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Abstract During software system evolution, software

architects intuitively trade off the different architec-

ture alternatives for their extra-functional properties,

such as performance, maintainability, reliability, secu-

rity, and usability. Researchers have proposed numer-

ous model-driven prediction methods based on queu-

ing networks or Petri nets, which claim to be more

cost-effective and less error-prone than current prac-

tice. Practitioners are reluctant to apply these methods

because of the unknown prediction accuracy and work

effort. We have applied a novel model-driven predic-

tion method called Q-ImPrESS on a large-scale process

control system from ABB consisting of several million

lines of code. This paper reports on the achieved per-

formance prediction accuracy and reliability prediction

sensitivity analyses as well as the effort in person hours
for achieving these results.

Keywords Software architecture · Performance

prediciton · Reliablity prediction · Case study

H. Koziolek
Industrial Software Systems,
ABB Corporate Research, Ladenburg, Germany
E-mail: heiko.koziolek@de.abb.com

B. Schlich
Industrial Software Systems,
ABB Corporate Research, Ladenburg, Germany
E-mail: bastian.schlich@de.abb.com

S. Becker
University of Paderborn, Germany
E-mail: steffen.becker@upb.de

M. Hauck
Forschungszentrum Informatik (FZI), Karlsruhe, Germany
E-mail: hauck@fzi.de

1 Introduction

Distributed, service-oriented software systems within

companies or on the web are constantly evolved due to

new customer requirements, failure reports, or technol-

ogy updates. Such evolution scenarios require architec-
tural changes, for which there are often multiple alter-
natives (e.g., make-or-buy or selection of technologies).

Software architects usually cannot quantify the trade-

offs of these alternatives concerning quality attributes,

such as performance, reliability, and maintainability,

before implementing them. While current practice of-

ten relies on prototyping or former experience to assess
design alternatives, researchers have proposed several
model-driven prediction methods [1,24,28] to quanti-

tatively evaluate evolution alternatives. These methods

claim to be more cost-effective and less error-prone than

current practice.

A major challenge to conduct model-driven evolu-

tion scenario predictions is first to create a suitable

model to evaluate the quality attributes of the current

system [59]. Such a model must resemble the architec-
ture, so that architectural evolution scenarios (e.g., re-
placing a service) can be represented. To reflect perfor-
mance characteristics, it must include dynamic proper-

ties, i.e., control and data flows through the architec-

ture as well as resource demands [28]. To reflect reliabil-

ity characteristics, it must additionally allow modeling

service and/or environmental failure probabilities [24].
Creating such models is currently tedious and error-
prone because of sparse tool support and missing step-

by-step guidelines [59].

There is only a limited number of documented case

studies and industrial experience reports for model-

driven prediction approaches. Practitioners often ques-

tion the accuracy of the model predictions and fear the
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potentially expensive effort for creating such models.

Existing case studies for performance prediction (e.g.,

[27,12,22]) and reliability prediction (e.g., [15,45]) of-

ten analyze small-scale systems and are carried out by

the authors of the methods under controlled labora-

tory conditions. Their value to practitioners is there-

fore limited. Additionally, most of these studies have

not reported on the effort for creating the models and
making the predictions.

The contribution of this paper is a large-scale,

industrial case study investigating (i) the achievable
prediction accuracy and (ii) the required work ef-
fort for model-driven quality predictions. We applied

a recently developed model-driven prediction method

called Q-ImPrESS (Quality Impact Predictions for

Evolving Service-oriented Systems)[46]. The method

has been developed in the past three years as a com-

bined effort by several academic and industrial partners

within an EU project. It integrates multiple formerly

disconnected prediction methods in a single modeling

environment.

This paper extends two former publications [31,32]

with a survey of related studies, more detail about the

Q-ImPrESS method, a much more detailed description

of the data collection, extended performance predic-

tions, effort estimations for both performance and reli-

ability predictions as well as a detailed discussion of

the modeling, implementation, and process issues of

Q-ImPrESS.

We applied the method on a large-scale, distributed
process control system from ABB and report our ex-

periences and lessons learned in this paper. We found

that reasonable performance prediction accuracy could

be achieved, and estimated the effort for third-party

applications of the method in the range of one person

month per evolution scenario and quality attribute. As

most studies before, we were not able to obtain reliabil-

ity data from monitoring operational reliability and val-

idate predictions. Also, we found that the Q-ImPrESS

method still has lots of potential for improving the

meta-model and prediction tools. Our experience re-

port provides initial evidence about the costs and ben-

efits of this method to enable third party users assessing

the usefulness in their own context.

The remainder of this paper is structured according

to the guidelines for case study research [48]: Section 2

surveys the state of the art in determining the predic-

tion accuracy and application effort of model-driven

quality prediction methods by analyzing a number of

case study reports from literature. Section 3 introduces

the Q-ImPrESS method with its process, meta-model,

and tools. Section 4 formulates our research questions

and details the system under analysis. Section 5 docu-

ments both the case study execution and the results of

each phase. It also discusses threats to validity. Sec-
tion 6 discusses modeling, implementation, and pro-
cess issues, before Section 7 concludes the paper and

sketches future work.

2 Related Work

This section surveys related empirical studies and the
given evidence to the research questions stated in this
paper. Section 2.1 discusses the experience on perfor-

mance prediction case studies, while Section 2.2 does

the same for reliability prediction case studies. Finally,

Section 2.3 describes further related studies.

2.1 Experience on Performance Predictions

Early approaches on performance modeling [25,56] fo-
cused on low-level formal models, such as Markov
chains, queuing networks, stochastic Petri nets, and

stochastic process algebra, which reflected the struc-

ture of software systems and the interaction of differ-

ent software components only to a limited extend. The

software performance engineering (SPE) approach by

Connie Smith [52] was the first approach putting more
emphasis on software structures.

Recently many approaches and performance mod-
eling formalism have been proposed, which model the

performance of a system on the level of the software
architecture and interacting components [59]. Layered
queuing networks [47] and queuing Petri nets [3] are

among the most popular models in this area. Re-

searchers have also explored mapping UML models to

classical performance models [10] and designing per-

formance models specifically for component-based soft-

ware systems [28]. There is also work on deriving perfor-
mance models directly from performance measurement
traces [40].

In the following, we discuss a number of recent per-

formance modeling case studies and experience report,
where the software architecture is explicitly reflected
in the models. The emphasis in this discussion is on

the performance prediction accuracy achieved by these

studies as well as the effort required for these predic-

tions.

Liu and Gorton [34] modeled the performance of the

Stock-Online system, a typical EJB application with

enterprise beans and a database. They constructed a

queuing network model and additionally expressed EJB

architectural patterns with UML activity diagrams. Af-

ter benchmarking the system to determine the service
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demands for the queuing model they performed a ca-

pacity planning predicting the throughput for a grow-

ing number of database connections. The average devi-

ation between predicted and measured response times

was below 15 percent, but the effort for constructing

the model was not reported.

Xu et al. [60] analyzed a modified version of Duke’s

bank application, a three-tier application which was

used by the J2EE tutorials for explaining the Java En-

terprise edition. They build a layered queuing network,
which for example represented the thread pools present
in the system. To determine service demands, they mea-

sured the performance of the system on three comput-

ers. The subsequent capacity planning study analyzed

the response time and throughput of the system for a

growing number of clients. The average error for the

response time predictions was below 24 percent. The

effort for this study was not reported.

Kounev [27] constructed a queuing Petri net for the
specJAppServer2004. It is an enterprise system repre-

senting a web platform for an automobile manufacturer
and allows browsing cataloged, tracking inventories and
purchasing. The author measured the system for dif-
ferent workloads and analyzed the impact of a higher

number of application server nodes (i.e., 2,4,6,8) for var-

ious performance metrics. The mean deviation between

predictions and measurements was below 20 percent for

response times, below 7 percent for throughput and be-
low 9 percent for CPU utilization. Again the effort for
the study was not discussed.

Jin et al. [26] modeled the performance of a meter-

data system for utilities with a layered queuing network

model. The system consisted of an Oracle database with

13 applications. They constructed a very large LQN

with more than 20 processors and over 100 tasks. After

benchmarking the system, they analyzed the through-

put of the system for massively higher workloads. The

error between predicted and measured throughput was

below 8 percent.

Huber et al. [22] built a Palladio Component Model

instance for a storage virtualization system from IBM.

They measured performance of the system and ana-

lyzed the performance for a synchronous and asyn-

chronous re-design using the model. The error between

predicted and measured throughput for the current

system was below 21 percent. The authors estimated

the effort for the case study to approx. four person

months and discussed that implementing a prototype
to measure the performance for the re-design alterna-
tives would have taken 24 person months.

Concluding, there is already a growing amount of
empirical studies on architecture-level performance pre-

diction in literature. Most studies reported a prediction

error of less than 30 percent for the various performance

metrics. Furthermore, most studies did not report on
the effort to achieve this accuracy.

2.2 Experience on Reliability Predictions

Seminal research on software reliability engineering fo-
cused on system testing and system-level reliability
growth models [42]. Musa provided an approach for the

reliability analysis of evolving software systems [41].

However, these approaches did not take the software

architecture into account.

Recently, multiple surveys ([17,13,24]) review more

than 20 methods for architecture-based software relia-

bility analysis (ABSRA) (e. g., [9]). For example, Singh

et al. [50] proposed to transform annotated UML com-

ponent models into a Bayesian model, which can be

used for reliability prediction during the design phase.

Goseva [13] pointed out in 2007 that ”very little effort

has been devoted to the validation of ABSRA tech-

niques”. Immonen et al. [24] stated in 2008 ”a great

lack of publications covering large-scale, industrial ap-

plication of the methods” and that ”validation of the

methods is based only on the authors’ experiments and

evaluations in laboratory circumstances”.

The following discusses a number of the most re-

lated and up-to-date case studies on reliability predic-

tion with a special emphasis on their data collection

methods. Hardly any of these studies has attempted

to assess the accuracy of the respective models with a

comparison of predicted and measured values. Several
authors, however, performed sensitivity analyses with
their models to demonstrate their robustness against
uncertain input values. There is no evidence on the ef-

fort required for these investigations.

Gokhale et al. [14] analyzed the SHARPE tool (35

KLOC, C-code) for stochastic modeling by construct-
ing a DTMC. For estimating component failure rates,
they used the enhanced non-homogeneous Poisson pro-

cess model that incorporates the failure intensity of a

component (i.e., 4 errors per 1 KLOC in this study) and

the expected time spent in each component. The latter

was determined by profiling the system with the ATAC

tool while executing 735 test cases from a regression
test suite. The study found that the system reliability
could be increased from 0.9903 to 0.9950 if the fault

density per component was reduced from 4 to 1 error

per 1 KLOC.

Goseva et al. [18] performed a case study on a sys-

tem (10 KLOC, C-code) of the European Space Agency

(ESA). They divided the system into three subsystems

and constructed a DTMC according to Cheung [9]. For
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estimating failure probabilities, faults discovered during

integration testing and runtime were re-inserted into

the software. The authors then executed random tests

and estimated the reliability of each component with

the ratio of failed tests versus successful tests. Finally,

they used the DTMC model in a sensitivity analysis.

The largest case study reported in literature so far

is also from Goseva et al. [15]. Here, the authors divided

the implementation of the GCC C-compiler comprising

350 KLOC into 13 software components. They executed
2126 test cases from GCC 3.3.3 on GCC 3.2.3, so that
111 failures could be detected in the old version of the

software, for which test cases had been added in the

new version. The authors used the tool gprof to record

a number of execution profiles into a database and fil-

tered this data to determine transition probabilities be-

tween components. Finally, a DTMC was constructed

and solved. The authors compared the system reliabil-

ity prediction (0.9997) to the actual system reliability

(0.9724). The same authors applied a similar approach

on a smaller system (11 KLOC) [16].

