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Abstract

Background Conventional preclinical models often miss drug toxicities, meaning the harm

these drugs pose to humans is only realized in clinical trials or when they make it to market.

This has caused the pharmaceutical industry to waste considerable time and resources

developing drugs destined to fail. Organ-on-a-Chip technology has the potential to improve

success in drug development pipelines, as it can recapitulate organ-level pathophysiology and

clinical responses; however, systematic and quantitative evaluations of Organ-Chips’ pre-

dictive value have not yet been reported.

Methods 870 Liver-Chips were analyzed to determine their ability to predict drug-induced

liver injury caused by small molecules identified as benchmarks by the Innovation and Quality

consortium, who has published guidelines defining criteria for qualifying preclinical models.

An economic analysis was also performed to measure the value Liver-Chips could offer if they

were broadly adopted in supporting toxicity-related decisions as part of preclinical devel-

opment workflows.

Results Here, we show that the Liver-Chip met the qualification guidelines across a blinded

set of 27 known hepatotoxic and non-toxic drugs with a sensitivity of 87% and a specificity of

100%. We also show that this level of performance could generate over $3 billion annually for

the pharmaceutical industry through increased small-molecule R&D productivity.

Conclusions The results of this study show how incorporating predictive Organ-Chips into

drug development workflows could substantially improve drug discovery and development,

allowing manufacturers to bring safer, more effective medicines to market in less time and at

lower costs.
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Plain language summary
Drug development is lengthy and

costly, as it relies on laboratory

models that fail to predict human

reactions to potential drugs. Because

of this, toxic drugs sometimes go on

to harm humans when they reach

clinical trials or once they are in the

marketplace. Organ-on-a-Chip tech-

nology involves growing cells on

small devices to mimic organs of the

body, such as the liver. Organ-Chips

could potentially help identify toxi-

cities earlier, but there is limited

research into how well they predict

these effects compared to conven-

tional models. In this study, we ana-

lyzed 870 Liver-Chips to determine

how well they predict drug-induced

liver injury, a common cause of drug

failure, and found that Liver-Chips

outperformed conventional models.

These results suggest that wide-

spread acceptance of Organ-Chips

could decrease drug attrition, help

minimize harm to patients, and gen-

erate billions in revenue for the

pharmaceutical industry.
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Despite billion-dollar investments in research and devel-
opment, the process of approving new drugs remains
lengthy and costly due to high attrition rates1–3. Failure is

common because the models used preclinically—which include
computational, traditional cell culture, and animal models—have
limited predictive validity4. The resulting damage to productivity
in the pharmaceutical industry causes concern across a broad
community of drug developers, investors, payers, regulators, and
patients, the last of whom desperately need access to medicines
with proven efficacy and improved safety profiles. Approximately
75% of the cost in research and development is the cost of
failure5—that is, money spent on projects in which the candidate
drug was deemed efficacious and safe by early testing but was
later revealed to be ineffective, unsafe, or otherwise of limited
commercial value during human clinical trials. Pharmaceutical
companies are addressing this challenge by learning from drugs
that failed and devising frameworks to unite research and
development organizations to enhance the probability of clinical
success6–9. One of the major goals of this effort is to develop
preclinical models that could enable a “fail early, fail fast”
approach, which would result in candidate drugs with greater
probability of clinical success, improved patient safety, lower cost,
and a faster time to market.

There are important practical challenges in ascertaining the
predictive validity of new preclinical models, as there is a broad
diversity of chemistries and mechanisms of action or toxicity to
consider, as well as considerable time needed to confirm the
model’s predictions once tested in the clinic. Consequently,
arguments for the adoption of these new models are often based
on features that are presumed to correlate with human responses
to pharmacological interventions—realistic histology, similar
genetics, or the use of patient-derived tissues. But even here there
is a common problem in much of the academic literature: the

important model features are chosen post hoc by the authors and
not prospectively by an independent third party that has expertise
in the therapeutic problem at hand10.

The Innovation and Quality (IQ) consortium is a collaboration
of pharmaceutical and biotechnology companies that aims to
advance science and technology to enhance drug discovery pro-
grams. To further this goal, the consortium has described a series of
performance criteria that a new preclinical model must meet to
become qualified.Within this consortium is an affiliate dedicated to
microphysiological systems (MPS), including Organ-on-a-Chip
(Organ-Chip) technology, which employs microfluidic engineering
to recapitulate in vivo cell and tissue microenvironments in an
organ-specific context11,12. This is achieved by recreating tissue-
tissue interfaces and providing fine control over fluid flow and
mechanical forces13,14, optionally including supporting interac-
tions with immune cells15 and microbiome16, and reproducing
clinical drug exposure profiles17. Recognizing the promise of MPS
for drug research and development, the IQ MPS affiliate has pro-
vided guidelines for qualifying new models for specific contexts of
use to help advance regulatory acceptance and broader industrial
adoption18; however, to this date, there have been no publications
describing studies that carry out this type of performance validation
for any specific context of use or that demonstrate an MPS capable
of meeting these IQ consortium performance goals.

Guided by the IQ MPS affiliate’s roadmap on liver MPS19,
which states that in vitro models for predicting drug-induced liver
injury (DILI) that meet its guidelines are more likely to exhibit
higher predictive validity than those that do not, we rigorously
assessed commercially available human Liver-Chips (from Emu-
late, Inc.) within the context of use of DILI prediction. In this
study, we tested 870 Liver-Chips using a blinded set of 27 dif-
ferent drugs with known hepatotoxic or non-toxic behavior
recommended by the IQ consortium (Table 1). We compared the

Table 1 Small-molecule drugs used in the Liver-Chip evaluation.

Drug IQ MPS list Tested in spheroid Spheroid false negative Garside DILI rank

Ambrisentan Yes, matched with Sitaxsentan Yes No 5
Asunaprevir Yes, no matched pair No No 2
Benoxaprofen No Yes Yes 1
Beta-Estradiol No Yes Yes 3
Buspirone Yes, matched with Nefazodone Yes No 4
Chlorpheniramine No Yes Yes 3
Clozapine Yes, matched with Olanzapine Yes No 2
Diclofenac Yes, no matched pair Yes No 2
Entacapone Yes, matched with Tolcapone Yes No 4
Fialuridine Yes, matched with FIRU Yes No 1
FIRU Yes, matched with Fialuridine No No 5
Labetalol No Yes Yes 1
Levofloxacin Yes, matched with Trovafloxacin Yes Yes 2
Lomitapide No, Mipomersen substitute No No 3
Nefazodone Yes, matched with Buspirone Yes No 1

Yes, matched with Clozapine No No 5
Pioglitazone Yes, matched with Troglitazone Yes Yes 3
Simvastatin No Yes Yes 2
Sitaxsentan Yes, matched with Ambrisentan Yes No 1
Stavudine No Yes Yes 1
Tacrine No Yes Yes 2
Telithromycin Yes, no matched pair No No 1
Tolcapone Yes, matched with Entacapone Yes No 1
Troglitazone Yes, matched with Pioglitazone Yes No 1
Trovafloxacin Yes, matched with Levofloxacin Yes No 1
Ximelagatran No Yes Yes 1
Zileuton Yes, no matched pair Yes Yes 2

The 27 small-molecule drugs are listed according to the IQ MPS affiliate classification and their ranking in the Garside DILI severity category, where 1 corresponds to drugs with severe clinical DILI and 5
to those with no DILI31,50. Structurally related toxic and non-toxic pairs are indicated as well using bold, italic text.
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results to the historical performance of animal models as well as
3D spheroid cultures of primary human hepatocytes, which are
preclinical models frequently employed in this context of use in
the pharmaceutical industry20. In addition, we analyzed the Liver-
Chip results from an economic perspective by estimating the
financial value that Liver-Chips could offer if they saw broad
adoption in supporting toxicity-related decisions as part of pre-
clinical development workflows. Our study found the Liver-Chip
to meet the IQ consortium guidelines and confirmed it to be a
highly predictive model based on determinations of sensitivity,
specificity, and Spearman correlation calculations. We also cal-
culated that routine adoption of the Liver-Chip into preclinical
workflows would generate an additional $3 billion annually for
the pharmaceutical industry.

