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Abstract

In order to meet stringent performance requirements, system administrators must
effectively detect undesirable performance behaviours, identify potential root causes
and take adequate corrective measures. The problem of uncovering and understanding
performance anomalies and their causes (bottlenecks) in different system and applica-
tion domains is well studied. In order to assess progress, research trends and identify
open challenges, we have reviewed major contributions in the area and present our
findings in this survey. Our approach provides an overview of anomaly detection and
bottleneck identification research as it relates to the performance of computing systems.
By identifying fundamental elements of the problem, we are able to categorize existing
solutions based on multiple factors such as the detection goals, nature of applications
and systems, system observability, and detection methods. *
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1 Introduction

Modern enterprise applications and systems most often function well, but are still known
to sometimes exhibit unexpected and unwanted performance behaviours with associated
cost implications and failures [1]. These performance behaviours or anomalies are often
the manifestations of bottlenecks in the underlying system. In fact many factors such as
varying application load, application issues (e.g. bugs and updates), architectural features,
hardware failure, have been found to be sources of performance degradation in large scale
systems [[2]; [3]]. Regardless of the sources of the problem, the challenge is how to detect
performance anomalies, and to identify potential root-causes. The scale, dynamics, and
heterogeneity of today’s IT infrastructure further aggravate the problem.

Performance bottlenecks and anomalies are barriers to achieving predictable performance
guarantees in enterprise applications and often come with significant cost implications. Stud-
ies [4] have shown that there exist correlations between the end-user performance and sales
or number of visitors in popular web applications and how consistently high page latency
increases the page abandonment rate. It was also shown that for a small-scale e-commerce
application with a daily sales of $100,000, a 1 second page delay could lead to about 7%
loss in sales annually. Also according to [5], Amazon, experiences 1% decrease in sales for
additional 100 ms delay in response time while Google reports a 20% drop in traffic due to
500 ms delay in response time. These implications show not only the importance but also
the potential economical value of robust and automated solutions for detecting performance
problems in real time.

Similarly, performance bottlenecks if left unattended, may eventually lead to system fail-
ure and outages spanning minutes to weeks. Bottleneck conditions such as system overload,
and resource exhaustion have been reported to cause prolonged and intermittent system
downtimes [1]. Global web services such as Yahoo Mail, Amazon Web Services, Google,
LinkedIn, and Facebook have recently suffered from such failures [6]. Unplanned downtimes
have significant cost implications [7] not just in lost sales but also in man-hours spent on re-
covery. To achieve guaranteed service reliability, performance, and Quality of Service (QoS)
timely detection of performance issues before they trigger unforeseen service downtime is
critical for service providers [8]

Considerable efforts have been made to address this issue in the academia with interesting
proposals. Many of these solutions leverage the power of statistical and machine learning
techniques. Though many of these efforts have been concentrated on solving the problem
in specific application domains, the characteristics of the problem and proposed solutions
are similar. A basic performance anomaly detection and bottleneck identification (PADBI)
system observes, in real time, the performance behaviours of a running system or application,
collects vital measurements at discrete time intervals to create baseline models or profiles
of typical system behaviours. It continuously observes new measurements for deviations in
order to detect expected or unexpected performance anomalies and carry out root-cause
analysis to identify associated bottlenecks. This survey aims at providing an overview of
the problem and research on the topic. We provide a basic background on the problem
with respect to the fundamental elements of the process, methods and techniques while
identifying research trends and open challenges.

1.1 Our contribution

This work is an attempt to provide thorough description of the performance anomaly de-
tection and bottleneck identification problem and to present the extensive research done in
this area. The diverse nature of works addressing this problem informs this work and we
herein present our findings. A similar survey on the general problem of anomaly detection is
presented in [9]. We start by giving a general background while identifying core elements of
the problem. Then we discuss the main contributions of various authors organized in terms
of the systems, goals, and techniques used. We conclude by discussing research trends,
future directions and specific requirements for Cloud Computing.

1.2 Organization

We introduce the paper in Section 1. Section 2 presents a background of the problem, dis-
cusses the concept of performance anomalies and bottlenecks, their root-causes and other
fundamental concepts. In Section 3, we address the various detection strategies and tech-
niques employed in existing literature. Section 4 summarizes past and present research
trends while also describing specific Cloud computing requirements in Section 5. Section 6
discusses important concerns about detection methods and presents future directions in
terms of challenges and open issues. We conclude in Section 7.
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2 Background

2.1 Basic concepts

The performance of computer systems is typically characterized in terms of the duration
taken to perform a given set of tasks or the rate at which these tasks are performed with
respect to the amount of system resources consumed within a time interval [10].

Performance metrics are key performance indicators (KPI) derived from fundamental
system measurements (such as count, duration, and size) to describe the state of operation
of a computer system. The two most popular metrics are the response rime (or latency)
and throughput. Latency is broadly used to describe the time for any operation to complete,
such as an application request, a database query, a file system operation. The throughput
of a system is the rate of work performed. For instance in web applications, Throughput is
the number of users’ requests completed within a time interval (e.g. requests or transactions
completed per second) [10].

System resources includes physical components such as the CPU, memory, disk, caches,
network and virtual components such as the network connections (e.g. sockets), locks,
file handles or descriptors [10]. Resource capacity describes the storage size or processing
strength of a given resource such as the number of CPUs, and the size of physical memory
or disk.

Resource utilization of an application typically captures the amount of capacity used
with respect to the available capacity. For example CPU usage is measured as the amount
of time (in percentage), the CPU is busy executing instructions from an application while
memory utilization measures (in percentage) amount of storage capacity consumed by a
particular process or application. Utilization of network resources may capture the ratio of
number of packet transmitted to the full transmission capacity of a network link in a given
time interval [[11]; [12]].

In the following sections we present various aspects of the PADBI problem.

2.2 Performance Anomalies

Generally, anomalies can be seen on a graph, as a point or group of data points lying
outside an expected normal region [13]. In performance studies the data points are discrete
measurements of a performance metric, throughput for example. Fig. 1(a) is a plot of
latency against time for an hypothetical system. The two homogeneous clusters (N7 and
Ny) represent the normal operating region while the points (p; and py) or group of points
(O) falling outside the normal regions are anomalies or outliers. Fig. 1(b) captures another
example of throughput anomaly, the group of points P represent a short dip in system
throughput.

B S P

Bt

(a) Latency anomaly. (b) Throughput anomaly.

Figure 1: Illustration of anomalies.

2.2.1 Types of Anomalies

Chandola et al [9] identifies three basic types of anomalies; point, collective and contextual
anomalies. These types only capture anomaly in terms of individual or contiguous data
points, however, performance metrics are also known to commonly exhibit characteristic
shapes when a resource is saturated [14]. Therefore we present one more type of anomalies,
the pattern anomaly, which characterizes performance behaviours in terms of the structure
or shapes of their curves rather than finite data points [15].

1. Point anomalies. A point anomaly is any point that deviates from the range of ex-
pected values in a given set of data. For example, a memory usage value 3 standard

ACM Computing Survey, Vol. 48, Iss. 1, June 2015. 3



Olumuyiwa Ibidunmoye et al. Performance Anomaly Detection and Bottleneck Identification.

deviation from the mean (i.e. >= p + 30) may be considered a point anomaly if
the expected behaviour is 1 standard deviation from the mean (ie. <= p+10). In
Fig. 1(a), points labeled p; and py are point anomalies. Point anomalies are the dom-
inant type of anomalies in majority of literature that we reviewed. They commonly
manifest as spikes in application latency or system resource utilization measurements.
Fig. 2(b) shows a plot of application latency with respect to time. The solid dots
indicates detected point anomalies.