Wang et al. [57] analyzed the so-called stock mar-

ket system (SMS), which is widely used in industry

(13 KLOC, C/C++ code, 15 components). They exe-

cuted 13,596 test cases against the system and observed

121 failures, which they mapped to component failure

probabilities. They recorded transitions between com-

ponents via manual instrumentation of the code and

derived transition probabilities from this data. The au-

thors constructed a DTMC and predicted the system

reliability.

Compared to existing case studies, our study an-

alyzes a significantly larger system and thus offers

more insight into the industrial applicability of ABSRA

methods. Due to the size of the system, we use different

methods for determining component failure probabili-

ties and transition probabilities as in former studies.
Our focus is on determining the cost-effectiveness of
ABSRA.

2.3 Other studies

Martens et al. [36] conducted a series of experiments

involving more than 40 computer science students to

determine the accuracy and effort for applying perfor-

mance prediction methods in a controlled setting.

This paper is based on our former studies [31,32],

but provides more detailed effort estimation, more per-

formance prediction results, and a longer discussion of

the benefits and drawbacks of the Q-ImPrESS method.

3 Background: The Q-ImPrESS Method

This section introduces the Q-ImPrESS method. We il-
lustrate the approach by a running example and present

the Q-ImPrESS process. Afterwards, we highlight the
main concepts of the Q-ImPrESS Service Architec-
ture Meta Model and describe the Q-ImPrESS software
tools.

3.1 Running example

In our example system, a client communicates with a

server to retrieve user data (e.g., login and password)

stored in a database. Fig. 1 shows the components and

their execution environment.

<<Developer Machine>>

Client Server Database

ISessionBean

JDBC

SOAP

RMI

Native JDBC 

Protocol

<<Interface>>

ISessionBean

User queryDatabase(int ID)

User[] massQueryDatabase(int[] IDs)

Fig. 1 The Client/Server example system

The Client component issues user requests, which
are handled by the Server component. The Server

component queries the Database component containing

the requested data. The Client communicates with the

Server using the ISessionBean interface. It has two

operations, one single User data request operation and

one mass User data request operation. The communica-

tion between the components is denoted by annotations
indicating the possible communication styles.

We now introduce an evolution scenario, which rep-

resents a change in the system environment. Such a
change can for example be a changed user workload,

new or changed system requirements, or a changed

hardware or middleware environment on which the sys-

tem is to be deployed. In the Client/Server example,

we assume that the evolution scenario is based on a

changed user workload, i.e. the amount of users that

access the system has increased over time. In order to

cope with the increased user workload, the example sys-

tem has to be adopted in order to meet quality require-

ments.
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For this example, several architectural alternatives

can be identified which can be implemented in order to
cope with the evolution scenario. Every alternative can
have an impact on different quality attributes of the

system.

– SOAP or RMI communication style: The com-
munication between the Client and the Server com-

ponent can be implemented by using the SOAP

or the RMI protocol. Both protocols incur dif-

ferent performance overheads, for example due to

marshalling/demarshalling overhead, or because the

amount of data transferred varies with the selected

protocol.

– Optional inclusion of a cache component To

avoid frequent database accesses, a cache component

could speed up user requests. It might allow better

average request response times, but also result in dif-

ferent system reliability, as the cache component can
be an additional source of failures.

– Different database access patterns: The opera-

tion massQueryDatabase could either issue a single

database request for each user id and combine all re-
trieved User values into the result value. An alterna-

tive implementation could combine all User requests
into a single database call, which would lead to fewer,
but more time-consuming database calls.

3.2 The Q-ImPrESS Process

Q-ImPrESS defines a process that guides its users in

executing its various tasks and using the respective
tools [37]. The process assumes the existence of a mod-
eled base system (legacy application or application un-

der development) for which a software architect or qual-

ity analyst wants to evaluate different design alterna-

tives. In our example, we could select the architecture

as shown in Fig. 1 using RMI for communication, no

caching, and single DB requests per user ID as base
architecture.

The evaluation goal is to quantitatively predict dif-

ferent quality attributes (e.g., expected response times
and probabilities of failure on demand) for each archi-
tectural alternative and then to pick the alternative
with the best trade-off among the quality attributes. In

our example, we are interested in the trade-off among
performance and reliability of the specified architec-
tural alternatives.

Fig. 2 illustrates the main steps of the Q-ImPrESS

process. Grey steps illustrate activities that require
manual work and are not directly supported by

the Q-ImPrESS tools. White steps represent tool-
supported core activities in Q-ImPrESS. They have fine

grained defined sub-processes described briefly in the

following (for details refer to [37]). The Q-ImPrESS
method’s documentation also gives estimates for the
durations of each of the process steps involved to allow

an estimate of the necessary effort for its application. In

this experience report, we will address these estimates

and their accuracy (cf. Section 5).

The Q-ImPrESS process starts with a require-

ments collection step (3.1). This step focuses on extra-

functional properties, such as performance, reliability,

and costs. For our example, functional requirements are

the retrieval of user DB records and extra-functional

requirements include a maximum response time and a

maximum probability of failure on demand.

Next, the software architect defines a set of poten-

tial change scenarios (3.2) each leading to a new ar-

chitecture that fulfills the new functional and poten-

tially fulfills the new extra-functional properties. The

change scenarios for our example include changing the

communication protocols, adding cache components, or

picking different server components exhibiting different

database query patterns.

For each of these alternatives, the following two
steps are repeated: First, the architect creates a model

of the resulting target architecture by altering the base

architecture (3.3). Second, based on the new model of

the architectural alternative, Q-ImPrESS tools are used

to predict the values of the different quality attributes

for the alternative (3.4). In the end of the overall step,

this leads to a set of architectural alternatives plus the
predicted values of their quality attributes.

In the modeling step (3.3), the software architect

has to gather a variety of quality annotations, e.g.,
resource demands of single steps, branching probabili-

ties, loop counts, etc. This step requires collecting mea-
surements from existing systems or estimations based
on former experiences. In case of taking measurements

this step also includes configuring the existing system

in a test environment and instrumenting it with the

necessary monitoring probes. Depending on the un-

derlying system, a suitable performance measurement

framework, such as Eclipse TPTP, JProfiler, dotTrace,

VTune, dynatrace, or Windows Performance Monitor,

has to be evaluated and bought beforehand. In case

of estimating model annotations, the software architect

needs training courses in providing good parameter es-

timates including the necessary statistics skills.

For example, alternative A1 in our Client/Server

system uses SOAP instead of RMI, adds a cache compo-

nent, and favors bulk DB queries as DB query pattern.

Analyzing this alternative may reveal that the overall

response time decreases, i.e., the architecture exhibits a

better performance compared to the base architecture.
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Gather New Requirements

(3.1)

Define Change Scenarios

(3.2)

scenarios

scenarios

<<iterate>>

Model Change Scenario

(3.3)

scenario

sam

alternativeSAMsWithResults

Predict System Quality

(3.4)

SAMWithResults

TradeOff-Analysis

(3.5)

alternativeSAMsWithResults

Implement SAM

(3.6)

[no viable alternative]

selectedSAM
[suited alternative exists]

Validate Model by Measurements

(3.7)

implementation

Deploy System

(3.8)

[model valid]

[model revision needed]

relevantQualityAttributes

Process: Q-ImPrESS Overall Process

scenario

Fig. 2 Overview of the main steps in the Q-ImPrESS process

On the other hand, the additional components reduce

the system’s reliability, i.e., the probability of failure on

demand increases. For another architecture alternative

called A2, imagine that it offers increased reliability but

decreased performance.

Based on the set of architecture alternatives and

their quantitative evaluation results, the trade-off anal-

ysis step (3.5) ranks all alternatives based on the pref-

erences of the software architect. Q-ImPrESS addition-

ally features the tool PerOpteryx [35] to search the de-

sign space for solutions with optimal trade-offs between

quality attributes. Preferences of the software architect
are gathered by the trade-off analysis tool using the an-
alytical hierarchy process (AHP) method [21]. The tool
then ranks the architecture alternatives based on the

software architects preferences for the different extra-

functional properties. If we assume in our example a

preference of the software architect for performance, the

AHP would finally recommend alternative A1.

In case the trade-off analysis method results in a

suitable architecture to implement, the development

process continues and the system is being put into prac-

tice (3.6). The example system to implement would

be the one with SOAP, cache, and bulk database ac-

cesses. After the implementation phase, the predicted

quality attributes should be validated in a testing step

(3.7). This is important as certain model assumptions
or inaccurate model input may lead to inaccurate pre-

dictions in some cases. If the system passes the test
for the new functional and non-functional properties, it
gets deployed and hence becomes available for end-users

(3.8).

3.3 Service Architecture Meta-Model

To support the Q-ImPrESS user in modeling service-

oriented architectures, the Q-ImPrESS Service Ar-

chitecture Meta-Model (SAMM) was developed. This

meta-model was newly created during the Q-ImPrESS

project but incorporated concepts from the Palladio

Component Model [6], KLAPER [19], as well as UML2
and the UMLMARTE profile [44]. We refer to instances
of the SAMM as service architecture models (SAM), cf.

Fig. 2.

Due to space reasons we cannot formally introduce

the more than 100 meta-classes of this model within

this paper. Instead we briefly explain the main con-

cepts of the model using our running example in the
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following. We refer the reader interested in more de-

tails to the comprehensive technical report describing

the SAMM [5].

The SAMM consists of six different model pack-

ages, which encapsulate different concerns and enable

replacement of individual parts with limited overhead:

Static structure package: This package includes

modeling constructs for services, components that

provide services, provided and required interfaces,

interfaces signatures, and datatypes. It is possible to

bundle multiple components into a composite com-

ponent with provided and required interfaces, which
then looks like a primitive component from the out-
side. From the Client/Server example, the three

components, its interfaces, and the User datatype

are modeled with static package model elements.

Behavior package: For each service implemented by
a component, the developer can specify a behavior

called service-effect specification (SEFFs), which re-
flects the internal control flow but abstracts from
low-level source code aspects. SEFFs model the be-

havior of a component as a number of internal ac-

tions and external calls connected by sequential, al-

ternative, or parallel control flow operators. A single

internal action models a large section of the source

code. In the Client/Server example, two SEFFs
model the internal behavior of the Server’s ser-

vices queryDatabase and massQueryDatabase and

include calls to the database component.

Deployment package: This package allows to model

the hardware environment of the system as well

as component allocation to the hardware re-

sources. This includes a detailed infrastructure

model (servers and server resources) as well as the

component allocation context, i.e., which compo-

nent is used for offering a service and on which

server the component is deployed and executed. For

the Client/Server example, the deployment package

includes a single server node with a CPU and hard-

disk on which all components are allocated.
Usage package: As quality of service heavily depends

on the user workloads, SAMM also enables modeling

different user scenarios for a service-oriented system.

Here, different user classes (i.e., workloads) can be

modeled indicating the services that are called. The

usage model of the Client/Server example includes a
request arrival rate to the ISessionBean interface.

In this case, the modeled user scenario represents

the evolution scenario, i.e. the new user workload of

the system.

QoS annotations package: This package allows to
annotate the SEFFs with branch transition prob-

abilities, loop counts, resource time demands, and

failure probabilities. It can be extended with addi-

tional quality properties. In the Client/Server exam-
ple, the developer would annotate the internal ac-
tions in the Server’s and Database’s SEFFs with

measured CPU execution times, hard disk demands,

and failure probabilities.