Methods
Cell culture. Cryopreserved primary human hepatocytes, pur-
chased from Gibco (Thermo Fisher Scientific), and cryopreserved
primary human liver sinusoidal endothelial cells (LSECs), pur-
chased from Cell Systems, were cultured according to their
respective vendor/Emulate protocols. The LSECs were expanded
at a 1:1 ratio in 10–15 T-75 flasks (Corning) that were pre-treated
with 5 mL of Attachment Factor (Cell Systems). Complete LSEC
medium includes Cell Systems medium with final concentrations
of 1% Pen/Strep (Sigma), 2% Culture-Boost (Cell Systems), and
10% Fetal Bovine Serum (FBS) (Sigma). Media was refreshed
daily until cells were ready for use. Cryopreserved human Kupffer
cells (Samsara Sciences) and human Stellate cells (IXCells) were
thawed according to their respective vendor/Emulate protocols
on the day of seeding. See Supplementary Table 1 for further
information.

Liver-Chip microfabrication and Zoë® culture module. Each
chip (Fig. 1) is made from flexible polydimethylsiloxane (PDMS),
a transparent viscoelastic polymer material. The chip compart-
mental chambers consist of two parallel microchannels that are
separated by a porous membrane containing pores of 7 µm dia-
meter spaced 40 µm apart.

On Day −6, chips were functionalized using Emulate
proprietary reagents, ER-1 (Emulate reagent: 10461) and ER-2
(Emulate reagent: 10462), mixed at a concentration of 1 mg/mL
prior to application to the microfluidic channels of the chip.
The platform is then irradiated with high power UV light

(peak wavelength: 365 nm, intensity: 100 µJ/cm2) for 20 minutes
using a UV oven (CL-1000 Ultraviolet Crosslinker AnalytiK-Jena:
95-0228-01). Chips were then coated with 100 µg/mL Collagen I
(Corning) and 25 µg/mL Fibronectin (ThermoFisher) in both
channels. The top channel was seeded with primary human
hepatocytes on Day −5 at a density of 3.5 × 106 cells/mL.
Complete hepatocyte seeding medium contains Williams’ Med-
ium E (Sigma) with final concentrations of 1% Pen/Strep (Sigma),
1% L-GlutaMAX (Gibco), 1% Insulin-Transferring-Selenium
(Gibco), 0.05 mg/mL Ascorbic Acid (Sigma), 1 µM dexametha-
sone (Sigma), and 5% FBS (Sigma). After four hours of
attachment, the chips were washed by gravitational force. Gravity
wash consisted of gently pipetting 200 µL of fresh medium at the
top inlet, allowing it to flow through, washing out any unbound
cells from the surface, and inserting a pipette tip on the outlet of
the channel.

On Day −4, a hepatocyte Matrigel overlay procedure was
executed with the purpose of promoting a three-dimensional
matrix for the hepatocytes to grow in an ECM sandwich culture.
The hepatocyte overlay and maintenance medium contains
Williams’ Medium E (Sigma) with final concentrations of 1%
Pen/Strep (Sigma), 1% L-GlutaMAX (Gibco), 1% Insulin-
Transferrin-Selenium (Gibco), 50 µg/mL Ascorbic Acid (Sigma),
and 100 nM Dexamethasone (Sigma). On Day −3, the bottom
channel was seeded with LSECs, stellate cells and Kupffer cells,
further known as non-parenchymal cells (NPCs). NPC seeding
medium contains Williams’ Medium E (Sigma) with final
concentrations of 1% Pen/Strep (Sigma), 1% L-GlutaMAX
(Gibco), 1% Insulin-Transferrin-Selenium (Gibco), 50 µg/mL
Ascorbic Acid (Sigma), and 10% FBS (Sigma). LSECs were
detached from flasks using Trypsin (Sigma) and collected
accordingly. These cells were seeded in a mixture volume ratio
of 1:1:1 with LSECs at a density range of 9–12 × 106 cells/mL,
stellates at a density of 0.3 × 106 cells/mL, and Kupffer cells at
6 × 106 cells/mL followed by a gravity wash 4 h post-seeding.

On Day −2, chips were visually inspected under the ECHO
microscope (Discover Echo, Inc.) for cellular maturation and
attachment, healthy morphology, and a tight monolayer. The
chips that passed visual inspection had both channels washed
with their respective media, leaving a droplet on top. NPC
maintenance media was composed of the same components prior,
with a reduction of FBS to 2%. To minimize bubbles within the
system, one liter of complete, warmed top and bottom media was
added to Steriflip-connected tubes (Millipore) in the biosafety

Fig. 1 Schematic of the Emulate Liver-Chip. This diagram shows primary human hepatocytes (C) that are sandwiched within an extracellular matrix (B) on
a porous membrane (D) within the upper parenchymal channel (A), while human liver sinusoidal endothelial cells (G), Kupffer cells (F), and stellate cells
(E) are cultured on the opposite side of the membrane in the lower vascular channel (H).
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cabinet. All media was then degassed using a −70 kPa vacuum
(Welch) and stored in the incubator until use. Pods were primed
twice with 3 mL of degassed media in both inlets and 200 µL in
both outlets. Chips were then connected to pods via liquid-to-
liquid connection. Chips and pods were placed in Zoë® (Emulate
Inc.) for their first Regulate Cycle, which minimizes bubbles
within the fluidic system by increasing the pressure for two hours.
After this, normal flow resumed at 30 µL/h. On Day −1, Zoë® was
set to regulate once more.

Experimental setup. The 870-chip experiment was carried out in
five consecutive cycles (herein referred to as Cycles 1 through 5)
to test a selection of 27 drugs at varying concentrations relative to
the average therapeutic human Cmax obtained from literature
(Supplementary Data 1). Cycles 1 to 4 tested 6–8 concentrations
in duplicate for each of 10–13 drugs. To determine which sam-
pling strategy was optimal for cycles 1 to 4 (16 doses × 1 replicate,
8 × 2, 5 × 3, or 4 × 4), we generated three different “dose-
response” synthetic datasets, each distorted by different noise
levels (low, medium, or high). For each of these datasets, we
performed curve-fitting analyses and calculated the Root Mean
Square Error between the “true” and estimated IC50 parameter.
The analysis results showed that, for all noise levels, the
16 × 1 sampling strategy marginally outperformed the 8 × 2.
However, to ensure at least two replicates per concentration, the
8 × 2 strategy was selected. Some drugs were also repeated across
cycles (on different donors or at different concentrations) to
ensure experimental robustness. However, to replicate a more
typical study design likely to be carried out by scientists in the
pharmaceutical industry, we created cycle 5 with 6 drugs, where
each was tested in 4 concentrations in triplicate. For each cycle,
chips were dosed with drug over 8 days (referred to as Day 0
through Day 7). Drug preparation, dosing, and analysis teams
were divided, creating a double-blind study such that those
administering the drugs or performing analyses did not know the
name or concentrations of the drugs tested.

Drug preparation. The drug dosing concentrations were deter-
mined from the unbound human Cmax of each drug. First, the
expected fraction of drug unbound in media with 2% FBS was
extrapolated from plasma binding data for each drug. Dosing
concentrations were then back calculated such that the unbound
fraction in media would reflect relevant multiples of unbound
human Cmax (Supplementary Data 1). For each cycle, con-
centrations ranged from 0.1 to 1000 times Cmax.

Stock solutions were prepared at 1000 times the final dosing
concentration. Drugs in powder form were either weighed out
with 1 mg precision or dissolved directly in vendor-provided
vials. Sterile DMSO (Sigma) was added to dissolve the drug. The
solution was triturated before transferring to an amber vial
(Qorpak), which was vortexed (Fisher Scientific) on high for 60 s
to ensure complete dissolution. A serial dilution was then
performed in DMSO to prepare each subsequent 1000×
concentration. These stock solutions were then aliquoted in
1.5 mL tubes (Eppendorf) and stored at −20 °C until dosing day,
allowing a maximum of one freeze-thaw cycle prior to dosing.

All media was made the day prior to chip dosing and stored
overnight at 37 °C. On the day of chip dosing, one stock aliquot
per drug concentration was thawed in a 37 °C bead bath. The
stocks were then vortexed and inspected to ensure absence of
drug particulate. Dosing solutions were prepared by diluting drug
stock 1:1000 in top or bottom media to achieve 0.1% DMSO
concentration. The dosing solutions were then vortexed and
stored at 37 °C until dosing.

On the first dosing day (Day 0), all chips were imaged using the
ECHO microscope. Five hundred microliters of effluent was
collected from all four reservoirs of the pod and placed in a
labeled 96-well plate. After collection, all the remaining media
was carefully aspirated before dosing with 3.8 mL of correspond-
ing dosing solution. Dosing occurred on study days 0, 2, and 4 for
chips flowing at 30 µL/h, and on days 0, 1, 2, 3, 4, 5, and 6 for
chips flowing at 150 µL/h. Effluent collection occurred on days 1,
3, and 7.

