be completely turned off for most of
the load/store instructions belonging to such partitions as the
hit/miss outcome for each instruction in the partition can be
determined well in advance regardless of its address tag field.
This leads to a significant amount of power reduction and at
the same time to a highly improved miss rate. Furthermore, by
eliminating cache interference and pollution, a significant re-
duction in miss rate is achieved, which leads to a reduction in
the number of accesses to the power-hungry second level cache
or system memory, thus, reducing both power and improving
performance.

The proposed technique is highly beneficial on loop nests
containing references to several arrays with large amounts of
temporal data reuse, but nonetheless suffering from significant
data-cache interference and pollution. This is a typical situation
for a large number of loops contained within applications for
numerical computing and modeling. The benchmarks utilized
in our experimental results are representative applications and
kernels from the aforementioned application domains.

While we target a single program execution model in our ex-
position, the proposed methodology can be readily extended to
multiprogram environments by mapping the task partitions into
separate cache regions. Not only are the benefits from cache par-
titioning for a single task preserved, but also further possibilities
for extending the scope of the proposed framework to control-
ling the interprogram cache pollution and interferences can be
achieved. A separate region of the cache can be dedicated to
each task and the task partitions can be inserted within the task
cache region. The task cache regions can be organized in the
same way as the normal cache partitions and their size deter-
mined by the cache utilization of each task. While extensions of
the ideas we propose for multiprogramming environments can,
thus, be entertained, we concentrate in this paper on illustrating
the fundamental ideas of cache partitioning within the essential
domain of uniprogramming environments.

We complement this paper with a discussion of an efficient
hardware implementation for partitioned caches. Not only is
the proposed implementation efficient, but it is also repro-
grammable, thus, providing high flexibility to recustomize the
embedded processor infield. Hence, the proposed implementa-
tion constitutes a unified microarchitectural solution that is not
confined to a particular application, but is capable of handling
diverse workloads through infield recustomization.

II. RELATED WORK

Various techniques have been proposed in the compiler and
computer architecture communities to attack the problem of
cache conflicts and cache pollution for data-intensive applica-
tions. Loop interchange, skewing, and tiling [4]–[6] all consti-
tute compiler optimization techniques for improving data lo-
cality in loop nests. While useful in exploiting a large amount
of inherent reuse, controlling the data interference inside the tile
is still a significant challenge. Loop transformations introduce
extra control code as well, which may preclude their usage in
applications with stringent time and power budgets.

Architectural support for distinguishing between memory
references that exhibit spatial, temporal, or no reuse whatsoever
has been proposed through the introduction of the dual data
cache [7]. The approach results in improved cache utilization,
but the cache interference problem still remains. A static
analysis approach for avoiding data-cache interference is
presented in [8]. Therein, memory references that can cause
cache conflicts are annotated as noncacheable. Additionally, a
cache volume (CV) analysis for facilitating the feasibility of
exploiting particular data reuse is described.

Various optimization techniques for reducing energy dissi-
pation in the cache subsystem have been proposed recently. A
power optimization technique applied during behavioral syn-
thesis for memory intensive applications has been presented in
[9]. The behavior of the memory access patterns is utilized to
minimize the number of transitions on the address bus and de-
coder, thus reducing power consumption. In [10], a small L0
instruction cache is proposed to store the most frequently exe-
cuted basic blocks in order to reduce the energy dissipation of
the larger L1 I-cache. A technique for turning off associativity
ways in a set-associative cache architecture is proposed in [11].
The proposed approach represents a tradeoff between power re-
duction versus performance. A set of memory array implemen-
tation techniques for minimizing power in the cache subsystem
is presented in [12]. The authors propose subbanking, bitline
segmentation, and multiple line buffers in order to minimize the
energy dissipated when accessing the memory array. A fast reg-
ister-transfer level power-estimation methodology has been pre-
sented in [13]. The methodology accurately estimates the power
consumption for both the controller and data path. A new energy
estimation framework for microprocessors has been proposed
recently in [14]. The simulation environment employs a tran-
sition-based power model and rapidly achieves highly precise
power estimations.

III. M OTIVATION

A typical numerical algorithm consists of matrix and/or array
operations grouped in several nested loops. For example, Fig. 1
shows an excerpt from theswimSPEC95fp benchmark. One can
notice that the references to and exhibit only spatial lo-
cality. All references to the array PSI utilize spatial locality as
well, but there is also a temporal locality between
and . These references reuse a row of the ma-
trix PSI along the outer loop. The references
and will always result in hits if the data brought
by is judiciously preserved in the cache. Not

PETROV AND ORAILOGLU: PERFORMANCE AND POWER EFFECTIVENESS IN EMBEDDED PROCESSORS 1311

Fig. 1. Excerpt from theswimbenchmark.

only do such judicious data preservations promote performance
and power improvements through the evident miss rate reduc-
tion, but, furthermore, a large number of power-consuming tag
operations can be completely avoided, if knowledge regarding
whether a particular array reference will indeed hit in the cache
can be captured.