2. Collective anomalies. Collective anomaly is a homogeneous group of data points de-
viating from the normal regions of the rest of the data. Though the individual data
points may not be anomalous with respect to the group, their occurrence together
as a collection is anomalous. An unexpected streak of low throughput values may
be considered anomalous when compared with higher throughput behaviour in past
observation windows. In Fig. 1, the group of points labeled O in Fig. 1(a) and points
labeled P in Fig. 1(b) are collective anomalies.

3. Contextual anomalies. Some performance anomalies manifest only under specific exe-
cution environments or contexts. The contexts may be defined by load levels (e.g. high,
moderate, load, or bursty), type of payloads (e.g. 10-bound, CPU-bound, read-heavy,
write-heavy or mixed), system states (e.g. system configurations), or by the nature of
underlying computing infrastructure (e.g. virtualized or shared-hosting environments)
etc.
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(a) Anomalous latency growth pattern. (b) Latency spikes.

Figure 2: Latency anomalies.

4. Pattern anomalies. The shapes of some performance metrics when plotted are known
to exhibit specific pattern that can be used to identify anomalous behaviours [15].
For example, application latency is known to exhibit an asymptotic growth as seen in
Fig. 2(a). The shape or pattern of performance metric may be anomalous if it does
not conform to the shape of typical behaviour. Pattern anomalies may be considered
a generalized form of collective anomalies since the anomalous shape is made up of a
set of data points that are as well collective anomalies.

2.3 Performance Bottlenecks

A bottleneck is a resource or an application component that limits the performance of a
system [10]. Malkowski et al [16] describes a bottleneck component as a potential root-
cause of undesirable performance behaviour caused by a limitation (e.g. saturation) of some
major system resources associated with the component [17]. Such components often exhibit
frequent congestion of load [18]. Also, application or system metrics correlating with an
observed performance limitation are referred to as bottleneck metrics [19].

2.3.1 Types of Bottlenecks

2.3.1.1 Resource Saturation Bottlenecks A resource is saturated when its capacity
is fully utilized or past a set threshold [10]. For example, Fig. 3 depicts a saturated CPU past
the threshold usage level of 70%. According to Gregg [10] saturation may also estimated
in terms of the length of a resource queue of jobs or request to be served by that resource.
Saturation causes different system resources to be bottlenecked differently with varying
performance impact. CPU— near 100% utilization resulting in congested queue and growing
latency. Memory— constrained capacity due to limited physical memory or deprivation
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Figure 3: CPU saturation bottleneck.

caused by memory leaks? leading to constant paging and swapping. Disk Saturation—
constant disk access beyond available bandwidth forcing new IO requests to queue up.
Network saturation— network congestion due to fully utilized bandwidth causing new traffic
to be delayed or dropped.

2.3.1.2 Resource Contention Bottlenecks In multi-tasking environments, applica-
tion processes contend for limited system resources such as CPU cycles, 10 bandwidth, phys-
ical memory, and also software resources such as buffers, queues, semaphores and mutexes.
The impact of such contention is well pronounced in cloud datacenters due to resource inter-
ference between multiple cloud tenants. The noisy neighbours effect is an analogy for this
interference [20]. Several contention scenarios are well known for different system resources.
CPU Contention— multiplexing the CPU between multiple processes causes frequent con-
gested queue and performance interference in virtualized systems especially in the presence
of CPU hogging® programs. Memory Contention — sharing limited memory bandwidth
and processor-memory interconnect among processes may result in significant performance
impact. Disk Contention— the processor-IO performance gap and restricted disk payload*
causing substantial performance loss especially in IO workloads. Network Contention— ex-
cess demands for communication links at peak times lowers the effective bandwidth offered
resulting in undesirable network contention delays.®

2.3.2 Bottlenecks Behaviours

Performance bottlenecks manifests in different ways depending on applications and systems.

1. Single Bottlenecks. Single bottlenecks exhibit predominant saturation at a single re-
source or component. An inherent characteristic of the bottleneck component is a
near-linear load-dependent growth in resource usage. [16].

2. Multiple Bottlenecks. Two or more system resources or component may saturate si-
multaneously, or concurrently due to interdependency. Malkowski et al [16] classifies
multiple saturation behaviours as simultaneous, oscillatory, and concurrent depending
on saturation frequency given the presence of another saturation.

3. Shifting Bottlenecks. Shifting bottlenecks are a special case of multiple ones. Due
to fluctuating loads and the cascading nature of web requests, an application may
experience shifts in bottleneck between two or more application components — the
domino effects — due to interdependency between them.

2.4 Sources of Performance Anomalies and Bottlenecks

Fig. 4 is an extended Fish-bone diagram explaining the inter-relationships between perfor-
mance bottlenecks, anomalies and their causes. The green boxes on the left are the main
categories of root-causes, the red horizontal arrows are example of primary causes that
further explain each category. The orange rectangles on the right are the main effects of

2Memory leak is a classical memory bottleneck scenario where an application indiscriminately allocate
memory spaces that are never deallocated thereby saturating the memory and starving other users.

3CPU hogging programs place excessive demand on compute resources thereby impacting the performance
of other applications on the same host.

4Disk payload is in terms of size (in bytes) and number of IO requests (read/write) per second.

5Network contention delay is expressed as ratio of possible demand for a given network link to its
maximum capacity.
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the primary causes. Secondary causes that further explain primary causes and effects are
represented with red slanted arrows. The thick horizontal arrow, the spline, depicts how
primary and secondary causes can be used to explain main effects from left to right.
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Figure 4: Cause-Effect Relationships of Performance Anomalies & Bottlenecks

2.4.1 Application Issues

Application level issues such as incorrect tunning, buggy codes, and software updates are
examples of bottleneck sources [21]. Incorrect application configuration and updates may
introduce unexpected resource bottlenecks [2].

2.4.2 ‘Workload

Bursty application loads are characterized by periods of continuous peak arrival rates that
significantly deviate from the average or expected workload intensity. Internet phenomena
such as flash-crowds® culminate into workload burstiness [18]. The undesirable effects of
such load behaviour include congested queues, oversubscribed threading resources, present
of short and uneven peaks in resource and performance measurements [22].

2.4.3 Architectures & Platforms

Transient events such as those introduced by underlying system architecture or operating
systems (e.g. memory hardware errors), occur over short timespan. Multiple occurrence
of such transient errors and events results in bottlenecks that are hard to detect. Wang
et al [23] and Mi et al [18] have shown how JVM garbage collection and Intel SpeedStep
technology can induce bottlenecks. In modern systems with multi-core NUMA architecture,
the location of memory relative to a processor may affect application performance especially
those with memory-bound workloads [24].

2.4.4 System Faults

Faults in system resources and components may considerably affect application performance
[25] with significant cost. System failures may be intermittent, transient or even permanent.
Reasons for such failures can be attributed to software bugs, operator error, hardware faults,
environmental issues, and security violations. In recent times, many popular web application
services have been hit by failures that temporarily disrupt their application services for some
time [1].

2.5 Core elements of the problem
2.5.1 Nature of the problem

The complexity of today’s systems makes the process of detecting performance issues and
identifying root-causes non-trivial. We identify the following as the major challenges;

1. Dynamic Dependency. At scale, applications comprise of multiple interdependent
components deployed in data centers servers with heterogeneous and equally inter-
dependent resources. This dependency results in dynamic behaviours. For example,
hard-to-detect alternating or cascading bottlenecks between two or more components
and resources is very common in large datacenters [26].

6 A flash-crowd is an Internet phenomenon where a network suddenly receives a huge influx of traffic due
to breaking news, major events, natural disasters etc.
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2. Dynamic Anomaly Characteristics. Today’s systems are by nature highly dynamic
with characteristic unpredictable behaviours. It follows that defining a-priori all pos-
sible behaviours (normal or anomalous) of an application is technically unrealistic.
Similarly, the notion of normality, anomalies and their characteristics vary widely
across applications, execution environments and load contexts. It is therefore hard
to precisely distinguish normal application behaviours from anomalous behaviours at
runtime [27].

