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Abstract: The performance assessment of routing protocols in vehicular ad hoc networks (VANETs)
plays a critical role in testing the efficiency of the routing algorithms before deployment in real
conditions. This research introduces the statistical design of experiments (DOE) methodology as an
innovative alternative to the one factor at a time (OFAT) approach for the assessment and the modeling
of VANET routing protocol performance. In this paper, three design of experiments methods are
applied, namely the two-level full factorial method, the Plackett–Burman method and the Taguchi
method, and their outcomes are comprehensively compared. The present work considers a case study
involving four factors namely: node density, number of connections, black hole and worm hole attacks.
Their effects on four measured outputs called responses are simultaneously evaluated: throughput,
packet loss ratio, average end-to-end delay and routing overhead of the AODV routing protocol.
Further, regression models using the least squares method are generated. First, we compare the main
effects of factors resulted from the three DOE methods. Second, we perform analysis of variance
(ANOVA) to explore the statistical significance and compare the percentage contributions of each
factor. Third, the goodness of fit of regression models is assessed using the adjusted R-squared
measure and the fitting plots of measured versus predicted responses. VANET simulations are
implemented using the network simulator (NS-3) and the simulator of urban mobility (SUMO). The
findings reveal that the design of experiments methodology offers powerful mathematical, graphical
and statistical techniques for analyzing and modeling the performance of VANET routing protocols
with high accuracy and low costs. The three methods give equivalent results in terms of the main
effect and ANOVA analysis. Nonetheless, the Taguchi models show higher predictive accuracy.

Keywords: VANETs; NS-3; SUMO; AODV; performance assessment; design of experiments method-
ology; regression analysis; ANOVA

1. Introduction

Vehicular ad hoc networks are a key component of intelligent transportation systems
(ITS) [1,2], which one of the leading domains in smart cities used to enhance traffic efficiency
and reduce transportation problems. VANETs (vehicular ad hoc networks) are a subclass
of mobile ad hoc networks (MANETs), where mobile nodes are intelligent vehicles commu-
nicating in a self-organized manner without relying on any fixed infrastructure support.
VANETs are subject to several challenges due to their special features: mainly, the highly
dynamic topology due to high mobility, the intermittent connectivity and the high delay
constraints [1]. Given these special characteristics, the performance of routing protocols in
VANETs can be highly affected by the traffic conditions, the vehicular density, the mobility
model, the security mechanisms [2], etc. Therefore, a reliable performance analysis study is
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an essential prerequisite used to identify the way different factors influence the network
performance, alongside giving more insights for optimization and improvement prospects.
In that regard, various works in the literature have conducted performance analysis studies
wherein the conventionally used approach is to study the effect of one factor at a time
(OFAT). This approach, which varies only one factor at a time while keeping others constant,
is demanding and time consuming [3]. Thus, in order to overcome this problem, we opted
for statistically designed experiments that vary several factors simultaneously, known as
the design of experiments methodology. The present work focuses on the comparison of the
results of three DOE methods namely: the two-level full factorial method (FFM) [4,5], the
Plackett–Burman method (PBM) [6] and the Taguchi method (TM) [7]. The details of each
method were presented at international conferences [8–10]. The effects of four factors were
assessed—node density (ND), number of connections (NC), black hole (BKH) and worm
hole (WMH) attacks—on the following performance metrics: throughput (TH), packet loss
ratio (PLR), average end-to-end delay (AE2ED) and routing overhead (RO) of the AODV
routing protocol. For VANET simulations, we used NS-3 [11] and SUMO [12,13].

First, the comparison is performed in terms of the main effects of factors on the con-
sidered responses that resulted from each DOE method. Secondly, analysis of variance
is conducted to determine the factors that are statistically significant and compare their
percentage contributions. The adjusted R-squared measure along with the plots of mea-
sured versus predicted values of the response are employed to assess the goodness of fit
of the regression models. Additionally, only significant estimates are included in the final
regression models.

Our study demonstrates that the statistical design of experiments methodology is a
practical approach to analyze the performance of any routing protocol in VANETs. The
comparison results indicate that the three methods give practically identical outcomes
with regard to the main effects and the ANOVA analysis. However, the Taguchi method
provides higher descriptive and predictive qualities based on the adjusted R-squared and
visual plots of measured versus predicted responses.

The rest of this paper is organized as follows: Section 2 outlines the previous works
in the literature. The following section details the proposed methodology along with
implementation tips. Then, an exhaustive comparative analysis of the findings obtained
from the three DOE methods is given in Section 4. Sections 5 and 6 end the paper with
concluding remarks and future research directions.

2. Related Work

Various researchers in the literature conducted performance analyses of various rout-
ing protocols in VANETs, with respect to several performance metrics. For instance, in the
study [14], the performance results of seven different routing protocols were examined
based on performance metrics such as packet delivery ratio, average throughput, delay
and overall energy consumption. The authors highlighted that the performance of VANET
routing protocol depends heavily upon the mobility model, the vehicle density and the
propagation rate of data. The research [15] analyzed the throughput, packet delivery ratio
(PDR), and normalized routing load (NRL) of AODV, DSR, and DSDV. The outcomes
emphasize that AODV is more appropriate than DSR and DSDV in terms of PDR and
throughput; however, the NRL for DSDV remains lower than AODV and DSR under
different numbers of vehicles.

