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Abstract 

In this paper, we discuss an approximation method based on G/G/m queuing network modeling 

using Whitt’s (1983) queuing network analyzer to analyze pick-and-pass order picking systems. 

The objective of this approximation method is to provide an instrument for obtaining rapid 

performance estimates (such as order lead time and station utilization) of the order picking 

system. The pick-and-pass system is decomposed into conveyor pieces and pick stations. 

Conveyor pieces have a constant processing time, whereas the service times at a pick station 

depend on the number of order lines in the order to be picked at the station, the storage policy at 

the station, and the working methods. Our approximation method appears to be sufficiently 

accurate for practical purposes. It can be used to rapidly evaluate the effects of the storage 

methods in pick stations, the number of order pickers at stations, the size of pick stations, the 

arrival process of customer orders, and the impact of batching and splitting orders on system 

performance.  

Key words: Pick-and-pass, order picking, warehousing, queuing network, simulation.  

1. Introduction 

Order picking, the process of picking products to fill customer orders, is one of the most 

important activities in warehouses due to its high contribution (about 55%) to the total 

warehouse operating cost (Tompkins et al., 2003). This paper considers a common type of pick-

and-pass order picking system, which consists of a conveyor connecting all pick stations located 

along the conveyor line, as sketched in Figure 1. Storage shelves are used to store products at 

each pick station. A customer order contains several order lines (an order line is a number of 

units of one article). A bin is assigned to a customer order together with a pick list when it 

arrives at the order picking system. To fill an order, the order bin is transported on the conveyor 

passing various pick stations. If an order line has to be picked at a station, the transportation 



system automatically diverts the bin to the station, so that the main flow of bins cannot become 

blocked by bins waiting for picking. After entering the pick station, the order bin moves to the 

pick position. Order pickers are assigned to pick stations to fill customer orders. An order bin is 

processed by one order picker at a station and an order picker works on one order at a time. This 

paper assumes the order picker picks one order line per picking trip. The picker starts his trip 

from the pick position, reads the next article on the bin’s pick list, walks to the storage shelves 

indicated, picks the required article, goes back to the pick position and deposits the picked article 

into the bin. Although in some systems multiple lines may be picked in a picking tour, we model 

the case where only one article is picked per trip. Systems that we have observed that adhere to 

this constraint include a parts Distribution Center (DC) of an international motor production 

company (we use this example in our model validation in section 4) where one article is picked 

per trip since articles are relatively heavy and need to be barcode scanned. In another warehouse 

we studied, even light articles were not batched to reduce pick errors. Having finished the pick 

list, the order picker pushes the bin back onto the main conveyor, which transports the bin to a 

next pick station. Such pick-and-pass systems are typically applicable in case of a large daily 

number of multi-line orders. De Koster (1996) summarizes the advantages of such order picking 

systems.  

Recent trends in warehouses show that companies tend to accept late orders while providing 

rapid and timely delivery within tight time window, which implies time available for order 

picking becomes shorter (De Koster et al. 2007). Hence, minimizing order throughput time is an 

important objective in many warehouses, and it is used commonly in order picking literature (see 

Le-Duc and De Koster 2007, Chew and Tang 1999, and Roodbergen 2001). Exact analysis of a 

pick-and-pass system described above is difficult due to the large state space in modeling bin 

positions on the conveyor and difficulties in obtaining the exact distribution of service time at 

stations. This paper proposes an approximation-based modeling and analysis method to evaluate 

the mean order throughput time in such systems. The method provides a fast tool to evaluate 

alternatives in designing pick-and-pass systems. Our model relaxes the Jackson queuing network 

modeling of De Koster (1994) by allowing a general order arrival process and general service 

time distributions, which represent real-life warehouses more accurately and provide a deeper 

understanding of the pick-and-pass order picking system. The modeling and the analysis of the 

system is based on the analysis of a G/G/m queuing network by Whitt (1983). We show the 



approximation method leads to acceptable results by comparing it with both simulation and with 

the real order picking process at a parts DC of an international motor production company.  

The paper is organized as follows: In section 2, we review literature on order picking, storage, 

zoning, and order batching issues. Section 3 describes the approximation model followed by 

model validation in section 4. In section 5, we analyze the impact of different warehousing 

activities on the system performance. We draw conclusions and discuss possible extensions of 

this paper in section 6.   

2. Literature review 

Literature on order picking processes distinguishes between parts-to-picker and picker-to-parts 

picking systems according to whether parts are automatically retrieved by machines and brought 

to pick stations for manual picking, or pickers travel along the picking locations to retrieve the 

items. A comprehensive literature overview on parts-to-picker order picking systems is given by 

Van den Berg (1999), Roodbergen (2001), Le Duc (2005), and Gu et al. (2007). Picker-to-parts 

order picking systems are widely used in warehouses. Researchers pay attention to the following 

four issues influencing the order picking system performance: storage, batching, routing and 

zoning. A recent literature review is given by De Koster et al. (2007).  

Storage assignment is the way to assign products to their locations. Mainly three storage policies 

are mentioned in literature: random storage, full turn-over based storage, and picking-frequency 

class-based storage. In random storage, products are randomly assigned to available storage 

locations. Random storage is the simplest way to assign products to their locations and is often 

used as a benchmark to compare with other storage policies. In a full-turnover based storage 

policy, storage space is reserved for each product according to its turnover rate. A large part of 

the literature on full turnover-based storage policies focuses on Cube-per-Order Index (COI) 

based storage. The COI of an item is defined as the ratio of the item’s total required space to the 

number of trips required to satisfy its demand per period. Articles with low COI are placed 

closest to the picking depot (the start and finish position of a picking route). Jarvis (1991) proves 

that the COI based storage policy is optimal in minimizing the expected travel distance per order. 

Caron et al. (1998) develop an efficient COI-based product-to-location assignment policy with 

the objective to minimize the expected travel distance in a picking tour. In practice, pick-

frequency class-based storage is the most popular storage policy used in warehouses. Products 



are classified according to their pick frequencies and are stored in classes. Within each class, 

items are randomly stored. Petersen et al. (2004) analyze the relation between the number of 

product classes and the pickers’ travel time in picker-to-parts order picking systems by 

simulation.  