Results package: The result model serves as central
repository for the conducted analyses of different

quality predictions and is used as input for the

trade-off analysis. In the Client/Server example,

the result model would contain predicted response

times, throughputs, resource utilization, and system

failure probabilities after running the analysis tools

on the fully specified model.

3.4 Q-ImPrESS Tools

The Q-ImPrESS IDE combines tools for creating and

editing models, performing predictions, and conducting

a tradeoff analysis.

Fig. 3 shows a screenshot of the Q-ImPrESS IDE

illustrating the Client/Server example. The IDE is

based on the Eclipse IDE and is composed of differ-

ent views and editors. The view in the upper left side

of the IDE is used for managing different model al-
ternatives. The Client/Server system has been mod-
eled in three different alternatives. The main alterna-
tive contains the initial Client/Server system. The al-

ternative “changed database implementation” contains

a Client/Server model with a changed behavior specifi-

cation for the Server component. The alternative “with

database cache” contains the Client/Server alternative

with an additional cache component.

Two models of the main alternative are displayed in

the right hand side of Fig. 3. The upper editor shows

how the three components are connected with each

other. The lower editor shows a SEFF for an interface

operation of the Client component, which consists of

three consecutive actions. The first and last action de-
note internal actions, which can be annotated with re-
source demands and failure probabilities. The second

action denotes an external call action indicating the

access to the required Server interface.

To perform a prediction, a SAMM model instance

is automatically transformed into a corresponding anal-

ysis model. The Q-ImPrESS IDE comprises and inte-

grates several analysis tools:

– ThePCM analytical solver is an analytical solver

for performance prediction. A SAMM model in-

stance is transformed into a PCM model [6], which

is transformed into a layered queuing network rep-

resentation as input for the LQN solver [30].
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Fig. 3 The Q-ImPrESS IDE

– PCM SimuCOM provides a discrete-event sim-

ulation framework for performance prediction [4].

This analysis is also based on a PCM model, which

is transformed into Java code that integrates into

the simulation framework.

– The Reliability Solver is based on the

KLAPER [19] model. A SAMM instance is

transformed into a KLAPER model, which is

transformed into a discrete time Markov chain

and solved using the probabilistic model checker

PRISM.
– The KAMP Maintainability tool uses a SAMM

model instance in order to estimate cost and change

efforts for a change request based on an architec-

ture model. Maintainability prediction is not in the

scope of this paper, for more information, please re-

fer to [55].

– Based on the different prediction results, the AHP
tradeoff wizard [21] guides the user in performing

an AHP trade-off analysis for the different quality

attributes.

The different analysis tools are integrated into the

Q-ImPrESS IDE and support the software architect in

performing quality predictions that require little effort.

In the lower left side of the IDE screenshot in Fig. 3,

a result view for a performance prediction with PCM

SimuCOM is shown. For the Client/Server example, a

performance prediction of the main alternative has been

conducted. The result view shows a histogram of the

simulated response time distribution in milliseconds for

the User data request operation.

The background on Q-ImPrESS provided in this
section allows us explain our case study design in the

next section.

4 Case Study Design

This section first formulates our research questions 4.1

before briefly describing the system under study 5.
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4.1 Research questions

The goal of our case study is stated in Tab. 1 according
to the goal-question-metric (GQM) template [2].

Purpose Evaluate
Object Applicability
Focus Model-based quality prediction
Viewpoint Quality analyst
Environment Large-scale industrial software system

Table 1 Goal of our case study according to the GQM tem-
plate

We use the Q-ImPrESS method as a representa-
tive, state-of-the-art, model-based quality prediction

method. Furthermore, we interpret the term ’applica-

bility’ in terms of the prediction accuracy of the method

and the effort needed in terms of working hours to ex-

ecute the method. Thus, from the goal in Tab. 1, we

derived the research questions in Tab. 2:

Q1 What is the performance prediction accuracy of
Q-ImPrESS?

Q2 How much time is required for performance predic-
tion with Q-ImPrESS?

Q3 What is the reliability prediction accuracy of
Q-ImPrESS?

Q4 How much time is required for reliability prediction
with Q-ImPrESS?

Table 2 Research questions of our case study

To operationalize these questions, we defined several

metrics in Tab. 3, which guided our data collection pro-

cedures. As performance metrics for Q1, we chose CPU

utilization and throughput of the system because these

are the metrics that the stakeholders of the system are

typically interested in. For Q2, we decided to track the

time for selecting a data collection method, conduct-

ing the actual measurements, analyzing the data, and

carrying out model calibration and initial performance

predictions.

For reliability prediction, we used the probability
of failure on demand as the metric for Q3. Similar to

Q2, we tracked the time for selecting a data collection
method, conducting the reliability estimations, analyz-
ing the data, and carrying out initial reliability predic-
tions for Q4.

Tab. 3 also includes a hypothesis for each metric,

which we formulated before the case study to persist
our expectations and gain a more explicit learning effect

after data collection.

4.2 Case: Industrial Control System

We selected a process control system (PCS) from the

automation domain to be the system under study.

A PCS manages time-dependent industrial processes,

e. g., power generation, pulp and paper handling, and
oil and gas processing. It periodically collects sensor
data like temperature, flow, and pressure from various

field devices and visualizes it for human operators. The

operators use the system to manipulate actuators in

the process, e. g., pumps, valves, and heaters. The sys-

tem can automatically execute predefined actions and
informs operators of irregular conditions using alarms.

Our case study focuses on the server-side part of one

ABB PCS and neglects embedded devices. The system

under study consists of more than 3 million lines of

C++ code and is structured into 8 subsystems with

several hundred Microsoft COM components. It is a

service-oriented system and consists of several dozen
OS processes (i. e., Windows services) during runtime.
Clients, such as operator workplace applications, com-
municate with the services via open standards (e. g.,

OPC). Our testbed consisted of two regular PCs with

quad core CPUs, which are often used in typical smaller

customer setups.

ABB continuously evolves the system due to new
customer requirements, technology updates, and bug

reports. It is desired to predict the impact of these

changes in advance, before actually implementing them.

Therefore, we a created a model reflecting the current

implementation of the system and calibrated it to re-

flect the current performance and reliability properties.

The predictions then concerned different evolution sce-
narios, which were based on typical evolution steps and
had an impact on the architecture. For the predictions,

the initial architectural model was adapted to reflect

the changes of the evolution scenario, so that predic-

tions for potential change alternatives of the system

could be made without changing the implementation.

The following evolution scenarios have been ana-

lyzed:

– Usage profile evolution: The amount of data
items requested by clients from the system con-

tinuously increases due to an increasing number of
more complex field devices in modern industrial pro-
cesses. For several former updates of the system, the

supported amount of processable field device data

was a major selling point of the system and can be a

competitive advantage. Thus, it is useful to predict

the performance and reliability for higher system

workloads.
– Resource environment evolution: As an indus-

trial system managed by the ABB PCS can be op-

erating for decades, it is likely that the server hard-

ware will be replaced over the course of the life-cycle

of such a system. CPU speeds are constantly in-

creasing (cf. Intel’s processor roadmap) and the cur-
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Q# M# Description Scale

Q1 M1.1 Mean percentage of deviation between predicted and measured CPU utilizations 0...100
(Hypothesis: M1.1 < 30)

M1.2 Mean percentage of deviation between predicted and measured throughputs 0...100
(Hypothesis: M1.2 < 30)

Q2 M2.1 Time for selecting an appropriate data collection method Time (h)
(Hypothesis: M2.1 < 8h)

M2.2 Time for performance measurement and data collection for a scenario. Time (h)
(Hypothesis: M2.2 < 8h)

M2.3 Time for data analysis of measurements to derive resource demands. Time (h)
(Hypothesis: M2.3 < 8h)

M2.4 Time for model calibration and initial performance prediction Time (h)
(Hypothesis: M2.4 < 2h)

Q3 M3.1 Mean percentage of deviation between predicted and measured POFOD 0...100
(Hypothesis: M3.1 < 10)

Q4 M4.1 Time for selecting an appropriate data collection method Time (h)
(Hypothesis: M4.1 < 8h)

M4.2 Time for data collection and reliability estimation for a scenario. Time (h)
(Hypothesis: M4.2 < 8h)

M4.3 Time for data analysis of the reliability estimations to derive failure probabilities. Time (h)
(Hypothesis: M4.3 < 8h)

M4.4 Time for model calibration and initial reliability prediction Time (h)
(Hypothesis: M4.4 < 2h)

Table 3 Data collection metrics of our case study

rent trend towards multi-core and many-core pro-

cessors also evolves the resource environment of an

installation of the ABB PCS. Based on predictions

for evolved resource environments the customer rec-

ommendations for sizing the hardware of the system
can be updated.

– Allocation evolution: The ABB PCS has a scal-

able topology and can be installed in different sizes
depending on the complexity of the customer’s in-
dustrial process. For smaller settings, the compo-
nents of the ABB PCS can be installed on a single

server, whereas for larger settings, individual com-
ponents may be allocated to dedicated server nodes
to increase performance and availability. Customers

can move from a smaller system size to a larger sys-

tem size if their process gets more complex.

– Component evolution: Over the course of the

life-cycle of the ABB PCS, certain components can

be replaced with newer implementations because

of customer requirements or technology updates.

The component-based structure of the Q-ImPrESS

model instances allows for easy replacements of

components also in the model. The changed perfor-

mance and reliability of a replaced component needs

to be modeled by new resource demands and failure

probabilities. Their values can be based on proto-

type measurements, former experience, or - in case

of COTS - third-party input.

The effort for actually implementing these scenar-

ios in the existing system varies. Usage profile evolution

(i.e., support for higher workloads) and component evo-

lution can take several person-years based on our expe-

rience. Thus, it is useful to conduct model-based predic-

tions in advance. Resource environment evolution and

allocation evolution are easier to implement but require

purchasing additional hardware, where previous model-

based simulation experiments can avoid suboptimal in-

vestments.

5 Case Study Execution & Results

This section describes the execution of our case study,

which includes initial modeling, data collection for the
different quality attributes, predictions, and trade-off
analysis. Fig. 4 provides an overview of the following

section. First, Section 5.1 explains how we modelled the

static structure, behavior, and deployment of the ABB

PCS. Section 5.2 elaborates on the data collection and

predictions for performance analysis. Section 5.3 elab-

orates on the data collection and predictions for relia-
bility analysis. Section 5.4 documents our experiences
using the Q-ImPrESS tradeoff analysis tools. Finally,

Section 5.5 dicusses the internal and external validity

of our case study.

5.1 Modeling

As a prerequisite to carry out performance and reliabil-

ity predictions, we first created a Q-ImPrESS model of

the architecture without any QoS annotations. While
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Fig. 4 Case study execution: data collection and prediction steps

Q-ImPrESS offers two reverse engineering tools to ex-

tract such an initial architectural model from source

code, we were not able to execute these tools success-
fully on the code of the ABB PCS. Parsing errors due to
proprietary code extensions as well as scalability issues
prevented us from producing a meaningful model of the

PCS using the tools [32]. These limitations might not

persist for Java-based systems, which the reverse engi-

neering tools are better suited for.

Instead, we created the Q-ImPrESS models manu-

ally using the available documentation and code inspec-

tions. The main challenge for modeling is to find a suit-

able abstraction level that is both manageable and en-

ables meaningful predictions. We therefore searched for
an abstraction level sufficient to analyze the architec-
tural evolution scenarios. An important question with

respect to Q-ImPrESS is to decide which parts of the

system should be considered as components as there are
no guidelines given by the method.

