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ABSTRACT

Modern process plants and refineries contain hundreds to thousands of loops

under automatic controls. Poorly performing control loops cause off-spec product,

waste energy, and cause maintenance and safety issues. Much of the process control

engineer’s time is spent finding the root cause of poor performance, meanwhile

many underperforming loops are left alone for sake of insufficient knowledge and

resources. The field of control loop performance assessment and diagnosis provides

tools for control and plant engineers to identify poorly performing loops, diagnose

root causes, and find corrective actions. Much as process controls automate much

of the regulation and set point tracking functions within the process plant, these

new tools aim to automate, as much as possible, plant monitoring and root cause

diagnosis tasks.

Two of the main problems for poor plant performance are bad controller tuning

and stiction in control valves. Concerning the former problem, most process con-

trols in industrial environments use a proportional-integral (PI) algorithm. There

exists a large body of literature on PI controller diagnosis and retuning, and one

aim of this document is to classify and compare these methods to allow better un-

derstanding of their potential uses. Also herein, the use of the Hurst exponent as

a tuning diagnosis measure is proposed, as well as retuning algorithms that can
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incorporate a wide variety of existing tuning diagnosis measures in order to make

retuning decisions. With respect to valve stiction, new theoretical results on the

efficacy of Hammerstein model based valve stiction detection are presented. In ad-

dition, the Hammerstein model based stiction detection method is extended to the

important case of interacting systems.

One key component of control loop performance assessment is benchmarking

performance. When creating control loop performance benchmarking tools for mul-

tivariate control loops, there exists a large number of possible objectives to pursue.

Early attempts focused on creating mathematical tools that could provide the the-

oretical minimum sum of variances of output variables. However, this objective is

not always aligned with the goal of plant personnel, which is to increase economic

benefit of the plant operation. Therefore, this thesis pursues economic benchmark-

ing of multivariate control systems, which involves trading off variances of different

process variables in order to achieve an optimal operating point. Earlier work in this

area relied on non-convex programming with approximate solution methods. The

current work instead performs a piecewise linear approximation of the non-convex

constraints, allowing for a linear programming solution of the problem.

This document proposes tools that allow for an overall control loop assessment

and diagnosis framework to be implemented. In the single-input single output case,

this framework allows for completely data-based performance assessment and root

cause diagnosis to be performed. For multivariate systems, the tools require more

ix
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system information than in the single-loop case, but with this cost comes the ad-

ditional benefit of performance data directly related to the operation’s economic

objectives. In each case, the performance assessment and diagnosis use only non-

invasive methods, so plant operation is not disrupted to perform the analysis. Adop-

tion of these tools will allow for more efficient and better performing plant opera-

tions.

x
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CHAPTER 1

OVERVIEW OF CONTROLLER PERFORMANCE AS-

SESSMENT

Process control refers to the automatic regulation and set-point tracking of cho-

sen variables within a system that involves the processing chemicals or materials.

This broad definition incorporates the use of process control techniques within the

dissimilar fields of pulp and paper manufacturing, production of chemicals and

chemicals products, petroleum refining, steel rolling, and electricity generation

from fossil fuels. A process under automatic control typically produces products

more safely, cheaply, reliably and with better precision than human operators can

achieve alone. However, automated process controls are not without problems. In-

deed, industrial studies have repeatedly shown that up to 2/3 of control loops have

performance issues [1, 2, 3]. These problems can lead to economic costs such as

off-spec product that needs to be discarded or sent for reprocessing [4], energy costs

due to actuator cycling, as well as safety issues.

To expand on the previous statement that 2/3 of control loops have performance

issues, a survey of 26, 000 industrial control loops had 22% rated as performing

fairly, 10% rated as poorly performing, with 36% of controllers in open-loop, and

only 32% rated at least acceptably [1]. ”Open-loop” refers to a situation where

1
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the controller isn’t performing any meaningful function, either because it has been

switched off by an operator or else because the actuator output is saturated for an

extended period of time. Malfunctions or degradation of control loop components

such as sensors and actuators is very common during plant operation [5]. Improper

tuning of controller parameters or selection of the wrong controller type is also

responsible for many problems.