Order batching is the process of grouping customer orders together and jointly releasing them 

for picking. Order batching reduces the average travel time per order since picking tours are 

shared between orders. Gademann et al. (2001) and Gademann and Van De Velde (2005) 

consider the order batching problem with objectives to minimize the maximum lead time of a 

batch and the total order picking travel time. Both problems are NP-hard and they design 

algorithms to solve problems of modest size to optimality. Elsayed and Stern (1983), Hwang et 

al. (1988), Gibson and Sharp (1991), Pan and Liu (1995), and Elsayed and Unal (1989) propose 

so called seed and saving heuristic algorithms to batch orders to minimize order picking time. De 

Koster et al. (1999) perform a comparative study for these algorithms and conclude that even 

simple order batching methods lead to significant picking time savings compared to the first-

come first-serve batching rule. Chew and Tang (1999) and Le-Duc and De Koster (2006) set up 

stochastic models and use queuing theory to analyze the order batching methods. They provide 

bounds and an approximation solution for the average order throughput time.   

Routing is the problem to decide the travel route for pickers to retrieve products. It is a special 

case of the well-known Traveling Salesman Problem. Ratliff and Rosenthal (1983) use dynamic 

programming to find an optimal route for a rectangular, narrow aisles and single-block 

warehouse. De Koster et al. (1998) and Roodbergen and De Koster (2001) extend the method for 

a warehouse where the I/O point location is decentralized and warehouses with a middle aisle (2 

blocks). Instead of the optimal routing methods, heuristics are commonly used in practice 

because they are easy to implement and maintain. The two popular heuristic routing methods are 

the S-shape (any aisle containing at least one pick is traversed entirely, except potentially the last 

visited aisle) and the return heuristics, in which an order picker enters and leaves an aisle from 

the same end.  

Zoning is the problem of dividing the whole picking area into a number of small areas (zones), 

each with one or a few order pickers. The major advantages of zoning are: reduction of the travel 

time (because of the smaller traversed area and also the familiarity of the pickers with the zone) 

and of the traffic congestion. The analysis on zoning is classified into synchronized zoning, 



where all zone pickers work on the same batch of orders at the same time, and progressive 

zoning, where each batch of orders (or one order) is processed at one zone at a time. In 

progressive zoning, the batch of orders is passed from one zone to the next, which is why such 

systems are also called pick-and-pass systems. Jane and Laih (2005) consider heuristics to assign 

products to zones with the objective to balance the work load between zones in a synchronized 

order picking system. Le-Duc and De Koster (2005) consider the problem of determining the 

optimal number of zones (for a given picking area) in a pick-and-pack order picking system to 

minimize the mean order throughput time. For progressive zoning, Jane (2000) proposes several 

heuristic algorithms to balance the work load among order pickers in zones. De Koster (1994) 

approximates pick-and-pass order picking systems by means of Jackson network modeling and 

analysis. His model assumes the service time at each pick station is exponentially distributed and 

customer orders arrive according to a Poisson process. Jewkes et al. (2004) is the only other 

paper considering pick-and-pass order picking system we found. They determine the optimal 

pick position of an order bin in a pick station, the optimal product location in pick stations, and 

the size of pick stations with the objective of minimizing the order throughput time. Since they 

consider a static setting, only travel time to pick orders is considered in their paper. This paper 

considers a dynamic setting, where the waiting times of an order bin in front of pick stations is 

taken into account. 

3. Approximation model 

The pick-and-pass order picking system is represented by a sequence of pick stations connected 

by conveyor pieces (see Error! Reference source not found.).  

Conveyor piece 1 Piece 2

Piece 3

Picking station s

Picking station 1

Picking station 2

Picking station 3Order bin entrance

Piece 4

Piece s+1

Buffers
 

Figure 1: Illustration of the pick-and-pass order picking system. 

The service time for an order bin at a pick station consists of several components: setup time 

(time for starting and finishing the pick list, checking, weighing, labeling, etc.), travel time, and 

the picking time for order lines. Travel time depends on the number of order lines to be picked at 



the station, the location of these order lines in the pick station, and the travel speed of pickers. 

Picking time is proportional to the number of order lines to be picked in the station. We assume 

setup time and pickers’ travel speed are constants. We also assume the picking time per order 

line, which may consist of multiple units, is constant, and independent of the product type and 

the number of units picked. These assumptions will be reasonable when the variance of the units 

picked per order line and the pick time itself are small. We suppose a pick-frequency class-based 

storage policy (see section 2) in each station. Similar to other research (see e.g. Petersen et al. 

2004), we assume demand is uniformly distributed over the products within a product class. The 

service time at a pick station is modeled as having a general distribution and is characterized 

only by its mean and Squared Coefficient of Variation (SCV). It is reasonable to use only two 

moments because in reality service time is hard to fit a theoretical distribution, whereas the 

information on mean and the variance of service time is relatively easy to obtain.  

A conveyor piece j  can contain  order bins and is assumed to have constant speed, . We 

approximate it as  servers in parallel, each of which has constant service rate of . This 

means that the output rate of a conveyor piece

jk jvl

jk jj kvl /

j equals exactly  if and only if it is completely 

full with bins. In the approximation, the output rate of a conveyor piece is proportional to the 

number of bins on it. At the end of a conveyor piece, a transition is made by the order bin to the 

subsequent conveyor piece, or it is pushed into a pick station. The transition probability of an 

order bin to enter a pick station depends on the bin’s pick list and the storage assignment of 

products in that station. We approximate this behavior by Markovian transition probability, 

which is justified in case of a large number of bins (the typical application area of these systems). 

The transition probabilities at the end of a conveyor piece and at leaving a pick station are 

calculated in section 3.2. After finishing the picking at a station, the bin is pushed onto a 

conveyor piece downstream the pick station.   

jvl

We assume each pick station has infinite storage capacity (buffer) for order bins. This 

assumption is reasonable because in reality order pickers at pick stations will ensure that the 

system will not be blocked when their stations become full. If a pick station tends to become full, 

the order pickers can temporarily put the bins on the floor. We also assume there is a buffer with 

infinite capacity in front of each conveyor piece, which means that the arrivals will not be lost 

and pick stations and conveyor pieces can not become blocked because of lack of output capacity. 



This assumption is also realistic because the conveyor pieces can normally contain a sufficiently 

large number of bins. 

The whole pick-and-pass order picking system is modeled approximately as a G/G/m queuing 

network consisting of  nodes preceded by unlimited waiting space in front of them. Nodes 

 represent conveyor pieces and nodes 

SC +

C,...2,1 SCCC +++ ,...2,1  represent pick stations. The 

number of servers at each node equals the capacity of each conveyor piece or the number of 

order pickers working in the station.  