3. Nature of Data. There exist a diverse set of data collection tools, each generating
output data in different formats and semantics. This makes it difficult to consume the
data in a uniform manner [27]. Also, due to the influence of varying data collection
mechanisms, processing and transmission errors, performance data may suffer from
the presence of noise whose values may be similar to anomalies. This complicates
the detection problem as noise often masquerades as anomalies resulting in high false
positive detections.

Furthermore, today’s systems generate huge quantity of health or operational data
that can easily overwhelm analysis and detection process. Finding anomalies and
bottleneck symptoms in such datasets is analogous to finding a needle in a haystack.

2.5.2 System Goals
The general research questions behind PADBI systems are;
1. How to automatically detect anomalous performance behaviours?
2. How to automatically identify the root cause of an observed performance anomaly?

3. Which system resource or component is responsible for an observed wviolation of a
performance objective?

We refer to the goal of systems addressing the first question as performance anomaly
detection (PAD). Systems addressing the second and third question are classified as per-
formance bottleneck identification (PBI). In many cases we observed a blurred line between
papers addressing anomaly detection and those addressing bottleneck detection. We catego-
rize such systems (i.e. addressing all the three questions) as performance anomaly detection
and bottleneck identification (PADBI).

Table 1 classifies recent literature according to their goals, with PAD, PBI and PADBI
systems accounting for 53%, 29% and 18% respectively of all literature reviewed as presented
in Table 9 and 10 of Appendix A.

Table 1: Recent literature by goals

PAD PBI PADBI
[28]

[29]

[30] [48]
[31] [21]
[27] [42] [49]
[32] [43] [50]
[33] [44] [51]
[34] [45] [16]
[35] [46] [52]
[36] [47] [53]
[37) [26] [17)
[38] [54]
[39] [55]
[40]

[41]

Generally, the output of PADBI systems may include a set of anomalous performance
indices, a time-stamp (time of incident), a set of anomalous metrics, a label (in case of
learning based systems) — an assigned class to which a sample belongs e.g. normal or
anomaly, and an anomaly score— the degree to which a case is considered anomalous. The
performance of PADBI systems themselves and their sensitivity are evaluated based on the
following metrics;

1. Precision. This is the ratio of correctly detected anomaly to the sum of correctly
and incorrectly detected anomalies. It is also referred to as Positive Predictive Value
(PPV) in literature.
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Table 2: Recent literature on systems

Reference Dedicated Virtualized, Grid Distributed Web Multi-
Server Cloud tier

41 v v v
55 v

56 v

47 v v v v
(58] v v

[59] v v

[38] v

[60] v v v v
[39] v v v v
[61] v v v v
[62] v/ 7

[63] v v
[64] v v v

[65] v v v

[54] v v v
[53] v v v v
[66] v v v v
67 v v v v
27 v

45 v v

51 v v

68 v v

18 v v v
[29] v v

[30] v v

[43] v v v v
[50] v v v v

2. Recall. Also known as the Confidence Score or True Positive (TP) rate. Recall is the
ratio of correctly detected anomalies to all anomalous instances in a given dataset. It
may be referred to as Sensitivity in some literatures. Conversely, the ratio of correctly
detected normal instances to the total count of normal instances in the dataset is
called Specificity or the True Negative (TN) rate.

3. Accuracy. This is the ratio of the count of all correct detections (anomalies or not) to
the total number of cases in the system.

2.5.3 Systems

PADBI have been studied in many system domains and application architectures. These
include distributed applications (such as web-based client-server and multi-tier application)
deployed in dedicated and shared server environments. Distributed applications are com-
posed of highly specialized application entities integrated to achieve some high-level system
objectives [56]. While the Grid [30] is known for running short- and long-term applications
performing large computations across distributed nodes, cloud infrastructures [57] allows
diverse applications to share virtualized system resources (storage, compute, and network).
The complexity of a system can be estimated by the number of resources and the composi-
tion of its applications.

System Resources. Resource demands are essential indicators of performance problems.
The number of resources determines the size of the metric space and the volume of data that
are eventually gathered. The inter-dependencies between system resources enables faults to
propagate the system in a cascade manner (e.g. Disk and CPU resources).

Application Components. Modern applications are composed of heterogeneous software
components distributed across separate and often geographically dispersed physical servers.
In virtualized environments, application components are deployed in virtual machines (VMs)
that can be migrated from one physical node to another within and across datacenters.
This complex composition and deployment brings special requirements for localization of
performance problems.

Table 2 is a classification of research contributions according to system and application
domains addressed.
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2.5.4 Data

Performance data are a time series of the values of a set of performance metrics, systemat-
ically sampled over a regular interval. In this section we briefly outline important aspects
of such data.

Characteristics of Performance Data. Performance data are quantitative in nature. A
performance metric is an attribute of a system or its component parts defining a state of
the system. In general terms, metrics may also be referred to as features in some literature.
A case or instance is a closely related set of features— a vector capturing a particular state
of system at a point in time.

Sources of Performance Data. The bulk of performance data come from extensive mea-
surements of metrics at two levels. Application metrics— these are foreground or in-band
metrics that captures the current state or health of an application. Examples include appli-
cation response time and throughput, number of application users and database connections.
System metrics— these are background or out-of-band metrics that capture the current
state of the underlying system. Background metrics encompass not only resource utilization
metrics but also hardware counters and error events. Examples are CPU wutilization, number
of 10 read/write requests, 10 wait time, CPU queue length etc.

2.5.5 Data Collection

Monitoring is used to observe the runtime performance of a system by collecting both
application and system level metrics using automated third-party tools or via built-in Kernel
counters. The efficiency of the detection process is influenced by three major aspects of data
collection that are discussed next.

System Observability: White, gray or black box? The observability property of an appli-
cation is greatly dependent on the type of infrastructure. In dedicated cluster environment,
administrators have access to both application source codes and underlying infrastructure
(white-box), such that both profiling and deep source tracing are possible possible. Whereas
in cloud environments, cloud providers see applications as black-boxes while service providers
(application owners) lack a global view of the infrastructure outside of their VMs. In gen-
eral, white-box and gray-box systems allows for full and partial source code instrumentation
respectively. Such modifications are generally intrusive with significant runtime overhead.
Black-box applications expose detail visibility into the application thus limiting the amount
of insights achievable but they be profiled in a non-intrusive manner [60].

Profiling vs Tracing. Profiling extends beyond logging the state of system to studying the
resource consumption behaviour and dependencies in order to assess the overall performance
of the system. It also involves establishing analytical models that may be used to describe
the dynamics of the system and predict performance [69]. Examples of popular profiling
tools include ps, sysstat, htop, top, collectd, Nagios, Ganglia, apachetop, dstat, and iftop.
Tracing is used to track fine-grained network or source-level events and mis-behaviour via
source code instrumentation. In addition to tracking the occurrence of certain events, tracing
may reveal the execution flow, actions performed, caller-thread, and time spent in specific
code blocks [70]. Runtime code instrumentation is a common tracing method. Tracing
platforms such as Aspect Oriented Programming [71] and Java Byte Code instrumentation
[[72];[73]] have been used to observe applications. Examples of third-party tracing tools are
KProbe, AspectJ, JimysProbe, Dtrace, Magpie, and Strace.

Influence of sampling interval. The volume of data generated by monitoring depends
not only on metric space but also the rate at which we collect them. Shorter sampling inter-
vals give finer resolutions than longer ones with additional compute and storage overheads.
Longer sampling intervals produce lighter data but may miss out on transient performance
events. An adaptive and selective monitoring is proposed in [53]. The technique begins with
a baseline sampling interval and continuously adjust the interval on-the-fly to adapt to the
changing application behaviour. Also, metrics may be sampled selectively on demand.