Biochemical assays. Top channel outlet effluents were analyzed
to quantify albumin and alanine transaminase (ALT) levels on
days 1, 3, and 7 using sandwich ELISA kits (Abcam, Albumin
ab179887, ALT ab234578) according to vendor-provided proto-
cols. Frozen (−80 °C) effluent samples were thawed overnight at
4 °C prior to assay. The Hamilton Vantage liquid handling plat-
form was used to manage effluent dilutions (1:500 for albumin,
neat for ALT), preparation of standard curves, and addition of
antibody cocktail. Absorbance at 450 nm was measured using the
SynergyNeo Microplate Reader (BioTek).

As part of cycles 3, 4, and 5, top channel outlet samples from
vehicle chips on days 1, 3, and 7 post-drug or vehicle
administration were analyzed to quantify urea levels with a urea
assay kit (Sigma–Aldrich, MAK006) according to vendor-
provided protocol. Frozen (−80 °C) effluent samples were thawed
overnight at 4 °C prior to assay. All samples were diluted 1:5 in
assay buffer and mixed with the kit’s Reaction Mix. Absorbance at
570 nm was measured using the same automated plate reader.

Effluent samples from vehicle chips and those treated with
either trovafloxacin or levofloxacin were thawed overnight at
4 °C, and effluents from both channels were analyzed for IL-6 and
TNF-alpha levels using MSD U-PLEX kits (Meso Scale
Diagnostics, K15067L-2) according to vendor-provided protocols.
Samples were added to plates manually at a 1:2 dilution. Plates
were read for cytokine release on the MESO QuickPlex SQ 120
(Meso Scale Discoveries).

Morphological analysis. At least four to six brightfield images
were acquired per chip for morphology analysis. Brightfield
images were acquired on the ECHO microscope using these
settings: 170% zoomed phase contrast, 50% LED, 38% brightness,
41% contrast, 50% color balance, color on, and ×10 objective.
Brightfield images were acquired across three fields of view on
days 1, 3, and 7 for each cycle. Cytotoxicity classification was
performed while acquiring images for both NPCs and hepato-
cytes. Images were then scored zero to four by blinded individuals
(n= 2) based on severity of agglomeration of cell debris for both
channels. The scoring matrix and representative images have
been included in the supplement (Supplementary Fig. 1).

At the end of the experiment, cells in the Liver-Chip were fixed
using 4% paraformaldehyde (PFA) solution (Electron Microscopy
Sciences). Chips were detached from pods and washed once with
PBS. The PFA solution was pipetted into both channels and
incubated for 20 min at room temperature. Afterwards, chips
were washed with PBS and stored at 4 °C until staining. Following
fixation, chips corresponding to low, medium, and high
concentrations from each group were cut in half with a razor
blade perpendicular to the co-culture channels. One half was used
in the following staining protocol, while the other half was stored
for future staining. All stains and washes utilized the bubble
method, in which a small amount of air is flowed through the
channel prior to bulk wash media to prevent a liquid-liquid
dilution of the staining solution. The top channel was perfused
with 100 µL of AdipoRed (Lonza, PT-7009) diluted 1:40 v/v in
PBS labeling lipid accumulation and 100 µL of NucBlue
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(ThermoFisher, R37605) (100 drops in 50 mL of PBS) to visualize
cell nuclei. Following 15 minutes of incubation at room
temperature, each channel was washed with 200 µL of PBS
(alternating channels, 2× for top and 3× for bottom). As an
alternative lipid accumulation marker, 100 µL of HCS LipidTOX
Deep Red (ThermoFisher, H34477) was diluted 1:1000 v/v in PBS
with NucBlue counterstain and added to the top channel. After a
30 min incubation at room temperature, the chips were again
allowed to reach room temperature before the channels were
alternatively washed with 200 µL of PBS, the bottom channel
undergoing three washes and the top channel undergoing two.
Chips were then imaged using the Opera Phenix.

Following lipid and DAPI staining and imaging, chips were
stained with a multi-compound resistant protein 2 (MRP2)
antibody to visualize the bile canalicular structures characteristic
of healthy Liver-Chips. First, chips were permeabilized in 0.125%
Triton-X and 2% Normal Donkey Serum (NDS) diluted in PBS
(100 µL of solution per channel) and incubated at room
temperature for 10 min. Then, each channel was washed with
200 µL of PBS (alternating channels, 2× for top and 3× for
bottom). Chips were then blocked in 2% Bovine Serum Albumin
(BSA) and 10% NDS in PBS (100 µL of solution per channel) and
incubated at room temperature for 1 h. Next, primary antibody
Mouse anti-MRP2 (Abcam, ab3373) was prepared 1:100 in the
original blocking buffer, diluted 1:4 in PBS. 100 µL of solution was
added to each channel, and chips were stored overnight at 4 °C.
The following day, each channel was washed with 200 µL of PBS
(alternating channels, 2× for top and 3× for bottom). Secondary
antibody Donkey anti-Mouse 647 (Abcam, ab150107) was
prepared 1:500 in original blocking buffer, diluted 1:4 in PBS.
100 µL of solution was added to each channel and chips incubated
at room temperature, protected from light, for two hours. Then,
each channel was washed with 200 µL of PBS (alternating
channels, 2× for top and 3× for bottom). Chips were imaged
immediately or stored at 4 °C until ready for imaging on the
Opera Phenix.

Live staining. Chip replicates designated for live cell imaging
were washed with PBS utilizing the bubble method. Chips were
then cut in half perpendicular to the co-culture channels. The top
chip halves were stained with NucBlue (ThermoFisher, R37605)
to visualize cell nuclei and Cell Event Green (ThermoFisher,
C10423) to visualize activated caspase 3/7 for apoptosis. This
staining panel was prepared in serum-free media (CSC), with
NucBlue at 2 drops per mL and Cell Event Green at a 1:500 ratio
and perfused through both channels. The bottom chips halves
were stained with NucBlue (Thermo) to visualize nuclei and
Tetramethylrhodamine, methyl ester (TMRM) (ThermoFisher,
I34361) to visualize active mitochondria. This staining panel was
prepared in PBS with 5% FBS, with NucBlue at 2 drops per mL
and TMRM at a 1:1000 ratio in original blocking buffer, diluted
1:4 in PBS. Chips were incubated in the dark at 37 °C for 30 min,
and then each channel was washed with 200 µL of PBS (alter-
nating channels, 2× for top and 3× for bottom). The chips were
kept at 37 °C, protected from light, until ready for imaging with
the Opera Phenix.

Image acquisition. Fluorescent confocal image acquisition was
performed using the Opera Phenix High-Content Screening System
and Harmony 4.9 Imaging and Analysis Software (PerkinElmer).
Before acquisition, the Phenix internal environment was set to
37 °C and 5% CO2. Chips designated for imaging were removed
from their plates, wiped on the bottom surface to remove moisture,
and placed into the Phenix 12-chip imaging adapter. Whole chips
were placed directly into each slot, while top and bottom half chips

were matched and combined in one chip slot. Chips were aligned
flush with the adapter and one another. Any bubbles identified
from visual inspection were washed out with PBS. Once ready, the
stained chips were covered with transparent plate film to seal
channel ports and loaded into the Phenix. For live imaging, the
DAPI (Time: 200ms, Power: 100%), Alexa 488 (Time: 100ms,
Power: 100%), and TRITC (Time: 100ms, Power: 100%) lasers were
used. For fixed imaging, the DAPI (Time: 200ms, Power: 100%),
TRITC (Time: 100ms, Power: 100%), and Alexa 647 (Time:
300ms, Power: 80%) lasers were used. Z-stacks were generated with
3.6 µm between slices for 28–32 planes so that the epithelium was
located around the center of the stack. Six fields of view (FOVs) per
chip were acquired, with a 5% overlap between adjacent FOVs to
generate a global overlay view.

Image analysis. Raw images from fixed and live imaging were
exported in TIFF format from the Harmony software. Using
scripts written for FIJI (ImageJ), TIFFs across three color chan-
nels and multiple z-stacks were compiled into composite images
for each field of view in each chip. The epithelial signal was
identified and isolated from the endothelial and membrane sig-
nals, and the composite TIFFs were split accordingly. The ideal
threshold intensity for each channel in the epithelial “substack”
was identified to maximize signal, and the TIFFs were exported as
JPEGs for further analysis.