The data used to analyze the queuing network are as follows: 

S : the number of pick stations, with index j . 

C : the number of conveyor pieces, with index j . 

J : the total number of nodes, equals to CS + , with index j .  

I : the number of product classes stored in the pick stations, with index i . 

N : the maximum number of order lines contained in a customer order, with index . n

nO : probability that an order contains n  order lines, Nn ,...2,1= . 

if : order frequency of product class i , it is the probability that an order line belongs to the 

th product class, . i Ii ,...2,1=

jvl : the velocity of conveyor piece j , expressed in bins per second Cj ,...2,1= . 

jk : the capacity of conveyor piece j  , expressed in bins. Cj ,...2,1= . 

jh : the number of order pickers at station j , SCCCj +++= ,...2,1 . 

jm : the number of servers at node j , jj km =  for Cj ,...2,1= , and  for 

. 

jj hm =

SCCCj +++= ,...2,1

ijl : the storage space (in meter) used to store products of the i th class on the racks at station 

j , , Ii ,...2,1= SCCCj +++= ,...2,1 . 

sc : setup time per bin at a pick station, expressed in seconds. 

tp : picking time for one order line, expressed in seconds. 

01λ : external arrival rate of order bins to the system, entering node 1, expressed in bins/second. 

2
01c : SCV of inter-arrival time of order bins to the system. 

The variables are as follows: 



jV : probability of visiting station j  for an order bin, SCCCj +++= ,...2,1 . 

jτ : total service time at station j  if the order bin enters station j , SCCCj +++= ,...2,1 . 

jwk : total travel time at station j  if the order bin enters station j , SCCCj +++= ,...2,1 . 

jpk : total picking time at station j  if the order bin enters station j , SCCCj +++= ,...2,1 . 

2
sjc : SCV of service time at node j , SCj += ,...2,1 . 

2
ajc : SCV of inter-arrival time to node j , SCj += ,...2,1 . 

jλ : internal arrival rate of order bins to node j , SCj += ,...2,1 . 

kjq : transition probability from node to node k j , SCk += ,...2,1 , SCj += ,...2,1 . 

jvt : number of visits of an order bin to node j  (either 0 or 1), SCj += ,...2,1 . 

jW : waiting time of an order bin in front of node j , SCj += ,...2,1 . 

jT : sojourn time of an order bin at node j , SCj += ,...2,1 . 

In the next two subsections, we will derive expressions for the mean and the SCV of the service 

time at each node and then calculate the mean throughput time of an order bin in the system. 

3.1. Mean and SCV of service times at pick stations and conveyor pieces 

The mean service time at station j  if the order bin enters station j , has three components, setup 

time , travel time , and the picking time . The mean service time is calculated by sc jwk jpk

CjpkEwkEscE jjj >∀++= ][][][τ                                                                                                        (1) 

We next derive the expressions for the last two components in equation (1). 

The probability that an order line of class i  is stored in station j  depends on the order frequency 

of the i th class products and the space used to stored the i th class products in station j . It is 

given by 

Cji
l

l
fp S
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∑
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Therefore, the probability that an order line is picked in station j  is the summation of  over i . ijp
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So the conditional probability of an order bin to enter station j  given that there are n  order lines 

in the order equals the probability that there is at least one order line to be picked at station j : 

nCjPV n
jjn ∀>∀−−= ,)1(1                                                                                                  (4) 

Where  is the probability that none of the order lines in this order bin is to be picked in 

station 

n
jP )1( −

j . The probability of an order bin to enter station j  now becomes: 
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n
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The number of order lines to be picked in station j  given that the order bin contains n  order 

lines is a random variable with binomial distribution, i.e., 
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Canceling out the condition, we have  
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The expected number of lines to be picked at station j  given the bin enters station j  is: 

Cj
XP

OPP
x
n

x

XP
xxXP

x

xxXPxxXE

j

N

x
n

xn
j

x
j

N

n j
j

N

x j

jjj
j

jjj

N

x
jjj

j

jj

j

j

>∀
=−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=

>

>=
=

>==>

∑ ∑

∑

∑

=

−

=

=

=

}0{1

)1(

}0{
}0,{

*

}0|{*]0|[

1 1

1

1

                                           (8) 

To obtain the expected travel time, , for an order bin, we need the information of the 

products’ locations in a pick station.  Under the pick-frequency class-based storage policy, the 

optimal locations of products and the picker’s home base (pick position of order bins) in a pick 

station is illustrated in Error! Reference source not found. (see Jewkes et al. 2004), where 

][ jwkE



class A refers to the class of those products with the highest demand frequency, class B the 

second highest class, and so on.  
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Figure 2: Product locations in the storage rack at station j . 

The expected travel time at station j  given that the order bin will enter station j  is: 

CjXXdE
ws

wkE
I

i
jijijj >∀>= ∑ ]0|**2[1][                                                                         (9) 

Where  is the travel speed of order pickers expressed in meter/second,  is the number of 

lines of the i th class to be picked at station 

ws ijX

j , and  is the travel distance from the picker’s 

home base to the location of the i th class of products.  equals 

ijd

ijX
j

ij
j P

p
X *  in distribution. As 

mentioned before, we suppose that within each class, products are stored randomly and the 

demands are uniformly distributed over products. Hence  are uniformly distributed random 

variables with probability density function of: 
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We define  in the equation above. Because  are independent from , and 00 =jl ijd jX
j

ij

P
p

 are not 

random variables, we obtain 
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Where,  is the expected value of  given by ][ ijdE ijd
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Using equation (8), we can calculate the expected picking time at station j  given that the order 

bin will enter station j : 

CjXXEtppkE jjj >∀>= ]0|[*][                                                                                    (13) 

From equation (1), (11) and (13), we can obtain the expected service time at station j  given that 

the order bin will enter station j . 