Consider, for example, the write references toand . They
are brought into the cache and a new cache line is used when
the previous one is filled. This situation occurs when an array
(or matrix) is traversed sequentially. In this type of access, only
spatial locality exists and it is not necessary to use more than
one cache line to capture this locality. Such reference behavior
leads to significant cache pollution and interference with the re-
maining working set, as using more than one cache line leads
to no benefits in terms of reuse. The inherent spatial reuse can
be exploited using a single cache line, if a more sophisticated
caching technique were to be utilized. A similar problem of in-
terference may occur when temporal reuse with overlapping ac-
cesses in the data cache amongst more than one array exists;
the overlapping accesses may prevent the temporal reuse from
being utilized.

A conventional cache organization suffers from the inability
to distinguish different types of reuse along the loop iterations.
All references are treated identically; thus, significant interfer-
ence between unrelated data arrays and cache pollution is intro-
duced. Caching the data intelligently by avoiding interferences
and pollution would be highly beneficial in terms of both perfor-
mance and energy dissipation gains. At the same time, a signif-
icant number of tag reads and comparisons can be eliminated if
the interference are to be avoided. For example, it is evident that
the and would always hit in the cache
because of . Consequently, a significant power
reduction can be achieved through elimination of the tag oper-
ations and reduction of the miss rate (which will lead to fewer
accesses to the even more power-consuming L2 cache or main
memory). Solving these problems of performance and power
simultaneously is a rather difficult task for a general-purpose
cache controller.

The sole purpose of the tag in the cache subsystem is to vali-
date whether the data being accessed resides in the cache, yet the
tag array operations are some of the most power-consuming ac-
tivities within the cache. Thus, exploiting regularities and elim-
inating a large number of tag reads and comparisons would pro-
vide significant benefits in terms of reducing power consump-
tion. For a large number of data-intensive and numerical loops,
the miss/hit behavior of the memory references can be analyzed
well in advance. As the example in Fig. 1 suggests, intelligent
avoidance of the cache interference on the basis of advance ap-
plication knowledge obviates most of the tag operations.

The group of references to the matrix PSI exhibits temporal
reuse along iteration. Namely, the usage of rows and

is overlapped in the computation process. In order to
exploit this reuse, the rows need to be protected from interfer-
ences by and , which might affect them during iteration.
Having isolated the references to PSI from other unrelated refer-
ences, the tag operations associated with the references to
can be completely eliminated. Due to interference and volume
limitations, a conventional cache organization fails to exploit the
reuse and to eliminate the unnecessary tag operations.

The fundamental difficulty in achieving higher reuse utiliza-
tion and power efficient usage of the tag arrays is the inability
of a conventional cache to prevent interferences amongst un-
related references, thus avoiding cache pollution. Utilizing ap-
plication-specific information can result in separation of inter-
fering references and elimination of the cache pollution intro-
duced by references with no temporal, but only spatial reuse.
References requiring a larger number of cache lines for temporal
locality exploitation can benefit from the partitioned cache. At
the same time for the references, thus, separated, it can be ob-
served that their hit/miss cache outcomes can be analyzed in
advance, thus, obviating both tag lookups and comparisons.

Cache interference and pollution problems can be resolved
in an application-specific environment, wherein more precise
information about the inherent reusability can be provided to
the cache controller. If the memory instructions were to be
grouped according to the inherent reuse characteristics amongst
them and each group subsequently mapped to a dedicated cache
partition, behaving in the same way as a distinct cache, all
conflicts would be obliterated and redundant tag manipulations
completely avoided. The size of each cache partition can, thus,
be reduced to no larger than the minimal sufficient size for
exploitation of the inherent reuse for that particular group of
instructions.

IV. PARTITIONING ANALYSIS

The proposed partitioning analysis utilizes information about
the type of reuse of each reference. A formal methodology for
determining the reuse type of array references with affine in-
dexes is presented in [5]. Since the methodology we propose
utilizes information about reuse type in a loop nest, we briefly
review the relevant terminology.

A memory reference instruction is said to haveself-temporal
(st) reuse if in a subsequent loop iteration it accesses the same
memory address. Aself-spatial(ss) reuse refers to an instruc-
tion that accesses data inside a single cache line in two sub-
sequent loop iterations. Two load/store instructions are said to
havegroup-temporal(gt) reuse if both of them access the same
memory address; they are denoted asgroup-spatial(gs) if both
access memory addresses that map to the same cache line.

The reuse type varies across loop dimensions. A reuse occurs
in a particular loop dimension and is qualified by the number of
iterations within which the reuse is exploited.

Under the assumption that the reference analysis operates
on perfectly nested loops where all the references to a data
array reside in the innermost loop dimension and have indexes

1312 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 11, NOVEMBER 2001

with the same multiplicative coefficient,1 it is straightforward
to guarantee the absence of any cache consistency problems.
Further affine-linear analysis can be performed to identify
whether a consistency problem can occur in the cases of
imperfectly nested loops and for nonidentical multiplicative
coefficients. If the absence of consistency problems is, thus,
ascertained, the same partitioning methodology mentioned
above can be applied. In the case of possible consistency
issues, the corresponding references are not further considered
for partitioning. In any case, references with nonidentical
multiplicative coefficients in indexing the same array are quite
uncommon in practice and in none of the benchmarks that
we have considered in our experimental study were any such
instances encountered.