Gene expression analysis. RNA was extracted from chips using
TRI Reagent (Sigma–Aldrich) according to the manufacturer’s
guidelines. The collected samples were submitted to GENEWIZ
(South Plainfield, NJ) for next-generation sequencing. After
quality control and RNA-seq library preparation, the samples
were sequenced with Illumina HiSeq 2 × 150 system using
sequencing depth ~50M paired-ends reads/sample. Using
Trimmomatic v0.36, the sequence reads were trimmed to filter
out all poor-quality nucleotides and possible adapter sequences.
The remaining trimmed reads were mapped to the Homo sapiens
reference genome GRCh38 using the STAR aligner v2.5.2b. Next,
using the generated BAM files for each sample, the unique gene
hit counts were calculated from the Subread package v1.5.2. It is
worth noting that only unique reads within the exon region were
counted.

Statistical analysis. All statistical analyses were conducted in R21

(version 4.1.2) and figures were produced using the R package
ggplot222 (version 3.3.5). The dose-response analysis (Fig. 4) was
carried out using the popular drc R package developed by Ritz
et al.23 using the generalized log-logistic dose-response model.
The error bars in Figs. 3 and 4, correspond to the standard errors
of the mean. The circles in Fig. 3 correspond to the samples used
to calculate the corresponding statistics. The analysis of sig-
nificance in Fig. 3 was performed using paired t-test across dif-
ferent days (same donor) and unpaired t-test across different
donors (same day). In Fig. 3 the number of samples used were
n= 3 for donor two, and n= 4 for donor three. For both donors,
the number of the freshly thawed hepatocyte samples used to
estimate the corresponding log2(Fold Change) were n= 4.
Finally, the analysis of significance in Fig. 3 was performed using
paired t-test.

Economic modeling approach. An economic model was built to
assess the impact of improvements in the predictive validity of
preclinical toxicology models on the economics of drug devel-
opment. This model is provided in full as part of the supple-
mentary materials as a formula-driven Microsoft Excel file
(Supplementary Data 2). The model was built by extending the
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pipeline model of Paul et al.5, which tracks the economics of a
representative portfolio of candidate drugs as it progresses and
erodes through clinical trials. However, in contrast with con-
ventional models, we followed Scannell & Bosley’s4 approach by
modeling attrition as a function of decision quality and candidate
quality at each development stage. We modeled safety-related
failures, efficacy-related failures, and other failures (e.g., com-
mercial and strategy related) with parameters derived from the
literature (primarily from Harrison 2016,7,9,24,25). The model
comprises a “base case”, which describes an archetypical drug-
development portfolio that leads to a single drug approval.
Development costs, timing, cost of capital and attrition rates were
set in line with Paul et al.5. The base case and its parameters are
summarized in Fig. 2.

An innovative feature of the economic model is that it permits
us to determine the makeup of the drug portfolio in each stage of
development in terms of candidates that are safe and effective,
safe and ineffective, unsafe and effective, and unsafe and
ineffective. Additionally, the model’s structure also allows one
to estimate decision quality parameters at each stage of the
process, such as the false negative rate (FNR) of the toxicity
determination – the proportion of toxic drugs erroneously
deemed safe. This, in turn, allows one to estimate the financial
impact of changes in predictive validity, something that cannot be
done directly with conventional attrition-driven pipeline models.

Improvements in the predictive validity of preclinical safety
testing can be captured through their effects on the makeup of the
portfolio entering Phase I clinical trials: better preclinical safety
testing reduces the proportion of unsafe drugs that enter the
clinic. Such improvements are captured by reducing the FNR for

the toxicology testing that occurs between preclinical develop-
ment and Phase I trials (we also add Organ-Chip costs to capture
the price of added testing). If we keep all other model parameters
unchanged, the model captures a cost-avoidance strategy: an
approach wherein the ability to predict certain clinical trial
failures in advance allows one to start fewer clinical trials
(skipping those trials that are bound to fail) to bring one drug to
market, as in the base case. However, the ability to have more
predictable clinical outcomes is not likely to reduce investment
but rather to increase it. This increase in R&D productivity
should therefore result at least in maintenance of the investment
in clinical testing (if not in its increase), which we conservatively
model by setting the number of projects entering Phase I to its
base case value.

To derive the economic implications of this scenario analysis,
we calculate the portfolio’s new net present value (NPV) and
evaluate its percentage increase (uplift) over the base case. This
NPV uplift represents the increase in R&D productivity caused by
the improved preclinical testing, which is partially offset by the
added cost of Organ-Chip experiments as well as higher clinical
trial costs resulting from candidates progressing further in their
clinical testing. We estimated the cost of Organ-Chip testing
based on Clinical Research Organization (CRO) pricing, to
capture direct costs, indirect costs, and third-party profits: this
represents a top-end estimate, as pharmaceutical companies may
elect to purchase Organ-Chip instrumentation for internal use,
leading to lower costs. The model proceeds to apply the NPV
uplift to the world-wide R&D spending on small-molecule drug
development to estimate the annual financial impact that the
increase in R&D productivity may generate.

Fig. 2 Economic value model for assessing the financial impact of improved preclinical testing. Illustrated is the model’s “base case”, which tracks a
representative portfolio of candidate drugs as it progresses and erodes through clinical trials, culminating in a single drug approval. The model bases phase-
by-phase attrition rates (“attrition during phase”), discovery and preclinical costs, development costs (“cost per candidate”) and cost of capital on Paul
et al.5 to compute a portfolio-wide discounted cashflow. In contrast with prior approaches, the model tracks the underlying causes of clinical trial failure
(safety-related, efficacy-related, and other failures) using parameters derived from literature7,9,24,25, a feature that permits us to determine the
composition of the drug portfolio in each stage of development in terms of candidates that are safe and effective, safe and ineffective, unsafe and effective,
and unsafe and ineffective, as illustrated. Improvements in the predictive validity of preclinical safety testing can be captured through their impact on the
makeup of the portfolio entering Phase I clinical trials: better preclinical safety testing reduces the proportion of unsafe drugs that enter the clinic relative to
the “base case”; the model permits analyzing the impact of such changes on the discounted cashflow and the portfolio’s profitability. The model is provided
in full in Supplementary Data 2 as a formula-driven Microsoft Excel file.
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Because the model is parameterized using historical estimates
of attrition rates and their causes, we sought to understand the
model’s sensitivity to the exact parameter values. To do this, we
performed a mathematical sensitivity analysis for the major
input parameters; this analysis is included within the Excel file
in Supplementary Data 2. The analysis demonstrated that
reasonable changes in parameter choices retain the model’s
qualitative conclusions. This is in part because the model’s
output is a percentage uplift relative to the base case, making
the model robust in the face of uncertainty in the financials of
the base case.

Reporting summary. Further information on research design is
available in the Nature Research Reporting Summary linked to
this article.

Results
Liver-Chip satisfies IQ MPS affiliate guidelines. The IQ guide-
lines for assessment of an in vitro liver MPS within the DILI
prediction context of use requires evidence that the model
replicates key histological structures and functions of the liver;
furthermore, the model must be able to distinguish between 7
pairs of small-molecule toxic drugs and their non-toxic structural
analogs. If the model passes through these hurdles, it must
demonstrate its ability to predict the clinical responses of 6
additional selected drugs.

The Liver-Chips that we evaluated against these standards
contain two parallel microfluidic channels separated by a porous
membrane. Following the manufacturer’s instructions, primary
human hepatocytes are cultured between two layers of extra-
cellular matrix (ECM) in the upper ‘parenchymal’ channel, while
primary human liver sinusoidal endothelial cells (LSECs), Kupffer
cells, and stellate cells are placed in the lower ‘vascular’ channel in
ratios that approximate those observed in vivo (Fig. 3). All cells
passed quality control criteria that included post-thaw viability >
90%, low passage number (preferably P3 or less), and expression
of cell-specific markers. Similar results were obtained using
hepatocytes from three different human donors, which were
procured from the same commercial vendor (Supplementary
Table 1).