To obtain the SCV of service time of an order bin at station j , we need to calculate the second 

moment of service time, which is given by 
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The second moment of  is calculated as follows: jwk
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Where ij
j

ij
ij d

P
p

D *= , and ][][ ij
j
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P
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The last step of equation (15) follows from the independence of and  if ijD kjD ki ≠ . The 

conditional second moment of is given by: jX
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The second moment of  is given below: ijD
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From equation (15) to (17), we obtain . The second moment of  is obtained by ][ 2
jwkE jpk

]0|[*][ 222 >= jjk XXEtppkE                                                                                                     (18) 

The component  is calculated as ][ jj pkwkE
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From equation (11)-(19), we can obtain the second moment of service time at a pick station 

given that the order bin will enter that station. With the value of the first and the second moment 

of service time, we can calculate the SCV of service time at station j  
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As mentioned at the beginning of this section, the service rate of each server of a conveyor piece 

is constant; therefore the values of SCVs for conveyor pieces are zero, i.e. 

Cjcsj ≤∀= 02                                                                                                            (21) 

The mean service time of a server on a conveyor piece is the reciprocal of its service rate  

Cj
vl
k

E
j

j
j ≤∀=][τ                                                                                                          (22) 

With the information of the mean and the SCV of service time at each node, we will calculate the 

order throughput time in the system in the next subsection.  



3.2. Mean throughput time of an order  

We calculate the mean throughput time of an order bin in the pick-and-pass order picking system 

under consideration based on the G/G/m queuing network approximation model of Whitt (1983, 

and 1993) (see appendix A). The mean order throughput time consists of transportation times on 

conveyor pieces, service times at pick stations, and the waiting times in front of conveyor pieces 

and pick stations. The approximation analysis uses two parameters to characterize the arrival 

process and the service time at each node, one to describe the rate, and the other to describe the 

variability. The two parameters for service time are ][ jE τ , and , as we derived in section 3.1. 

For the arrival process, the parameters are

2
sjc

jλ , the arrival rate, which is the reciprocal of the mean 

inter-arrival time between two order bins to each node, and , the SCV of the inter-arrival time.  2
ajc

Orders bins arrive at the system at conveyor piece 1 (see Figure 1) with rate 01λ , and the SCV of 

the inter-arrival time is . To calculate the internal arrival rate and the SCV of inter-arrival 

time at each node, we need to know the transition probabilities between nodes. At the end of a 

conveyor piece, an order bin is either transferred to a subsequent conveyor piece for 

transportation or pushed into a pick station. The transition probabilities between these nodes are 

given by 

2
01c

CjVq CjCjj <∀= ++                                                                                                         (23) 

CjVq Cjjj <∀−= ++ 11                                                                                                         (24) 

SCjCq Sjj +≤<∀=− 1                                                                                          (25) 

Where the value of  is obtained from equation CjV + (5). The transition probabilities between other 

nodes are zero. Because order bins leave the system from the last conveyor piece C , we have 

. The matrix of the transition probabilities is indicated by Q . As an 

example, consider a network with 3 pick stations and 4 conveyor pieces, i.e., , and 

Jjforq jC ≤≤∀= 10

4=C 3=S . 

Assuming that at the end of each conveyor piece (except for piece 4, the last one), a bin has a 

probability of 0.6 to be pushed into the next pick station. Bins enter the system from node 1 and 

leave the system from node 4. The Markov transition matrix is then given by 
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With the probability transition matrix, we can obtain the internal traffic rates jλ  and the SCV of 

the inter-arrival time between two bins to each node (see Appendix A).  

The utilization of a conveyor piece and a pick station is given by 
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The expected sojourn time of a bin at node j  is given by  

JjEWEvtETE jjjj ≤≤∀+= 1])[][(*][][ τ                                                                   (27) 

Where  is the expected waiting time in front of node ][ jWE j  as calculated by (A.9), and  

is the expected number of visits to node 

][ jvtE

j  of an order bin. The probability mass function of 

is given by jvt

Jj
Vyprobabilitwith

Vyprobabilitwith
vt

j

j
j ≤≤∀

⎪⎩

⎪
⎨
⎧ −

= 1
1

10
                                                                     (28) 

Where  is obtained from equation (5) for  and jV Cj > 1=jV  for Cj ≤ . Hence 

JjVVVvtE jjjj ≤≤∀=+−= 1)1(*0][                                                                              (29) 

The total expected order throughput time is the summation of the expected sojourn time at each 

node.  

4. Model validation 

To validate the quality of the approximation method described in section 3, we compare the 

results with both simulation and a real order picking process. 

We built a simulation model in Automod® 10.0. For each scenario in the example, we use at least 

20,000 orders, preceded by 2000 orders of initialization for the system to become stable, to 



guarantee that the 95%-confidence interval width of the Mean Order Throughput Time (MOTT) 

is below 1% of the mean value. The parameters used in the example are listed in Table 1.  

Table 1: Parameters used in the example. 

Parameter Value  
Order arrival process Poisson distributed (we evaluate different arrival 

rates) 
Number of stations 18  
Number of order pickers 18 
Product classes and order frequency per class Class 1: f1=0.8, Class 2: f2 =0.15, Class 3: f3 =0.05 
Total fraction of storage space for product classes Class 1: 0.2, Class 2: 0.3, Class 3: 0.5 
Size of order bins 60*40*35 cm 
Conveyor speed 0.7 bins per second (0.1m minimum space 

between two bins) 
Conveyor length First piece 40 bins, 20 bins for others 
Length of each pick station 28 meters (40 bins) 
Walk speed of order pickers 1 meter/second 
Picking time per line 18 seconds 
Setup time 45 seconds 
Maximum number of lines in an order bin 30 
The number of order lines in an order Empirical distribution (based on the data from a 

Dutch warehouse) with mean of 15.6 and standard 
deviation of 6.3 

 

Table 2 illustrates the storage assignments in stations and the probability that an order bin has to 

be handled at a station. We observe from Table 2 that stations have the same total storage space 

but use different storage space per product class (i.e., a non-uniform storage policy).  

Table 2: Storage space and the bin visit probabilities to stations under the non-uniform storage 
policy. 

lij (meter) St. 1 St.2 St. 3 St. 4 St. 5 St.6 St. 7 St. 8 St. 9 
clas1 4.9 5.6 6.3 4.9 5.6 6.3 4.9 5.6 4.9 
clas2 7.7 8.4 9.1 7.7 8.4 9.1 7.7 8.4 7.7 
clas3 15.4 14 12.6 15.4 14 12.6 15.4 14 15.4 

Bin visit prob. 0.36 0.39 0.43 0.36 0.39 0.43 0.36 0.39 0.43 
 St. 10 St.11 St.12 St. 13 St. 14 St.15 St. 16 St. 17 St. 18 

clas1 6.3 4.9 5.6 6.3 4.9 5.6 6.3 4.9 5.6 
clas2 9.1 7.7 8.4 9.1 7.7 8.4 9.1 7.7 8.4 
clas3 12.6 15.4 14 12.6 15.4 14 12.6 15.4 14 

Bin visit prob. 0.36 0.39 0.43 0.36 0.39 0.43 0.36 0.39 0.43 

 

We vary the order arrival rates to the system to compare the performance of the approximation 

method to simulation under different work loads. The results are listed in Table 3. Table 3 also 

illustrates the accuracy of G/G/m modeling over Jackson modeling used in De Koster (1994).  