The PCS architecture documentation included a

high-level subsystem description. However, modeling on

this level of abstraction would exclude analyzing sev-

eral evolution scenarios that would not be reflected in

the coarse-grained structure. Thus we aimed at a more

refined model. We deemed using Microsoft COM com-

ponents as Q-ImPrESS components as too detailed be-

cause the system includes hundreds of these compo-

nents, whose modeling would not be necessary to eval-

uate the evolution scenarios.

Instead we mapped runtime processes of the sys-

tem to primitive components (i. e., services) of the

Q-ImPrESS SAMM and subsystems to composite com-

ponents. The runtime processes implement Windows

services and therefore make up the service-oriented

structure of the PCS. The process abstraction allowed

us to easily measure component resource demands using
the Windows performance monitor, which can record
service times per process. It also allowed us to analyze

scenarios where components are allocated to different

servers and to include the available reliability data into

the composite components.

Fig. 5 depicts an abstracted overview of the ar-

chitectural model including 8 composite components

(gray), 20 primitive components (white), three servers,
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and four use cases. Here, primitive components refer

not to OO-classes, but to larger architecture elements.

Some of these components comprise several hundreds of

thousand lines of code. The model cannot be described

with all detail here (details in [29]), but it is avail-

able for download1. For some of the composite com-
ponents, their inner details are abstracted in the figure.

The three server set up resembles a standard configu-
ration sold to customers. The figure exemplary shows
one SEFF at the bottom, which defines the call propa-

gation and hardware usage of component C13. In total,

the model contains 28 SEFFs, which are not shown here

for brevity.

We identified four key usage scenarios of the sys-
tem relevant for quality predictions based on discus-

sions with experienced developers and consultation of

the user documentation. They are visualized at the top

of Fig. 5 with use case actors. Each scenario triggers

a certain control and data flow through the system’s

components. One of the scenarios was modeled as a

proxy for a number of functional scenarios less criti-

cal for performance and reliability, so that some ”back-

ground resource demands” were present in the model.

This emulated a more realistic execution of the system.

The four scenarios relate to steady-state use cases

of the system, i.e., they are constantly executed in par-

allel within a running industrial system. We omitted

transient use cases (e.g., maintenance activities or engi-

neering tasks) to limit the scope of our analysis. The se-
lected scenarios have a number of configuration options,
which impact performance and reliability. These in-

clude, for example, subscription rates for clients, pack-

age sizes, or the types and amount of data in the system.

To reflect typical customer settings, we aligned these

parameters with recommendations provided in the user

documentation.

Like any other performance or reliability prediction

model, a Q-ImPrESS model requires the specification

of transition probabilities between components, which

are encoded in the branch probabilities of the SEFFs.

These probabilities can only be determined by instru-

menting and running the system as they cannot be de-

rived statically from the source code.

Therefore, we set up a testbed for the system, which

consisted of two standard PCs with quad-core CPUs

and 4 GB RAM each connected via Gigabit Ethernet.

One PC ran a virtual machine with the ABB PCS in-

stalled. To simulate the embedded controller devices the

other PC ran a virtual controller software. The virtual

controller received a number of simple control programs
via a download from an external engineering tool. The

1 http://www.q-impress.eu/wordpress/demonstrators/abb-
demonstrator/

control programs changed the values of several thou-

sand items each second to emulate the data volume in

a real industrial process.

Before running the application, we configured an

ABB development tool for logging CS system calls to

record only interactions between processes. This in-

volved identifying the components responsible for pro-

cess transitions and adjusting the log detail level for

these components. Each process transition represents

a DCOM call between two processes. Each log entry

contains information about which process called which
other process.

We then continuously executed the system for two

days to produce representative process transitions logs
with limited distorting, that is, transient conditions.
Running the system included starting all applications

(i. e., the PCS, the additional servers, the logging ap-

plication, and all clients), performing the initial setup,

and operating the system. Operating of the system con-

sisted of observing data and interacting with the sys-

tem. It resulted in a five-digit number of invocations,

and the log file generated in this step had a size of 2

GB.

The created log files were then passed to a self-coded

script, which generated the list of processes involved,

the transitions between these processes, and the prob-

abilities of these transitions. We validated the result-

ing 20 branch transition probabilities by examining the

different paths through the model and matching these

paths to the operations that we actually executed. Dur-

ing this process, we were supported by two PCS experts.

Manually modeling our system structure using Q-
ImPrESS required substantial effort (approx. 1.5 per-

son months). For performance analyses, it would have

been easier to create a simple queuing model, but this

would have complicated analyzing evolution scenarios

regarding the topology of the components. It should be

mentioned that thinking about an architecture in terms

of the Q-ImPrESS model and being forced to formalize
certain elements can bring additional incentives besides
QoS predictions by improving the architectural docu-

mentation.

The resulting Q-ImPrESS model of the PCS in-

cluded 28 SEFFs but still lacked the resource demands

and failure probabilities on internal actions, which are

necessary for performance and reliability predictions.

The following two section focus on determining these

values and conducting subsequent predictions for the

evolution scenarios.
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Fig. 5 Q-ImPrESS architectural model of the ABB process control system: components, connectors, deployment, and service
effect specification (in UML notation)

5.2 Performance Prediction

As a prerequisite for performance predictions, we first

had to annotate the PCS Q-ImPrESS model with re-

source demands (i.e., execution times of individual

services). This section describes the conducted per-

formance measurement and subsequent performance

predictions for the different evolution scenarios (Sec-

tion 5.2.1), as well as the answers to research questions

Q1 and Q2 (Section 5.2.2).

5.2.1 Data Collection

Measurement Measurements of the CPU and HDD uti-
lization Ui per process using the Windows Performance

Monitor (WPM) determined the resource demands of

the ABB PCS’s services. This method required no

changes to the source code, which meant treating the

services as black boxes and abstracting from their in-

ternal performance interdependencies.
The granularity of the WPM (i.e., the minimal in-

terval between measurements) is 1 second, which is too

long to measure the resource demands for individual

requests to the system. However, if the resource utiliza-

tion Ui for a particular component i and the throughput

Xj of the system for a particular use case j is known,

the resource demands Si,j for a component i in use case

j can be determined using the service demand law [25],
which is stated as:

Si,j =
Ui

Xj

The employed load drivers controlled the number

of requests issued to the system per time interval and
recorded the number of items received per second.

Successively letting more clients request items from

the server processes in parallel stressed the system to
determine its limits. 1 to 10 load drivers ran in par-
allel. Each load driver subscribed for several thousand

items with a subscription rate of one second and thus
emulated an operator workplace. For higher numbers
of load drivers, the throughput measurement sunk be-

neath the number of requested items, as the system was

not able to handle the workload. In another measure-

ment experiment, the system wrote up to 10000 log files

to store sensor data persistently and to stress the hard

disks. Some large customer installations require such an

amount of log files.

Fitting a linear function in dependency of the re-

quest arrival rates to the measurement data allowed

modeling the CPU demands of two of the performance-

critical use cases. For the other use cases, we assumed

fixed CPU demands as we did not intend to vary the

arrival rates in these cases. Using linear interpolation a
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HDD resource demand function was derived depending

on the use case request arrival rate.

In total, the system-wide performance monitoring

resulted in 25 resource demands. The concrete re-

source demands as incorporated in our Q-ImPrESS

qos-annotation model have to remain confidential. Our

model abstracted from main memory accesses, network

transfers, and virtualization overheads.

Model validation To assure that our model reflected the

current performance of the system well, we calibrated

it (i.e., iteratively refined it) until the prediction error

from the tools was under a given threshold. In order

to do so, the SAMM2PCM transformation mapped the

annotated ABB PCS Q-ImPrESS model into a PCM

instance. The PCM tools then allowed us to conduct

simulations using SimuCom and numerical analyses us-

ing LQNS. We refined the resource demands until the

error between measured and predicted response times

was below 40 percent in all cases.

Additionally, we checked the performance metrics

predicted by the model against performance measure-

ment available from regular integration tests of the

system. We also confirmed the plausibility of our

Q-ImPrESS performance model by several PCS ex-

perts.

Predictions We conducted performance predictions for

all the evolution scenarios described in Section 4.2. The

first prediction targeted the usage profile evolution sce-

nario. In the ABB PCS SAMM instance, usage profile
changes can predominantly be expressed by shorter ar-

rival rates for the different usage scenarios in the usage
model. Thus, we increased the arrival rates of usage
scenarios 1 and 2 until one of the underlying resources

became saturated (Utilization > 99%). For the other

usage scenarios, it is not expected that their workload

will increase significantly in the future, thus they re-

mained constant.

Fig. 6 shows the throughputs and CPU utilization

predicted by SimuCOM for the usage scenario 1 and

an increasing number of calls per second. The CPU is

saturated at a workload of 290 calls per second (i.e.,
an arrival rate of 0.0034) when the utilization reaches
99.929%. The throughput curve shows that the system

cannot handle each request in time beyond this point,

the CPU is the bottleneck.

The figure also shows the measured CPU utilization

and throughputs (black lines) besides the predictions by

SimuCOM (grey lines). We did not measure response

times in our measurements because these values could

not be readily obtained from our load drivers and they

were less relevant in our study. We also did not record
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Fig. 6 Performance prediction results for different workload
levels (usage profile evolution)

utilizations and throughputs for workloads higher than
150 requests per second because our load drivers dis-

turbed the measurements above this workload level.
Predictions above this level remain unvalidated. How-
ever, in practice the system is never run above the vali-
dated CPU utilization levels to avoid safety critical con-

ditions. Furthermore, the following ranking of evolution
alternatives does not change because of this.

The next performance prediction concerned the re-

source environment evolution. The Q-ImPrESS SAMM

hardware and target environment allows changing the
processors clock frequencies as well as latencies and

throughput for hard disks and network devices. As the
measured use cases were CPU and hard disk bound, we
altered the processor clock frequencies (factor of 0.75,
1.0, 1.25, and 1.5 for the default clock frequency) and

hard disk read/write speeds of the ABB PCS SAMM

instance and analyzed the impact on throughput and

utilization. The impact is not trivial (e.g., 1.5 times the

throughput for 1.5 times the clock frequency) because
of resource contention and the background resource de-
mands.

Fig. 7 shows the CPU utilizations and throughputs

for the different clock frequencies. If the clock frequency
of server 1 is increased, the CPU utilization decreases
(Fig. 7, upper left) and higher workload levels can be

reached, before the CPU is saturated.
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Fig. 7 Performance prediction results for different CPU
clock speeds (resource environment evolution)

To analyze the allocation evolution scenario we

modeled three default system sizes as Q-ImPrESS al-

ternatives:
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– Small size: all components are allocated to a single

server, there is only one instance per component
– Medium size: the components are allocated to three

servers according to a fixed scheme (Fig. 5), there

is only one instance per component

– Large size: the component are allocated to six
servers according to a fixed scheme (Fig. 8); for five

components there are three instances each instead
of only one instance; load balancers distribute the
user requests evenly among these instances

Fig. 9 compares the performance predictions of the

large allocation size with the small and medium size.