By isolating a group of load/store instructions from other un-
related and possibly interfering groups of memory references,
the detrimental effects of cache conflicts can be minimized.
The grouped instructions can be considered as a set composed
of a leading reference and severaltrailing references. The
leading reference does fetch data from memory, but misses
only once per cache line. All thetrailing references invariably
hit in the cache. Consequently, no tag operations are needed
for the trailing references within a partition. Furthermore, if the
data access is single-strided, the leading reference would miss
only in the beginning of a cache line. Therefore, in this case,
no tag operations are needed for the leading reference as well.

A. Algorithm Fundamentals

We capture the information about the inherent reuse for a
particular loop dimension by constructing a data reuse graph
(DRG). Each node in the DRG corresponds to a particular
load/store instruction or to an already formed group. The edges
in the DRG represent data reuse between the corresponding
nodes. Each edge is annotated with the particular type of
reuse it represents. Additionally, an integeris associated
to every temporal reuse denotation, representing the number
of iterations needed to exploit the temporal reuse denoted by
the edge. The number of iterations in turn determines the CV
needed to exploit the reuse.

The optimal cache partition size, CV, varies depending on the
reuse type. It is evident that a spatial reuse necessitates only a
single cache line. In the case of temporal reuse though, a fixed
(but varying amongst memory instructions) number of cache
lines are needed in order to exploit the reuse and prevent in-
terference.

For example, a pair of loads and , representing
an array traversal with loop index, requires cache
lines on a cache with line sizeto exploit the group-temporal
reuse between these references. If the reuse occurs in the outer
loop iterations, such as and from
the example in Fig. 1, all data referred along iterationby both
instructions need to be preserved. Intuitively, this corresponds
to keeping the row in the cache while
is “prefetching” the next row.

1Such as, for example, the reference pairA[i] andA[i+3], but notA[i+2]
andA[3 � i + 2].

Fig. 2. Example of group temporal reuse.

B. Algorithm Overview

The objective of the partitioning algorithm is to group
memory instructions with data reuse amongst them and map
this group to a cache partition with appropriate size. From
a DRG perspective, this implies selecting DRG edges and
grouping the neighboring selected edges together into parti-
tions. While each edge selected provides a constant benefit in
capturing a reuse, the cost in terms of CV to accommodate an
edge varies. Consequently, the objective of the algorithm is to
maximize the number of selected DRG edges.

The algorithm starts from the innermost loop dimension, as
the frequency of the data reuse there is maximal. The data reuse
frequency wanes as the traversal proceeds toward the outermost
dimension. Therefore, the algorithm proceeds iteratively on the
loop dimensions starting from the innermost loop.

An example of group-temporal reuse can be seen in Fig. 2.
We assume a cache line size of one word to simplify the ex-
planation. Fig. 3(a) shows the DRG for the example in Fig. 2.
The number of cache lines needed to capture the corresponding
group reuse is therein shown. The initially appealing solution of
a direct greedy approach is unfortunately inadequate in deter-
mining the optimal number of partitions, as illustrated immedi-
ately hereafter. If we assume an available CV of nine cache lines,
a direct greedy approach leads to the result shown in Fig. 3(b). It
is evident though that a solution consisting of a single partition
covering all references to the array A, but the last one of A
is superior in that it covers instead four temporal reuses in A and
furthermore utilizes all nine cache lines exactly. The latter so-
lution evidently constitutes an improvement, as a combination
of two edges with a common node in a single partition “saves”
the storage of the overlapping node. As the counterexample il-
lustrates that the straightforward greedy approach is inadequate
in attaining a consistently optimal result, we proceed to outline
an improved model of representation that takes into account the
cause of the inadequacy, to wit, the overlap between the nodes
in the DRG.

C. Overlap Considerations

As discussed in Section IV-B, the inherent overlap of CV for
two edges in the DRG with common nodes prevents the direct
greedy approach from consistently finding the optimal solution.
We present an efficient algorithm that quickly finds an optimal
solution for a loop dimension with unit overlap between the
nodes in the DRG. The partitioning methodology consists of
two steps, the first step constituting a mapping to a group rep-
resentation that precisely denotes the semantics of overlap and
the latter step performing an algorithm for the optimal solution
of the problem posed.

PETROV AND ORAILOGLU: PERFORMANCE AND POWER EFFECTIVENESS IN EMBEDDED PROCESSORS 1313

(a) (b)

(c)

Fig. 3. DRG and ODT for group-temporal reuse. (a) DRG. (b) Greedy nonoptimal DRG partitioning. (c) ODT.