Table 3: Validation results for the example and comparisons to Jackson modeling. 
Input rate 
(bin/sec) 

MOTT (sec)(G/G/m) MOTT(sec) 
(Jackson) 

 Numerical Simulation Rel. error Station 
utilization (max) 

 

0.008 1615.5 1556.2±4.6 3.81% 0.409 1867.5 
0.011 1725.0 1647.3±5.2 4.72% 0.517 2119.9 
0.013 1889.8 1789.5±6.1 5.60% 0.630 2518.6 
0.016 2290.8 2171.5±8.3 5.49% 0.780 3559.0 
0.018 3116.0 3023.4±15.7 3.06% 0.893 5792.4 
0.019 4312.8 4247.4±24.4 1.54% 0.944 9078.5 

 

Table 3 shows that the relative errors between the approximation model and the simulation 

results are all below 6 percent under different work loads. It also shows that the larger the 

utilizations at stations, the more accurate G/G/m modeling over Jackson modeling. 

We also conducted other experiments with different parameters: the number of pick stations 

varied from 4 to 18, with a step size of 2, and the utilization of pick stations varied from 0.2 to 

0.9 with step size of 0.1. In all experimental settings, the relative error between the 

approximation model and the simulation results were below 7 %.  

To further validate our approximation method, we compare our results to the performance of a 

real order picking process in the bulky storage area at the parts distribution center of an 

international motor production company. The bulky storage area stores in total 240 products 

divided into 3 classes. One class contains 48 heavy products and the other two classes are 

categorized according to their order frequencies, each containing 96 products. The whole area is 

divided into four pick stations connected by conveyor pieces. Through analyzing the log files 

from the Warehouse Management System (WMS) for a picking day, which is chosen as a 

representative of its typical picking process, we obtained the data for the order arrival process to 

the system, the service times at pick stations, and the routing probabilities of order bins to enter 

each station. The results are listed in Table 4. We also measured the capacities of conveyor 

pieces and their moving speeds. We input these data into our approximation model. The result of 

MOTT is compared with the mean order throughput time obtained from the warehouse 

management system.  

 

 



Table 4: Data and comparison with results of the real order picking system. 

Parameter Value  
Number of stations 4 
Number of order pickers per station 1 
Number of order lines to pick per order Empirical distribution (mean, 2.5 , stdv, 1.9 ) 
Order inter-arrival time to the system (sec) Empirical distribution (mean, 28.9, stdv, 52.4) 
Service time at station A (sec) Empirical distribution (mean, 40.1, stdv, 41.6) 
Service time at station B (sec) Empirical distribution (mean, 51.0, stdv, 51.1) 
Service time at station C (sec) Empirical distribution (mean, 54.1, stdv, 48.0) 
Service time at station D (sec) Empirical distribution (mean, 38.8, stdv, 35.0) 
Prob. To enter station A 0.385 
Prob. To enter station B 0.254 
Prob. To enter station C  0.271 
Prob. To enter station D 0.435 
MOTT from G/G/m approximation model (sec) 302.1 
MOTT from WMS (sec) 321.7 
Relative error 6.1% 

 

From Table 4, we find that the relative error is around 6 percent. We conclude that the quality of 

the approximation method is acceptable for practical purposes. In the next section, we use this 

approximation method as a tool to estimate the pick-and-pass order picking system performance 

under the various warehousing policies. 

5. Scenario analyses 

In this section, we use the approximation method to analyze the impact of different warehousing 

policies on the order picking system performance. These policies include the storage assignments 

in pick stations, the size of pick stations, the number of order pickers in stations, and order 

batching and splitting decisions in the order release process. The parameters used for these 

scenario analyses are illustrated in Table 1.  

5.1. The effects of storage policies on system performance  

Storage policies affect the order throughput time in the pick-and-pass system, as they impact the 

work load balance between stations. In this subsection, we will compare the impact of uniform 

(stations use identical storage spaces to store a certain class of products) and non-uniform 

(stations use different storage spaces to store a certain class of products) storage policies on 

mean order throughput time. We expect that the uniform storage policy leads to shorter order 

throughput time, as it leads to work load balance between stations. 



The storage space for each class of products in stations, and the probability for a bin to enter a 

pick station under the uniform storage policy are shown in Table 5. 

Table 5: Storage space and the bin visit probabilities to stations under the uniform storage policy. 
lij (meter) St. 1 St.2 St. 3 St. 4 St. 5 St.6 St. 7 St. 8 St. 9 

clas1 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 
clas2 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 
clas3 14 14 14 14 14 14 14 14 14 

Bin visit prob. 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 
 St. 10 St.11 St.12 St. 13 St. 14 St.15 St. 16 St. 17 St. 18 

clas1 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 
clas2 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 
clas3 14 14 14 14 14 14 14 14 14 

Bin visit prob. 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 

 

Table 6 illustrates the comparison with the non-uniform storage policy (refer to Table 2 and 

Table 3). As the stations are now balanced on average, we find from Table 6 that the mean order 

throughput times are shorter under the uniform storage policy than under the non-uniform 

storage policy. The improvement is substantial when the work load of the system increases.  

Table 6: Comparison of system performance between uniform and non-uniform storage policies 
in pick stations. 

  MOTT(sec) Utilization 
Input rate (bin/sec) Uniform Non-uniform Improvement Uniform Non-uniform 

0.008 1613.0 1615.5 0.15% 0.376 0.409 
0.011 1720.3 1725.0 0.27% 0.475 0.517 
0.013 1876.4 1889.8 0.71% 0.579 0.630 
0.016 2236.6 2290.8 2.37% 0.716 0.780 
0.018 2849.1 3116.0 8.57% 0.821 0.893 
0.019 3436.9 4312.8 20.31% 0.868 0.944 

 

Because of the advantage of the uniform storage policy, we will focus our analysis on this 

storage policy in the following discussions.  