The field of controller performance assessment (CPA) seeks to aid plant per-

sonnel by providing noninvasive methods for detection of poorly performing con-

trol loops, diagnosis of the root cause for poor performance, and, where possible,

providing solutions to correct identified problems. These actions are alternatively

referred to as closed-loop monitoring and diagnosis (CLPM&D). The field shares

goals with that of statistical process control, in that both concern the identification

and reduction of excess variances in product quality. CPA is also closely aligned to

the field of process fault detection, in that both seek to identify periods of abnormal

performance and isolate the underlying causes. The main focus points of controller

performance assessment are performance benchmarking, oscillation detection and

diagnosis, and assessment of controller structure and tuning.

2
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1.1 Review of Control Loop Assessment Techniques

The field of controller performance assessment has been rapidly growing since

the appearance of the seminal work by Harris 25 years ago [6]. In that work, it

was shown that a theoretical lower bound on the variance of the output variable of

a single-input single-output (SISO) control loop could be constructed using only

routine operating data and the time delay of the open-loop plant. This develop-

ment led to the wide-spread use of the minimum variance index, which is the ratio

of the theoretical minimum variance against the variance measured at the current

time. Benchmarking loop performance with the minimum variance index allowed

for problematic loops to be more easily identified in industrial processes [7], at

which point diagnosis steps could be undertaken. As oscillations are one of the

largest detriments to plant performance, techniques for automated detection were

investigated [8, 9]. Control valve stiction and poor control loop tuning were iden-

tified as large contributors to the occurrence of oscillations and other performance

problems, so methods to detect and correct these issues have also been a major

priority for the control loop performance assessment field.

1.1.1 Performance Benchmarking

In the years following the initial publication on the minimum variance index,

many new methods were introduced to extend this benchmark to different situa-

3
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tions. For cases where the time delay is uncertain or where the user wants to define

an easier to achieve benchmark, the use of the extended prediction horizon index

has been proposed [10, 11]. A benchmark that used step disturbance rejection as

an alternative performance goal was introduced [12]. It was strongly desired to ex-

tend the idea of benchmarking control loop performance to cases other than SISO

loops having a general controller structure. Many works were concerned with per-

formance benchmarking of multiple-input multiple-output (MIMO) systems. In

MIMO processes, one or more of the manipulated variables affect more than one of

the controlled outputs, which leads to interactions between separate control loops.

Initial attempts to quantify the theoretical achievable output variance relied on the

use of system interactor matrices [13, 14, 15]. The interactor is a relatively difficult

to understand concept [16], and so Ko and Edgar introduced a method to calculate

the same performance bound without calculating this matrix [17].

Several problems were identified in the use of minimum variance benchmark-

ing. The first was the high requirement for open-loop plant information. Recently,

for the assessment of SISO control loops, Srinivasan et al. [18] proposed the use of

detrended fluctuation analysis for performance assessment, which does not require

the open-loop time delay. For multivariate systems, Huang et al. proposed the use

of the order of the interactor matrix instead of the full interactor matrix to quantify

an approximate minimum variance benchmark [19]. This work also introduced the

closed loop potential, which is a measure of the prediction error compared to a dead-

4
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beat controller. Zhao et al. introduced the multi-step prediction error benchmark

[20], wherein the impulse coefficients of the prediction error, normally employed

for calculation of minimum variance benchmarks, are reweighted. This is done with

accordance to the goal of some types of controllers to minimize the predicted error

over a finite horizon.

Another problem frequently stated with the minimum variance benchmark is

that the benchmark leads to too severe movements in the manipulated variables in

an attempt to reduce the variance of output variables. Horch and Isaksson proposed

a benchmark for SISO systems in which a single closed-loop pole is introduced

for the decay of the output error after the time delay (similar to Lambda tuning

methods) [21]. Huang and Shah proposed a similar concept allowing user specified

dynamics for MIMO systems [22]. An important development was the introduction

of linear quadratic Gaussian (LQG) benchmarking, wherein the trade-off of the

variances of the manipulated and controlled variables is explicitly recognized [23].

In LQG benchmarking, the current loop performance is plotted against the Pareto

optimal curve of input and output variables in order to judge whether the system

lies close to some optimally controlled point.

