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Abstract: This paper presents a wireless mesh network testbed based on ESP8266 devices using
painlessMesh library. It evaluates its feasibility and potential effectiveness as a solution to monitor
perishable goods, such as fresh fruit and vegetables, which are often stored and transported inside
refrigerated containers. Performance testing experiments with different numbers of nodes and traffic
loads and different message payload sizes are conducted under unicast transmission. The impact on
network performance is evaluated in terms of delivery ratio and delivery delay, which, consequently,
affect the energy consumption and, hence, network lifetime. The results of this investigation are
an important contribution to help researchers to propose mechanisms, schemes, and protocols to
improve performance in such challenging networks.
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1. Introduction

The contribution of wireless mesh networks (WMNs) [1], in the fast-growing context
of the Internet of Things (IoT), extends from agriculture to the most demanding industries
and services, collecting and processing timely data and aiming to provide real-time infor-
mation to help decision making [1]. They are a viable, low-cost, and highly scalable tool,
making them a valuable alternative for this type of implementation [2]. Mesh networks
are characterized by the aggregation of nodes in a mesh topology, making them actively
involved in data transmission, regardless of whether they are switches, bridges, or another
device [3]. This lack of hierarchy, which contrasts with commonly used topologies, such as
star topologies, makes the network more efficient and fault tolerant, since the nodes are
not dependent on each other [4]. It is also extremely easy to add new nodes to an existing
network since it is not necessary to change the rest of the network [5].

Cold chains, which are the refrigerated portions of the supply chain, help keep prod-
ucts fresh, nutritious, and safe as they are moved from farm to fork, thus, improving food
security, reducing food waste, and enhancing income for farmers [6]. Cold chains can
benefit from IoT adoption. The PrunusPós project [7] aims to contribute to this goal by
studying the optimization of processes of storage cold conservation, active and/or intelli-
gent packaging, and traceability of food quality in the post-harvest stage of endogenous
stone fruit products of the Beira Interior region of Portugal (e.g., cherry and peach). Among
other objectives, this project: (1) experimentally characterizes the storage, conventional
cold conservation, and packing in the post-harvest stage of cherry and peach and studies
innovative techniques for this sector; (2) quantifies reference operation times and parame-
ters in the different stages of conservation and storage in order to extend the shelf life of
fruit products, using experimental evaluation in cold storage chambers with controlled
atmosphere and packaging with modified atmosphere and numerical simulation; (3) de-
velops a provisional computational tool that, through the function of different operative
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parameters and specificity of the process, allows the optimization of the permanence time
in each stage of the conservation and storage process, assuring the quality of the product.

Accordingly, it is necessary to develop a wireless mesh sensor network (WMSN) in the
context of the PrunusPós project that allows the collection of data about the fruits’ storage
temperature and relative humidity, as well as the storage duration. The evolution of cherry
and peach quality depends directly on these parameters.

The ESP8266 [8] devices with integrated temperature and humidity sensors are selected
to be used on the PrunusPós project WMSN. This hardware is chosen because it fulfils
the requirement to be a simple, low-cost, effective solution. The ESP8266 devices are
incorporated inside the innovative fruit crates (i.e., intelligent packages) also developed in
the context of PrunusPós project to prolong fruit life. The devices communicate wirelessly,
forming a mesh network which gathers and sends data to a server on the Internet. Some of
the fruit crates are removed from the refrigerated truck load during transport for delivery
to different stores. Thus, not all sensor nodes are always present in the network.

The ESP8266 [8] devices are commonly used in many projects together with the
painlessMesh library [9], which is a tool available for the Arduino [10] programming
environment that implements layer 3 (network layer) of the open system interconnection
(OSI) model. This library allows nodes to exchange unicast or broadcast messages in
a WMN. The network creation and connectivity are managed by the library itself. It is only
necessary to configure the devices to have a matching service set identifier (SSID).

A previous work from other authors [11] attempted to measure the performance of
ESP8266 devices using the painlessMesh library. However, we argue that the study was
incomplete and unclear and lacked an in-depth explanation of the setup and configurations
used. Moreover, the implementation and initial tests of the PrunusPós project WMSN
showed different results from the ones presented in that work [11].