5.2. The effects of station sizes and the number of pickers on system performance 

The size of the pick stations and the number of order pickers in stations impact the mean order 

throughput time. With a fixed length of the whole order picking system (i.e., a fixed storage 

capacity of the system) and a fixed number of order pickers, the larger the size of the pick 

stations, the fewer number of stations we have in the system, and the more order pickers are 



available at each pick station. Pick stations of larger size will increase the service time due to 

longer picking travel time, and the fewer number of stations tends to increase the utilizations of 

pick stations due to higher order bin arrival rates. Therefore they lead to an increase of the mean 

order throughput time. But on the other hand, fewer number of stations leads to fewer station 

visits of an order bin (hence less queues and less setup time); more order pickers per station 

implies decreasing utilizations at pick stations, which reduces the mean order throughput time. In 

pick-and-pass order picking system design, a main question therefore is to find the right trade-off 

between these opposite effects by selecting the right number of stations. Table 7 shows the 

system performance for various combinations of station sizes and order pickers per station. It 

shows that under the current settings, the scenario of 6 stations with 3 order pickers per station 

has the best performance in all possible alternatives.  

Table 7: System performances under various station sizes and the number of order pickers per 
station. 

# of stations(# of picker per station)(station size in meters) 
  18(1)(28) 9(2)(56) 6(3)(84) 

Input rate 
(bin/sec) 

MOTT 
(sec) 

Utilization MOTT 
(sec) 

Utilization MOTT 
(sec) 

Utilization

0.008 1613.0 0.376 1370.7 0.348 1330.2 0.345 
0.011 1720.3 0.475 1407.9 0.439 1351.7 0.436 
0.013 1876.4 0.579 1463.7 0.535 1386.6 0.531 
0.016 2236.6 0.716 1586.9 0.663 1468.9 0.657 
0.018 2849.1 0.821 1765.7 0.759 1591.7 0.753 
0.019 3436.9 0.868 1904.3 0.803 1687.0 0.796 
0.020 4226.5 0.903 2052.3 0.835 1788.2 0.828 
0.021 6110.2 0.940 2294.8 0.870 1951.6 0.863 

# of stations(# of picker per station)(station size in meters) 
  3(6)(168) 2(9)(252) 1(18)(514) 

Input rate 
(bin/sec) 

MOTT 
(sec) 

Utilization MOTT 
(sec) 

Utilization MOTT 
(sec) 

Utilization

0.008 1426.6 0.398 1607.1 0.482 2304.4 0.771 
0.011 1441.2 0.503 1630.3 0.608 4867.1 0.974 
0.013 1474.0 0.612 1706.1 0.741 inf >1 
0.016 1587.6 0.758 2332.0 0.917 inf >1 
0.018 1870.8 0.868 inf >1 inf >1 
0.019 2263.9 0.918 inf >1 inf >1 
0.020 3113.5 0.955 inf >1 inf >1 
0.021 16765.0 0.994 inf >1 inf >1 

 



5.3. The effects of batching orders on system performance 

As we have seen from the analysis above, the input rate of order bins to the system has great 

impact on system performance. A large arrival rate results in higher work load to the system, and 

will subsequently increase the mean order throughput time. One way to reduce the input rate to 

the system is to batch orders. We consider the following batching rules: We batch two successive 

order bins each containing at most L  lines into one bin, and then send it to the system. The order 

bins with larger than L  lines are sent directly to the system. The batching threshold, L  can take 

any value between 1 and ⎥⎦
⎥

⎢⎣
⎢

2
N , where ⎣ ⎦*  means rounding down to the nearest integer. 

Otherwise, the number of lines in a batched bin may exceed the bin’s capacity.  We assume that 

(the maximum number of lines in an order) is also the capacity of an order bin. By batching 

small orders, we can decrease the input rate to the system, leading to decrease the mean order 

throughput time. On the other hand, the service time at each station and the probability of 

entering a pick station will increase because of more order lines to be picked. These factors lead 

to increase the mean order throughput time. When we batch two successive bins with fewer than 

L lines, the first bin has to wait for several inter-arrival time periods to be processed. However, 

since the mean order inter-arrival time is normally very small compared to the total mean order 

throughput time, and only those bins containing less than L lines are batched, this effect is small 

and can be neglected. The impact of order batching on system performance depends on the trade-

off between these factors. We can analyze this impact with a slight modification of the 

approximation method discussed above.  

N

Assuming the original input process to the system is Poisson distributed with rate 01λ , an order 

bin has a probability  to contain n  order lines. The flow of order bins with n  order lines is 

also a Poisson process with rate 

nO

nO*01λ . After batching, the original process is split into two 

sub-processes. The first sub-process refers to the batched bins, and the second sub-process is the 

un-batched bins. According to the properties of Poisson process, the inter-arrival time of the first 

sub-process is Gamma distributed with parameters (2, ). The input rate of this type of 

order flow is 
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second sub-process is Poisson distributed with rate , where N  is the 

maximum number of lines in a bin. The SCV of the order inter-arrival time is . 
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The basic idea to calculate the mean order throughput time with two input flows is derived from 

Whitt (1983). The procedure is first to calculate the mean and the SCV of service time at each 

pick station, the transition probabilities between nodes, and the internal traffic flows to each node 

separately for each input flow, and then we convert these two types of flows into one (See 

Appendix B). The method of Appendix A is again used to obtain the mean order throughput time. 

Following the example at the beginning of this section, we assume that L  equals 15. Table 8 

compares the system performance between batching and non-batching scenarios.  