3 Solution Strategies and Methods

Conventionally, the approach to detecting performance problems involves continuous estima-
tion of models of normal system behaviours at specific points of interest. New performance
observations that fail to match (within some acceptable confidence levels) existing models
are flagged anomalous and system administrators alerted accordingly [39]. However, many
solutions employ more complicated techniques (such as statistical and learning methods)
while following one or more strategies to achieve some detection goals. Different detection
strategies and techniques are presented in sections 3.1 and 3.2 respectively.
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3.1 Detection Strategies

Existing PADBI systems often follow one or more strategies for robustness. A strategy
defines the set of policies to achieve a detection goal. The choice of strategy is greatly
influenced by system observability as well as whether the detection is to take place in either
offline or online mode. Offline detection is a ”post-mortem” identification and analysis of
performance issues. Online detection is performed at run-time.

All strategies use thresholding to prune and complement detection decisions in one way
or the other. A threshold is a limit value or range of values for parameters or metrics of
interest beyond which an event is raised. Example thresholds include the p-value and R?
(coefficient of determination) in statistical detection, distance from centroid (clustering), and
entropy bounds (information theoretic) in machine learning detection. Setting thresholds
becomes cumbersome when many parameters and metrics are involved. Modern system
exhibit dynamic behaviours that consistently violates the ideal set thresholds. It is therefore
expedient that the right thresholds are estimated. Threshold values are also expected to
evolve with respect to change in underlying execution environment. In addition, it is crucial
to understand the sensitivity of varying thresholds on detection accuracy.

Based on existing literature, we have identified four important strategies presented in
sections 3.1.1, 3.1.2, 3.1.3 and 3.1.4. References of research contributions in each category
can be found in tables 9 and 10 of Appendix A.

3.1.1 Signature-based Detection

Applications exhibit specific behaviours at runtime that characterizes their performance
such as their resources utilization, their performance and load saturation rates. Such run-
time characteristics are called signatures, fingerprints or profiles. PADBI systems generate
signatures as compact run-time representations of important performance behaviours of an
application. A signature may capture a normal system state or a deviation from that—
anomaly signature. Signature-based detection is a data-driven approach that consume out-
put of application profiling or tracing. Baseline signatures of prevailing system behaviour
are generated in real-time and are then used to filter new observations for unwanted be-
haviours. An important attribute of signature-based detection is that signatures are dis-
covered at runtime and may not require that a signature history is maintained. Generally,
signature-based strategies require domain knowledge of and global snapshot of system state
to achieve high accuracy. They usually record low false-positive detection and are suitable
for known anomalies [[74]; [75]; [76]; [77]; [2]].

3.1.2 Observational Detection

Applications can be observed through direct experimentation, staging (usually in a con-
trolled environment) followed by in-depth analysis of observed anomalies and root-cause
identification. To collect data, applications are either profiled in a black-box manner or
source code instrumented for tracing. This approach covers both real-time analysis and
”post-mortem” analysis of log files to discover sources of problems. Observational detec-
tion may also involve the staging of applications and systems where faults, anomalies and
bottlenecks are deliberately injected in order to understand system behaviour under such
conditions. This approach is beneficial in various ways. First, it helps to prevent the
limitation of hasty assumptions found in systems based only on analytical and simulation
models. Secondly, it enables the understanding and identification of intrinsic behaviours of
a system. Because this approach depends mostly on experiential and cognitive knowledge,
it yields high accuracy in detecting known and unknown anomalies. This however, makes
it difficult to implement in real-time real time systems because the experiential knowledge
of right thresholds, transient anomaly behaviours have to be encoded into an automatic
mechanism [[78]; [53]; [79]].

3.1.3 Knowledge-driven Detection

In specific enterprise systems, performance issues are often periodic with known root-
causes and potential remedies. Many research and industrial systems leverage on such
known anomalies and bottleneck definitions to identify and address performance prob-
lems. Knowledge-based detection approach identifies performance issues and their causes
based on historical records of previously observed anomalies. It maintains a dynamic store
(knowledge-base) where definitions of known anomalies, their possible root-causes are main-
tained. The detection of new issues often trigger an update of the knowledge-base. These
definitions are converted into a set of formal rules that can be manipulated by an inference
engine to detect performance issues and identify the root-causes. Although there exists some
similarity between knowledge-based and signature-based detections, generation of rules and
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definitions does not necessarily have to be entirely at run-time in the former. This contrasts
the online generation of signatures in the latter and does not require specialized inference
engines. Knowledge-based detection is typically a data-driven approach and also require a
great deal of understanding of the application and system domains. This strategy have high
true positive detection of known performance issues [[44]; [80]; [81]].

3.1.4 Flow and Dependency Analysis

By studying the flow of communication across components in distributed applications, per-
formance anomalies and hot-spots can be easily identified. This approach typically involves
real-time collection and analysis of traffic data (such as SNMP and TCP packets). In black-
box systems, in-bound and out-bound network traffic may be observed to understand the
performance behaviour of specific application components. Similarly, in white- or gray-box
environments, dynamic code tracing may be used to trace application requests or method
invocations across code segments or network boundaries to better understand performance
issues, their contexts and to pinpoint their sources. To detect anomalies and their causes,
frequency, correlation, and causal path analysis are usually performed. Of great concern is
the potential data collection overhead involved in this approach especially in large-scale sys-
tems with hundreds of applications and components. This approach often yield fine-grained
detection with high true positives in black-box environments. Conversely, observing and
understanding in-out traffic of hundreds of black-box components without prior knowledge
may yield high false positive detections. [[45]; [33]; [50]; [82]; [60]]

3.2 Detection Methods

To detect performance anomalies and identify associated bottlenecks, methods from diverse
fields have been used, prominently from the domain of statistical analysis, machine learning
(ML). We focus our discussion on statistical and learning techniques due to the volume of lit-
erature on them. However, signal processing methods such as Extended Window Averaging,
Adaptive Filtering and Fourier Transforms have also been used in [[30]; [16]]. We describe
the commonly used techniques in literatures along with relevant references in sections 3.2.1
and 3.2.2.

3.2.1 Statistical Detection

Statistical techniques provide capabilities to detect trends or drifts in critical performance
metrics. Typically, researchers and system administrators observe system behaviours over
time to make sense of underlying system dynamics. They construct models to hypothesize
their observations, and employ some methods to estimate key model parameters and the
relationship between them. Many statistical methods assume that some characteristics of the
data are known a-priori or can be inferred. For example, assuming the probability density of
a performance metric follows a Gaussian (normal) distribution. These are called parametric
statistical techniques. Examples of such methods are; Tukey limits, ANOVA tests, Pearson
correlation, Grubb’s Maximum normed residual and the Student-t tests. Non-parametric
methods also exist that require little or no assumptions about the underlying nature of the
data. Instead of assuming distribution of data as Gaussian, methods such Histogram or
Kernel functions are used to estimate data distributions [[9]; [83]]. The Median, CUSUM,
Spearman correlation, Kruskal-Wallis and Wilcoxon’s tests are examples of non-parametric
statistics [84].

In general, statistical analysis provide a strong theoretical basis for detecting, and quan-
tifying the influence of anomalies and bottlenecks on system performance. The assumption
that the distribution of data is known a priori in many cases qualifies them for identifying
well known anomalies. However, many statistical methods exhibit sensitivity to variation
especially when assumptions about the distribution of the data do not hold.

3.2.1.1 Gaussian-based Detection Gaussian-based techniques generally exploit the
assumption that underlying data distribution is normal. Such techniques build Gaussian
models parameterized by the mean u, and variance o2 (i.e. X ~ N(u,a?)) [[9]; [85]].

The Tukey [86] limits detect anomalous data points based on the distance from the
distribution mean. The lower and upper normal thresholds are set at (Q; — k *x IQR) and
(Qs + k *x IQR) respectively, where @1, Q3 and TQR (computed as Q3 — Q1) are the 1st
quantile, 3rd quantile and the inter quantile range respectively. Data points outside this
range are flagged anomalous. Though the threshold limit k is by default 1.5, it can be set
to an appropriately chosen scalar for specific application [87].