Live microscopy of the Liver-Chips revealed a continuous
monolayer of hepatocytes displaying cuboidal and binucleated
morphology in the upper ‘parenchymal’ channel of the chips, as
well as a monolayer of polygonal shaped LSECs in the bottom
‘vascular’ channel, on the opposite side of the porous membrane
(Fig. 3). Confocal fluorescence microscopy also confirmed liver-
specific morphological structures as indicated by the presence of
differentiation markers, including bile canaliculi containing a
polarized distribution of F-actin and multidrug resistance-
associated protein 2 (MRP2; Fig. 3), hepatocytes rich with
mitochondrial membrane ATP synthase beta subunit (ATPB;
Fig. 3), PECAM-1 (CD31) expressing LSECs, CD68+ Kupffer
cells, and desmin-containing stellate cells (Fig. 3). In addition,
transmission electron microscopy confirmed the existence of
similar cell-cell relationships and structures to those found in
human liver, including well-developed junction-lined bile cana-
liculi and adhesions between Kupffer cells and sinusoidal
endothelial cells (Supplementary Fig. 2).

Albumin and urea production are widely accepted as
functional markers for cultured hepatocytes with the goal of
reaching computed production levels observed in human liver
in vivo (~20–105 µg and 56–159 µg per 106 hepatocytes per day,
respectively)19,26. Liver-Chips fabricated with cells from three
different hepatocyte donors were able to maintain physiologically
relevant levels of albumin and urea synthesis over 1 week in

culture (Fig. 3, Supplementary Data 3–5). Importantly, in line
with the IQ MPS guidelines, the coefficient of variation for the
mean daily production rate of urea was always below 5% in all
donors on day 1 but increased to 20% on day 7; however, it was
higher for albumin production across all donors on day 1 but was
between 14 to 27% by day 7. These data corroborate the
reproducibility and robustness of the Liver-Chip across experi-
ments and highlight variability across donors that is not unlike
the variability observed in humans. In fact, it is important to be
able to analyze and understand donor-to-donor variability when
evaluating cell-based platforms for the prediction of clinical
outcome27 or when a drug moves into clinical studies.

Because hepatocytes maintained in conventional static cultures
rapidly reduce transcription of relevant liver-specific genes28, the
IQ MPS guidelines require confirmation that the genes
representing major Phase I and II metabolizing enzymes, as well
as uptake and efflux drug transporters, are expressed and that
their levels of expression are stable. On days 3 and 7 post-vehicle
administration, compared to freshly thawed hepatocytes, we
detected high levels of expression in both donors for 13 of the 17
genes requested by IQ MPS, confirming that the chip provides a
suitable microenvironment to maintain hepatocytes. Gene
expression was notably lower on day 7 compared to day 3 for
CYP2D6, CYP2C8, CYP2E1, and MRP2 in donor two and only
for MRP2 in donor 3 (Fig. 3, Supplementary Data 6–7). Gene
expression levels were lower than freshly thawed hepatocytes for
genes encoding OATP1B3, GSTA1, CYP2E1, and CYP2D6, a
profile reflected in two donors. Moreover, the demonstration that
CY2C9 and CYP3A4 gene expression is maintained above freshly
thawed hepatocytes for 7 days post-vehicle or drug administra-
tion is encouraging as together the CYP2C and CYP3A families
make up 50% of the total CYP population29. CYP3A4 is also the
major enzyme that metabolizes many marketed drugs. We did
not directly assess CYP functional activity in this study but
previously, the same Liver-Chip has been shown to exhibit Phase
I and II functional activities that are comparable to freshly
isolated human hepatocytes and 3D hepatic spheroids26,30 as well
as superior activity relative to hepatocytes in a 2D sandwich-assay
plate configuration26. Taken together, these data support the
notion that the Liver-Chip provides a good microenvironment for
hepatocytes to maintain functionality.

As these data confirmed that the Liver-Chip meets the major
structural characterization and basic functionality requirements
stipulated by the IQ MPS guidelines, we then carried out studies
to evaluate this human model as a tool for DILI prediction. IQ
MPS identified 7 pairs of small-molecule drugs where one drug
has been reported to produce DILI in clinical studies and their
structural analog was inactive or exhibited a lower activity and
did not produce clinical DILI (Table 1). Past work in the MPS
field has focused on technically accessible endpoints that can be
easily measured but are unfortunately not clinically relevant or
translatable (e.g., IC50 for reduction in total ATP content)31,32.
Furthermore, although cytotoxicity measures are fundamental in
the assessment of a drug’s potential for hepatotoxicity
in vitro33,34, gene expression and various phenotypic changes
can occur at much lower concentrations35,36. As the Liver-Chip
enables multiple measures of drug effects and use of multiple
measures may provide further sensitivity and add value37, we
assessed drug toxicities on days 1, 3, and 7 post-drug or vehicle
administration by quantifying both inhibition of albumin
production as a general measure of hepatocellular functionality
and increases in release of alanine aminotransferase (ALT)
protein, which is used clinically as a measure of liver damage. We
also scored hepatocyte injury using morphological analysis at 1, 3,
and 7 days after drug or vehicle exposure, where higher injury
scores indicated greater cellular injury.
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Fig. 3 Recapitulation of human liver structure and function in the Liver-Chip. Representative phase contrast microscopic images (scale bar represents
10 µm) of hepatocytes in the upper channel of Liver-Chip (a) and non-parenchymal cells in the lower vascular channel (the regular array of circles are the
pores in the membrane) (b). Representative immunofluorescence microscopic images showing the phalloidin stained actin cytoskeleton (green) and ATPB
containing mitochondria (magenta) (c) and MRP2-containing bile canaliculi (red) (d). CD31-stained liver sinusoidal endothelial cells (green) and desmin-
containing stellate cells (magenta) (e), and CD68+ Kupffer cells (green) co-localized with desmin-containing stellate cells (magenta) (f). All images in
c–f show DAPI-stained nuclei (blue) and the scale bar represents 100 µm with the inset at 5 times higher magnification; albumin (g) and urea (h) levels in
the effluent from the upper channels of vehicle-treated Liver-Chips created with cells from 3 different donors (light and dark gray bars represent donor one
and two respectively, white bars represent donor three) on days 1, 3, and 7 post-vehicle administration, measured by ELISA. Data are presented as mean ±
standard error of the mean (S.E.M.). For each condition (i.e., specific donor and day), the exact number of samples used to derive the statistics is: (i)
Albumin: donor 1-day 1 (n= 46), donor 2-day 1 (n= 46), donor 3-day 1 (n= 39), donor 1-day 3 (n= 40), donor 2-day 3 (n= 44), donor 3-day 3 (n= 38),
donor 1-day 7 (n= 29), donor 2-day 7 (n= 38), donor 3-day 7 (n= 30); (ii) Urea: donor 1-day 1 (n= 12), donor 2-day 1 (n= 12), donor 3-day 1 (n= 18),
donor 1-day 3 (n= 8), donor 2-day 3 (n= 12), donor 3-day 3 (n= 18), donor 1-day 7 (n= 7), donor 2-day 7 (n= 12), donor 3-day 7 (n= 14). Levels of key
liver-specific genes in control Liver-Chips as determined by RNA-seq analysis on days 3 (light gray) and 7 (dark gray) post-vehicle administration with
donor two (i) and donor three (j). Data are presented as mean Log2 (fold change) ± standard error of the TPM (Transcript Per Million) expression relative
to the mean expression of the freshly thawed hepatocytes with n= 4 chips; statistical significance of values between day 3 and 7 was determined using a
paired t-test; *p < 0.05, **p < 0.01. For each time point (e.g., day 3 and 7), the sample size used to derive the statistics was n= 3 for donor two and n= 4
for donor three.
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We tested the 7 toxic drugs across 8 concentrations that
bracket the human plasma Cmax for each drug based on free
(non-protein bound) drug concentrations, with the highest
concentrations at 300× Cmax (unless not permitted by solubility
limits as was found for levofloxacin) to represent clinically
relevant test concentrations for in vitro models38 (Supplementary
Data 1). The known toxic compounds showed clear concentra-
tion- and time-dependent patterns that varied depending on
compound. Typically, when albumin production was inhibited,
morphological injury scores and ALT levels also increased, but we
found that a decrease of albumin production was the most
sensitive marker of hepatocyte toxicity in the Liver-Chip, as

shown in sample paired comparisons of clozapine and olanza-
pine, troglitazone and pioglitazone, and trovafloxacin and
levofloxacin (Fig. 4, Supplementary Data 8). Importantly, all 7
of the toxic drugs reduced albumin production or resulted in an
increase in ALT protein or injury morphology scores at lower
multiples of the free human Cmax compared to each of their non-
toxic comparators, a finding that was repeated across 3 donors
(Table 2). Furthermore, immunofluorescence microscopic ima-
ging for markers of apoptotic cell death (caspase 3/7) and
mitochondrial injury measured by visualizing reduction of
tetramethylrhodamine methyl ester (TMRM) accumulation
(Fig. 4) provided confirmation of toxicity and, in many cases,