The study [16] examined the performance of several routing protocols, including
AODV, DSR, and DSDV, using different performance parameters, such as data throughput,
PDR, end-to-end delay, and network stability. The authors stated that it is difficult to select
a routing protocol that suits all requirements. They outlined that the efficiency of AODV
protocol is better than DSR and DSDV protocols. In Ref. [17], the authors investigated the
effect of traffic types (UDP and TCP) on AODV delay and throughput. They concluded
that the traffic type UDP is better than TCP for safety applications and highlighted the
necessity of implementing an improved version of AODV routing protocol. The researchers
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in [18] developed a new routing protocol labeled LENC (low-latency and energy-efficient
routing based on network connectivity). Extensive simulations were conducted to compare
AODV and the proposed routing protocol. Their findings outline the usefulness of LENC in
providing more routing stability and the network connectivity. In [19], the authors proposed
an enhanced version of a protocol based on cluster approach. The results prove that the
proposed protocol outperforms CBCLR and AODV-CV protocols regarding throughput,
packet delivery ratio, and end-to-end delay parameters while varying the number of
vehicular nodes in the network. In the paper [20], researchers discussed the most important
security features of the routing protocols in VANET and examined the effect of black
hole attacks on AODV, along with attempting to introduce a mechanism to detect and
prevent the network from such attacks. Similarly, the authors of paper [21] mitigated the
impact of black hole attacka and vehicle density on the average throughput, packet delivery
ratio, end-to-end delay, normalized routing load and average path length of AODV and
ZRP routing protocols. They illustrated the vulnerability of these protocols to black hole
attacks and recommended performing suitable solutions to mitigate the black hole attack in
VANETs. In Ref. [22], the authors highlighted the high vulnerability of AODV to wormhole
attacks. They proposed a practical approach for dealing with such attacks.

In all the aforementioned studies, the common adopted approach relies on varying
each factor individually, referred to as the OFAT approach (one factor at a time) [3]. The
main problem of OFAT is that the number of experiments goes up as the number of studied
factors increases. Furthermore, the OFAT approach does not allow direct comparisons of
the magnitudes of each factor’s impact on the investigated responses. In addition, it can
neither estimate interactions among factors nor determine the optimal settings of factors.

From the previous mentioned studies, we note that performance analysis studies
based on the statistical design of experiments approaches have not gained much attention
in the literature. Hence, the aim of the next section is to introduce its application to the
assessment and the modeling of VANET routing protocols performances.

3. Materials and Methods
3.1. VANET Simulation

In the present study, we simulated a realistic VANET scenario based on the combina-
tion of the road traffic simulator SUMO (simulation of urban mobility) and the network
simulator NS-3. SUMO is a free, open and microscopic simulator implemented in C++.
It is destined to simulate unlimited network size and number of vehicles. It offers the
possibility to configure vehicle types, traffic lights, vehicle speeds, multi-lane roads; it also
supports the lane-changing model, as well as generating automatic time schedules for
traffic lights. SUMO also supports the import formats, such as OpenStreetMap [12,13]. We
executed a set of Python command lines on SUMO in order to generate realistic vehicle
trace files that are then used as an input by the network simulator, NS-3 [11]. In our study,
the simulation zone was extracted from OpenStreetMap, consisting of a map of El Jadida
city, Morocco (Figure 1).

Additionally, the AODV (ad hoc on demand distance vector) is adopted as a routing
protocol. It is a reactive protocol wherein routes are created only when demanded. AODV
relies on the sequence numbers to determine fresher and newer paths. The most important
mechanisms of this protocol are the route discovery and the route maintenance. This
protocol is comprehensively detailed in Ref. [23].

Other simulation components are exhibited in Table 1.
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Table 1. Components of the simulation.

N Parameter Value

1 Network simulator NS3.29
2 Mobility Simulator SUMO-0.32.0
3 Propagation Model TwoRayGroundPropagationLossModel
4 Wifi Channel YansWifi
5 Mac and Physic Layer IEEE 802.11p
6 Simulation Time 200 s
7 Traffic type CBR
9 Data rate 50 Kbps
10 Packet Size 1024 bytes
11 Routing protocol AODV

3.2. Design of Experiments Methodology

The theory of the design of experiments (DOE) methodology was first introduced
by Ronald Aylmer Fisher in the early 20th century for agriculture [24]. Since then, it has
evolved into many scientific areas, such as medicine, biochemistry, physics, engineering
and computer science. DOE offers powerful mathematical, graphical and statistical tools for
planning experiments, data visualization and analysis [4]. Its main feature is the possibility
of simultaneous assessment of the effect of multiple input variables (factors) on output
variables (responses) with the minimum number of experimental tests [25].

Unlike the one factor at a time (OFAT) approach, the application of design of experi-
ments (DOE) [3,26] has numerous advantages. First, this methodology offers potentially
useful tools for providing efficient estimates of the factor effect as well as the effect of possi-
ble interactions among factors. Another important aspect of this approach is the possibility
of performing mathematical models that characterize the factor–response relationship.
Moreover, the design of experiments (DOE) methodology has proven to be an extremely
useful tool for conducting optimization studies by determining the optimal settings of
factors that lead to optimal results.