In the first phase, the algorithm separates the connected
edges while keeping track of the overlap by building overlap
dependence trees (ODTs) as shown in Fig. 3(c). The purpose
of the ODT is to represent the overlap dependencies amongst
the edges in the DRG and to show the exact CV needed to
cover a particular edge in the DRG after removing the overlap.
Each node in the ODT corresponds to an edge in the DRG. The
edges in the ODT represent the overlap relation between the
corresponding edges in the DRG. The following pseudocode
describes the ODT construction algorithm formally.

repeat
e FindEdge with min CV in DRG;
Decrement CV of Neighbors(e);
ODT(e) CreateNode in ODT for e;
for all n in Neighbors(e) and n in ODT

Connect ODT(e) as a child of ODT(n);
until no edges left in DRG

A tie in the minimal CV value in the DRG can be partially
resolved by giving reduced priority to the edges on the boundary
of the reuse chain; any remaining ties can be resolved randomly
with no impact on optimality. The ODT for the example in Fig. 2
is shown in Fig. 3(c). Each node in the ODT is annotated with
the updated CV.

D. Generation of Optimal Solution

Given the ODT, the purpose of the algorithm is to find the
maximum subset of nodes subject to the constraints that the total
available CV not be exceeded and that overlap dependences be
preserved. The following pseuodocode defines this part of the
algorithm.

procedure FormPartitions
CacheVolume TotalCacheVolume;
while true

V v1, , vn FindNodes with min CV in
ODT;

for all vi in V & vi is a root
if CV(vi) CacheVolume then return(Par-
titions);
Select vi; ODT vi ; V vi ;
CacheVolume CV(vi);

end for
repeat

Find vk in V with minimal
number of ancestral nodes;

for w in Path to vk from the root
if CV(w) CacheVolume then return(Par-
titions);
Select(w); ODT w ; V w ;
CacheVolume CV(w);

end for
until V is empty

end while
end procedure

While minimal CV nodes are invariably root nodes of the
graph initially, minimal nodes can be found at arbitrary positions
in the ODT in later iterations. This nonstraightforward case,
though, can be handled by observing that ancestors of the min-
imal nonroot node cannot exceed it by more than one unit. Se-
lecting the root from the tree that contains a minimal node with
the smallest number of ancestors maintains optimality while
paving the route for eventually incorporating the truly minimal
CV node into the partition. The algorithm terminates when there
remains insufficient CV to accommodate any further reuse.

Informally, the correctness of the algorithm can be illustrated
by observing that the more general problem with no edge
overlap is optimally solved by a greedy approach. The ODT
ensures that the dependence between the overlapped edges in
the constructed solution is preserved during the application
of the greedy steps. While the prioritization of nodes in the
ODG may violate the optimality of the greedy approach, the
particular property of the ODG that ancestors of minimal

1314 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 11, NOVEMBER 2001

nonroot node cannot exceed it by more than one unit ensures
the optimal applicability of the greedy like approach.

The algorithm that we have presented exhibits a linear exe-
cution time in terms of the number of edges in the DRG. The
input size corresponds to the number of load/store instructions
within the loop nest, which in practice is limited to 40–50. Con-
sequently, the running times of the algorithm are exceedingly
small, which makes this algorithm particularly useful for design
space exploration in hardware–software partitioning schemes.

In the innermost loop iteration, the overlap consists of one
cache line, i.e., a unit overlap. When the algorithm proceeds
onto the next (outer) loop dimension, the overlap between the
nodes in the DRG corresponds to the size of the previous loop di-
mension, i.e., the memory volume needed for an iteration of the
inner loop dimension. In terms of matrix traversal, the overlap
corresponds to one row from the matrix. When proceeding to the
outer loop dimensions, though, the normalized overlap might be
slightly less than a unit because there may be a partition formed
in the embedded loop dimension of size negligible compared to
the new dimension overlap unit. This deviation can in rare cases
result in a globally nonoptimal partition definition. For the in-
nermost loop iteration, of course, which typically contains most
of the data reuse, the overlap between the DRG edges is always
one cache line as shown in Fig. 3(a); hence, the practical op-
timality of the algorithm. The experimental studies undertaken
have consistently identified solutions not only locally, but also
globally optimal, thus, further emphasizing the superiority of
the algorithm in an empirical sense.

V. IMPLEMENTATION

The proposed partitioning methodology requires special
hardware support from the cache controller. The hardware
needs to be able to capture the information provided by
the compiler about load/store instruction partitioning and to
effectively map these references to the corresponding part of
the partitioned cache. Information also needs to be captured
regarding the memory references that will not need to perform
tag reads and comparisons.

In this paper, we consider direct-mapped cache organizations,
but the approach can be generalized to set-associative structures
as well by mapping each partition across all the associativity
ways. The straightforward implementation generalization relies
on the same architecture that we describe in this section. While
set-associative organizations can be used within a partition, no
strong rationale for such an organization exists, as the traditional
benefits of miss rate reduction in set-associative caches do not
hold in the proposed partitioned caches due to the lack of con-
flict misses within a partition.

In either case, the cache is virtually partitioned into sub-
caches, each of them accommodating a group of load/store
instructions. Each cache partition is identified by two param-
eters: the number of cache lines (size) and offset (position) in
the original cache array.