Therefore, this paper aims to address the previously identified shortcomings. It
presents a wireless mesh network testbed setup and provides a measurement-based per-
formance evaluation. Performance experiments are conducted with different numbers
of nodes and traffic loads and different message payload sizes using unicast communi-
cations. The impact on network performance is evaluated in terms of delivery ratio and
delivery delay. This study will guide the future development of mechanisms, schemes, and
protocols that provide efficient bandwidth utilization and energy-efficient computing for
the PrunusPós project WMSN. It is crucial to reduce the need for human intervention to
recharge the batteries of the devices incorporated inside the innovative fruit crates.

The rest of the paper is organized as follows. Section 2 presents the concept of
wireless mesh networks and introduces the painlessMesh library. Section 3 describes the
technical details of the testbed hardware implementation and configuration and presents the
algorithms implemented. Section 4 presents the performance evaluation results, together
with a results discussion. Finally, Section 5 concludes the paper and provides guidelines
for future work.

2. Wireless Mesh Networks

Wireless mesh networks [1] are dynamically self-organized and self-configured. The
nodes in the network (with sensor, communication, storing, and processing abilities)
automatically establish an ad hoc network and maintain the mesh connectivity [12].

WMNs can provide broadband communication without relying on a wired backhaul
infrastructure. This has the benefit of rapid and low-cost network deployment. WMNs
remain functional even if one of the nodes fails, since they are not dependent on each
other. It is also extremely easy to add new nodes without having to change the rest of the
network [3,5]. WMNs differ from traditional topologies found in wired networks, such
as star or tree topologies, in that they do not form a hierarchy between devices, such as
switches and bridges. This way, all nodes participate in data transmission, making the
network more efficient and more fault tolerant [4,13].
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WMNs were originally developed for military applications but have gained consider-
able popularity and now have numerous applications for the environment, health, home,
and commerce [14]. They can even be used for industrial wireless networks, city-wide
broadband Internet access, all-wireless offices, and even rural networks [15,16].

In spite of the increasing interest in the study of WMNs, many challenges still need
to be addressed. Many concerns have been raised about the data link layer. Media access
control (MAC) protocols are used for single-hop communication, so this layer should be
designed in such a way that allows multipoint communication between nodes [17–19].
Scalability and quality of service (QoS) are other challenges [20]. Data transmission us-
ing the transmission control protocol (TCP) also seems to be a problem for single-hop
communication, which becomes worse in this type of network [17].

This paper provides a description of a WMN testbed setup and a measurement-based
performance evaluation. The results analysis provides important insights for PrunusPós [7],
a smart precision agriculture project, which aims to extend the shelf life of peaches and
cherries in the Beira Interior region in Portugal. These fruits are highly seasonal and
deteriorate rapidly after harvest. Storage under controlled temperature and humidity
can slow down their decay, but even slight variations may compromise this process. In
the PrunusPós project, sensors are integrated into the crates or other containers used to
store and transport the fruit, which allows the formation of a WMN to provide continuous
feedback on the ambient conditions. This system facilitates individualized data collection
from the moment the fruits are packaged to their delivery.

The testbed is based on ESP8266 devices [8] connected in a wireless mesh network
using the painlessMesh library version 1.4.9 [10,21], which is a library available for the
Arduino programming environment [22]. The painlessMesh library takes care of creating
a simple WMN using ESP8266 and ESP32 hardware. The programmer does not have
worry about how the WMN is structured or managed, as it automatically connects nodes
with the same SSID. The painlessMesh is not IP networking; it does not create a TCP/IP
network of nodes. It is implemented as a layer-3 protocol (i.e., network layer of the OSI
model), connectionless and without confirmation. Nodes are not identified by their Internet
protocol (IP) address, but, instead, by a 32-bit address taken from their MAC address. Each
node knows the network topology from the neighboring nodes, which is updated every 3 s
(Figure 1). The messages exchanged between network nodes can be transmitted through
broadcast or unicast and use the JavaScript object notation (JSON) format. The use of
JSON format facilitates user comprehension and integration into web applications but may
decrease network performance [9].
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Figure 1. Example of a painlessMesh topology.