Different types of DOE methods are generally used: the full-factorial designs, the
fractional factorial designs, the screening designs, the Taguchi design, etc. The most
commonly used full-factorial design is the two-level full factorial, where all factors are set
at two levels (a low level coded (−) and a high level denoted (+)). A feature characteristic
of this design is that all possible combinations for factors and their levels are examined. For
studying k factors, a 2k number of experimental runs is required. However, these designs
become costly as the number of factors increases. Consequently, fractional factorial designs
are the alternative, in which a selected fraction of the full factorial design is employed.
One of the well-known designs of the two-level fractional factorial is the Plackett–Burman,
used for screening experiments [6], where it is possible to investigate up to N-1 factors in
a number N of experiments. Another popular method is the Taguchi method, developed
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in the early 1980’s by the Japanese, Dr. Genichi. It is widely used among engineers
and scientists for quality and performance optimization [7]. Taguchi makes use of two
concepts: (OA) orthogonal arrays (a library of predefined matrices to construct matrices of
experiments) and the signal-to-noise ratio (SNR) used as a statistical measure of quality
performance.

The steps involved in implementing the DOE methodology are outlined in the diagram
below (Figure 2):
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The DOE methodology starts with stating the objectives of the study before identifying
the responses or the measures of performance. After that, the studied factors are defined,
and their levels are selected. The levels are the ranges of values the factors can assume
within practical limits.

Using the determined factors and their levels, the corresponding design matrix is
constructed, according to the adopted DOE method. This design matrix refers to the com-
binations of factor levels for each experimental run. For each combination, the responses
are measured and reported in the so-called matrix of experiments. Further, mathematical
models are built to establish a relationship between each response and the studied factors.

The next obvious step is the analysis of the collected data. First, the graphical anal-
ysis allows a more visual insight of the effects of the factors and their interactions on the
response using the diagram of effects. The mathematical analysis consists of determining
the coefficients of the mathematical models. The statistical analysis consists of determining
the factors that are statistically significant and their percentage contribution by applying
statistical methods, such as ANOVA (analysis of variance). Finally, validation of the ac-
quired results and the developed models is achieved using statistical metrics and graphical
tools, such as the R-squared coefficient or the adjusted R-squared coefficient, the normal
probability plots of residuals, etc.

In the present study, we consider comparing the results from applying the following
DOE methods:

1. Two-level full factorial method (FFM);
2. Plackett–Burman method (PBM);
3. Taguchi method (TM).
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The description of each method is available in the previous works presented at inter-
national conferences [8–10]. The experimental setup and the implementation details are
given in the next subsection.

3.3. Experimental Setup and Implementation
3.3.1. Definition of Objectives

The objective behind applying each method is to assess the effects of factors related to
scalability, traffic conditions and routing security attacks on the performance metrics of the
AODV routing protocol in VANETs. Secondly, we build regression models to model the
performance metrics of AODV routing protocol. Finally, we analyze the obtained results
using graphical, mathematical and statistical techniques.

3.3.2. Definition of Responses

In our study, we selected the following performance metrics as the responses: through-
put (TH), packet loss ratio (PLR), average end-to-end delay (AE2ED) and routing overhead
(RO), computed using the equations below.

Throughput is the total number of bits successfully received during simulation time.
It is expressed in kilobits per second (Kbps).

TH(Kbps) =
totalRxBytes ∗ PacketSize∗8

T ∗ 1000
(1)

where totalRxBytes and PacketSize represent the total received bytes and the packet size,
respectively. T is the difference between the time when the last packet is received and the
time when the first packet is sent.

Packet loss ratio represents the ratio of the number of lost packets to the total number
of transmitted packets.

PLR (%) = 100 ∗ totalTxPackets − totalRxPackets
totalTxPackets

(2)

where totalTxPackets and totalRxPackets refer to the total amount of sent and received
packets, respectively.

Average end-to-end delay is the average time needed to transmit data from the source
to destination, and it is measured in milliseconds (ms).

AE2ED(ms) =
totalDelays

totalRxPackets
(3)

where totalDelays represents the summation of all delays of received packets, which
corresponds to the difference between the transmission time and reception time.

Routing overhead (RO) is the ratio between the total number of control packets
generated by the AODV routing protocol during route discovery and route maintenance to
the total number of transmitted packets.

RO =
totalControlPackets

totalTxPackets
(4)

where totalControlPackets and totalTxPackets refer to the total number of control packets
generated by AODV and the total amount of sent packets, respectively.

3.3.3. Definition of Factors and Their Levels

Vehicular ad hoc networks rely on wireless communication with no infrastructure sup-
port; this yields numerous vulnerabilities [1], such as black hole and wormhole attacks [27].

In the current study, black hole (BKH) and wormhole (WMH) are selected as input
variables or factors. Further, this study aims at evaluating AODV under different density
and traffic levels. Hence, the number of vehicles (ND) and the number of connections (NC),
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which is the number of source–destination pairs, are also considered. Table 2 lists these
factors and their levels.

Table 2. Values of low and high levels for factors.

Factor Variable Low Level (−1) High Level (+1)

Black Hole attack BKH 0 1
Wormhole attack WMH 0 1

Node Density ND 50 150
Number of Connections NC 4% 20%

3.3.4. Selection of the Design Matrix

The design matrix for the full factorial method is composed of 24 = 16 experiments
since 4 factors are involved. Those for the PBM are based on HDAMARD matrices with
8 experiments. The Taguchi design relies on an L8 orthogonal array of 8 experiments (see
Appendix A). Three repetitions are carried out for each experiment.

3.3.5. Calculation of the Main Effects of Factors

The main effect of a factor refers to how this factor influences the response when factor
settings change from the low level to the high level. It is the difference between the mean
responses at high level MFactor

+ and low level MFactor
− (see Equation (5)):

EFactor = MFactor+ − MFactor− (5)

where MFactor+ and MFactor− are, respectively, the mean of the responses when Factor is at
a high level (+1) and the mean of the responses when Factor is at a low level (−1).