The density distribution may also be exploited for detecting anomalous data points based
on the Gaussian Mixture Model (GMM) [85]. GMMSs are parametric models of the probabil-
ity distribution of continuous random variables estimated using the iterative Expectation-
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Table 3: Literature on regression-based approaches.

Author Methodology

Presents a Regression-based TM model for identifying per-
formance anomalies in geographically distributed applications.
Tested with commercial applications such as ACME, FT, and
VDR.

Proposes an approach using Non-negative Least Square(NLS) re-
[96] gressive TM models for estimating resource demands by different
client transactions and applicability in resource provisioning.

[31] Presents Signature-based anomaly detection built on [96]

Demonstrates how stepwise linear regression addresses model
"overfitting” problem in [96] and further present a segmentation-
based method (as an extension of [31]) for detecting performance
changes in enterprise web applications.

Present a Regression-based diagnostic framework for analyzing
performance anomalies and potential causes of SLA violations in
virtualized systems. Their approach is based on Lassio, a vari-
ant of the Least Angle Regression(LAR) algorithm to identify
suspicious system metrics accounting for observed performance
anomaly.

Models the relationship between application metrics and system
metrics for metric selection, reduction and anomaly detection.

Maximization (EM) algorithm [88].
Given a data set X composed of n normally distributed features {x(l), G :E(")} with cor-
responding parameters {1, iz, .., i } and {0%, 03, ...,02}, the Gaussian probability density

function (PDF) for each feature x(*) is defined as P(z(V; y;, 02) = U.\l/g exp(—%(%f“)%.
The detection procedure proceeds first by estimating parameters ,ul and o; for each fea-
ture x;. A new observation of the form X = {:U(l),ac(2)7 ...,x(”)} is classified anomalous
if P(X) < e where P(X) is the sample’s probability of being normal. The combined
PDF of the dataset P(X), is estimated as the product of the PDFs of each feature i.e.
P(X) = I\, P(z'9; u;,0;2). The value of € can be varied depending on application re-
quirements [[89]; [90]].

Other density-based methods include the Parzen Windows Estimation [91], the Grubb’s test
[92] and the Student’s t-test [85].

3.2.1.2 Regression Analysis Regression analysis is a methodology for investigating
relationships between performance metrics and to quantify the statistical significance of such
relationships. For instance, regression analysis may explain how variation in load influences
a given KPI with the assumption that the relationship (linear or non-linear) between them
is known a-priori. The goal of regression is to estimate the set of model parameters that
minimizes the absolute or the squared error. Commonly used algorithms for estimating
model parameters include Ordinary Least Squares(OLS), Least Angle(LA) and Recursive
Least Square(RLS) [93].

For example, given a linear model of the form T = a(Ugp,,) describing the relation-
ship between throughput and CPU utilization, a regression-based PADBI system first fits
this model on a training data to estimate parameter «, the standardized p value, and
the coefficient of determination (R?). And for each test instance the model computes the
residuals—the variability in the test instance not explained by the model. The magnitude of
the residuals are used to determine an anomaly score [9]. New observations falling outside
the confidence interval produced by the model may be classified as anomalous [[94]; [95]]. An
interesting use of regression models in modeling enterprise web applications is in generating
Transaction Miz (TM) models. These models are used to describe application performance
as a function of the mix of transactions (or requests) processed per unit time and their cor-
responding resource utilization. They are generally used for capacity planning and detecting
transaction performance problems. Table 3 outlines literatures based on regression models.

3.2.1.3 Correlation Analysis Correlation quantifies the degree of association between
performance metrics. The interdependency of variables are estimated as a coefficient R
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Table 4: Literature on Correlation-based approaches.

Author Methodology

Presents a performance management system where correlation
analysis is used to identify important performance metrics and
estimate the influence of specific application services and system
resources on such them.

Proposes an approach to identify potential root-causes of observed
3] performance variation as either due to workload change or appli-
[53] cation update by computing the Pearson coefficient of correlation
between aggregated workload, latency and system metrics over
some time window.

Presents a method using correlation analysis to selecting model
parameters. By filtering metrics showing collinearity relationships
[54] above a set threshold, they are able to reduce the dimension of
models for detecting performance anomalies in virtualized infras-
tructures.

Uses correlation analysis to identify variations in performance
metrics in a cluster of Virtual Machines (VM). They also show
[39] a technique to characterize anomalies by defining anomaly sig-
natures in terms of changes to correlation between VMs in the
cluster.

[59] Presents a Kernel-based Canonical correlation method to discover
[67] the correlation between workloads and performance in Internet-
ware and how this is used for anomaly detection.

Presents a novel Kriging-based model of system performance as a
(98] function of dynamic resource allocation and workloads to predict
and detect performance problems.

Proposes a correlation-based method for automatic identification
[56] of associations among performance counters in a distributed sys-
tem and how the association is used for detecting anomalies.

in the range —1 to +1. Positive R values indicates a trend of increase in one variable as
the other increases. Negative R values is a trend of decrease in one variable as the other
increases. Variables sharing no association have R values of 0.0. Commonly used algorithms
to estimate R are; the Pearson, the Kendal rank and the Spearman correlation [3]. Lets
look at a simple example of how correlation may be used for detecting anomaly behaviour.
Assume the correlation coefficient between two performance metrics A and B have been
estimated in the confidence interval [Rpin, Rmaz] based on some training datasets. New
observations of A and B over a time window [t1,t,] in the form W, = {a1, as, ..,a,} and
Wy = {b1,ba,..,b,} are anomalous if the R value between W, and W, falls outside the
expected range [Rpmin, Rmaz)-

Canonical correlation is an advanced method that has been demonstrated for finding the
linear association between one or more performance metrics. Given a vector of metrics X =
{z1,29,23,..xp} and Y = {y1,92,¥3,...yn}, the method computes the canonical variates
(u, and v), the orthogonal linear combination of X and Y, that best capture the variability
within and between X and Y. Kernel canonical correlation [97] is a popular variant of this
method. See Table 4 for references relating to correlation-based systems.

3.2.1.4 Statistical Process Control Statistical process control (SPC) [99], is a quality
control method widely used to monitor production processes for early detection of undesir-
able variation in process output. SPC provides a set of control charts, such as CUSUM,
Shewart (ImR or XmR) charts, for monitoring process stability and variation. According
to Bereznay and Permanente [100], SPC is not suitable for interval based sampling data
such as system performance traces. This motivates the development of the Multivariate
Adaptive Statistical Filtering (MASF) method. MASF, [101] is a SPC framework for de-
tecting changes in a Gaussian distribution. MASF uses parameters mean (u), standard
deviation (o) and variance (02) of data collected during normal system operations as the
basis for filtering subsequent system measurements for anomalous behaviours. For example,
a MASF-based detection policy may set a control limit (CL) at the mean p, a upper control
limit (UCL) at (1 + 30) and a lower control limit (LCL) at (x — 30). These control limits
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Table 5: Literature on other statistical methods.

Method Highlight Reference
Root-cause identification, and | [52]

ANOVA Change detection [100]
Workload burstiness and vari- 18]

Index of Dispersion ability detection in web applica- [63]
tions.

Mean Standard Deviation, Anomaly detection in Grid appli- [29]

Cummulative Density Function cation.

Student’s t-test Locahza‘mon of anomalous met- [41]
rics.

. (60]

Prediction of anomalous perfor- [34]

Markov Model mance metrics and fault localiza- [103]
tion. [68}

Estimation density functions us-
ing Kernel regression for infer- | [16]
ring resource saturation.

Kernel Density Estimation

Probability Models Anomaly prediction and detec- | [48], [104], [51],
tion. [79]
] [105]
Detection fo performance tran- [106]
sient and persistent anomalies [107]
Statistical Process Control and identification of anomalous [17]
correlation in database and en- [59]
terprise systems. [100]
Statistical Intervention Analysis | Bottleneck identification. [43]

describe the range of expected variability in the data over a period of time. When new
observations fall outside outside the set control limits they are detected as anomalies and
their cause(s) must be identified and corrected [87].