A. Identifying the Cache Partitions

In order to address a particular cache partition as a distinct
cache, a slight modification of the traditional cache indexing

Fig. 4. Partition identification logic.

scheme needs to be effected. Depending on the size of the cache
partition, thecache indexpart of the address is divided into two
parts. If the size of the corresponding cache partition is, then
the least significant bits from thecache indexare used to
form the new index. The remaining most significant bits from
the cache index are replaced by a constant in the newly formed
cache partition index. The value of this constant determines the
offsetof the cache partition in the original cache.

The above reasoning evinces that each cache parti-
tion with size is identified by a pair of numbers

. The cache parti-
tion indexis formed by concatenating theoffsetand the least
significant bits from the cache index.

The hardware support for the partitioned cache has to resolve
the following problems: identification of the mapping between
a memory instruction and a particular cache partition; identi-
fication of thetrailing load instructions that can avoid the tag
read and comparison and calculation of thecache partition index
using the pair of numbers identifying the partition.

The approach targets loop nests. Therefore, a solution is
needed that can efficiently handle the load/store instructions per
loop nest. The partition mapping identification is achieved by
a hardware architecture utilizing two tables: the partition map-
ping identification table (PMIT) and the partition identification
table (pit). Fig. 4 presents this structure. The PMIT is used to
define the mapping between load/store instructions and cache
partitions. The PMIT is indexed using the least significant PC
bits of the load/store instruction from the loop. The size of the
PMIT corresponds to the total number of instructions within the
loop nest. In practice, the size of a loop nest in data intensive
applications is rarely large, thus, leading to implementations
with a small number of entries. When a load/store instruction
is decoded, the PMIT is indexed with the least significant bits
of the PC. An entry in PMIT contains a value that represents an
index into the PIT, which in turn contains a partition-defining
information. An additional bittr is also stored in the PMIT
entry to indicate whether the instruction is atrailing reference
for the partition. The main purpose of this organization is to
avoid associative lookups, which are expensive in terms of
power. The tables described above are directly indexed; their
size, negligible compared to the size of the tag memory arrays,
ensures that no significant amount of energy dissipation is
introduced.2 The timing impact on the access time is discussed
later in this section.

All memory references in a loop nest that are left unparti-
tioned by the reference analysis are mapped to a dedicated cache
partition. This special partition is treated in the same way as the
remaining cache partitions. The only difference is that no tag
optimizations are performed for it. One of the entries in PIT is

2The impact of the tables on power consumption is nonetheless fully ac-
counted for in the experimental studies of Section VI.

PETROV AND ORAILOGLU: PERFORMANCE AND POWER EFFECTIVENESS IN EMBEDDED PROCESSORS 1315

Fig. 5. Partition cache index calculation.

dedicated for this special partition and all unpartitioned memory
references are directed to this entry through the PMIT.

The partition information is stored in the PIT. A PIT entry
is shown in Fig. 4. The first two fields contain the partition-
defining information—offsetand as explained earlier. The in-
formation from this table is used to calculate the partition cache
index. Thestfield specifies whether the access stride for the par-
tition is one. If this is the case, theleadingreference misses only
in the beginning of the cache line; hence, the hit/miss signal can
be determined from the least significant bits of the address cor-
responding to the cache line index.

PMIT and PIT contents are loaded onto the processor at the
same time when the code of the embedded application is stored
in the main memory. This reprogrammable hardware solution
facilitates flexibility across various embedded applications and
across versions of the same application.

B. Computing the Cache Index

The lookup into the PMIT and PIT is the first step in deter-
mining thecache partition indexand is performed early in the
pipeline, thus, not affecting the cache access time. Right after
the load/store is decoded, the lookup is performed in parallel
with the effective address calculation. Fig. 5 shows the imple-
mentation of thecache partition indexcalculation. The cache
index template (CIT) and control signals are computed be-
fore the actual cache access pipeline stage using the partition in-
formation found in PIT. The CIT is defined as having theoffset
value in its most significant bits and zeroes in itsleast signif-
icant bits resulting in control signals defined as
for and for . The effective address
cache index (EACI) is the traditional cache index field in the
effective address. The cache index (CI) is computed using the
simple combinatorial logic depicted in Fig. 5. The delay of the
two gates shown in this figure is the sole, evidently insignificant,
increase in the path delay of the cache access data path.

C. Tag Support for the Partitioned Cache

Since the cache partitions are subsets of the original cache
array, the tag field needed to accommodate a particular cache
partition will have larger size. For example, if a partition
occupies half of the cache array, the tags associated to this
partition should have width one bit larger than that of the orig-
inal tags as the cache block size is unchanged. Yet this larger
tag is needed only for the unpartitioned load/store instructions
and for theleading references for the partitions in the case

Fig. 6. Extended tag array and enabling logic.

of nonsingle stride access patterns.3 Various approaches for
implementing these wider tags can be entertained. One pos-
sibility is to have an additional extended tag array that can
be disabled at the bitlines level. For example, if only two
additional tag bits are required for a particular partition (with
size one fourth of the cache array) in a loop nest, only two
bitlines will be enabled in the extended tag array. Although
optimal in minimizing the tag bits usage, this approach re-
quires a somewhat complex control logic. The approach that
we have followed in our experimental study, shown in Fig. 6,
utilizes again an additionalextended tag array, but is not con-
trollable on bitline level. The size of theextended tag arrayis
determined by the size of theminimal cache partitionallowed
for the particular implementation. Each time an access in a
cache partition is performed and this access requires a tag
comparison, the whole tag field from theextended tag array
is used. The width of the extended tag array is four and five
for 8- and 16-kB DM caches, respectively, with a minimal
partition size of 32 cache lines.