In our study and for comparison purposes, these averages were normalized by di-
viding each mean value by the standard deviation σ of the given values of the response
(Equations (6) and (7)).

NormMFactor
+ =

MFactor
+

σ
(6)

NormMFactor
− =

MFactor
−

σ
(7)

where NormMFactor
+ and NormMFactor

− are, respectively, the normalized main effects
when Factor is set at a high level and low level. σ is the standard deviation of all values of
the response.

The plots of effects graphically represent these main effects with lines connecting the
normalized values of mean responses at the low level with those calculated at the high
level. The direction of the line indicates the sign of the effect (positive or negative), while
the inclination of the line reveals the magnitude of the effect. When the line is horizontal,
no effect is revealed.

3.3.6. ANOVA Analysis

The statistical analysis of variance method (ANOVA) [28] is used to analyze the data
from the three experimental designs. The ANOVA method employs a hypothesis test to
determine the factors that are statistically significant (p-value < 0.05), by means of the F-test
with a confidence level of 95%. The percentage contribution (P%) of each factor is then used
to quantify the degree of influence of each factor on each response. The ANOVA method is
detailed in Ref. [28]. We give below the formulas used for ANOVA calculations.

1. The total sum of squares:

SST =
n

∑
i=1

(yi − µ) (8)
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where yi is the response of the i-th experiment, µ represents the mean of all responses, and
n is the number of all experimental runs.

2. The sum of squares of error:

SSE = SST −
k

∑
i=1

SSi (9)

where SSi is the sum of squares of the i-th factor and k the number of factors.

3. Mean of squares or the variance:

MS =
SS
d f

(10)

where df is the degree of freedom. It is equal to number of levels minus 1 for a given factor
X. The total degrees of freedom are equal to the number of all experimental runs minus 1.

4. F-ratio: the variance of a factor X to the variance of error:

FX =
MSX

MSE
(11)

5. The percentage of contribution of factor X:

P% =
SSX

SSE
(12)

The measured experimental responses are employed in both the PBM and the FFM,
whereas the Taguchi method makes use of the SNR analysis. Indeed, the Taguchi method
converts the measured responses to signal-to-noise ratios (SNR). The SNR measures how
the response varies relative to a target function defined depending on the goal of the
experiment. If the goal is to maximize the response, then the “larger-the-better” (LTB)
formulation is selected, and when the objective is to minimize the response, “smaller-the-
better” (STB) is adopted.

In our study, LTB is chosen for throughput and STB is assigned to the packet loss ratio,
average end-to-end delay and routing overhead.

Smaller-the-better (STB),

SNR = −10 log

[
1
N

N

∑
u=1

(yu)
2

]
(13)

Larger-the-better (LTB),

SNR = −10 log

[
1
N

N

∑
u=1

1

(yu)
2

]
(14)

where N is the number of repetitions for an experiment, and yu is the corresponding
measured value of a response, such as throughput, packet loss ratio, average end-to-
end delay or routing overhead. In this study, three repetitions are performed for each
experiment.

3.3.7. Regression Models

In our study, we adopted a linear regression model to express the relationship between
the factors and the responses. The goal is to establish a relationship between each dependent
variable (throughput, packet loss ratio, average end to end delay and routing overhead) and
the independent variables (factors ND, NC, BKH and WMH). Models of this relationship
or estimated regression equations are used to predict the value of the response when
values for the independent variables are given, always within the defined ranges from each
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factor levels. These models will be very useful in the context of our study, where VANET
simulations generally require high processing and execution times.

This mathematical relationship between a response y and factors x1 . . . xk is given in
Equation (11).

y = β0 +
k

∑
i=1

βkxk + ε (15)

where y represents the response, x1 . . . xk are the coded variables of the k factors, β0 is the
constant of the model, β1, β2 . . . βk are the linear model coefficients, and ε is the error term.

To find out the coefficients, we used the linear least squares method [29]. This relation-
ship can be expressed in a matrix form as follows:

B = (X)−1
(

XTY
)

(16)

B is the matrix of coefficients of order k + 1.
XT is the transposed matrix of X The order of this matrix is N x p with p = k + 1

X =


1 x11 x12 · · · x1k
1 x21 x22 · · · x2k
...

...
...

. . .
...

1 xn1 xn2 . . . xnk

 (17)

where xij represents the level of the jth factor at the ith experiment, the Y column matrix of
the n measured responses.

Y =



y1
y2
...
...

yn

 B =



β0
β1
...
...
βk

 (18)

In order to assess the goodness of fit of these models, the adjusted R-squared coefficient
is adopted. This coefficient is based on the R-squared coefficient that adjusts for predictors
that are not significant in a regression model [30]. The values of adjusted R-squared are
between 0 and 1. When their values are closer to 1, this suggests that the model has
good predictive accuracy. The adjusted R-squared (Adj.R2) coefficient is measured by the
following equations (Equations (19) and (20)):

R2 = 1 − SST

SSE
(19)

Adj.R2 = 1 −
(
1 − R2)(n − 1)

n − k − 1
(20)

where SST is the total sum of squares and represents the total variation, SSE is the resid-
ual sum of squares, n is the total sample size, and k the number of predictors in the
regression model.