3.2.1.5 Statistical Intervention Analysis Statistical Intervention Analysis (SIA) [102]
measures the form and magnitude of shifts in time series data. The shift is considered a
consequence of a change, an intervention or shock in the data. It is particularly useful for
studying the impact of an interventions (e.g. change in policy, natural disaster, or breaking
news reports) on the behaviours of physical systems. In Internet applications, interventions
are similar to phenomenal such as Internet flash-crowds, the slashdot effect or a node failure.

3.2.2 Machine Learning Detection

Learning algorithms sift through massive metric space to identify patterns of interests or
indistinct relationships [108]. In performance studies, these patterns may be unexpected
behaviours or symptoms of unplanned failures. Machine Learning algorithms can be clas-
sified into two broad categories based on the nature of input and expected output of the
algorithms [109].

Supervised Learning Supervised learning algorithms require well labeled datasets. Each
data instance in a training dataset is assumed to belong to one of several classes e.g.
normal or anomaly. The goal is to build a generalized model that the captures the
relationship between the feature set and each class during the training phase. These
models are later used to classify new test instances during the testing phase. The need
for well labeled training data greatly limit the scope of their application for real-time
use. They are however well suited for recognizing well known anomalies. The use of
supervised techniques in dynamic environments such as cloud datacenters is hampered
by the cost of retraining due to dynamic reconfiguration of application components
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and change in underlying execution environments. Supervised learning techniques do
not easily lend themselves to frequent updates of training the dataset.

Unsupervised learning Unsupervised learning algorithms require no training data nor
labeled data. The objective is to discover hidden patterns or regularities in the data,
similar to density estimation in statistical. Unsupervised learning techniques cluster
input data into classes based solely on their statistical properties. No assumption
however, is made of the distribution of the underlying data. For improved accuracy
it expected that normal data instances are more frequent in the dataset than abnor-
mal instances. Techniques in this category are amenable to changes in the underlying
system environment since no training is involved. And are particularly suitable for
detecting unknown anomalies in cloud datacenters where precise definition of anomaly
characteristics may not always exist.

Semi-supervised learning An emerging approach is to maximize the best of supervised
and unsupervised learning. Semi-supervised algorithms assume a small chunk of the
dataset is labeled usually the normal class and the remaining unlabeled instances are
anomalous. They often out-perform their supervised and unsupervised counterparts as
they leverage the presence of labeled data to identify inherent structure in the data. A
similar approach is called the weakly-supervised or bootstrapping method. This method
begins by training the classifier with a few training examples. When the classifiers finds
positive test instances, it augments the original training data with the new instance
and retrains the classifier. The performance of bootstrapping improves as the size of
training data grows given False Positive detection is minimal. Bootstrapping is well
suited for large-scale infrastructure where definitions of normality and abnormality
evolve according to changing execution context.

The operation of a learning based PADBI system is often enhanced by two pre-processing
tasks described below.

Dimensionality Reduction To handle problems with many performance metrics, the
metric space may be reduced by projecting the metrics to a new space where only
the most relevant is preserved. Principal Component Analysis (PCA) is common
method for doing this. PCA takes k correlated metrics as input and reduces them to
m < k non-dependent metrics. These m metrics can be interpreted as linear combina-
tions of the original set [[110]; [32]]. Other methods for dimension reduction include
Factor analysis, Independent component analysis, and Non-linear PCA [111].

Simalarity Identification Metrics with high similarity affects the efficiency of learning
algorithms such as clustering. A common method of evaluating similarities between
features is based on the Mutual Information algorithm from the domain of Information
Theory [[112]; [113]].

Unlike statistical detection, learning techniques do not make assumptions about the under-
lying distribution of data. We identify a few references of each type of learning in tables 6,
7, and 8.

We further describe commonly used learning techniques in literature in sections 3.2.2.1
through 3.2.2.4.

3.2.2.1 Classification-based Techniques Classification-based learning algorithms are
special cases of Supervised learning. The objective is to determine if data instances in
a given feature space belongs to one class or multiple classes. During a training phase,
the algorithm identify classes and learn a model that associate each class label with the
characteristics of features present in the data. The testing phase use these models to classify
new data samples. Ruled-based detection systems are specific example of how classification
learning can be used in detecting anomalous behaviours. Common classification techniques
include Decision Trees, Support Vector Machines, Artificial Neural Networks, and Bayesian
Networks [118].

Rule-based techniques The goal is to learn as many rules that captures normal be-
haviours of a system as possible. First they discover rules from the training data using
Decision Trees, Association Rules, C4.5 classification. During the testing phase, for
each test instance, the best rule that captures the instance is used to compute an
anomaly score for designating the test instances as anomalous or normal. A rule has
an associated confidence score proportional to the ratio between the number of correct
classification by the rule and total number of cases covered by the rule. The anomaly
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Table 6: Supervised PADBI Systems.

Reference Technique Methodology
[61] Bayesian  classifier and Presents a method for predicting and classifying
[79] Tree augmented networks anomalies
(TAN). '
Presents a technique for reducing metric dimensions
[32] Decision trees and TAN. | based on Mutual Information and PCA and identi-
fying performance anomalies Tree-based classifier.
.. Presents a decision-tree based automated approach
[49] Decision Tree for detecting performance bottlenecks.
Proposes a method exploring TANs as a basis for
(48] Tree augmented bayesian | detecting SLO violations and identifying sets of sys-
networks (TAN). tem metrics that caused the violation in multi-tier
web applications.
A stream-based anomaly detection method is used
Yy
[68] Bayesian classification to detect anomaly symptoms and infer their root-
causes.
Tr ted network
©¢ augmentec DEWOLE: | Bxplores the performance of various machine learn-
b p
Bayesian networks, . . . .
[19] LogicBoost ing classifiers with regards to bottleneck detection in
C4.5 decision tree. an enterprise applications.
Bayesian classifiers, Presents a comparative study of the performance of
[114] Auto-regressive models, three machine learning and statistical methods to
Multivariate regression predict the number of performance SLA violations.
Table 7: Unsupervised PADBI Systems
Reference Technique Methodology
Proposes an online anomaly detection approach for
b applications present an incremental clusterin
41 . web app p g
{36} %I? (6)81:_1,) Outlier  Factor algorithm for training workload patterns online, and
employ LOF in the recognized workload pattern to
detect anomalies.
Self-Oreanizin Maps Presents an anomaly detection mechanism in IaaS
[62] & & P51 Cloud using SOMs to learn emergent system be-
(SOM) . . .
haviour and predict unknown anomalies.
Proposes an hybrid learning approach by character-
izing normal execution states of the system as an
[110] Bayesian ensemble models | ensemble of unsupervised Bayesian models and uses
decision tree to predict and detect system failures in
a Cloud environment.
. Presents an adaptive method extending the Local
Local 1 F . . .
[40] (If) (c)aF) Outlier actor Outlier Factor algorithm for detecting both contex-
tual and unknown anomalies in a Cloud system.
. ) Proposes a decentralized approach for detecting
[38] Non—parametrlc Cluster- anomalies in Hadoop clusters based on Hierarchical

ing

Grouping and majority voting.
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Table 8: Semi-supervised PADBI Systems

Reference Technique Methodology
Principal and In- | Presents an automated anomaly detection mecha-
[27] dependent Compo- | nisms for identifying system nodes whose behaviours
nent Analysis are deviating from others in a cloud datacenter.
Classification,

Presents a self-evolving mechanism for predicting

[35] Clustering, . . .
i &d detecting of system failures in Cloud systems.