Table 8: Comparison of system performances between batching and non-batching scenarios. 
L=15             

Order arrival rate (bins/sec) 0.0083  0.0105  0.0128  0.0159  0.0182  0.0185  
Rate after batching (bins/sec) 0.0063  0.0079  0.0096  0.0119  0.0136  0.0138  

Batching 1864.2 1973.9 2123.4 2435.8 2891.8 2971.6  
MOTPT (sec) Non-batching 1613.0 1720.3 1876.4 2236.6 2849.1 2968.2 

Batching 0.358  0.452  0.551  0.682  0.781  0.792   
Utilization Non-batching 0.376  0.475  0.579  0.716  0.821  0.833  

Batching 22.1  31.0  43.1  68.4  105.3  111.7  Mean waiting time 
(sec) Non-batching 23.7  34.3  49.7  85.2  145.5  157.3  

Batching 83.4  83.4  83.4  83.4  83.4  83.4  Mean service time 
(sec) Non-batching 80.1  80.1  80.1  80.1  80.1  80.1  

Batching 0.69  0.69  0.69  0.69  0.69  0.69   
Bin visiting prob. Non-batching 0.56  0.56  0.56  0.56  0.56  0.56  

L=15             
Order arrival rate (bins/sec) 0.0186  0.0189  0.0192  0.0200  0.0204  0.0208  
Rate after batching (bins/sec) 0.0139  0.0142  0.0144  0.0150  0.0153  0.0156  

Batching 3004.5 3114.5 3162.0 3679.9 3991.1 4424.2  
MOTPT (sec) Non-batching 3018.4 3191.7 3436.9 4226.5 4925.5 6110.2 

Batching 0.797  0.810  0.826  0.859  0.876  0.895   
Utilization Non-batching 0.837  0.852  0.868  0.903  0.921  0.940  

Batching 114.4  123.3  135.2  169.0  194.2  229.2  Mean waiting time 
(sec) Non-batching 162.2  179.3  203.5  281.3  350.1  466.9  

Batching 83.4  83.4  83.4  83.4  83.4  83.4  Mean service time 
(sec) Non-batching 80.1  80.1  80.1  80.1  80.1  80.1  

Batching 0.69  0.69  0.69  0.69  0.69  0.69   
Bin visiting prob. Non-batching 0.56  0.56  0.56  0.56  0.56  0.56  

 

Table 8 shows that the input rates decrease, and the service times at pick stations increase when 

orders are batched. Batching orders can slightly reduce the utilizations of pick stations. The 



impact of pick station utilizations on waiting times in front of stations is marginal when the 

utilizations are low, but becomes substantial when the utilizations get higher. We observe that 

when the system is not heavily loaded, order batching increases the mean order throughput time. 

This is mainly due to the longer service time at pick stations, and the increased probability of 

entering pick stations. However, when the system is heavily loaded, the mean order throughput 

time decreases when we batch orders. Under a heavy load, waiting time is the major component 

of the order throughput time; reducing pick stations utilizations by batching orders can 

significantly reduce waiting time in front of pick stations, and therefore reduces the mean order 

throughput time.  

5.4. The effects of splitting orders on system performance 

As an alternative to batching orders, splitting an order into two small orders will reduce the order 

bin service times in pick stations and the probabilities of entering pick stations. On the other 

hand, splitting orders increases the arrival flow rate because more order bins enter the system. To 

analyze the impact of order splitting on system performance, we split an order bin containing R  

or more than R  lines into two bins, one containing ⎣ ⎦2/R  lines and the other containing R -

 lines. Again, assuming the original arrival process is Poisson distributed, the input 

process is divided into two Poisson processes: the input flow of non-split bins with rate 

, and the input flow of bins to be split with rate . Before 

arriving at the first conveyor piece, we suppose the input flow of bins to be split will first pass 

through an artificial node with very small constant service time. A new order bin is created 

following the completion of service at the artificial node. According to the approximation 

method given at section 2.2 and 4.6 of Whitt 1983, the departure process, i.e., the arrival process 

to the first conveyor piece of this flow of split bins has rate of , and approximated SCV 

of inter-arrival time of 2.  
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The total arrival process to the first conveyor piece is therefore the combination of a Poisson 

process, with rate , and a process with rate of  and SCV of inter-arrival 

time of 2. Similar to the approaches used to analyze batching orders, we can obtain the system 
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performance for the order splitting scenario. The results with comparison to the non-splitting 

scenario, as illustrated in Table 9, show that splitting orders increases the input rate to the system 

and reduces the service times at pick stations and the probabilities of entering pick stations. 

Splitting orders increases the utilizations of pick stations. The mean order throughput time 

shortens when the station utilizations are low. This is mainly due to the reduction in service 

times and the probabilities of entering pick stations. When station utilization becomes high 

( 75.0>ρ  approximately for R equals 15), order splitting increases the mean order throughput 

time because the waiting time in front of a station becomes longer due to higher utilization.  

Table 9: Comparison of system performances between splitting and non-splitting scenario. 

R=15             
Order arrival rate (bins/sec) 0.0083  0.0105  0.0128  0.0159  0.0164  0.0166  
Rate after splitting (bins/sec) 0.0130  0.0164  0.0200  0.0248  0.0256  0.0259  

Splitting 1344.6 1451.1 1624.1 2128.2 2295.8 2369.6 
MOTPT (sec) Non-splitting 1613.0 1720.3 1876.4 2236.6 2333.2 2372.8 

Splitting 0.416  0.526  0.640  0.793  0.819  0.828  
Utilization Non-splitting 0.376  0.475  0.579  0.716  0.740  0.749  

Splitting 26.9  40.5  63.0  128.2  149.8  159.3  Mean waiting time 
(sec) Non-splitting 23.7  34.3  49.7  85.2  94.7  98.6  

Splitting 74.5  74.5  74.5  74.5  74.5  74.5  Mean service time 
(sec) Non-splitting 80.1  80.1  80.1  80.1  80.1  80.1  

Splitting 0.43  0.43  0.43  0.43  0.43  0.43  
Bin visiting prob. Non-splitting 0.56  0.56  0.56  0.56  0.56  0.56  

R=15             
Order arrival rate (bins/sec) 0.0167  0.0169  0.0172  0.0175  0.0182  0.0192  
Rate after splitting (bins/sec) 0.0260  0.0264  0.0269  0.0274  0.0284  0.0300  

Splitting 2404.3 2536.4 2700.9 2911.8 3581.9 7023.3 
MOTPT (sec) Non-splitting 2390.9 2456.6 2532.3 2620.4 2849.1 3436.9 

Splitting 0.833  0.847  0.861  0.876  0.908  0.961  
Utilization Non-splitting 0.752  0.765  0.778  0.792  0.821  0.868  

Splitting 163.8  180.9  202.2  229.4  316.0  760.6  Mean waiting time 
(sec) Non-splitting 100.4  106.8  114.3  123.0  145.5  203.5  

Splitting 74.5  74.5  74.5  74.5  74.5  74.5  Mean service time 
(sec) Non-splitting 80.1  80.1  80.1  80.1  80.1  80.1  

Splitting 0.43  0.43  0.43  0.43  0.43  0.43  
Bin visiting prob. Non-splitting 0.56  0.56  0.56  0.56  0.56  0.56  

 

We note that the approximation model underestimates the mean order throughput time when we 

consider each split as a separate order. However, in reality, orders are only split when the 

number of order lines is large, and the impact on mean throughput time will be slight. The 



approximation model will give a reasonable estimation for the mean order throughput time from 

a practical point of view. 