3. Testbed

The testbed implemented in this study was based on ESP8266 devices shown in
Figure 2. These devices have 16 MB of Flash memory and a built-in wi-fi antenna, which
transmits at a frequency of 2.4 GHz [8]. It is also possible to connect an external antenna to
these devices to amplify the signal. In terms of processing, the ESP8266 operates at 80 MHz
or 160 MHz frequency, set according to the programmer’s selection [23]. These devices also
have a battery connector so they can operate in standalone mode [23].
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Figure 2. ESP8266 device.

Despite their small size (48 × 25.4 mm), the ESP8266 devices find a wide range of
implementations in the field of the Internet of Things. Some examples range from small
projects for smart irrigation systems [24], measuring energy consumption [25], or fire-
detection alarms [26] to more robust solutions such as synchronizing information on the
availability of charging stations for electric vehicles (facilitating their scheduling during
trips) [27], the control of meteorological data in photovoltaic stations [28], air quality
control systems in metallurgical factories [29], or in scenarios of disease prevention related
to COVID-19 [30].

The configuration and programming of these devices was performed through the
Arduino IDE [22]. It is also possible to program them using the MicroPython [31] or
NodeMCU [32] environments [23]. Flowcharts are presented next to illustrate the configu-
ration process based on the node type (i.e., sensor or destination) and the network settings
to be configured (e.g., payload, number of messages per second, or IwIP Variant).

After installing the painlessMesh library in the Arduino IDE, the first step was to
choose the parameters that are set on all nodes to form the mesh network: the SSID, the
port, and the password to access the network. The port needed to be selected so as to not
conflict with those used by well-known applications and protocols. The steps are illustrated
in Figure 3.
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The configuration of the IwIP Variant shown in Figure 4 is another important parameter
that requires attention, due to its potential impact on the network performance. It allows
the selection of one of two options: lower memory or higher bandwidth. The first one
considers a maximum segment size (MSS) of 536 bytes. The second one considers a MSS of
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1460 bytes, thus, requiring more computational and memory resources. MSS is defined as
the largest size that a TCP payload can have after subtracting the header sizes [33]. Both
options consider a maximum transfer unit (MTU) of 1480, which is the maximum size that
each IP payload can be including IP and TCP headers [8].
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Due to the requirements of the PrunusPós project, it was assumed that a network
composed of one or more sensor nodes and a single destination node was required, as
illustrated in Figure 1. The use of painlessMesh library guaranteed that each sensor node is
able to connect to several other sensor nodes and/or to the destination node, thus, forming
the mesh, and, if one drops out of the network, its neighbors simply find another route.
The drop out of sensor nodes may occur due to battery depletion, a hardware problem, or
if some sensor nodes, which are integrated in the fruit pallets, leave the truck (e.g., fruit
delivery to a market). The following describes the algorithms implemented in the testbed
to evaluate message delivery ratio and the transmission delay between different numbers
of sensor and one destination node.

3.1. Message Exchange

Figure 5 illustrates the process of pairing one or more sensor nodes and the destination
node and the flow of message exchange. Figure 6 describes the algorithm used for message
exchange. After setting the parameters of the experiment (i.e., message send rate, payload
size, and type of communication), sensor(s) and destination nodes paired. Then, message
transmission was initiated and executed during a predefined period of time. Both sensor(s)
and destination nodes counted the number of messages successfully sent or received during
that time. The destination node had additional time to process and count them. The count
was printed at the end. Unicast messages were sent using the sendSingle() method from the
painlessMesh library. This method needs to identify the ID of the destination node.
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3.2. One-Way Delivery Delay

Figure 7 illustrates the process of pairing the sensor(s) and destination nodes and the
message exchange between them that allowed the determination of the one-way delivery
delay. Figure 8 describes the algorithm used to obtain information about the one-way
delivery delay. According to painlessMesh API documentation [34], this library provides
startDelayMeas() and nodeDelayCallbak_t() methods to measure the one-way delivery delay.
The first method (startDelayMeas()) was called by the destination node to send a message to
the sensor node. Then, the destination node waited for the sensor node’s response to that
message. The sensor node, after receiving the message from the destination node, returned
a response with the value of delivery delay obtained by the startDelayMeas() method. This
response message triggered the callback method (nodeDelayCallbak_t()) on the destination
node, and the delivery delay value was extracted from the received message.
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4. Performance Assessment

This section presents the performance assessment of a WMN testbed based on ESP8266
devices connected using the painlessMesh library. The next subsections describe the
testbed setup, the performance metrics considered in this study, and the results analysis
and discussion.