4. Results and Discussion
4.1. Comparison of the Main Effects

This section deals with the comparison of the main effects of the four factors on the
four performance metrics or responses.
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4.1.1. Main Effects of Factors on Throughput

Figure 3 illustrates the main effects of factors on the AODV throughput (TH) from the
FFM, PBM and TM, respectively. First, we notice that the values of normalized effects from
the FFM are closer to those from the Taguchi method, unlike the PBM, which shows quite
different values. Secondly, the trends of the main effects for factors ND, BKH and WMH
are almost the same from the three methods. They all have a negative effect on the AODV
throughput. This finding reveals that when the number of vehicles grows, and when the
black hole and the wormhole attacks are initiated, the AODV throughput degrades. These
results are logical since in the black hole attack, the attacker node acts by dropping the
entire data packet forwarded to it, pretending to have the shortest path to the destination.
Similarly, the two colluding nodes in the wormhole attack create a tunnel between them,
claiming that they are next to each other. Hence, neighboring nodes believe that the shortest
path passes through this tunnel and thus, they begin the transmission. Consequently, the
majority of the data packets are absorbed; they are either dropped or replayed in the
network. Therefore, the amount of successfully forwarded packets decreases, and the
AODV routing performance degrades.
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Figure 3. Comparison of main effects on throughput (TH) from FFM, PBM and TM.

Additionally, it is stated that the negative impact of the node density on throughput is
important. This can be justified by the dynamic topology and the high mobility of vehicles.
Indeed, the wireless link may fail in transmitting all the data packets and generate more
route error packets (RERR).

As far as the factor NC, we notice that it has a negligible effect from the full factorial
method, as the slope of the line is almost horizontal. This could be due to the ranges
defined for each factor. Moreover, the magnitude of the effect on the throughput is quite
important in both TM and PBM. Indeed, the increment in the number of communicating
pairs of vehicles lowers the successfully transmitted packets. This decrease may be due
to many factors, such as collision and transmission errors, so packets fail in reaching their
destination resulting in the degradation of AODV throughput.

In summary, the graphical analysis of the results obtained from the three methods
revealed three main influential factors (ND, BKH and WMH). This means that the three
methods were able to efficiently estimate the effect of factors on the AODV throughput.

4.1.2. Main Effects of Factors on Packet Loss Ratio

The figure below (Figure 4) contrasts the main effects of factors on the AODV packet
loss ratio (PLR) obtained from the three DOE methods. It is clear that the normalized effects
of the FFM cope perfectly with those from the TM, while the values of normalized effects
given by the PBM present quite small differences.
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Figure 4. Main effects on the packet loss ratio (PLR) from FFM, PBM and TM.

The trends of the main effects for factors ND, BKH and WMH from the FFM and TM
are closer to those obtained from the PBM. They all have a positive effect on the packet loss
ratio. The difference lies in the effect of the factor NC. We note that it has a slight positive
effect from the PBM and TM. This effect, however, is not highly important in the FFM.
These outcomes point out that in scaled-up networks as well as when the network flows go
up, the AODV packet loss ratio increases correspondingly. Moreover, the black hole and
the wormhole attacks impact considerably the AODV performance and disrupt the correct
execution of the routing operations.

Briefly, both the FFM and the TM produce closer results. These results show small
differences with the PBM. We conclude that they all allow efficient estimates of the main
effects within the defined ranges.

4.1.3. Main Effects of Factors on End-to-End Delay

Figure 5 shows the main effects of factors with regard to average end-to-end delay.
The three methods, FFM, PBM and TM, produce similar results regarding the trends of
the main effects. Indeed, the plots report that the change in the levels from a low to high
level leads to an increase in average end-to-end delay for factors ND, NC and WMH.
The conclusions with respect to ND and NC factors are justified by the mechanism of
route discovery established by the AODV routing protocol that adds delays before data
transmission. Likewise, the two colluding attackers in the wormhole attack create a distant
link between them, claiming that all routes must be formed through this wormhole link,
causing a failure in node connectivity and resulting in infinite delays.
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Figure 5. Main effects on AODV end-to-end delay (E2ED) from FFM, PBM and TM.

In summary, the effects of ND, NC and the WMH are the same from the three methods.
The main difference is in the effect of BKH. The FFM and Taguchi method outline that the
black hole attack has no direct impact on average end -to-end delay. In that regard, the
findings of both the FFM and Taguchi method seem to be more logical due to the fact that
the time spent in the AODV route discovery phase is reduced when a black hole attack is
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initiated because the malicious node sends a fast RREP message to the source node in the
AODV route reverse path.

4.1.4. Main Effects of Factors on Routing Overhead

Figure 6 summarizes the main effects of factors on AODV routing overhead derived
from the three methods. It appears that the trends of the main effects produced by the FFM
and the TM are equivalent for the four factors. Compared to those obtained by applying
the PBM, the plots indicate that the only difference observed consists of the effect of the
NC factor. This latter presents a more important negative effect on the routing overhead.
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Figure 6. Main effects on routing overhead (RO) from FFM, PBM and TM.

Regarding the overall magnitude of the effects, it is clearly indicated that the factor
ND has the biggest influence on the routing overhead. This observation is due to the fact
that AODV routing protocol generates enormous quantities of control packets in scaled-
up scenarios. This is merely due to the large number of RREQ messages produced by
AODV and the specific features of VANETs, such as a highly dynamic environment and the
frequent connections and disconnections of vehicles. Further, it is revealed that the routing
overhead is not very sensitive to black hole attacks. This observation can be supported
by the fact that the malicious node broadcasts a fake and fast route reply (RREP) to make
other nodes believe that it owns the shortest path. Accordingly, the overhead is cut down
because the route request (RREQ) packets are lesser.