D. Impact on the Cache Access Time

The mapping between the load/store instructions and the
cache partitions is identified by indexing into PMIT and PIT.
This task can start right after the load/store instruction is
decoded. Computation of the template CIT and the control
signals shown in Fig. 5 is independent of the effective
address of the memory instructions; hence, the two computa-
tions can be overlapped in the pipeline. Only the computation
of the final cache index is performed after the effective address
computation stage. Consequently, the access to the PMIT and
the PIT tables is decoupled from the cache access logic, which
happens typically later in the pipeline. In the cache access
stage, only the addition of the final cache index computation
logic is introduced. To compute the final cache index, the
combinatorial logic from Fig. 5 needs to be utilized. Effec-
tively, only the delay of the two gates is added to the path that
determines the cache access time. Depending on the critical
paths of the pipeline stages for cache access and effective ad-
dress computation, this small logic can be balanced amongst
these two pipe stages.

3For the cold cache misses, the invalid bit constitutes an identification
for cache miss.

1316 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 11, NOVEMBER 2001

TABLE I
CACHE PERFORMANCE FOR THEBASE CONFIGURATIONS

E. Covering Multiple Loop Nests

The proposed methodology works on an individual loop-nest
level. A typical numerically intensive embedded application
contains several loop nests. In order to be able to perform the
cache partitioning methodology for all loop nests, multiple
partition mappings associated with each loop nest have to be
stored. A straightforward solution consists of having multiple
PMITs. Each time the application finishes with one loop nest
and proceeds to another, a switch between the PMITs needs to
be performed. An alternative approach is to have larger PMIT
and PIT tables, multibanked for energy savings; by redefining
the index mapping into them, an effective switch to a new
partition configuration can be effected.

During a switch between loop nests, the cache content has
to be invalidated because a new partition mapping is defined.
The switch of partition mappings when proceeding to different
loop nests can be controlled by software using a special control
register that determines the active partition mapping.

VI. EXPERIMENTAL RESULTS

In our experimental work, we evaluate and analyze the ability
of the partitioned cache to reduce both the data-cache miss rate
and the amount of energy consumption. We compare the perfor-
mance and power reduction parameters of the partitioned cache
structure against a number of typical L1 cache configurations in
modern embedded processors. Specifically, our base configura-
tions include 8- and 16-kB L1 data-cache configurations, both
direct-mapped and two-way set associative. All cache configu-
rations contain blocks with a size of four words. Increased cache
associativity is a classical approach for reducing the conflicts
in the cache; we, therefore, include in our experimental study
two-way set-associative cache configurations. Two configura-
tions for a partitioned cache, 8- and 16-kB direct mapped with
line size of four words, are examined.

The SimpleScalar toolset [15] has been used to examine the
cache behavior for the baseline cache architectures and the par-
titioned cache has been modeled by a specially developed tool,
utilizing traces produced by SimpleScalar.

The Cacti tool [16] has been used to obtain the energy
consumption for all the data-cache components. A technology
process of 0.35 m and 2.6 V is assumed. The Cacti tool
models in detail all the cache components.4 We model the
PMIT and PIT tables as static random access memory blocks.

4In utilizing this tool, we excluded for all partitioned instructions the en-
ergy consumed in the tag address decoder, tag wordline selection, tag bitlines
precharge, tag sense amps, and the tag comparator in order to reflect the fact
that the tag operations for these references are turned off in the architecture we
propose.

TABLE II
PARTITION INFORMATION

The PMIT contains 64 entries, each of them with a size 4 bits,
while the PIT contains eight entries with size 9 and 10 bits for
8-kB and 16-kB data-cache configurations, respectively. The
minimal partition size is set to 32; consequently, the width of
the extended tag array is 4 and 5 bits, respectively. The energy
for the main memory is based on the data presented in [17] and
assumes 4.95 nJ per access.

The following benchmarks are used in our experiments: 1)
swim benchmark (swim), part of the SPEC95fp benchmark suit,
characterized by a high cache miss rate due to a large amount
of interference [8]; 2) tri-diagonal system solver (tri), a fun-
damental part oftomcatvSPEC95fp benchmark and a major
contributor to the high miss rate for thetomcatvbenchmark,
with matrix size of 128 128; 3) extrapolated Jacobi-iterative
method (ej) [18] on a 128 128 grid; 4) successive over-relax-
ation (sor) [5], [18] on a matrix with size 256256.

Table I shows the miss rate for the base cache configurations.
The high miss rate forswim, tri, andej is due to the high amount
of interference and cache pollution. Thesor does not exhibit a
high miss rate, as the algorithm works only on a single matrix.
Nevertheless, the power reduction in terms of eliminating al-
most all of the tag operations is significant.