4.1. Setup

To not bias the results, all tests were conducted with device configurations requiring
the minimum computing and memory requirements. Therefore, the tasks performed
by ESP8266 devices were only those strictly necessary for their correct operation. The
responsibility for the network mesh connection was delegated to the painlessMesh library,
as was assumed by other authors in previous work [11]. It should also be noted that no
root node was defined.

Due to the requirements of the PrunusPós project [7], the performance of the WMN
was evaluated in the scenarios illustrated in Figure 9. The network topologies presented in
Figure 9 should be considered as a mere example, since this task is part of painlessMesh
library management. The scenarios were composed of a varying number of sensor nodes
(1 to 5), which repeatedly send messages, and a single destination node that attempts to
receive them. The nodes were evenly positioned inside an area of 7 m × 2.5 m similar to
the size of a 26 ft truck’s refrigerated container.

Different traffic loads (1 to 10 messages per second) and message payload sizes (10,
25, 50, 100, 250, 500, 750, and 2000 bytes) were considered under unicast transmissions.
The taskSendMessage() method was responsible for sending messages. This method was
scheduled in the algorithm at fixed time intervals. Thus, the greater the number of messages
to be sent, the shorter that interval was.

The two configurations available for the IwIP Variant (MSS = 536 bytes and 1460 bytes)
were also tested. All the other settings were set by default, namely, the CPU frequency,
which was kept at 80 MHz. The configuration of the devices was performed entirely
through the Arduino IDE. The algorithm developed for the nodes was prepared to output
data through serial communication. Thus, the serial monitor feature of the Arduino IDE
and the PuTTY application [35] were used to present that data.
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4.2. Performance Metrics

The impact on network performance was evaluated in terms of delivery ratio and
one-way delivery delay. The delivery ratio is a key performance indicator, as it tells the per-
centage of successfully received messages. It results from the quotient between the number
of messages received by the destination node and the total messages sent by the sensor
node. One-way delay is the time it takes for a successful message delivery. Each experiment
was run 30 times, and the average results are reported with a 95% confidence interval.

4.3. Results and Discussion

To evaluate the performance assessment, several tests were conducted using the
described scenarios and configurations. The following results were obtained for each test
and are presented, analyzed, and discussed.

4.3.1. MSS Size Variation (IwIP Variant Option)

The first test performed was intended to determine the delivery ratio as a function of
the MSS size: 536 bytes (Figure 10) or 1460 bytes (Figure 11). The scenario used for this test
was composed of a sensor node and a destination node (1S1R) exchanging messages.

The MSS = 536 bytes configuration showed the highest consistency in sending one
message per second among all payload levels. At a sending rate of five messages per
second, there were two significant differences; MSS = 536 bytes achieved better results
sending 100 bytes payloads (94.1% against 69.5%), but MSS = 1460 bytes achieved a delivery
ratio of over 95% with a 500 bytes payload. MSS = 536 bytes only achieved a delivery
ratio of 69.4% at the same level. When the device was sending ten messages per sec-
ond, MSS = 536 bytes performed better when sending 100 bytes payload messages (41.6%).
However, MSS = 1460 bytes showed greater performance when sending 500 bytes pay-
loads (49.0%). There was no statistical evidence demonstrating that there are benefits to
using the MSS = 1460 bytes configuration, especially considering, on the contrary, that
it requires more computational power from the device, which would surely impact the
battery lifetime.
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4.3.2. Number of Nodes Variation

The following test focused on the variation of the number of nodes in the network. The
results were obtained using the following scenarios: two nodes (1 sensor and 1 destination)
exchanging messages (Figure 12); two sensor nodes (2 sensors and 1 destination) sending
messages (Figure 13); three sensor nodes (3 sensors and 1 destination) sending messages
(Figure 14); four sensor nodes (4 sensors and 1 destination) sending messages (Figure 15);
and five sensor nodes (5 sensors and 1 destination) sending messages (Figure 16). All
scenarios considered the existence of only one destination node receiving the messages.