These findings suggest that the Taguchi method gives closer results to the FFM, unlike
the PBM that show quite different values. However, the three methods, including the PBM,
are able to give an efficient estimate of the most influential factors within the defined ranges.

4.2. ANOVA Results

In this subsection, the analysis of variance (ANOVA) is conducted to assess the sta-
tistical significance of factors, along with their percentage contributions. First, the results
of ANOVA based on the F test are exhibited in Tables 3–6. The critical F values, us-
ing a 5% significance level (95% confidence level) from the Fisher table are, respectively,
F0.05 (1, 11) = 4.84, F0.05 (1, 3) = 10.13 and F0.05 (1, 2) = 18.51 for the full factorial, Plackett–
Burman and Taguchi methods. Factors with an F-ratio greater than these critical values
are considered statistically significant denoted by (*). Further, the percentage contributions
(P%) of factors from the three methods are also given. The ANOVA tables show also the
adjusted R-squared measure.
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Table 3. ANOVA statistical significance and percentage contribution of the factors on throughput.

Full Factorial Plackett–Burman Taguchi

DoF F P% Sig/Insig DoF F P% Sig/Insig DoF F P% Sig/Insig

ND 1 7.0 * 14.5% Significant 1 12.7 * 27.5% Significant 1 134.9 * 35.5% Significant
NC 1 0.1 0.3% Insignificant 1 0.2 0.4% Insignificant 1 8.2 2.2% Insignificant

NDxNC − − − − − − − − 1 15.7 4.1% Insignificant
BKH 1 11.7 * 24.4% Significant 1 13.5 * 29.2% Significant 1 140.1 * 36.9% Significant

WMH 1 18.1 * 37.8% Significant 1 16.8 * 36.3% Significant 1 79.2 * 20.8% Signifiant
Error 11 − 22.9% − 3 − 6.5% − 2 − 0.5% −
Total 15 − − − 7 − − − 7 − − −

Adj.R2 0.681 0.849 0.982

Table 4. ANOVA statistical significance and percentage contribution of the factors on PLR.

Full Factorial Plackett–Burman Taguchi

DoF F P% Sig/Insig DoF F P% Sig/Insig DoF F P% Sig/Insig

ND 1 5.6 * 13.6% Significant 1 19.2 * 21.7% Significant 1 207.1 * 13.2% Significant
NC 1 0.3 0.6% Insignificant 1 8.7 9.8% Insignificant 1 62.2 * 4.0% Significant

NDxNC − − − − − − − − 1 10.4 0.7% Insignificant
BKH 1 9.8 * 23.9% Significant 1 25.0 * 28.2% Significant 1 451.6 * 28.8% Significant

WMH 1 14.6 * 35.6% Significant 1 32.7 * 36.9% Significant 1 836.2 * 53.3% Significant
Error 11 − 26.9% − 3 − 3.4% − 2 − 0.1% −
Total 15 − − − 7 − − − 7 − − −

Adj.R2 0.634 0.821 0.981

Table 5. ANOVA significance and percentage contribution of the factors on AE2ED.

Full Factorial Plackett–Burman Taguchi

DoF F P% Sig/Insig DoF F P% Sig/Insig DoF F P% Sig/Insig

ND 1 7.5 * 16.4% Significant 1 10.4 * 13.1% Significant 1 33.8* 31.7% Significant
NC 1 18.9 * 41.4% Significant 1 35.2 * 44.2% Significant 1 29.7 * 27.9% Significant

NDxNC − − − − − − − − 1 0.2 0.1% Insignificant
BKH 1 7.4 * 16.3% Significant 1 21.0 * 26.4% Significant 1 34.9 * 32.8% Significant

WMH 1 0.8 1.8% Insignificant 1 10.0 12.5% Insignificant 1 6.1 5.7% Insignificant
Error 11 − 24.1% − 3 − 3.8% − 2 − 1.9% −
Total 15 − − − 7 − − − 7 − − −

Adj.R2 0.671 0.812 0.858

Table 6. ANOVA significance and percentage contribution of the factors on routing overhead.

Full Factorial Plackett–Burman Taguchi

DoF F P% Sig/Insig DoF F P% Sig/Insig DoF F P% Sig/Insig

ND 1 242.8 * 84.9% Significant 1 93.0 * 83.0% Significant 1 550.1 * 88.,6% Significant
NC 1 7.3 * 2.5% Significant 1 6.8 6.1% Insignificant 1 48.8 * 7.9% Significant

NDxNC − − − − − − − − 1 7.1 1.1% Insignificant
BKH 1 3.9 1.4% Insignificant 1 0.8 0.7% Insignificant 1 6.4 1.0% Insignificant

WMH 1 20.9 * 7.3% Significant 1 8.4 7.5% Insignificant 1 6.8 1.1% Insignificant
Error 11 − 3.8% − 3 − 2.7% − 2 − 0.3% −
Total 15 − − − 7 − − − 7 − − −

Adj.R2 0.633 0.791 0.788

Examining the F-ratio column in Table 3, we note that the full factorial, the Plackett–
Burman and the Taguchi methods give approximately identical results for the statistically
significant effects with no obvious differences. With regard to throughput, the effects that
are statistically significant include node density, black hole and wormhole attacks from the
three methods, while the effect of the number of connections remains insignificant. Based
on the percentage contributions of factors from the different methods, we observe that the
ranks of factors are practically the same from the full factorial and the Plackett–Burman
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methods. Indeed, the wormhole attack has the most impact, succeeded by the black hole
attack and node density. According to the Taguchi method, the black hole attack has the
largest effect, followed by node density and the wormhole attack. However, the interaction
and the factor number of connections have the least contribution.