Support Vector Mack

Presents an autonomic mechanism for anomaly de-

Bayesian Networks, S .
dggtion in a compute Cloud system using PCA and

Principal Comp

[115] Analysis Bayesian models for feature extraction and Expecta-
Clust erir,l ¢ tion Maximization clustering algorithm for anomaly
detection.
K-Nearest Neigh- Proposes an automated failure detection syst.em em-
[116] botrs ploying distance-based anomaly rules to identify
faulty machines in a cluster.
[37] Presents a method analyzing performance metrics in
Wavelets both time and frequency domains in order to identify
[117]
anomalous behaviors in a Cloud environment.
Support Vector | Proposes an hybrid self-evolving anomaly detection
(64]
Machines (SVM) framework using one-class and two-class SVM.

score is computed as the inverse of the confidence score associated with a given rule
[9]-

The complexity of classification techniques depends on the algorithms used. Training
Decision trees is often faster than training techniques such as SVM that involves quadratic
optimization. The testing phase is also faster. Classification methods rely heavily on accu-
rately labeled data, and also produces class labels which may not be useful in cases where
an associated score is required.

3.2.2.2 Neighbour-based Techniques Unlike classification-based approaches, Neighbour-
based techniques are unsupervised learning systems that evaluates data instances based
on its local neighbourhood. The assumption is that normal data usually occur in dense
neighbourhoods while abnormal data occur far from their closest neighbour [9]. It is also
required that a distance or similarity measure is estimated between two data instances de-
pending on the data type. Different methods exist for calculating similarity measures such
as Euclidean Distance for continuous data and Mutual Information for categorical data. A
popular neighbourhood method is the kth-Nearest Neighbour which estimates the distance
of a given instance to its nearest neighbours and evaluate the distance against a predefined
domain specific threshold [[119]; [120]]. The Local Outlier Factor (LOF) algorithm is an-
other neighbour-based technique that detect anomalous instances by estimating the density
of each instance. Instances in low density neighbourhoods are classified as anomalous [36].
Basic neighbour-based and LOF methods has a time complexity of O(N?). Its testing phase
is computationally intensive, because distance score of a test instance to others is required.
It is also difficult to create distance measures for complex data e.g. spatial and streaming
data.

3.2.2.3 Clustering-based Techniques Clustering is another type of unsupervised learn-
ing which groups similar data instances into clusters according to hidden relationships be-
tween instances in a cluster [121]. The goal is to find clusters of similar data points such that
each cluster is well separated. Detection of anomalous instances can be based on the density
of the clusters (e.g. dense or sparse) or distance of instances from the closest centroid in
the cluster [9]. The Euclidean distance, Mahalanobis, and cosine similarity are example of
distance measures for such cases. Examples of clustering algorithms include the K-means
clustering, Expectation Maximization (EM) and Self-Organizing Maps (SOM) [89]. Time
complexity of clustering depends on the algorithm in use. Testing phase is faster since test
instances are compared with only a few cluster.
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3.2.2.4 Information Theoretic Techniques Information theory provides many mea-
sures for estimating the degree of dispersal or concentration of the information content of
a data set [122]. The primary assumption of these methods is that anomalies induce ir-
regularities in the information content of a given data set [9]. Also they are very generic
in nature with no need for parameterization [123]. The Entropy information measure or
Shannon-Wiener Index [124] estimates the degree of uncertainty in a given data set. Given
a random variable X, its entropy is computed as H(X) = — > ; P(z;)log(P(x;)), where
P(z) is the probability distribution of X. The entropy H(X) lies in the range [0,log(n)].
Higher entropy values indicate more randomness in the data and may be more anomalous
than data with lower H(X) values [125]. The degree of randomness between two random
variables with probability distributions P(x) and Q(z) can be estimated by their Relative

Entropy, H(Q|P) =Y Q(x)log ggg An application of this is to compare the entropy val-
ues of two different windows of observation of a metric for detecting changes. The smaller
the relative entropy the better. A H(Q||P) value of 0 indicates that the probability dis-
tributions P(X) and Q(X) exhibit the same randomness [126]. Entropy-based methods
have been applied to study malicious behaviours in network traffic in [123] and [126]. Wang
et al [127, 122] presents entropy-based methodologies for detecting anomalies in a cloud
computing environment by analyzing metric distributions. Entropy generally provide more
fine-grained insights of the data than traditional classification methods [128] and suitable
for online unsupervised detection of unknown anomalies [122] since no assumptions of un-
derlying distribution is made.

4 Research Trends

Before the 2000’s, contributions focused primarily on the detection of coarse-grained per-
formance issues such as identifying hardware, software bottlenecks in the operating systems
[[129]; [130]], networks [131] and client-server applications [132].

Due to the emergence of the Internet, the early 2000’s witnessed a slow trend towards
web and distributed applications hosted in dedicated environments. Chen et al [42], Aguilera
et al [82], Barham et al [133] proposed techniques for uncovering performance failures and
anomalies with regards to web and distributed systems. By mid to late 2000’s efforts
concentrated on building improved detection mechanisms targeting enterprise applications
running in shared-hosting environment, grid and large scale infrastructures. This period
witnessed the development of analytical approaches and tools such as; transaction mix
models [134]; queuing-theoretic models [21]; signature models [[76]; [31]] and statistical
techniques [[43]; [2]]. While efforts such as in [[49]; [16]] propose an experimental approach,
[[44]; [50]] demonstrate the potential of analyzing the flow of messages across distributed
components as a suitable method for detecting performance abnormalities.

From the late 2000’s until now, the research contributions have been largely consolidated
on achieving dependability [[37]; [17]], predictable performance [79], root-cause identification[[53];
[116]; [38]] and meeting performance guarantees [[54]; [27]] in cloud computing applications
and systems. Similarly there are systems tailored to detecting and resolving workload re-
lated anomalies [[36]; [41]]. Perhaps due to scale and the special requirements imposed by
the cloud, advanced machine learning techniques have found extensive use in bottleneck and
anomaly detection research [[62]; [55]; [40]; [39]]. Even though existing research contribu-
tion is dominated by reactive solutions, there is increasing shift towards proactive approach.
Predictive anomaly and bottleneck detection offers better system reliability by raising in
advance, just-in-time alerts and detecting potential bottlenecks before a performance issue
occur. Examples of such approach can be found in [[8]; [61]].

Following the trends, we observe that cloud computing systems and applications will
continue to attract the attention of performance anomaly detection and bottleneck identi-
fication research. Characteristics of the cloud systems such as heterogeneity of resources
and application services, variable load and performance variation complicate the problem
of detecting performance issue [57]. We describe these challenges in detail in Section 5.

5 PADBI Systems in the Cloud: Specific Requirements

Cloud computing enables computing resources to be provisioned on demand as an utility over
the Internet and dynamically scale in response to unpredictable demands and application
workloads. A cloud infrastructure is typically characterized by a pool of heterogeneous
hardware and software resources that are shared by many application services with disparate
performance objectives [[135]; [136]]. The resulting resource contention and performance
interference caused by resource sharing have significant impact on the performance of cloud
services and systems [[39]; [122]].
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Inherent characteristics of the cloud such as the heterogeneity of resource types and their
interdependencies; the variability and unpredictability of load; and the complex architecture
of cloud services; make the task of detecting and resolving performance problems more
difficult. To meet stringent performance objectives and to achieve predictable performance,
PADBI systems must take into consideration specific cloud requirements as described below.

1. Scale. Medium to large scale cloud infrastructures run up to thousands of applications
on limited computing resources. It is a daunting to keep track of the execution status
of such huge applications base [[34]; [62]]. Considering that these applications are
composed of multiple service components and the complex topology of the infrastruc-
ture, the potential metric space is huge. Wang et al [122] estimates this to the Exa
scale. That is up to 10'® metrics to monitor and process in real time! This require
PADBI systems to be lightweight with negligible performance and storage overhead.
Also, they must be able to operate in an online fashion in order to keep up with the
time varying nature of the cloud.