6. Conclusions and extensions 

In this paper, we propose an approximation method based on G/G/m queuing network modeling 

to analyze performance of a pick-and-pass order picking system. The method can be used as a 

fast tool to estimate design alternatives on the mean order throughput time of the order picking 

system. These alternatives include the storage policies, the size of pick stations, the number of 

order pickers in stations, and the arrival process of customer orders. In general, the preference of 

one alternative over others is subject to a detailed specification of the order picking system. The 

quality of the approximation method is acceptable for practical purposes. Therefore it enables 

planners to evaluate various system alternatives, which is essential at the design phase of the 

order picking system. Additionally, the approximation method can also be used to evaluate 

various operational policies like order batching and order splitting on system performance. 

The model lends itself to several modifications and extensions left for future research. Although 

we assumed in this paper pickers pick only one order line in their picking tour, it is possible to 

relax this assumption and derive the first and second moment of service time for picking multiple 

lines in a pick tour. We may also take the number of units to pick in an order line into 

consideration and differentiate the picking time for different articles. In such cases, the number 

of units to pick in an order line and the picking time per article are both stochastic variables. The 

G/G/m queuing network approximation model still can be used to analyze these situations, but 

characterizing the distribution is less straightforward. The G/G/m queuing network 

approximation model still can be used to analyze this situation. The layout of pick stations can be 

altered (we here assumed a line layout) to, for example, a parallel-aisle layout. We also estimated 

the standard deviation of order throughput time using the method described in Whitt (1983). 

However, the method did not provide good estimation results. It would also be interesting to find 

a more accurate approach to estimate the standard deviation of order throughput time, which 

together with mean order throughput time provides a better description of the order picking 

system performance. Another interesting extension of the paper is to consider the situation that 

an order picker is responsible for the pickings at multiple pick stations. Furthermore, in reality, 

the buffer capacity in front of each pick station is finite, which influences performance in high-



utilization situations. It might be possible to derive estimates for the mean throughput time using 

approximation methods for finite buffer queuing networks. 
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Appendix A 

According to Whitt (1983), to estimate the mean order throughput time in this G/G/m queuing 

network system, we need to calculate the internal flow parameters. The internal flow rate to each 

node, jλ , is obtained by solving the following linear equations 

Jjqij

J

i
ijj ≤≤+= ∑

=

1
1

0 λλλ                                                                                                               (A. 1) 

Where j0λ  is the external arrival rate to node j ,  is the total number of nodes (conveyor 

pieces and pick stations) in the system, and  is the transition probability from node i  to node 

J

ijq

j . 

The arrival rate to node j  from node  is given by i

JjJiqijiij ≤≤∀≤≤∀= 1,1λλ                                                                                    (A. 2) 

The proportion of arrivals to j  that come from , is calculated by i

JjJipr jijij ≤≤∀≤≤∀= 1,0/ λλ                                                                                    (A. 3) 

The variability parameters of the internal flow, i.e. the SCVs of the inter-arrival time of the 

arrival processes to nodes, are calculated by solving the following linear equations 
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2
0 jc  is the SCV of the external inter-arrival time to node j , and , since the 

order bins enter the system from the first conveyor piece.  
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iρ  is the utilization of node  obtained from equation (26), and  i
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with  the number of servers at node i , and  the SCV of service time at node i obtained 

from equation (20) and (21). 
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With the internal flow parameters, jλ  and , and the service time parameters, 2
ajc ][ jE τ , and , 

Whitt (1983) decomposes the network into separate service facilities that are analyzed in 

isolation. Each service facility is a G/G/m queue. Whitt (1993) provides the following 

approximation for the expected waiting time in queues. Since we are focusing on a single node, 

we omit the subscript indexing the node in deriving the expected waiting time in front of a node.  

2
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where  and  are obtained from (A.4), and equation (20) and (21) respectively, 2
ac 2

sc ρ  is given 

by equation (26),  is the waiting time in queue of a multi-server node with Poisson 

arrivals and exponential service distribution. The exact expression for is given by 
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where μ  is the reciprocal of mean service time at each node. 

)( mNP ≥  is the probability that all servers are busy and is given by 
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Appendix B 

Based on the work of Whitt (1983), we convert the two input flows into one. The external arrival 

rate to the system is given by 
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where 01λ  is the combined external arrival rate to the system,  and  are the two separate 

external arrival rates to the system. The internal traffic rate to node
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where  and  are the internal traffic rates to node 1

~

jλ 2
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jλ j  from each input flow solved by the 

linear equations of (A.1). 

The mean service time at pick station j  is the weighted combination of the service times for two 

separate input flows 
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where ][ 1jE τ  and ][ 2jE τ  are the mean service time for each separate input flow derived from 

equation (1). 

The second moment of service time at pick station j  is derived by 
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where  and  are the second moments of service time at pick station ][ 2
1jE τ ][ 2

2jE τ j  for each 

input flow given by equation (14). 

The SCV of service time at pick station j , , can then be calculated from equation (20), (B.3), 

and (B.4). Because the service time is constant at conveyor pieces, the SCV and the mean of 

service time are obtained from equation (21) and (22).  
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The SCV of inter-arrival time to each node, , is again obtained from (A.4). The required 

parameters are calculated as follows: 
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The transition probabilities from node i  to node j  are calculated as 
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ijλ , the arrival rate from node i  to node j  is given by 
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where  and  are the arrival rates from node i  to node1

~
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ijλ j  for each separate input flow 

derived from (A.2).  

The utilizations jρ  at each node j , are calculated from equation (26). 

ijpr , the proportion of arrivals to j  that come from ( ), is obtained from (A.3). i 0≥i

The SCV for the inter-arrival time of orders to the system is given by 
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2
011c  and  are the SCV for the inter-arrival time of orders to the system of each separate input 

flow. 

2
012c

At this point, we have converted the two input flows into one. We can apply the procedures in 

Appendix A to calculate the expected waiting time in front of each node and subsequently use 

equation (27) to obtain the expected sojourn time of a bin at a node. 
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