Based on the F-ratio exhibited in Table 4, we observe that the ANOVA results regarding
the packet loss ratio of both Plackett–Burman and full factorial reveal three significant
effects, which are node density, black hole and wormhole. Similarly, these results are
close to the Taguchi method, except for the factor NC, that shows a significant effect but
lesser contribution. The effect of the interaction remains insignificant as estimated by the
Taguchi method. Based on the percentage contribution of each factor, it is seen that the
most influential factors from the three methods are, respectively, wormhole (WMH: 35.6%,
36.9% and 53.3%), black hole (BKH: 23.9%, 28.2%, 28.8%), and node density (ND: 13.6%,
21.7% and 13.2%); however, the number of connections has the lowest contributions (0.6%,
9.8% and 4.0%).

Table 5 illustrates the ANOVA results with respect to average end-to-end delay. It is
clear that the three methods produce equivalent results in terms of the factor’s statistical
significance. The number of connections, node density and the black hole attack are revealed
to be statistically significant, whereas the wormhole attack has an insignificant effect and
the lowest percentage contribution. The Taguchi method indicates an insignificant effect of
the interaction between node density and number of connections.

The ANOVA results relative to the routing overhead show that the node density (ND)
is the factor that produces the most important effect, with percentage contributions greater
than 83.0% from the three methods.

To conclude, we note that ANOVA analysis based on the F-ratio statistic gave the
same results for both full factorial and Plackett–Burman methods, and their results were
close to those from the Taguchi method. The differences are observed regarding the
percentage contributions and, subsequently, the ranks of the factors in affecting the four
responses. In that regard, both the FFM and PBM present closer percentage contributions
than with those computed from the Taguchi method. This is mainly due to the lowest
percentage contribution of error produced by the Taguchi method, since ANOVA analysis
was conducted using the measured experimental responses from both the full factorial and
the Plackett–Burman methods and the signal-to-noise ratio (SNR) from the Taguchi method.

4.3. Regression Models

In this part of the paper, the resulted mathematical models relative to each method
are given. Reduced models after eliminating statistically insignificant factors with respect
to ANOVA are shown in the following equations (Equations (21)–(32)). Additionally,
we plotted experimental responses versus the predicted ones in order to visualize the
agreement between measured values of the responses and the ones calculated from the
mathematical models (see Figure 7).

From the ANOVA tables, we note that Taguchi models have higher adjusted R-squared
values: 0.982, 0.981, 0.858, and 0.788 for throughput, packet loss ratio, average end to end
delay and routing overhead, respectively. The Plackett–Burman method comes in the
second rank with adjusted R-squared values between 0.791 and 0.849, whereas, the full
factorial method shows quite inferior values (0.633, 0.671, 0.634, 0.681). This states that
the Taguchi method has better predictive qualities than the Plackett–Burman and the full
factorial methods.
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Figure 7. Measured versus predicted (a) throughput, (b) packet loss ratio, (c) average end-to-end
delay, (d) routing overhead from FFM, PBM and TM.

Two-level full factorial models

ŷ1(TH) = 28.4764 − 0.0384x1 − 5.0745x3 − 6.2686x4 (21)

ŷ2(PLR) = 43.0880 + 0.0767x1 + 10.1445x3 + 12.5325x4 (22)

ŷ3(EED) = 2.2868 + 0.3015x1 + 355.4039x2 − 22.6936x3 (23)

ŷ4(RO) = −591.0738 + 7.4172x1 + 1086.5367x2 + 402.6649x4 (24)

Plackett–Burman models

ŷ1(TH) = 31.1578 − 0.0499x1 − 6.8054x3 − 6.0242x4 (25)

ŷ2(PLR) = 37.7360 + 0.0997x1 + 13.6011x3 + 12.0410x4 (26)

ŷ3(EED) = 26.9985 + 0.1888x1 + 280.6431x2 − 42.2375x3 (27)

ŷ4(RO) = −296.1545 + 8.3173x1 (28)

The Taguchi models

ŷ1(TH) = 31.7435 − 0.0666x1 − 6.6461x3 − 5.3924x4 (29)

ŷ2(PLR) = 26.4479 + 0.1331x1 + 20.5388x2 + 13.2862x3 + 10.7835x4 (30)

ŷ3(EED) = 33.8116 + 0.3171x1 + 233.2547x2 − 34.6554x3 (31)



Appl. Syst. Innov. 2022, 5, 19 16 of 19

ŷ4(RO) = −7.6884 + 5.9135x1 + 2381.3656x2 (32)

Figure 7 presented below outlines the scatterplots of the predicted values versus the
measured values for each response obtained from the three DOE methods. It is observed
that the plots of the Taguchi method show stronger fitting between the measured and
predicted values, followed by the Plackett–Burman method. However, the models revealed
by the two-level full factorial method show moderate adequation.

5. Conclusions

In this research, we investigated the reliability of statistical design of experiments
(DOE) methodology in analyzing and modeling the performance of VANET routing proto-
cols, by applying three DOE methods, mainly the full factorial method, the Plackett–Burman
method and the Taguchi method. The analysis and interpretation of the results led to the
following conclusions.