The large allocation size allows a maximum throughput

of approx. 800 calls per second, which is 207.7% higher

than the medium size and 280.9% higher than the small

size. Notice that due to the triple replication of the
component stressing the hard disk to different nodes,
the HDD utilization can be reduced from approx. 90%

to approx. 30% (Fig. 9, upper left). The HDD utiliza-

tion increases unexpectedly after a certain threshold,

which may be caused by the CPU being overutilized

thus confusing the simulation.
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Fig. 9 Performance prediction results for different deploy-
ment sizes (allocation evolution)

Finally, we investigated the component evolution

scenario. We modeled two alternatives for one compo-

nent and one alternative for another component and es-

timated the change resource demands and failure prob-

abilities. For example, dual-core exploitation in newer

versions of a component can optimally lead to a re-

sponse time reduction of 50%.

Fig. 10 depicts the performance predictions for the

system when replacing the respective components. The

lower CPU demands of the two alternatives for com-

ponent 1 have almost no effect on the CPU utiliza-
tion or maximum throughput. However, the HD uti-
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Fig. 10 Performance prediction results for alternative com-
ponents (component evolution)

lization varies significantly for these variants (60% and

37% compared to 45% in the default variant).

The highest impact has the alternative for the sec-

ond component. It enhances the maximum through-

put to approx. 300 calls/sec compared to approx. 280

calls/sec for the default variant.

5.2.2 Results

Our research questions Q1 and Q2 ask for the accuracy

of the predictions and the effort required to obtain these

predictions.

Question 1 (Performance Prediction Accuracy) We dis-
cuss the outcome of the metrics M1.1-M2.4 (Tab. 3) in

the following. To assess the accuracy of our performance

model we analyzed the mean percentage of deviation

between CPU utilizations and throughputs for two dif-

ferent usage scenarios, which allowed us to reduce the

distortion caused by single usage scenario.

Tab. 4 - 7 show the measured values, the predic-

tions using SimuCom and LQN, as well as the error of

the predictions. The CPU utilizations and throughputs

are provided for different workload levels, i.e., for in-

creasing numbers of requests per second. For the first

usage scenario, the CPU utilization varies between 17
and 51 percent, while the throughput varies from 30
to 150 requests. The deviation in the simulated CPU

utilization is higher than for the throughputs. For the

second usage scenario, the CPU utilization varies be-

tween 19 and 22 percent, while the throughput varies

from 3000 to 10000 requests. As for the first usage sce-

nario, the deviation in the simulated CPU utilizations

is higher than for the throughputs.

The mean response time deviation between mea-

sured and predicted values was 16.2 percent (=M1.1)
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Fig. 8 Large size allocation evolution of the ABB ICS (UML deployment diagram)

SimuCom Error (%) LQNS Error (%)

30 17.146 12.467 27.288 12.464 27.305

60 26.681 22.366 16.174 22.343 16.260

90 31.902 32.347 1.395 32.322 1.317

120 39.016 42.432 8.754 42.329 8.490

150 51.929 51.943 0.027 51.760 0.326

Predicted

CPU Utilization

Measured

(%)

Workload

(Req./Time)

Table 4 Prediction accuracy: CPU utilization, predictions
vs. measurements, usage scenario 1

SimuCom Error (%) LQNS Error (%)

30 30.000 30.059 0.197 30.030 0.100

60 60.000 59.930 0.117 59.880 0.200

90 90.000 90.154 0.171 90.090 0.100

120 120.000 120.549 0.458 120.482 0.402

150 150.000 149.326 0.449 149.254 0.497

Throughput

Workload

(Req./Time)

Measured

(Req./Time)

Predicted

Table 5 Prediction accuracy: throughput, predictions vs.
measurements, usage scenario 1

SimuCom Error (%) LQNS Error (%)

3000 19.090 14.005 36.312 13.992 36.438

4000 19.315 14.759 30.866 14.754 30.911

5000 17.146 15.521 10.468 15.516 10.503

10000 22.241 19.336 15.023 19.322 15.107

CPU Utilization

Workload

(Req./Time)

Measured

(%)

Predicted

Table 6 Prediction accuracy: CPU utilization, predictions
vs. measurements, usage scenario 2

SimuCom Error (%) LQNS Error (%)

3000 3.000 3.010 0.333 3.000 0.000

4000 4.000 4.010 0.250 4.000 0.000

5000 5.000 5.010 0.200 5.000 0.000

10000 10.000 10.009 0.090 10.000 0.000

Workload

(Req./Time)

Measured

(Req./Time)

Predicted

Throughput

Table 7 Prediction accuracy: throughput, predictions vs.
measurements, usage scenario 2

over both usage scenarios. For smaller workloads there
was a deviation up to 36.3 percent, whereas for higher

workloads the error decreases down to approx. 1.4 per-

cent. Nevertheless, the average value is below our for-

merly state hypothesis of 30 percent.

The reasons for the found deviations of the model
lie in the simple regression model and the model’s as-

sumptions. A more sophisticated multi-variate regres-
sion model could have reduced the error. Furthermore,
incorporating the virtualization or memory overheads

in the model could have led to a more accurate model.

Longer running measurements could have reduced the

error as well. However, a highly accurate model costs

more effort and is not needed to evaluate the evolution

scenarios, because it does not affect the ranking of evo-

lution alternatives. The predictions by the calibrated

model appeared plausible to us and were confirmed by

several PCS experts.

The throughput deviation between measured and

predicted values was 0.2 percent (=M1.2) over both us-
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age scenarios. The low deviation was to be expected

because we measured the system only for workloads

not saturating the resources, and thus the system was

able to handle all requests without inducing queuing

delays. We were not able to validate the throughput

predictions for higher load levels because our workload

drivers impacted the measurements in those cases.

In summary, our findings supported our hypotheses

for M1.1 and M1.2 and we were not able to reject these

hypotheses. We deemed the models accurate enough

to predict the performance for the evolution scenarios.

However, we did not validate the predictions for the

evolution scenarios. This would have required imple-

menting the alternatives and was beyond the scope of

our study.

Question 2 (Performance Prediction Effort) The out-

come for the metrics M2.1-M2.4 can be found in Tab. 8.

The table includes the actual efforts (post-mortem es-

timation) of the activities for the ABB case study in

the second column, which sum up to 126 hours. These
efforts were inferred from the project accounting soft-
ware used at ABB. We rejected the hypothesis of M2.1

(effort less than 8 person hours) as well as M2.4 (effort

less than 2 person hours) for all activities. Our effort

estimations from the beginning of the study can thus

be considered much too low.

Performance Analysis

ABB

Actual Optimistic Realistic Pessimistic

M2.1 Select data collection method 60 4 8 40

M2.2 Data collection / Performance Measurements 37 9 16 56

M2.3 Data Analysis 24 6 32 52

M2.4 Initial Predictions 5 5 9 14

Sum: 126 24 65 162

Estimation

Activity

Effort in person hours

Table 8 Efforts for Q-ImPrESS performance prediction ac-
tivities

However, the efforts for the ABB case study were in-

fluenced by some factors specific for our project. Some
personal with needed information was not readily avail-

able. Additional domain knowledge needed to be ac-
quired. Other projects interfered with the performance
modeling activities, and the Q-ImPrESS tools were still
in a maturation stage leading to time-consuming bug

fixes. Therefore, the efforts spent in our study cannot

be directly transferred to other cases.

We thus decided to re-estimate the efforts excluding
the interfering activities to get a fair estimate for future

projects. For these estimations, we made the following

assumptions:

– The user of the method is familiar with the system

under study.

– Source code and documentation of the system under

study is readily available.
– The Q-ImPrESS tools are free of defects.

– Evolution scenarios have been designed and dis-

cussed and non-functional requirements are docu-

mented.

Even if these assumptions are taken into account,
there is still a high potential for variability in the efforts.

This depends on whether facilities for data collection
(e.g., performance testbeds or bug tracking systems) are
readily available or need to be set up. It also depends

on how complex the desired evolution scenarios are and

on how accurate the prediction results are expected to

be. Thus, we provide not a single potential effort value

in persons hours, but a distribution expressed in the

optimisic case, realistic case, and pessimistic case in

Tab. 8 column 3-5.

According to these estimation the likely effort for all

activities is approx. 65 hours, while the pessimistic case

effort can rise up to approx. 160 hours. Both values are

well above the initially expected effort of 26 hours. The

largest portion of the efforts is spent in conducting the

performance measurements and analyzing the resulting
data. Respective performance experiments need to be
designed to derive the resource demands needed for the
Q-ImPrESS models. Opposed to our expectation this

is an iterative process, where the initial experiments

are refined and repeated to achieve sufficiently accurate

resource demands.

5.3 Reliability Prediction

To conduct a reliability prediction, we annotated the

PCS Q-ImPrESS model with component failure prob-

abilities. After validating the model and obtaining the

overall reliability, we conducted a sensitivity analysis.

5.3.1 Data Collection

Measurement Determining component failure proba-

bilities is more complicated than measuring component

resource demands as there is limited guidance and no

standard tool. Methods for reliability prediction are still

being researched as discussed in Section 2. We thus first
had to conduct a literature search on suggested meth-
ods for obtaining component failure probabilities. As

the aspect of data collection is critical also for third-

party applications of model-based reliability analysis

methods, we briefly discuss the benefits and drawbacks

of the found methods in the following (also see [17,13,

24,8]):
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– Defect prediction based on code metrics [11,

43]: compute code metrics, such as lines of code,
inheritance depth, or cyclomatic complexity to es-

timate the number of component defects (e. g., four

defects per 1 KLOC [14]). Given source code this

method is easy to execute, but its validity is not

proven [43] and even debated in literature [11].

– Reliability growth modeling [42,23]: assume
that software reliability grows over time due to bug

fixes and extrapolate curves of field failure report

dates to predict future failures using statistical re-

gression. Many software reliability growth models

(SRGM) are available from literature [42]. However,

this method is reasonably applicable only on already

completed or almost completed software. Applying

the method on individual components is often not

possible because of limited failure reports.

– Random/statistical testing [39]: generate ran-

dom test data for individual components and in-

corporate the number of successfully executed tests

into a statistical failure rate estimation model. This

method is applicable to any type of software and

does not require source code or historical data. How-

ever, the effort for generating and executing a suf-

ficient number of test cases is high and the method

might not scale. Because of inter-component rela-

tionships, it is difficult to test components in isola-

tion.
– Fault injection [18,14]: manually insert faults

into the source code or use test cases from fixed

bugs on former versions of the software. The failure

rates can then be estimated as the number of failed

vs. the number of successful test case executions.

This method is accurate for former versions of the

software and the effort can be low if suitable test
cases are available. However, this method does not
determine the current component failure rate. Ad-

ditionally, it is often difficult to attribute test case

failures to component faults [15].

– Explicit failure modeling [8]: construct a state-
based behavior model per component explicitly in-

cluding manually specified transition probabilities
for failure states. To create such a model, user
requirements, domain knowledge, and/or experi-

ence with similar software can be used. While this

method is useful for newly developed components,

it requires manual estimation of failure rates and its

accuracy is not proven.

Users of model-based reliability prediction methods

have to select one of these methods based on the avail-

able data (e.g., code metrics, test coverage metrics, or

failure reports). In our case study, we decided to con-

struct a SRGM based on failure reports from a bug

tracking database of the ABB PCS to calculate the fail-

ure probabilities for the PCS [31]. We used the IEEE
Recommended Practice on Software Reliability [23] to
guide our data collection.

ABB systematically records all problems that a soft-

ware product experiences during its entire life cycle in

a bug tracker database. Thus, from our point of view, a

failure occurs when the developer and/or the end user

reports a failure. The ABB PCS bug tracker database

includes issue reports with different types of severity.

For each report, it includes title, description, status,

action performed (e. g., change applied, duplicate, for-

warded), affected subsystem, and further information.