Table II contains information about the partitions for each
benchmark. The first column in each subtable shows the total
number of memory instructions (MI). The second column gives
the number of partitioned memory instructions (PMI), corre-
sponding to the instructions for which no tag operations are per-
formed. The third column displays the total number of partitions
for the loop nest, not counting the special partition for the re-
maining unpartitioned memory instructions. The data pertains
to both 8- and 16-kB caches; for the few cases when the results
differ for the two caches, the 8 kB results are shown in paren-
theses.

Table III shows the results for the partitioned cache. Within
each cache partition, the number of conflict misses is reduced
to zero. This follows directly from the way the cache partitions
are formed. Consequently, only the cold misses for the refer-
ences within the partitions need to be considered in terms of
cache miss behavior. Furthermore, one can observe that only
the leadingreference of the partition exhibits cold misses, due

PETROV AND ORAILOGLU: PERFORMANCE AND POWER EFFECTIVENESS IN EMBEDDED PROCESSORS 1317

TABLE III
PARTITIONED CACHE MISS-RATE RESULTS

TABLE IV
ENERGY CONSUMPTION(mJ)FOR 8-kB CACHES

TABLE V
ENERGY CONSUMPTION(mJ)FOR 16-kB CACHES

to its inherent role in bringing data into the partition for subse-
quent spatial reuse for itself and temporal reuse for thetrailing
references. We can conclude, therefore, that the conflict misses
for the arrays targeted by partitions have been completely elim-
inated and reduced to zero; only a single memory reference
within the partition exhibits cold misses when bringing in a new
cache line.5

The reduced miss rate has two major implications. First, it
leads to performance improvement and second, it results in a
significant power reduction from the L2 cache or main memory.
The reduction in energy dissipation is proportional to the reduc-
tion in the miss rate.

Tables IV and V show the energy consumption results (in mil-
lijoules) for 8- and 16-kB caches, respectively. The first two
columns represent the energy consumption for direct-mapped
and two-way set associative caches. The third column (PC-T)
shows the energy for the partitioned cache, but with no tag op-
timization. The next two columns display the power improve-
ments in percentages, compared to the direct-mapped and the
two-way set associative caches. The sixth column (PC) rep-
resents the energy consumption for the partitioned cache in-
cluding both the miss rate reduction and the tag optimizations.
Finally, the last two columns present the total improvement in
percentages. The energy consumption improvements vary from
14% to 35%. The negative result forsor in comparison to a di-
rect-mapped cache in the case of no tag optimizations is due to
the lack of miss rate reduction for this benchmark, the extended

5This observation is generally true for single-strided loop traversals or a non-
single-strided, but within the cache line size traversal, which is the case in all
the benchmarks we have utilized in our experimental results. In any case, the
partitioned cache does not modify the number of cold misses compared to a
general-purpose cache organization.

tag array, and the slight overhead of the partitioned cache in
terms of PMIT and PIT. This benchmark is a worst case scenario
in terms of power for a partitioned cache with no tag-related
power optimization support, since it includes a large number
of array references utilizing the extended tag array with no de-
crease in the miss rate. Nevertheless, when the tag optimizations
we propose are included, the energy savings for this benchmark
are not only significant, but exhibit the highest level of power
reductions for both 8- and 16-kB caches.

In comparing our results to related approaches for power opti-
mizations and performance improvement, one can immediately
see that the proposed scheme improves both power and perfor-
mance instead of performing a tradeoff between them. In [11],
energy reductions in the range of 10%–25% for 32-kB four-way
set-associative caches are reported, yet at the cost of a perfor-
mance degradation in the range of 2%–6%. In [8], the authors
achieve a miss rate reduction in the range of 5%–8%, while in-
troducing additional opcode bits and hardware support for tem-
poral and spatial reuse utilization. Evidently, judicious utiliza-
tion of application-specific information enables avoidance of
this tradeoff space and delivers improvements in both perfor-
mance and power simultaneously.

VII. CONCLUSION

We have presented a novel methodology for application-spe-
cific customization of the cache subsystem of embedded pro-
cessors in this paper. A precise static analysis of the application
has been demonstrated to be capable of identifying the optimal
solution for grouping memory access instructions and mapping
them to cache partitions with optimal size. Preventing cache
interference and cache pollution by utilizing precise applica-
tion information and subsequently eliminating a large number
of power devouring tag operations in addition to reducing the
miss rate have constituted the main objectives of the proposed
methodology. The achievement of these goals has been con-
firmed through extensive experimental results. A significant in-
crease in the cache hit rate and a decrease in power consumption
have been demonstrated through a representative set of simula-
tion results. The proposed technique has significant implications
in system-on-chip designs utilizing embedded-processor cores,
as it significantly reduces the number of system bus transac-
tions, thus, resulting in higher system performance and reduced
power.

Customizing the embedded-processor architecture utilizing a
reprogrammable hardware promises to be a powerful technique
toward lower power consumption and higher and deterministic
performance in hardware–software systems. At the same time,
it helps retain the processor-centric paradigm and extends its
advantages to a large class of modern embedded applications.

REFERENCES

[1] W. H. Wolf, “Hardware-software co-design of embedded systems,”
Proc. IEEE, vol. 82, pp. 967–989, July 1992.