Fig. 4 Detection of drug concentration-dependent toxicity and liver injury. Effect of Cloazpine (closed circles) or olanzapine (open circles) on albumin
production (a), ALT release (b), and morphology score (c); Effect of troglitazone (closed circles) or pioglitazone (open circles) on albumin production (d),
ALT release (e), and morphology score (f); Effect of trovafloxacin (closed circles) or levofloxacin (open circles) on albumin production (g), ALT release (h)
and morphology score (i); Immunofluorescence microscopic images showing concentration-dependent increases in caspase 3/7 staining (green;)
indicative of apoptosis after treatment with trovafloxacin at 0,1, 10, and 100 (j) times the unbound human Cmax for 7 days; concentration-dependent
decrease in TMRM staining (yellow) indicative of mitotoxicity in response to treatment with sitaxsentan at 0,1,10, and 100 (k) times the unbound human
Cmax for 7 days. Scale bar represents 50 µm.
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provided some insight into the potential mechanism of toxicity.
For example, the third-generation anti-infective trovafloxacin is
believed to have an inflammatory component to its toxicity,
potentially mediated by Kupffer cells, but this is only seen in
animal models if an inflammatory stimulant such as lipopoly-
saccharide (LPS) is co-administered39. Interestingly, immuno-
fluorescence microscopic imaging of the Liver-Chip revealed that
there was a concentration-dependent increase in caspase 3/
7 staining following trovafloxacin treatment (Fig. 4); this supports
a potential apoptotic component to its toxicity. Of note,
levofloxacin, the lesser toxic structural analog, did not cause
cellular apoptosis. The role of an activated immune system is
considered to contribute to idiosyncratic DILI where a reactive
metabolite forms an adduct that behaves like a hapten to activate
the adaptive immune system40 or directly activates innate
immune cells (e.g., Kupffer cell) to increase inflammatory
cytokine production such as TNFα41. To assess whether
trovafloxacin was able to activate Kupffer cells in the absence of
an inflammatory stimulant we measured IL-6 and TNFα in
effluent from the bottom channel of Liver-Chips from each of the
three donors. The measured levels in vehicle-treated Liver-Chips
were low (300–400 pg/mL for IL-6 and 5–25 pg/mL for TNFα),
indicative of non-activated cells and comparable to literature
values42. We were also unable to see any concentration-
dependent increase in cytokine production following treatment
with either trovafloxacin or levofloxacin.

Together, these data support the Liver-Chip’s value as a
predictor of drug-induced toxicity in the human liver and
demonstrate that this experimental system meets the basic IQ
MPS criteria for preclinical model functionality. However, in
addition to the seven matched pairs, the IQ MPS guidelines
require that an effective human MPS DILI model can predict liver
responses to six additional small-molecule drugs associated with
clinical DILI. We only analyzed the effects of five of these drugs
(diclofenac, asunaprevir, telithromycin, zileuton, and lomitapide)
because the reported mechanism of toxicity of one of them
(pemoline) is immune-mediated hypersensitivity43, and this
would potentially require a more complex configuration of the
Liver-Chip containing additional immune cells. We also were
unable to obtain one of the suggested drugs, mipomersen, from
any commercial vendor; however, we tested lomitapide as an
alternate, as both produce steatosis by altering triglyceride export,
and lomitapide is known to induce elevated ALT levels44.

Results obtained with these drugs are presented in Table 3,
with toxicity values indicating the lowest concentration at
which toxicity was detected. Lomitapide was highly toxic when
tested over all included concentrations down to 0.1× human
plasma Cmax, with all Liver-Chips showing signs of toxicity
following five days of dosing. While telithromycin displayed a
decrease in albumin along with a concomitant increase in ALT
and morphological injury score, diclofenac and asunaprevir
induced concentration and time-dependent changes in albumin
and injury scores, but no elevation of ALT was seen with these
drugs. Hepatotoxicity was also confirmed with immunofluor-
escence microscopy, which revealed apoptosis-mediated cell
death following exposure to diclofenac, asunaprevir, or
telithromycin. However, the Liver-Chip was unable to detect
hepatotoxicity caused by zileuton, a treatment intended for
asthma. The exact mechanism of toxicity of zileuton is
unknown, but it likely involves production of intermediate
reactive metabolites due to oxidative metabolism by the
cytochrome P450 isoenzymes 1A2, 2C9, and 3A445. Although
zileuton is >93% plasma protein bound46, we do not believe this
was responsible for the lack of toxicological effect, as we were
able to detect toxicities induced by other highly protein-bound
drugs in the test set.T
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Improved sensitivity for DILI prediction compared to spher-
oids and animal models. After fulfilling the major criteria of the
IQ MPS affiliate guidelines, we considered the Liver-Chip to be
qualified as a suitable tool to predict DILI during preclinical drug
development. However, we wished to also quantify the perfor-
mance of the Liver-Chip in the predictive toxicology context. To
do so, we expanded the drug test to include eight additional drugs
(benoxaprofen, beta-estradiol, chlorpheniramine, labetalol, sim-
vastatin, stavudine, tacrine, and ximelagatran) that were found to
induce liver toxicity clinically, despite having gone through
standard preclinical toxicology packages involving animal models
prior to first-in-human administration. Importantly, the toxicities
of these 8 drugs have been shown to be poorly predicted by
hepatic spheroids31,32.

We proceeded to quantify any observed toxicity across the
combined and blinded 27-drug set as a margin of safety (MOS)-
like figure by taking the ratio of the minimum toxic concentration
observed to the clinical Cmax. We obtained the minimum toxic
concentration by taking the lowest concentration identified by
each of the primary endpoints—i.e., IC50 values for the decrease
in albumin production, the lowest concentration at which we
observed an increase in ALT protein, and the lowest concentra-
tion at which we observed injury via morphology scoring
(Table 4). Minimum toxic concentrations generally corresponded
to day seven values, although day three values were occasionally
lower. We then compared the MOS-like figures against a
threshold value of 50 to categorize each compound as toxic or
non-toxic, as previously reported for 3D hepatic spheroids, which
used a similar threshold31. Analyzed in this manner, we found
that, in addition to the drugs assessed as part of the IQ MPS-
related analysis, the Liver-Chip correctly determined labetalol and

Table 4 Calculation of margin of safety (MOS)-like figures.

Drug Chip
MOS
donor 1

Chip
MOS
donor 2

Chip MOS
both donors

Spheroid MOS

Ambrisentan >3 >10 >10 >127
Asunaprevir 4 – – –
Benoxaprofen 0.001 0.3 0.001 >0.7
Beta-Estradiol >5 – – 22,500
Buspirone >15 – – 16,300
Chlorpheniramine >200 – – 2141
Clozapine 1.8 5 1.8 14.5
Diclofenac 1.8 – – 6.1
Entacapone >6 – – 46.5
Fialuridine 0.1 2.8 0.1 12.3
FIRU >108 >108 >108 –
Labetalol 26 22 22 0.41
Levofloxacin >11.3 >33.7 >33.7 >20
Lomitapide 0 – – –
Nefazodone 1.4 – – 6.8
Olanzapine >20 >2 >20 –
Pioglitazone 2.8 > 2.8 2.8 > 5.3
Simvastatin 17 45 17 460
Sitaxsentan 0.04 1.6 0.04 8.7
Stavudine 247 107 107 >144
Tacrine >12 >12 >12 696
Telithromycin 6 – – –
Tolcapone 0.004 0.05 0.004 0.3
Troglitazone 0.03 0.1 0.03 2.3
Trovafloxacin 20 19 19 >24.9
Ximelagatran 30 300 30 335
Zileuton >7 15 15 >7.7

The analysis was carried out using the free IC50 concentration of the drug tested in the assay
divided by the total concentration of drug in human plasma at Cmax
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benoxaprofen to be hepatotoxic, a response that was consistent
across donors one and two and was indicated primarily by a
reduction in albumin production. However, we found that
simvastatin and ximelagatran were only toxic in one of the
donors tested, again showing the importance of including
multiple donors during the risk assessment process. Overall, the
Liver-Chip correctly predicted toxicity in 12 out of 15 toxic drugs
that were tested using two donors, yielding a sensitivity of 80% on
this drug set. This was almost double the sensitivity of 3D hepatic
spheroids for the same drug set (42%) based on previously
published data31,47,48, a preclinical model that is currently widely
used in pharma and was only able to correctly identify 8 out of
the 19 toxic drugs in the set (Table 5). Importantly, the Liver-
Chip also did not falsely mark any drugs as toxic (specificity of
100%), whereas the 3D hepatic spheroids did (only 67%
specificity)31; such false positives can greatly limit the usefulness
of a predictive screening technology because of the profound
consequences of erroneously failing safe and effective com-
pounds. Interestingly, the three drugs not detected by Liver-Chip
—levofloxacin, stavudine, and tacrine—were not detected as toxic
drugs in spheroids either, suggesting that the Liver-Chip may
subsume the sensitivity of spheroids and that their toxicities could
involve other cells or tissues not present in these models. It is
important to note that each of the toxic drugs tested was
historically evaluated using animal models, and in each case the
considerations and thresholds were deemed relevant for that drug
to have an acceptable therapeutic window and thus progress into
clinical trials. The ability of the Liver-Chip to flag 80% of these
drugs for their DILI risk at their clinical concentrations represents
a remarkable improvement in model sensitivity that could drive
better decision making in preclinical development.