Due to the availability of failure data per subsystem, we

constructed a SRGM for each subsystem to estimate the

failure probabilities.

We only accounted failures that were fixed and as-

sumed that the corresponding defects causing the fail-

ures were located in the same subsystem because we
lacked further data about which parts of the code have
been updated to fix a bug. Note that this simplifying

assumption might have introduced an inaccuracy into

our model [15].

We filtered the failure reports from the bug tracker
database according to the following criteria. We se-

lected only one release, and for this release, we selected

only “critical” and “high” severity failures, which are

defined similar to Severity #1 and #2 in [23]. Failures

in these two categories cause downtime that affects the

overall availability of the system. In order to comply

with the assumption that “faults are immediately re-

moved when failures are observed” [23], we selected only

those failures for which a change was applied.

Another assumption of SRGM models is that the

component being modeled is somehow “stable”, i. e., it

can run for some time before failing. This means that

compilation and crude execution errors have been al-

ready eliminated during testing. Thus, only subsystem

failure records where the failure submit date is greater

than or equal to the system release date were selected.

To calculate the failure probabilities of the subsys-

tems, we searched the IEEE Std. 1633-2008 for a suit-

able SRGM. To reduce the complexity, we decided to

use a single type of SRGM for all subsystems, which we

selected according to industry affinity of former appli-

cations as suggested in IEEE Std. 1633-2008. The Lit-

tlewood/Verrall model [33] was developed from a large

SCADA/DCS system (Supervisory Control and Data

Acquisition / Distributed Control System), which con-

trolled power stations in the UK and provided similar

services as the ABB PCS. It had an a development ef-

fort of approx. 17 person years and could therefore also

be considered a large-scale system.
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Additionally, the LV-model and is the only calen-

dar time between failure (TBF) SRGM that accounts
for both operational and imperfect fault removal un-
certainty, that is, fixing a bug can introduce new bugs.

The model also exhibited good fit to TBF data during

the preliminary exploratory analysis and was therefore

selected for further modeling.

Fig. 11 Time between failures for one subsystem of the ABB
PCS

We chose the ’Computer Aided Software Reliabil-

ity Estimation’ tool (CASRE) recommended in [23]

to perform our failure rate estimations. Fig. 11 shows

a CASRE plot of the critical and high failure history

of the PCS. Notice that the unit of the time between

failures has been intentionally obfuscated for confiden-

tiality reasons.

We were able to fit the whole dataset without fil-
tering data at 5% significance level with the quadratic

Littlewood/Verrall model (LV-Q). Fig. 12 shows a plot

of the failure intensity. Finally, the current failure in-

tensity estimated by the model is the value used to

annotate the failure probability of the respective com-

ponent. We applied the same procedure to all processes

of the ABB PCS.

Finally, we annotated the composite components in
the manually built Q-ImPrESS model, which represent

subsystems, with the failure probabilities of the corre-

sponding subsystems using the QoS annotation editor.

The primitive components did not get annotated with

failure probabilities and are therefore assumed to be

perfectly reliable, which is reasonable for the scope of

our study.

Fig. 12 Failure intensity of a subsystem of the ABB PCS
showing the original points and fitting curve

Model Validation To get a first hint of the plausibility
of the subsystem failure probabilities predicted by the

LV model, we searched for a correlation between code

metrics and failure probabilities [43,54]. We compared

the subsystem failure probabilities and the arithmetic

average cyclomatic complexity per method [38], which

had been used in former studies.

Spearman’s rank correlation coefficient ρ is mod-
erately high for average cyclomatic complexity vs. the

failure rate (ρ = 0.6428, p = 0.1389). The slight cor-

relation between complexities and failure probabilities

gives us some confidence that the failure probabilities

predicted by the LV model are indeed representative for

the current failure probabilities of the system.

To further confirm the validity of the model, we
compared the results of the reliability analysis done

with KLAPER/PRISM from Q-ImPrESS with a reli-
ability analysis of a plain Markov model done with-
out the Q-ImPrESS tools. The deviation between the
two results was 7%. Given that the grade of abstrac-

tion was slightly different in both models, this devia-

tion is not too high. Therefore, we are confident that

the Q-ImPrESS model is valid.

Predictions Opposed to our expectations in the begin-

ning of our case study, the Q-ImPrESS tools were not

capable of making reliability predictions for most of the

evolution scenarios described in Section 4.2.
The usage profile evolution scenario cannot be as-

sessed for reliability because higher workload levels are

not taken into account by the Q-ImPrESS reliability

solver. The models only include a probability distribu-

tion for the system-level usage scenarios. Higher work-

loads (e.g., calling functions with the same probabilities
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more often in a given time interval) generally do not

lead to more user perceived failures. The situation that

the system rejects a request because of overload is cur-

rently not reflected in the reliability models. However,

if we assume that the performance prediction states for

a higher workload that the system will not be saturated

and if the probabilities of calling functions at the system

level do not change, we can assume that the probabil-
ity of failure on demand does not change. Notice that
this assumption neglects failures for example induced

by undersized data structures.

The resource environment evolution scenario (e.g.,

using faster processors) can also not be assessed be-

cause the processing rates by Q-ImPrESS resources are

ignored by the reliability solver. In general, faster re-

sources should not introduce failures per se. Increasing

the number of cores could have an influence on reliabil-

ity, because parallel threads could run into synchroniza-

tion deadlocks. However, this is also not reflected by the

current models. This scenario could also include replac-

ing hardware resources with high availability resources
(e.g., RAID disks). However, Q-ImPrESS currently only
analyzes software performance in dependency to hard-

ware and cannot take the reliability of hardware re-

sources into account. To account for hardware reliabil-

ity, the failure probabilities of the software components

would have to be adjusted manually and the prediction

would have to be run again.

Because the Q-ImPrESS tools do not take hardware

resources, such as processors, hard disks, and networks,
into account during reliability prediction, the allocation
evolution scenario can also not be evaluated. Changing
the deployment has no impact on the probability of

failure on demand. In practice, the network communi-

cation could be a source for failures and thus should be

reflected in the reliability model. Furthermore, typical

redundancy schemes (e.g., stand-by nodes or replicated
networks) are used in practice to address reliability is-
sues and should be incorporated into the models in the

future.

The only evolution scenario that we could analyze

with the Q-ImPrESS tools for its reliability impact was

the component evolution scenario. As in former relia-

bility analysis studies [49,18], we decided to conduct a

sensitivity analysis with our reliability model to simu-

late replacing the components with more reliable ones.

The sensitivity analysis in the Q-ImPrESS tools is

conducted by manually varying the failure probabili-

ties of a single component and executing the reliability

analysis. With this procedure it is possible to deter-

mine the components mostly contributing to the over-

all reliability, thus predicting impact of more testing or

component replacement.
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Fig. 13 Sensitivity analysis: system failure rate varies differ-
ently for individually changed subsystem failure probabilities
(units obfuscated)

The result of the sensitivity analysis of our model is

shown in Fig. 13. The actual failure probabilities have
been obfuscated in the figure for confidentiality reasons.
The curves show the failure probabilities for different

subsystems in the ABB PCS, which are expressed as

composite components in Fig 5. The central point of

each curve is the value determined from the SRGM,

while the other points have been created by predictions

with the Q-ImPrESS model.

Subsystems C28 and C11 have the highest failure

probabilities (on the far right side), while subsystem

C15 has the lowest failure probability (on the far left

side). This was already a result of our SRGM models
for the respective subsystems. The slopes of the curves
are a measure for the sensitivity of the system failure

probability to the subsystem failure probability.

Subsystem C1 is the most sensitive for the system

reliability, because its slope in Fig. 13 is the highest.

That means replacing subsystem C1 would have the

highest impact on reliability, which appears plausible

because it is responsible for processing most of the data

in the PCS and is called most often. Subsystem C28,

which is used by other subsystems, does not contribute

much to the overall system reliability. Compared to

other subsystems, this subsystem is called only a lim-

ited number of times and therefore has a limited impact

on system reliability. For subsystem C11, we had esti-

mated the highest failure probability, but it is in fact

also only a minor driver for system reliability because

of the usage profile.

To validate the results of the sensitivity analysis,
we compared them to results of a sensitivity analysis

done on the Markov model. The average deviation of

the slopes of the two models is 1.3%. It is to be noted

that the deviation of some slopes is quite high (approx-

imately 85%). This stems from the fact that the ab-

straction level of the two models is slightly different.
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The order of the different subsystems, however, stays

the same.

5.3.2 Results

In the following, we discuss the outcome of the metrics

for research question Q3 (reliability prediction accu-

racy) and Q4 (reliability prediction effort) from Tab. 3.

Question 3 (Reliability Prediction Accuracy) M3.1 ask

for the mean percentage of deviation between predicted

and measured probability of failure on demand. As we

were not able to evaluate multiple evolution scenarios as

discussed before this accuracy would have to rely on our

initial Q-ImPrESS reliability model. However, opposed

to performance analysis, it is much harder too measure

the actual reliability (i.e., the probability of failure on

demand) of a running system, which is necessary for

the comparison with the predictions.

Different approaches to measure reliability have

been proposed (Section 5.3.1). None of these approaches

however can convincingly provide the respective mea-

sures in our case. Code metrics provide an indicator,
but are no reliable evidence for potential failures [43].
Statistical testing is not applicable in our case be-

cause the number of test case to execute would be pro-

hibitively large.

Another option is to perform explicit failure model-

ing and to construct a simulation model (e.g., as done

by Brosch et al. [7]), which emulates the exceptions

thrown by a system and thus allows for a much quicker
estimation of the probability of failures on demand. The
simulation results can then be compared to the predic-

tion results of the analytical model. However, the simu-

lation model is again based on certain assumptions and

creates an abstraction from reality, and thus it also does

not reflect the actual reliability accurately.

Based on these observations, we could not determine

a value for M3.1 within the timeframe of our project.

This is an inherent problem for architectural reliability

models, whose predictions are typically not compared

to actual reliability measurements [17,13,24]. Further

empirical research for example in longitudinal studies is

required. Failure reports need to be tracked for several

years to get meaningful data to determine the actual

realiability of a system.

To gain some trust into our model we performed

the model validation activities described before. Fur-

thermore, the sensitivity analysis of our model helps

to assure that failure probabilities estimated with un-

certainty do not impact the predicted POFOD in an

unexpected manner.

Question 4 (Reliability Prediction Effort) The outcome

for metrics M4.1-M4.4 can be found in Tab. 9. We ap-

ply the same approach as in Section 5.2 and provide

both post-mortem estimations for our study and opti-

mistic/realistic/pessimistic estimations for third-party

applications of Q-ImPrESS. In total, we needed approx.

120 person hours for the reliability predictions, which

is near our pessimistic case estimation of 126 person

hours.

Reliability Analysis

ABB

Actual Optimistic Realistic Pessimistic

M4.1 Select data collection method 56 4 16 40

M4.2 Data Collection / Reliability estimations 48 10 14 52

M4.3 Data Analysis 8 3 4 16

M4.4 Initial Predictions 12 5 11 18

Sum: 124 22 45 126

Effort in person hours

Activity

Estimation

Table 9 Efforts for Q-ImPrESS reliability prediction activi-
ties

As for the performance predictions, the values for

M4.1-M4.4 are well above our initially expected effort

of 26 hours. Other than for performance analysis, there

are only limited empirical studies in literature dealing

with reliability estimation of realistic systems. Thus,

it is difficult to select an appropriate method for data

collection and even to get aware of the different pos-

sibilities for data collection. We first had to conduct

a literature survey to get an overview of methods and
tools for reliability data collection as no step-by-step
guide was available. Furthermore, we spend a consider-
able amount of time to select an appropriate SRGM.