[2] J. Henkel and R. Ernst, “A Hardware/Software partitioner using a dy-
namically determined granularity,” inProc. 34th Design Automation
Conf., June 1997, pp. 691–696.

[3] J. et al., “A 160-MHz, 32-b, 0.5-W CMOS RISC microprocessor,” in
Proc. IEEE Int. Solid-State Circuits Conf., Feb. 1996, pp. 214–229.

1318 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 11, NOVEMBER 2001

[4] M. S. Lam, E. E. Rothberg, and M. E. Wolf, “The cache performance
and optimizations of blocked algorithms,” inProc. 4th Int. Conf. Archi-
tectural Support for Programming Languages and Operating Systems,
Apr. 1991, pp. 63–74.

[5] M. E. Wolf and M. S. Lam, “A data locality optimizing algorithm,” in
Proc. ACM SIGPLAN Conf. Programming Language Design and Imple-
mentation, June 1991, pp. 30–44.

[6] M. J. Wolfe, “More iteration space tiling,” inProc. Supercomputing,
Nov. 1989, pp. 655–664.

[7] A. Gonzalez, C. Aliagas, and M. Valero, “A data cache with multiple
caching strategies tuned to different types of locality,” inProc. Int. Conf.
Supercomputing, July 1995, pp. 338–347.

[8] J. Sanchez, A. Gonzalez, and M. Valero, “Static locality analysis for
cache management,” inProc. Conf. Parallel Architectures and Compi-
lation Technique, Nov. 1997, pp. 261–271.

[9] P. R. Panda and N. D. Dutt, “Low-power memory mapping through
reducing address bus activity,”IEEE Trans. VLSI Syst., vol. 7, pp.
309–320, Sept. 1999.

[10] N. Bellas, I. Hajj, and C. Polychronopoulos, “Using dynamic cache man-
agement techniques to reduce energy in a high-performance processor,”
in Proc. Int. Symp. Low Power Electronics and Design, Aug. 1999, pp.
64–69.

[11] D. H. Albonesi, “Selective cache ways: On-demand cache resource al-
location,” inProc. 32nd Annu. Int. Symp. Microarchitecture, Nov. 1999,
pp. 248–259.

[12] K. Ghose and M. B. Kamble, “Reducing power in superscalar processor
caches using subbanking, multiple line buffers and bit-line segmenta-
tion,” in Proc. Int. Symp. Low Power Electronics and Design, Aug. 1999,
pp. 70–75.

[13] J. Zhu, P. Agrawal, and D. D. Gajski, “RT level power analysis,” inProc.
Asia South Pacific Design Automation Conf., Jan. 1997, pp. 517–522.

[14] N. Vijaykrishnan, M. Kandemir, M. J. Irwin, H. S. Kim, and W. Ye,
“Energy-driven integrated hardware-software optimizations using sim-
plePower,” inProc. 27th Annu. Int. Symp. Computer Architecture, June
2000, pp. 95–106.

[15] D. Burger and T. M. Austin, “The SimpleScalar tool set, version 2.0,”
Comput. Sci. Dept., Univ. Wisconsin-Madison, Madison, WI, Tech.
Rep. 1342, June 1997.

[16] G. Reinman and N. Jouppi, “An integrated cache timing and power
model,” Western Res. Lab., Palo Alto, CA, Tech. Rep., 1999.

[17] W.-T. Shiue and C. Chakrabarti, “Memory exploration for low power,
embedded systems,” inProc. 36th Design Automation Conf., June 1999,
pp. 140–145.

[18] S. Nakamura,Applied Numerical Methods with Software. Englewood
Cliffs, NJ: Prentice-Hall, 1991.

Peter Petrov received the B.S. and M.S. degrees in
computer science from Sofia University, Sofia, Bul-
garia, in 1996 and 1998, respectively. He is currently
working toward the Ph.D. degree in computer engi-
neering at the University of California, San Diego.

His current research interests include appli-
cation-specific embedded processors, embedded
systems, and hardware–software codesign.

Alex Orailoglu (M’84) received the S.B. degree
(cum laude) in applied mathematics from Harvard
University, Cambridge, MA, and the M.S. and Ph.D.
degrees in computer science from the University of
Illinois, Urbana-Champaign.

From 1983 to 1987, he was a Senior Member of
Technical Staff with the Gould Research Laborato-
ries, Rolling Meadows, IL. In 1987, he joined the
University of California, San Diego, where he is cur-
rently a Professor with the Computer Science and En-
gineering Department. His current research interests

include digital and analog test, fault-tolerant computing, computer-aided design,
and embedded processors.

Prof. Orailoglu is a Member of the IEEE Test Technology Technical Council
(TTTC) Executive Committee and currently serves as Technical Activities Com-
mittee Chair and Planning Co-Chair of TTTC. He serves in numerous technical
and organizing committees, including the International Test Conference and the
VLSI Test Symposium, and has served as the Technical Program Chair of the
1998 High Level Design Validation and Test (HLDVT) Workshop and as the
General Chair of the 1999 HLDVT Workshop.