Methods based on the design of experiments methodology offer powerful mathemati-
cal, graphical and statistical techniques that allow accurate retrieval of information with
low costs. This conveniently responds to the particular case of VANET simulations often
requiring higher processing and execution times.

Both the Plackett–Burman and the Taguchi methods have the advantage of reducing
the number of experiments by half in comparison with the full factorial method. Indeed,
the effects of four factors (node density, number of connections, black hole and wormhole
attacks) on four responses (throughput, packet loss ratio, average end-to-end delay and
routing overhead) were simultaneously assessed using only 8 experiments in the case
of the Plackett–Burman and Taguchi methods, while 16 experiments were performed
for the full factorial method. Consequently, the Taguchi method might be considered a
better alternative to the full factorial method when the number of involved factors is large.
Additionally, it is important to note that the Taguchi method proposes powerful orthogonal
arrays to design the experiments.

The findings indicate that the three methods allow efficient estimates of the most
influencing factors. However, the overall trends of the main effects from the Taguchi
method are much closer to those of the full factorial method than those obtained from the
Plackett–Burman method.

The ANOVA analysis reveals that no noticeable differences are detected between the
three methods regarding the factors that are statistically significant. The discrepancies are
observed in the ranking of factors based on the percentage contributions. This is due to
how the collected data are analyzed since the FFD and the PBM focus only on the measured
values of the response, whereas the Taguchi method uses signal-to-noise ratios based on
both the mean and the variance of the response.

Regarding the accuracy of the mathematical models, the results of the adjusted
R-squared and the fitting plots show that the Taguchi method gives the best descriptive
and predictive power followed by the Plackett–Burman and full factorial methods.

Finally, it is essential to mention that these conclusions are relatively valid to our case
study, limited by the number of factors considered and the assigned levels. Thus, interested
researchers can perform their scientific studies based on their specific conditions and
potential limitations. The goal was to demonstrate the practicability of the implementation
of some DOE approaches since their application to the performance assessment is less
addressed in the literature. As far as we know, we believe that no such comparative study
was presented before that applies different DOE methods together for the evaluation and
the modeling of VANET routing protocol performance.

6. Future Work

A more comprehensive study is needed to explore other DOE approaches. Other fac-
tors should be involved, and their effects can be investigated on other metrics such as com-
putational complexity, energy consumption, collision or the percentage of disconnectivity.
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The next step in our work will be the optimization of VANET routing protocols based
on statistical approaches to address the scalability and the security issues in VANETs, where
a normalized measure of performance putting together multiple performance metrics can
be performed.
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Appendix A

Table A1. The design matrix of the FFM.

N◦ ND NC BKH WMH Y1(TH) Y2(PLR) Y3(AE2ED) Y4(RO)

1 − − − − 30.8856 38.2787 41.6846 11.356
2 + − − − 25.4735 49.0847 58.9551 259.989
3 − + − − 27.2436 45.5328 92.798 23.73
4 + + - − 20.8482 58.3306 103.756 541.77
5 − − + − 18.882 62.2541 11.4101 10.982
6 + − + − 15.5586 68.9071 51.6864 179.034
7 − + + − 22.459 55.1148 72.6775 26.227
8 + + + − 15.9643 68.0929 76.912 541.073
9 − − − + 14.397 71.2295 59.5812 49.842

10 + − − + 16.7487 66.5301 63.4301 1286.464
11 − + − + 19.6663 60.6967 121.866 81.667
12 + + − + 17.2816 65.4645 126.736 1428.075
13 − − + + 18.9702 62.0902 23.8954 13.046
14 + − + + 10.9926 78.0328 39.9311 1082.724
15 − + + + 15.0819 69.8607 33.5335 21.096
16 + + + + 14.0337 71.9508 177.212 1172.566

Table A2. The design matrix of the PBM.

N◦ ND NC BKH WMH Y1(TH) Y2(PLR) Y3(AE2ED) Y4(RO)

1 +1 −1 −1 +1 16.7487 66.5301 63.4301 1286.464
2 +1 +1 −1 −1 20.8482 58.3306 103.756 541.77
3 +1 +1 +1 −1 15.9643 68.0929 76.912 541.073
4 −1 +1 +1 +1 15.0819 69.8607 33.5335 21.096
5 +1 −1 +1 +1 10.9926 78.0328 39.9311 1082.724
6 −1 +1 −1 +1 19.6663 60.6967 121.866 81.667
7 −1 −1 +1 −1 18.8882 62.2541 11.4101 10.982
8 −1 −1 −1 −1 30.8856 38.2787 41.6846 11.356
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Table A3. Taguchi’s OA L8 with signal-to-noise ratios (SNR).

N◦ ND NC BKH WMH SNR TH SNR PLR SNR AE2ED SNR RO

1 1 1 1 1 29.795 −31.659 −32.400 −21.105
2 1 1 2 2 25.561 −35.860 −27.566 −22.310
3 1 2 1 1 28.705 −33.166 −39.351 −27.506
4 1 2 2 2 23.569 −36.885 −30.510 −26.484
5 2 1 1 2 24.480 −36.460 −36.046 −62.188
6 2 1 2 1 23.839 −36.765 −34.268 −45.059
7 2 2 1 2 24.752 −36.320 −42.058 −63.095
8 2 2 2 1 24.063 −36.662 −37.720 −54.665
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