The data collection itself can be highly variable de-

pending on the chosen method (e.g., reliability growth
modeling or fault injection). In our case, we needed to
get access to the bug tracking system and analyze the

bug reports to construct a model. Data analysis involves
validating the data, which we attempted via complex-
ity metrics. The initial prediction can be carried out
quickly, but the sensitivity analyses require further tool

automation.

5.4 Tradeoff Analysis

The following section describes applications of the two

alternatives for the tradeoff analysis in Q-ImPrESS, i.e.,

design space exploration with PerOpteryx and alterna-

tive weighting with AHPWizard. The former alterna-

tive is suited for generating a large number of archi-

tectural candidates while the latter supports manually

trading off a handful of candidates. We did not include

the tradeoff analyses accuracy and efforts into our GQM

schema because these studies had a more exploratory
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character and were not planned at the start of our in-

vestigations. Nevertheless, the trade-off analyses are an

integral part of Q-ImPrESS, and we report our find-

ings in a descriptive manner, which might be helpful

for third party application.

5.4.1 Design Space Exploration with PerOpteryx

Application: We applied the Q-ImPrESS PerOpteryx

tool [35] to search for optimal performance and costs

tradeoffs in the ABB PCS. It requires the architect to
specify degrees of freedom (i.e., variation points with
multiple alternatives, examples see below) in the archi-
tectural model using an EMF model. From this model

PerOpteryx generates an initial set of architectural can-

didates. Afterwards, it executes the Q-ImPrESS predic-

tion tools (i. e., LQNS and DTMC solver) on each can-

didate. Based on the results, the tool selects promis-
ing candidates (e.g., with low costs and short response
times). It then reproduces new candidates from this

selection by performing crossover and mutation (e.g.,

taking component allocations from one candidate and

CPU speeds from another candidate). This process is

repeated for a pre-specified number of times. The re-

sult is a Pareto curve of architectural candidates with
optimal QoS tradeoffs.

In our case study, we specified the following degrees

of freedom: reallocating the services to different servers,
varying the number of servers, varying the processing
rates of CPUs, and integrating several alternative ser-
vices, which we had manually added to the model (e.g.,

a faster component with higher costs). The costs of the
CPUs depended on their processing rate and had been
determined by fitting a power function to Intel’s CPU

price list.

We generated 10 starting populations for the ABB

PCS model (i.e., initial selection of components, alloca-

tion, and CPU speeds) and performed 10 independent

runs of PerOpteryx each lasting 5-6 hours on a standard

PC. The replication helps to reduce distortions from

the evolutionary algorithm. The tool evaluated around

2000 candidates per run and found 330 Pareto-optimal

candidates in total (Fig. 14).

One example candidate exhibited a cost reduction

by 23 percent while the response time was increased by

19 percent, which is tolerable within customer require-

ments. In this case, PerOpteryx suggested allocating

all services to a powerful, single-server node thus sav-

ing costs for other nodes. This candidate is similar to

an actual configuration sold to smaller customers based

on rule of thumb.

Findings: The application of the PerOpteryx tool is an

interesting alternative to the current practice of sizing
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Fig. 14 Tradeoff analysis results from PerOpteryx: response
time vs. costs for the ABB PCS visualized as a set of unified
Pareto front (units obfuscated)

and configuring systems by rule of thumb, which can

lead to expensive overprovisioning. Future customer

recommendations could be substantiated by model-

driven prediction results. However, the validity of the

generated candidates (i.e., whether the predicted per-
formance can be perceived in a running system) still
needs to be proven, which was not attempted here for

time constraints.

The explorable degrees of freedom in the design are

limited to architecture-level changes. The tool might
generate architectural candidates undesirable for rea-
sons not reflected in the model (e.g., security / safety

constraints). The effort for applying PerOpteryx de-

pends on the possible degrees of freedom to be modeled

and the required validation of the resulting candidates,

while the effort for running the tool is negligible.

5.4.2 Weighting Alternatives with AHP Wizard

Application: As a second alternative for tradeoff analy-

sis, we applied the Q-ImPrESS AHP Wizard [21]. AHP

was chosen in Q-ImPrESS because of promising results

in former software architecture studies [61]. The tool

operates on the Q-ImPrESS prediction result reposi-

tory and requires selecting a set of alternative predic-

tions for tradeoff analysis. Then it asks the user for

weights (from -4 to +4) in pairwise quality attribute

comparisons (e.g., response time vs. reliability). After-

wards, the tool lets the user specify weights (from -4

to +4) to pairwise comparisons of predictions results

(e.g., response time alt1 vs. alt2). Finally, it calculates

a score for each alternative based on the weights.

In our case study, we analyzed four (yet artificial)

alternatives for one of the components in the ABB PCS

system. The first alternative represents the current im-

plementation of the component. In the second alterna-

tive, the component has a lower resource demand be-

cause it exploits multi-core CPUs but also a higher fail-

ure probability because of expected concurrency bugs.

In the third alternative, the component comes from

a third party and has a slightly higher resource de-



Performance and Reliability Prediction for Evolving Service-Oriented Software Systems 23

mand but a lower failure probability because it has been

proven in long-term use. The fourth variant uses the

same component as the first variant but deploys it to a

dedicated server.

Using the Q-ImPrESS AHP wizard, we specified a

high preference for reliability and provided 24 weights

for the prediction result comparison. Fig. 15 depicts the

resulting score. Alternative 3 has received the highest
score because of its low failure probability. Alternative
2 is best for CPU utilization while alternative 4 exhibits

the lowest response times.

Findings: The AHP method is established in business

decision support and can help to quantify tradeoffs be-

tween multiple architectural alternatives. Benefits of

the method in the Q-ImPrESS context are the good

tool integration, visualization, and export functional-

ity. Drawbacks are the limited traceability of the results

and the inherently limited scalability of AHP. If n is the

number of alternatives and q is the number of quality

attributes under analysis, the method requires
(

n

2

)

· q

pair-wise comparisons from the user, which yielded 24

comparisons in our study (4 alternatives and 4 quality

attributes). For 10 alternatives, 180 comparisons would
be required thus becoming impractical.

5.5 Evaluation of Validity

We describe threads to the validity of a our study in the

following. We focus on construct, internal, and external

validity.

5.5.1 Construct Validity

The construct validity states whether the studied per-

sons, settings, and tools represent the intended con-

structs well [58]. The goal of our study was to evaluate

the applicability of model-based quality prediction on

a large-scale industrial software system from the view-
point of the quality analyst.

First, we argue that Q-ImPrESS is a representa-

tive, state-of-the-art, model-based, quality prediction
method. Q-ImPrESS is based on a number of former
performance and reliability prediction approaches (e.g.,
Palladio [6], KLAPER [19]) and emerged as a recent

joint effort by a combined academic and industrial con-
sortium in a EU project. The used performance solvers
SimuCOM and LQNS had been formerly applied in

a number of other case studies. The reliability solver

is based on a standard technique for solving DTMCs.

Thus, Q-ImPrESS is based on methods that have been

formerly peer reviewed and published in renowned con-

ferences (e.g., WOSP) and journals (e.g., JSS).

Second, we argue that the ABB PCS is represen-

tative of a large-scale industrial software system. The

analyzed part of the PCS consists of more than three

million lines of code and are usually deployed in dis-

tributed server environments. The system can there-

fore be considered as large-scale. Additionally, the sys-

tem has been sold to customers for several years and

manages numerous industrial processes, such as power

plants or oil refineries. It can therefore be considered as

a real-world software system in industrial use.

Third, we argue that the investigators in this study

are indeed representative for the targeted perspective

of a QoS analyst. We had former experience with QoS

analysis particularly in the area of performance model-

ing. A threat to the construct validity might be that we

only had limited experience with reliability modeling of
large scale software systems. To mitigate this threat, we
conducted a comprehensive literature search on data

collection techniques for reliability modeling [31] and

had our study methodology reviewed by our academic

partners. We also had limited experience with the sys-

tem under study, which we tried to mitigate by involv-
ing PCS experts where necessary. This might not be a
severe threat to construct validity because typical qual-
ity analysts are often external consultants [53].

5.5.2 Internal Validity

The internal validity states whether changes of a case’s

independent variables are in fact the cause for changes

of the dependent variables [58]. In our case, the inde-

pendent variables are the Q-ImPrESS method and the
ABB PCS system while the dependent variables are the
prediction accuracy and the required effort. The ques-
tion is: was the achieved prediction accuracy and the

required effort indeed caused by Q-ImPrESS and the

ABB PCS or was another variable responsible?

There are several potentially distorting variables

in our case study. The competence and the experi-

ence of the investigators might have influenced the

achieved accuracy and required effort. While this vari-

able could not be controlled with statistical significance

(e.g., through replicated investigations) given the time-

frame of our project, at least a second company ap-

plied the Q-ImPrESS method on their systems over the

course of the Q-ImPrESS project [51]. As that investi-

gation achieved comparable accuracy and required com-

parable efforts [29], we have at least an additional hint

that the competence and experience of the investigators
was a minor distorting factor.

As an additional threat to the internal validity, the
fact that the Q-ImPrESS method and tools were still in

development when the case study was conducted might



24 Heiko Koziolek et al.

Fig. 15 Tradeoff analysis results from AHP Wizard: alternative 3 receives the highest score because of the preference for
reliability

have a distorting influence. For example, delays in the

case study occurred due to defects in the tools, which

required time-consuming bug fixing and testing. The

documentation of both methods and tools was incom-

plete thus unnecessarily extending the effort for apply-

ing the method. We have tried to mitigate this threat

by providing effort predictions where these influences

were removed (Section 5.2.2 and 5.3.2).

The accuracy of our prediction might be limited

by the given timeframe of the project. More detailed

modelling might have led to higher prediction accu-

racy. However, we argue that typical quality analysis

projects in practice also operate under strict time and

budget constraints, thus our setting was realistic.

The validity of the build model can be debated, i.e.,

whether it actually reflects the performance and relia-

bility properties of the system under study. To mitigate

this threat we have already discussed the validation of

the transition probabilities, resource demands, and fail-

ure probabilities in Section 5.

5.5.3 External Validity

The external validity states whether the results of a

study are transferable to other settings than the specific
experimental setting [58]. The question to answer is:
are the achieved prediction accuracy and required effort

transferable to other methods as Q-ImPrESS and other

systems as the ABB PCS?

We already discussed in Section 2 that a number

of related studies reported on a performance prediction

error of less than 30 percent for various performance

measures. This demonstrates that comparable perfor-

mance prediction accuracy as in our case study is pos-
sible for other systems. A similar indicator for reliability
predictions is missing.

The results in our case study might be limited to
the domain of industrial controls systems. However, it
can be argued that the server-side part of the system
is based on standard Microsoft technologies that are

also used in other domains (e.g., enterprise information

systems). It should be noted that other systems might

have more intricate performance or reliability influences

which would complicate modeling, lower prediction ac-

curacy, and increase effort. For smaller systems an even

higher prediction accuracy than in our case study could

be potentially obtained with lower effort.

As discussed in Section 5.2.2 and 5.3.2, the effort

for applying a model-based, quality analysis method

depends on the availability of suitable data collection

facilities (e.g., performance testbeds or failure report
statistics). In other settings, the effort for data collec-
tion might be substantially different.