2. Multi-tenancy. Multi-tenancy enables different applications (deployed in virtual ma-
chines (VMs)) to be co-located on the same physical server. These VMs concurrently
share and compete for virtualized resources (such as CPU and memory) and non vir-
tualized resources (such as network and caches). Such an tight execution environment
has been shown to account for 40% in performance degradation in some applications
[39]. This makes it essential for PADBI techniques to be aware of prevailing execution
contexts.

3. Complex Application Architecture. The cloud run an heterogeneous mix of applica-
tions with time-varying workload patterns, ranging from long running MapReduce
jobs and HPC scientific workflows; to interactive web-based social media platforms,
e-commerce and media streaming applications [122]. Also, many of these applica-
tions share temporal dependency such as two applications having similar workload
behaviours. Moreover, services in IaaS clouds come in black-boxes with limited visi-
bility by the cloud infrastructure provider. This limits the extent to which performance
degradation issues can be diagnosed and resolved [[62]; [34]].

4. Dynamic Resource Management. Due to the continuous flow of load in and out of the
cloud, resource management tasks such as dynamic reconfiguration, consolidation and
migration constantly change the operational context in which applications runs [[34];
[122]]. This leads to higher frequency of anomalies. Faulty VM reconfigurations, and
spontaneous live migrations have been observed to impact performance by up to 30%
and 10% respectively [39]. In such environments, it is nearly difficult to determine
what performance behaviour is normal and which is not [62].

5. Autonomic Management. Today’s data centers are powered by highly automated
mechanisms. Autonomic resource managers dynamically provision resources based on
adaptive system policies to meet expected quality of service (QoS) and achieve optimal
resource utilization levels [[137]; [138]]. Delayed detection and manual resolutions does
not fit the cloud model as they can cause prolonged performance violations with huge
financial penalty and failure [[62]; [34]]. Therefore PADBI systems for the cloud are
must be dynamic and proactive in nature [[39]; [122]].

6 Discussions & Future directions

The motivation for detecting unexpected performance behaviours and their root-causes is
due to the significant impact they have on smooth operation of systems, the criticality of
information they bear and the costly penalties due to loss of dissatisfied users. The choice
of detection is influenced not only by the characteristics of the anomalies and bottlenecks
of interest but also by the nature of data and system under test.

PADBI systems based on statistical methods are only as correct as the correctness of the
data, the assumption of its distribution and the fitness of the analysis. It is very important
to collect the right data and quantity. Care must be taken to balance the proportion of
normal samples to anomaly samples in the dataset to avoid the "needle in a haystack”
7 problem. Though parametric techniques assume known data distribution and best at
identifying well known anomalies, non-parametric methods are resistant to high variation
in the data without knowledge of data distribution.

Machine learning solutions can quickly sift through a massive metric space to identify
patterns of interests or indistinct relationships. Learning techniques expect that normal data

7A situation where it is nearly impossible to detect anomalous instances in the dataset because only a
few anomalous instances exist in the training data.
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instances are more frequent in the data otherwise they suffer from high false detection. While
most classification, clustering and statistical techniques have expensive training phases, but
they provide fast testing with high false-positive detection when unknown anomalous data
is frequent. On the other hand, Neighbour-based learning methods require no training
phase and are highly suitable for real-time detection. However, they are computationally
expensive.

Further advancement in hybrid solutions holds great potential for today’s system such
as proposed in [64]. Rigid assumptions (regarding distribution and density of performance
data) imposed by statistical techniques do not always work in dynamic environments. In
addition unsupervised algorithms are known to perform poorly in cases where anomalies
occur more frequently in the test data than normal. When deciding the choice of methods
to use in a given case, it is important to consider the trade-off between online and offline
detection as well as the cost incurred when there is a requirement for frequent model up-
dates. Today’s systems are dynamic with constant changing execution contexts, application
composition and configurations. It is also expected that anomaly detection and bottleneck
identification mechanisms are able to adapt as well. Methods that require extensive train-
ing phase is inadequate in this case. Focus then must be on techniques that support online
updates of model parameters and variables.

Tables 9 and 10 of Appendix A summarize major references used in this work based
on the essential characteristics of the PADBI problem. Furthermore, we have identified a
few promising directions and open challenges within the scope of the problem and briefly
outline them below;

1. Multi-level bottleneck detection. Current efforts must extend towards the detection
of performance bottlenecks at different levels considering the complexity of todays
infrastructure and application. For instance, it should be possible to identify bottle-
necks from a set of top-level application service components and further down through
the virtualization layer to system resource bottlenecks. Similarly, anomaly detection
should be viewed from three perspectives; workload, resource demand and perfor-
mance.

2. Tazxonomy of performance bottlenecks and anomalies. A taxonomy of performance
issues under various operational condition (e.g. workload, platform etc) and manifes-
tation will be highly essential for industry and academia. The challenge here is that
these behaviours are inherently intrinsic to the applications and their manifestations
vary from one application to another. However, we believe little steps can be made
towards this especially for common performance anomalies and bottlenecks. A similar
direction is documented in [1].

3. Open performance datasets. There lack of open performance datasets hinders the
pace of research in this area because such data are often considered highly sensitive
or classified. The Google Cluster[139] trace serves a similar purpose. However, the
Google data is an old 29-day trace of a 12,000-machine cluster covering jobs, tasks,
resource usage and machine events measurement from 2011. Similarly, the Yahoo
Webscope [140] project provides system measurements of the infrastructure running
its cloud serving benchmark system [141]. However, the data covers only resource
usage across system components over a mere 30 minute period. Due to sensitivity
these datasets do not contain performance metrics such as throughput and latency.
Similar lack of dataset for failure detection research is acknowledged by [142].

4. Anomaly-resistant resource allocation. The autonomic nature of modern IT infras-
tructures demands tight integration of proactive anomaly detection mechanisms with
autonomic resource managers. Alerting administrators of an anomaly delays the de-
tection and resolutions of performance problems. This semi-automated approach does
not fit today’s model of system management, where prolonged performance violations
may induce significant unplanned downtimes.

5. Context-aware detection. Frequent performance variations exhibited by cloud appli-
cations have been attributed to the changing execution context of the underlying
environment. This is often due to frequent workload variation and dynamic resource
reconfiguration. The challenge is identifying and characterizing execution contexts as
they evolve over time. Context-aware solutions capable of achieving this in addition
to adapting to non-stationary cloud behaviours will greatly improve application per-
formance. Tan et al [79], Tan and Gu [103], and Sharma et al [39] presents interesting
directions in this case.

6. Distributed detection. Huge chunk of current research focus is on centralized detec-
tion. Modern enterprise systems are inherently distributed with components spanning
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multiple physical domains (servers or datacenters). Often times the collection of data
across such domains is impractical or difficult due to potential system overheads, pro-
prietary and privacy regulations. This implication calls for a decentralized approach
that fits naturally with such systems. A theoretical attempt is presented in [143] while
a similar case study for failure detection is studied in [116].

7 Concluding Remarks

We present a review of the performance anomaly detection and bottleneck identification
problem and identify relevant research questions, challenges, contributions, trends and open
issues. For clarity, we highlight different types of commonly observed performance anomalies
and bottlenecks in computing systems. Existing PADBI systems operate based on one
or more detection strategies and methods. Statistical and Machine Learning are the two
predominant methods in literature. We have highlighted major classes of techniques in
both methods along with interesting references. The choice of strategies and techniques
is largely influenced by the goal of the system and the core elements of the problem such
as the nature of the system or application, the performance data and the extent to which
the system can be observed. Based on trends, the problem of detecting performance issues
and their root-causes will continue to attract research attention especially in cloud services.
We also highlighted specific requirements for effective anomaly and bottleneck detection in
cloud computing infrastructures. However, the problem of multi-level bottleneck detection,
distributed detection and accessible performance datasets still remain open research issues.
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