We examined each of the toxic drugs that were missed by the
Liver-Chips to identify opportunities for future improvement.
Using the threshold of 50 for determining toxicity, which we
chose to compare our results to those from a past hepatic
spheroid study, led to stavudine being classified as a false
negative. Tacrine is a reversible acetylcholinesterase inhibitor that
undergoes glutathione conjugation by the phase II metabolizing
enzyme glutathione S-transferase in liver. Polymorphisms in this
enzyme can impact the amount of oxidative DNA damage, and
the M1 and T1 genetic polymorphisms are associated with greater
hepatotoxicity49. It is not known if either of the two hepatocyte
donors used in this investigation have these polymorphisms, but

the Liver-Chip was able to detect increased caspase 3/7 staining—
indicative of apoptosis at the highest tested concentrations—
although these changes were not associated with any release of
ALT or decline in albumin. Levofloxacin, a fluoroquinolone
antibiotic, was proposed by the IQ MPS affiliate as a lesser
hepatotoxin compared to its structural analog trovafloxacin, but it
is classified as high clinical DILI concern in Garside’s DILI
severity category labeling50. Indeed, there are documented reports
of hepatotoxicity with levofloxacin, but these occurred in
individuals aged 65 years and above51, and a post-market
surveillance report documented the incidence of DILI to be less
than 1 in a million people52. It is therefore reasonable to assume
that the negative findings in both the Liver-Chip and spheroids
may correctly represent clinical outcome.

Accuracy improved by accounting for drug-protein binding.
When calculating the MOS-like values in the preceding section,
we followed the published methods used for evaluating 3D
hepatic spheroids31, but these do not consider protein binding.
Because the fundamental principles of drug action dictate that
free (unbound) drug concentrations drive drug effects, we
explored an alternative methodology for calculating the MOS-like
values by accounting for protein binding using a previously
reported approach36. Accordingly, we reanalyzed the findings for
the 27 drugs in our study by accounting for protein binding. We
compared the free fraction of drug concentration dosed in the
Liver-Chip employing a medium containing 2% fetal bovine
serum to the free fraction of the plasma Cmax. By reanalyzing the
Liver-Chip results using this approach and setting the threshold
value to 375 (which we selected to maximize sensitivity while
avoiding false positives), we obtained improved chip perfor-
mance: a true positive rate (sensitivity) of 77 and 73% in donors
one and two, respectively, and a true negative rate (specificity) of
100% in both donors (Table 6). Importantly, the sensitivity
increased to 87% when including the 18 drugs tested in both
donors, and this enabled detection of stavudine’s toxicity.
Applying the same analysis to spheroids and similarly selecting a
threshold to maximize sensitivity while maintaining 100% spe-
cificity yielded a sensitivity of only 47%. Remarkably, the Spear-
man correlation between the two-donor Liver-Chip assay and the
Garside DILI severity scale yielded a value of 0.78 when using the
protein-binding-corrected analysis, whereas it was only 0.43 when

Table 5 Sensitivity and specificity determination.

Model True positive True negative False positive False negative Sensitivity (%) Specificity (%)

Chip donor 1 16 5 0 6 73 [51.4–86.8%] 100
Chip donor 2 9 3 0 6 60 [35.3–80.3%] 100
Chip both donors 12 3 0 3 80 [54.2–92.8%] 100
Spheroid 8 2 1 11 42 [22.9–64.0%] 67

Predictive performance for chips and spheroids as determined by published analysis31, which does not account for protein binding, and setting the threshold on the MOS-like values at 50 for both chips
and spheroids (a value above 50 would indicate a drug as negative for toxicity).

Table 6 Sensitivity and specificity determination.

Model True positive True negative False positive False negative Sensitivity (%) Specificity (%)

Chip donor 1 17 5 0 5 77 [56.1–89.8%] 100
Chip donor 2 11 3 0 4 73 [47.5–89.0%] 100
Chip both donors 13 3 0 2 87 [61.5–96.0%] 100
Spheroid 9 3 0 10 47 [27.0–68.5%] 100

Predictive performance as determined by considering free (unbound) drug concentrations and setting the threshold on the MOS-like values at 375 for chips and at 2250 for spheroids. 95% confidence
intervals are shown for the sensitivity values.
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using the lower threshold. Thus, the protein-binding-corrected
approach not only produces higher sensitivity but also rank-
orders the relative toxicity of drugs in a manner that corresponds
better with the DILI severity observed in the clinic. This obser-
vation supports the validity of this analysis approach and its
superiority over the uncorrected version. In short, these results
provide further confidence that the Liver-Chip is a highly pre-
dictive DILI model and is superior in this capacity to other
currently used approaches.

The economic value of more predictive toxicity models in
preclinical decision making. In addition to increasing patient
safety, better prediction of candidate drug toxicity can improve
the economics of drug development by reducing clinical trial
attrition and increasing pharma research and development
(R&D) productivity. We sought to quantify the potential eco-
nomic impact of the Liver-Chip resulting from its enhanced
predictive validity by constructing an economic value model of
drug development that captures decision quality during pre-
clinical development (Fig. 2). We describe the structure of this
model in the Methods section and provide an interactive form of
the full model in the Supplementary Materials (Supplementary
Data 2).

To estimate the economic impact of incorporating the Liver-
Chip into preclinical research, we observed that DILI currently
accounts for 13% of clinical trial failures that are due to safety
concerns24. The present study revealed that the Liver-Chip, when
used with two donors and analyzed with consideration for protein
binding, provides a sensitivity of 87% when applied to
compounds that evaded traditional safety workflows. Combining
these figures suggests that adding the human Liver-Chip to
existing workflows to test for DILI risk could lead to 11.3% fewer
toxic drugs entering clinical trials. We modeled this improvement
by correspondingly lowering the model’s false negative rate
(FNR) parameter that describes the toxicology testing that occurs
between preclinical testing and Phase I clinical trials. We then
computed the net present value (NPV) of the new simulated
portfolio and compared it to the NPV of the base case to capture
the increase in R&D productivity. Improvements in NPV result
from an increase in the number of approved drugs, which is
partially offset by the added cost of Organ-Chips experiments as
well as higher clinical trial costs resulting from candidates
progressing further in their clinical testing. This computation
resulted in a predicted NPV uplift of 2.8% (1.9–3.1%, CI 95%)
due to the incorporation of the Liver-Chip in DILI prediction
(Supplementary Table 2 lists results for a broad range of FNR
values).

We next estimated the potential impact of this value uplift on
the broader small-molecule drug-development industry by
applying it to the global Pharma investment in R&D. In 2021,
global R&D investment was approximately $196 m per year53 of
which around 56%54 was related to small-molecule drugs. With
these assumptions, the model predicts that utilizing the Liver-
Chip across all small-molecule drug-development programs for
DILI prediction could generate the industry around $3 billion
annually due to increased R&D productivity ($2.1B - $3.4B, CI
95%). Since the economic model relies on historical attrition rates
and costs, we assessed the robustness of the above predictions
with respect to the model’s inputs by performing a mathematical
sensitivity analysis. This analysis revealed that model outputs vary
in a near-linear fashion across reasonable input parameter sets,
which in turn causes the model’s predictions to stay qualitatively
consistent across a wide range of parameter choices. The details of
this analysis and its results are included in the model
(Supplementary Data 2).