Whether other methods, which are similar to
Q-ImPrESS, can be applied with similar effort and ac-
curacy remains unclear based on our study. Influencing
factors are the usability of the available tools and the

expressiveness of the modeling notation.
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6 Discussion

Reflecting on the experiences while applying
Q-ImPrESS on the ABB PCS, we discuss model-

ing issues, process issues, and implementation issues in

the following, which helps to better differentiate the

findings of our case study and provides pointers for

future work. Modeling and process issues need more

research, while implementation issues can be overcome
with better tools.

6.1 Modeling Issues

We first discuss issues related to the SAMMmeta model

of Q-ImPrESS, which codifies the required performance

and reliability constructs necessary for the prediction.

Q-ImPrESS offers a comprehensive meta model with

more than 100 classes, which allows to model a large

class of systems to analyze numerous performance and
reliability issues. Opposed to many other performance
models, the SAMM allows specifying resource demands

with arbitrary distribution functions, which can lead to

more accurate predictions.

The complexity of the SAMM however also re-

quires a substantial learning effort (approx. 1 week).

Q-ImPrESS models are more difficult to understand

than simple queuing networks. This stems from the

fact that Q-ImPrESS is specifically designed to ana-

lyze different evolution scenarios and therefore allows

to quickly replace parts of the model (e.g., the QoS an-

notations or the resource environment) and to param-

eterize many parts of the model (e.g., user interactions

and resource demands). It might therefore not be jus-

tified to apply Q-ImPrESS for single evolution scenar-

ios or smaller systems. The higher effort for applying

Q-ImPrESS pays off when the models can be reused

for multiple evolution scenarios.

However, although comprehensive, the SAMM still

lacks constructs to model many interesting evolution

scenarios of modern SOA systems, e.g., direct sup-

port for virtualization, OS changes, application server

configurations, transmission protocols changes, event-

based communication, real-time scheduling, or dynamic

architectures which bind services at runtime. There is

also only limited support for modeling the middleware.

It would be desirable if specifics of service-oriented sys-
tems would be better supported (e.g., dynamic adap-
tation by identifying and binding services at runtime

or the comparison of transmission protocols, such as

SOAP or REST [20]). Even asynchronous communica-

tion is currently cumbersome to model with the SAMM.

The foreseen modeling constructs for multi-core pro-

cessors, memory accesses, or cache configurations are

currently unsupported by most of the analysis and

simulation tools including those implemented in the
Q-ImPrESS tools. However, notice there is a trade-off
involved. Including more modeling concepts into the

meta-model makes the model even more complex to

learn for end-users. Also, developers of analysis meth-

ods built on top of the SAMM have to support a larger

variety of concepts making it more difficult to ensure

the correctness and validity of such methods.

The SAMM also has severe limitations in the area of

reliability modeling. Specifying the reliability of hard-

ware devices is not supported in the SAMM, which

means that not only the hardware is irrelevant for re-

liability predictions, but also that different allocation

configuration have no influence on the predicted relia-

bility. Other approaches [7] support analyzing architec-

tural models with hardware reliabilities, which could

be integrated into the SAMM. The SAMM also pro-

vides no higher-level constructs to model common fault-

tolerance mechanism, such as recovery blocks or design

diversity (again, implying a more complicated meta-

model as discussed before). More refined models and
tools would be needed to evaluate the impact of differ-
ent component topologies on the system reliability.

6.2 Process Issues

Q-ImPrESS comes with a comprehensive process docu-

mentation which describes the different steps to follow

to execute the method (cf. Section 3.2 and [37]). While

the process description offers guidance, it is usually not

followed exactly during a particular application of the

method as certain steps are irrelevant or require much
more detail.

During our case study, the data collection for the

Q-ImPrESS models (especially transition probabilities,
resource demands, and failure probabilities) proved
to be the hardest and most time-consuming activ-
ity. Another difficult activity is determining an ade-

quate abstraction level for modeling. However, for both
data collection and choosing an abstraction level the
Q-ImPrESS process description offers no hints. Manual

work and/or third party product use is required from

the users of the method. Such manual work is com-

mon in today’s performance and reliability engineering

approaches due to a lack of standard tools for taking

measurements and the high diversity of (component)
frameworks and implementation platforms. Neverthe-
less, for popular frameworks (e.g., JEE or COM/.NET)

future improvements could lead to such standards for

these platforms.

While the Q-ImPrESS tools are well-integrated with

each other, they do not easily incorporate into other de-
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velopment environments than Eclipse. However, in in-

dustrial software development often commercial tools

are used (e.g., Microsoft Developer Studio). Introduc-

ing additional tools in a predefined tool chain requires

additional process considerations and may increase the

needed effort. Additionally, Java as programming lan-

guage is better supported by Q-ImPrESS than other

languages, thus, reducing the effort to integrate the
Q-ImPrESS method in a Java-based development pro-
cess.

On the modeling side, existing UML models need

to be recreated for Q-ImPrESS as there is currently no
support for model transformations to SAMM. In the
future, it may be possible to reuse (parts of) UML2

models based on the Eclipse UML2 project via a QVT-

based model transformation.

6.3 Implementation Issues

The implementation of the modeling and analysis con-

cepts in easy-to-use software tools is a major prerequi-

site to conduct industrial case studies and gain experi-

ence with a method. Q-ImPrESS offers a homogeneous

tooling environment, which uniquely integrates multi-

ple mature research tools, such as the Palladio Com-

ponent Model, KLAPER, LQNS, PerOpteryx, and the

AHPWizard. The Q-ImPrESS workbench offers a num-

ber of graphical and textual model editors for the dif-

ferent SAMM parts to increase the usability and lower

the effort for constructing performance and reliability

models.

However, the tooling environment did not reach in-

dustrial maturity during the project and needs fur-

ther stabilization. There are still several usability issues

which unnecessarily complicate the creation of models.

On the other hand, we have to keep in mind that the

tooling has been developed as a joint effort in a pub-

licly funded, joint research project. It is to be expected

that a company dedicated to quality prediction mod-

eling tools will be able to create a stable and usable

tooling environment. Whenever such a stable tooling

becomes available it would be interesting to renew the

experience report presented here.

For performance prediction, Q-ImPrESS offers two

expressive and matured performance solvers (SimuCom

and LQNS), which can solve models in the class of ex-
tended queuing networks. These solvers offer a state of
the art feature set in performance analysis, e.g., sup-

port for passive resources (e.g., semaphores) as well as

arbitrarily distributed service times. By reusing these

solvers, the Q-ImPrESS project did not contribute

new analysis concepts in performance modeling, which

would have required specialized solvers. However, some

of the proposed extensions (as discussed in sections 6.1

and 6.3) to the Q-ImPrESS SAMM may require such
specialized solvers in the future.

For reliability prediction, Q-ImPrESS provides a

solver for DTMCs based on the PRISM probabilistic
model checker. The solver supports only a limited num-
ber of model constructs in the SAMM. For example,
concurrently executed threads modeling with fork ac-

tions or the acquisition and release of passive resources

are not supported by the solver.

However, even simple quantitative reliability pre-

dictions are an improvement over the current preva-

lent practice of relying simply on a number of executed

test cases and experiences. The results of the sensitiv-

ity analysis are useful to make future testing procedure

more efficient by allocating more testing resource on

the most sensitive components. This can also save fu-

ture maintenance costs, which could however not be

quantified within the timeframe of this project.

7 Conclusions and Future Work

This paper presented an industrial case study apply-

ing the state-of-the-art method Q-ImPrESS for model-

driven performance and reliability prediction on a pro-

cess control system from ABB, which consists of several
million lines of code. We found that a reasonable perfor-
mance prediction accuracy (error < 30 percent) can be

achieved with Q-ImPrESS within 2-4 person weeks. The

accuracy for reliability prediction remains unknown, be-

cause a long-term study collecting field failure reports

after system evolution would be necessary. Neverthe-

less, the sensitivity analysis provided by the reliability
prediction provided hints on how to improve test effort
distribution. This paper has also described two meth-

ods for trade-off analysis between different quality at-

tributes and discussed the modeling, implementation,

and process issues of Q-ImPrESS.
The results of our case study are relevant both

for practitioners and researchers. Practitioners are pro-

vided an estimation of the effort for applying model-

driven quality prediction methods, which is useful for

cost/benefit calculations and to justify the application

of the methods towards management. Our experience

documented in this paper should also help practition-

ers in collecting the data necessary for performance

and reliability prediction. Researchers are provided a
demonstration on how model-driven quality prediction
methods perform when being applied on a large-scale

industrial system. We have identified many directions

for improving the methods, tools, and processes.

Besides more robust modeling and prediction tools,

better support for data collection, and better process
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integration, our study provides several other open re-

search questions:

– Can our achieved accuracy and effort numbers be

reproduced in replicated studies?

– How can performance measurement frameworks and

performance modeling tools be better integrated?

– How to refine reliability prediction methods so that

they support for example hardware or middleware

reliability?
– How can reliability prediction models be validated

without waiting years for sufficient failure data?

– How can service-oriented systems be better sup-

ported in quality prediction?

– How can reverse engineering and performance mea-
surement tools be integrated to speed up data col-

lection?
– Is it possible to construct model libraries, so that

models can be reused in different contexts?

– Can other quality attributes (e.g., security, safety,

usability) be tackled in a quantitative manner and

integrated into this approach?

We are currently working on the first two questions.
These and the other questions are pointers for future

work and should be addressed in further empirical stud-
ies on model-based quality prediction.
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48. Runeson, P., Höst, M.: Guidelines for conducting and re-
porting case study research in software engineering. Em-
pirical Software Engineering 14(2), 131–164 (2009)

49. Sharma, V.S., Trivedi, K.S.: Quantifying software per-
formance, reliability and security: An architecture-based
approach. Journal of Systems and Software 80(4), 493–
509 (2007)

50. Singh, H., Cortellessa, V., Cukic, B., Gunel, E., Bharad-
waj, V.: A bayesian approach to reliability prediction and
assessment of component based systems. In: Proc. 12th
International Symposium on Software Reliability Engi-
neering (ISSRE’01), pp. 12–21 (2001)

51. Skuliber, I., Huljenic, D., Desic, S.: Black-box and gray-
box components as elements for performance prediction
in telecommunications system. In: Telecommunications,
2009. ConTEL 2009. 10th International Conference on,
pp. 131 –134 (2009)

52. Smith, C.: Performance Engineering of Software Systems.
Addision-Wesley (1990)

53. Smith, C.U.: Performance Solutions: A Practical Guide
To Creating Responsive, Scalable Software. Addison-
Wesley (2002)

54. Snipes, W., Robinson, B., Brooks, P.: Approximating de-
ployment metrics to predict field defects and plan cor-
rective maintenance activities. In: 20th Int. Symp. on



Performance and Reliability Prediction for Evolving Service-Oriented Software Systems 29

Software Reliability Engineering (ISSRE’09), pp. 90–98.
IEEE (2009)

55. Stammel, J., Reussner, R.: KAMP: Karlsruhe Architec-
tural Maintainability Prediction. In: Proc. 1st Workshop
GI-Arbeitskreis Langlebige Softwaresysteme (L2S2’09),
pp. 87–98 (2009). URL http://ftp.informatik.rwth-
aachen.de/Publications/CEUR-WS/Vol-537/

56. Trivedi, K.: Probability and Statistics with Reliability,
Queuing, and Computer Science Applications, 2nd edn.
Wiley & Sons (2001)

57. Wang, W.L., Pan, D., Chen, M.H.: Architecture-based
software reliability modeling. Journal of Systems and
Software 79(1), 132–146 (2006)

58. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Reg-
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