The results obtained with a single sensor node and a destination node let us anticipate
that the number of messages sent per second has a clear impact on network performance.
However, the scenarios with four and five sensor nodes did not lead to a drop in network
efficiency as pronounced as the one recorded in scenarios with two and three sensor nodes.
This, ultimately, indicates that the balance that the mesh network finds depends on the
increase in the number of nodes.
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An occurrence common to all scenarios was verified when using 250 bytes payload
messages. Regardless of the number of nodes in the network, this was the payload that
registered the highest delivery ratio, sending five or ten messages per second. This situation
cannot be dissociated from the fact that the packets had a maximum segment size of
536 bytes and were, therefore, the ones that took better advantage of this dimension.

4.3.3. One-Way Delivery Delay

The results for the one-way delivery delay measurement experiments (Figure 17) are
presented as follows. This experiment was performed with different numbers of sensor
nodes in the network (between 1 and 5). It is important to mention that the mesh network
topology was managed by the painlessMesh library itself. To evaluate the impact of
network congestion on delivery delay, message exchange between nodes was introduced.
The message sending rate varied from no messages exchanged to 1, 5, and 10 messages
exchanged per second by each sensor. Due to the previous findings, this experiment used
the MSS = 536 bytes configuration and a 250 bytes payload messages.
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The results showed a clear volatility in the network delivery delay, with a very high
confidence error range. There was evidence that the introduction of additional nodes led to
increased congestion in the network. In fact, scenarios with four and five nodes generally
led to performance losses. The same behavior was observed with the introduction of
load on the network, i.e., increasing the number of messages exchanged between nodes.
Contrary to expectations, scenarios using only one sensor node always led to very high
average delivery delays, especially when compared to scenarios using two or three sensor
nodes. Other unexpected results, such as the inconstancy in delivery delay at various
network congestion scenarios, can be explained by the uncontrolled network topology
during and between tests. It should be remembered that the management of the mesh
network is part of the painlessMesh library operation.

5. Conclusions

Wireless mesh networking is a continuously growing technology that has an impor-
tant role in the future vision of smart agriculture. This paper presented the setup and
performance assessment of a wireless mesh network testbed developed within the context
of PrunusPós project to collect data such as the temperature and humidity of fruit crates or
containers when stored or transported in refrigerated chambers.

The testbed was based on ESP8266 devices connected in a wireless mesh network
using the painlessMesh library. An extensive performance evaluation study was conducted
with different numbers of nodes and traffic loads and different message payload sizes and
IwIP Variants under unicast communication. The impact on network performance was
evaluated in terms of delivery ratio and one-way delivery delay.

It was possible to conclude that there is no statistically significant benefit in using
messages with larger MSS sizes (536 or 1460 bytes); that would imply greater computational
effort. Additionally, the performance results were affected with the increase in the number
of sensor nodes, the message send rate, and the message payload size, as expected. The
addition of a second and a third sensor nodes to the network had a greater impact on perfor-
mance than the addition of a fourth and a fifth node. It was also observed that, regardless
of the number of sensor nodes in the network, the best performance was always achieved
with 250 bytes messages. Regarding the delivery delay, it was possible to conclude that
there is high volatility, perhaps justified by the network topology management performed
by the painlessMesh library.

This performance assessment study significantly complements and carries forward the
previous work from other authors [11]. It serves as basis for future work on mechanisms,
schemes, and protocols to improve the performance of the painlessMesh in terms of energy
consumption; thus, it enhances the network lifetime of the PrunusPós project wireless mesh
sensor network. It may also be interesting to explore the possibility of using vehicular
networks to attempt to send the sensed data to a server in the cloud [36,37].
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