The economic model also permits us to estimate the financial
impact of Organ-Chip technology as the predictive validity of
additional toxicology models is evaluated similarly to our work
here on the Liver-Chip. We were particularly interested in the
potential impact of four additional Organ-Chips that address the
remaining top causes of safety failures—cardiovascular, neurolo-
gical, immunological, and gastrointestinal toxicities, which
together with DILI account for 80% of trial failures due to safety
concerns24. If we assume similar sensitivity for these four
additional models as we found for the Liver-Chip (87%), the
model estimates that Organ-Chip technology could generate the
industry over $24 billion annually through increased R&D
productivity. These figures present a compelling economic
incentive for the adoption of Organ-Chip technology alongside
considerations of patient safety and the ethical concerns of animal
testing.

Discussion
Numerous authors have argued that Organ-Chip technology has
the potential to substantially improve drug discovery and
development55, but although many major pharmaceutical com-
panies have already invested in the technology, routine utilization
is limited56. This may be due to several factors, including the
absence of end-to-end investigations showing that Organ-Chips
replicate human biological responses in a robust and repeatable
manner; demonstrations that Organ-Chip performance exceeds
that of existing preclinical models across a suitably broad set of
compounds; and illustrations of ways to implement the tech-
nology within routine preclinical workflows. Furthermore, the
broader stakeholder group—especially budget holders—need
assurance that there will be an attractive return on investment
and an increase in R&D productivity that may mitigate the
pharmaceutical industry’s widely documented productivity
crisis57–59. This study aims to address these four concerns.

We particularly report here on the systematic evaluation of the
validity of Organ-Chips for DILI prediction against criteria
designed by a third party of experts. To our knowledge, no MPS
has been evaluated against 27 small-molecule drugs in a single
study involving three different human donors and hundreds of
chips, making this study the largest reported evaluation of Organ-
Chip performance. In this evaluation, the Liver-Chip has
demonstrated that it can correctly distinguish toxic drugs from
their non-toxic structural analogs, and, across a blinded set of
27 small molecules, it displayed a true positive rate of 87%, a
specificity of 100%, and a Spearman correlation of 0.78 against
the Garside DILI severity scale when two donors are used, and
data are corrected for protein binding. Importantly, these data
were independently verified by two external toxicologists. Said
differently, the Liver-Chip detected nearly 7 out of every 8 drugs
that proved hepatoxic in clinical use despite having been deemed
to have an appropriate therapeutic window by animal models; the
Liver-Chip similarly detected 2 out of 4 such drugs that were
additionally missed by 3D hepatic spheroids. We therefore believe
that these findings advocate the routine use of the human Liver-
Chip in drug discovery programs to enhance the probability of
clinical success while improving patient safety. This would be
achieved by more accurately categorizing risk associated with a
candidate drug to provide valuable data to support a ‘weight-of-
evidence’ argument both for entry into the clinic as well as for
starting dose in Phase I. Such added evidence could potentially
remove any safety factor applied because of a liver finding in an
animal model60,61. In turn, this would reduce overall cost and
time in the preclinical development process.

A unique feature of this work is the demonstration of the
throughput capability of Organ-Chip technology using automated
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culture instruments, as a total of 870 chips were created and ana-
lyzed. In terms of establishing effective workflows, scientists were
placed into three teams: the first team prepared the drug solutions
and supplied them in a blinded manner to the second team. The
second team seeded, maintained, and dosed the Liver-Chips while
carrying out various morphological, biochemical, and genetic ana-
lyses at the end of the experiment. The third team collected the
effluents and performed real-time analyses of albumin and ALT as
well as terminal immunofluorescence imaging using an automated
confocal microscope (Opera Phenix; Perkin Elmer). In this manner,
we were able to analyze and report the hepatotoxic effects of 27
drugs in 870 Liver-Chips that used cells from three human donors in
a period of 20 weeks.

Based on this experience, we believe that the Liver-Chip could be
employed in the drug-development pipeline during the lead opti-
mization phase where projects have identified three-to-five chemical
compounds that have the potential to become the candidate drug
(Fig. 5). If data emerge showing that a chemical compound produces
a toxic signal in the Liver-Chip, this will indicate to toxicologists that
there is a high (~87%) probability that the compound would simi-
larly cause toxicity in humans. This, in turn, would enable scientists
to deprioritize these compounds from early in vivo toxicology stu-
dies (such as the maximum tolerated dose/dose-range finding study)
and, consequently, reduce animal usage and advance the “fail early,
fail fast” strategy. Importantly, the absence of false positives
strengthens the argument that the Liver-Chips should also be
adopted within the early discovery phase, as stopping drug candi-
dates that are falsely determined to be toxic by less-robust preclinical
models could result in good therapeutics never reaching patients.

Despite these positive findings, it should be acknowledged that
the current chip material (PDMS) used in the construction of the
Liver-Chip may be problematic for a subset of small molecules
that are prone to non-specific binding. Although this study
demonstrates that the material binding issue does not in practice
greatly reduce the predictive value of the Liver-Chip DILI model,

work is currently underway to develop chips using materials that
have a lower binding potential. Until such a chip is available, we
recommend users assess potential PDMS binding using an acel-
lular chip and measuring drug in the effluent channel using LC/
MS to enable adjustment of workflow if required. It should also
be recognized that many pharmaceutical companies have diver-
sified portfolios, with only 40–50% now being small molecules.
Consequently, further investigation of the Liver-Chip perfor-
mance against large molecules and biologic therapies should be
carried out. Integration of resident and circulating immune cells
should add even greater predictive capability.

Finally, predictive models that demonstrate concordance with
clinical outcomes should provide scientists and corporate lea-
dership with greater confidence in decision making at major
investment milestones. Our economic analysis revealed that
supplementing existing preclinical models with human Liver-
Chips for the prediction of small-molecule DILI could lead to a
substantial economic impact, with broad adoption of the tech-
nology having the potential to generate an estimated $3 billion
annually across the industry due to improved R&D productivity.
Moreover, the analysis illustrates that the productivity gain could
potentially extend to an estimated $24 billion annually if four
additional Organ-Chip models are used to address the most
common toxicities that result in drug attrition, and the additional
Organ-Chips demonstrate a similar level of performance to the
Liver-Chip. Taken together, these results suggest that Organ-Chip
technology has tremendous potential to benefit drug develop-
ment, improve patient safety, and enhance pharmaceutical
industry productivity and capital efficiency. This work also pro-
vides a starting point for other groups that hope to validate their
MPS models for integration into commercial drug pipelines

Data availability
The source data needed to reproduce the plots in Figs. 1 and 2 can be found in
Supplementary Data 8 and Supplementary Data 3, 4, and 7, respectively. The calculated

Fig. 5 Proposed positioning of the Liver-Chip within a typical pharma preclinical workflow. Typically, pharma utilizes a series of in vitro tests to guide
chemical optimization ahead of animal testing. Promising drug candidates then progress to dose-range finding studies ahead of the required studies to
enable regulatory approval to enter clinical trial. With the data presented in this investigation, Liver-Chip would be best placed in between the in vitro tests
and dose-range finding animal studies. A drug candidate that did not show toxicity in the Liver-Chip, would increase confidence of the scientist that it can
pass through animal testing without a liver toxicity flag and proceed into the clinic with a lower likelihood of clinical hepatic signals. A drug candidate that
did show toxicity in the Liver-Chip would encourage scientists to stop and think about the relevance of the toxicity to the therapeutic indication and
whether there was a potential margin between this finding and the exposure required for clinical efficacy. This would continue to increase the confidence
that candidate drugs are entering the phase I clinical trial process with a greater likelihood of approval and may also reduce animal usage by not conducting
dose-range finding or regulatory studies.

ARTICLE COMMUNICATIONS MEDICINE | https://doi.org/10.1038/s43856-022-00209-1

14 COMMUNICATIONS MEDICINE | (2022)2:154 | https://doi.org/10.1038/s43856-022-00209-1 | www.nature.com/commsmed

www.nature.com/commsmed
www.nature.com/commsmed


statistics presented in Fig. 2 can be found in Supplementary Data 5 and 6. The RNA-
sequencing data have been deposited in the National Center for Biotechnology
Information Gene Expression Omnibus (GEO) under accession number GSE207339. In
Supplementary Data 2, we provide additional information about: (i) Analytic derivation
of base case, (ii) Attrition parameter details, (iii) Pipeline and financial model, (iv) DILI
and tox sensitivity analyses, (v) NPV to annualized financial value, (vi) References, (vii)
Supplemental details on the method, (viii) Source for Supplemental results figure, and
(ix) Discussion of broad potential of improved predictive toxicology. Finally, a summary
of each drug used in each cycle of the study is reflected in Supplementary Data 1.
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