Qin and Yu noted that multivariate minimum variance control also leads to min-

imum covariance between different output variables [24]. This led to the develop-

ment of a data-based technique for performance assessment in which generalized

eigenvector analysis of the covariance matrix was used to determine the worst di-

5
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rections of performance compared to a historical benchmark [25]. After determin-

ing these directions, the contribution of the original set of outputs to each worst

direction is identified and the highest contributing variables are assigned for fur-

ther diagnosis [26]. On the other hand, Harris and Yu investigated the concept of

degree-of-freedom analysis as a performance assessment tool [27]. The degree of

freedom is defined as the difference between the total number of output variables

and the number of manipulated variables that are not currently saturated. Positive

degree of freedom allows the controller to regulate the output variables while si-

multaneously seeking to achieve other performance objectives, whereas negative

degree of freedom means that some outputs cannot be maintained at their set points

[27]. Gigi and Tangirala have investigated the quantification of interaction between

control loops in decentralized control systems using frequency domain techniques

[28, 29, 30]. Interaction is a fundamental factor determining the attainable perfor-

mance by MIMO systems, although more work is required to make the connection

clear.

1.1.2 Performance Assessment of Model Predictive Controllers

An area of increasing interest is the performance assessment of systems un-

der model predictive control (MPC). An MPC controller determines each control

move by solving an optimization problem, usually the sum over a finite horizon

of a weighted combination of squared output errors and expended controller en-

6
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ergy. The MPC formulation uses a model of the plant behavior to predict the ef-

fects of controller moves on the future plant behavior, and also allows the presence

of constraints on manipulated and controlled variables. Hugo has stated that the

previously introduced LQG benchmarks are unattainable for most industrial imple-

mentations of MPC due to the simplified random walk disturbance model they rely

upon [31]. This disturbance model structure often inhibits performance, therefore,

Julien et al. have proposed a benchmark where this inhibition is accounted for [32].

Schäfer and Cinar have proposed the use of a historical benchmark for MPC per-

formance assessment, wherein the benchmark performance is chosen from a past

operating period deemed to have been the best [33]. In alternative methods for

MPC performance assessment, it has often been suggested to rerun the system in a

simulation environment and to redesign the controller subject to the same operating

point and constraints [34, 35, 36].

A particularly active area of MPC performance assessment is the automated

identification of so-called model plant mismatch (MPM), a condition that occurs

when the MPC optimizer uses a poor model of the real system behavior leading to

inaccurate predictions. Loquasto and Seborg proposed the use of the pattern clas-

sification techniques such as neural networks or principle component analysis for

detecting MPM [37, 38]. Badwe et al. proposed monitoring the correlation between

model residuals and the manipulated variable signals to identify this problem [39],

which is a similar idea to that proposed much earlier by [7] for loops under internal
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model control. Badwe et al. also proposed the use of frequency domain techniques

which can predict the effect of model plant mismatch on the economic performance

[40]. Selvanathan and Tangirala also used a frequency domain technique that can

separately identify mismatch in the model gain, time constant, or time delay [41].

Alternatively, Harrison and Qin proposed monitoring the autocorrelation of state

estimate errors, which is also indicative of MPM [42].

1.1.3 Economic Performance Assessment

The concentration on reducing the variance of the output variable of the control

loop sometimes leads to forgetting the primary objectives for doing so, which usu-

ally involve increasing operating profits. By reducing output variance, it is hoped

to push the operating point closer to the constraint boundary as this is often where

optimal economic performance is achieved [43]. However, it is usually the case

that reducing the variance of one variable will cause another variable to increase

in variance. Therefore, several works have treated the trade-off of variances of dif-

ferent control loop variables as constraints on achieving the maximum economic

benefit. This problem is called minimum back-off operating point selection, as the

operating point must be ”backed-off” from the operating constraint boundaries due

to the normal variances encountered during dynamic operation [44, 45]. Peng et al.

give an overview of many of the available formulations for this problem, finding

problems in most of the existing formulations [46]. The formulation constructed
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by Peng et al. results in a non-convex optimization problem which simultaneously

allows for the determination of operating point and controller structure.

1.1.4 Non-Invasive Detection of Control Valve Stiction

Control valve stiction is one of the major root causes of plant-wide oscillations

in the process industries [47]. This has led to a large number of works on stic-

tion detection. The data-based Hammerstein model stiction detection algorithm of

Srinivasan et al. [48] has been followed by many variants [49, 50, 51, 52, 53]. The

advantage of this approach is that no a priori model is needed of the control loop,

instead relying on the excitation of the loop variables by the presence of stiction

in order to construct a model used within the stiction detection algorithm. It is

noted that in some cases the Hammerstein model based approach fails to identify

that stiction is present in loops where it occurs [54, 55]. Recently, Srinivasan et

al., have proposed an explanation for this failure [55]: if the controller bandwidth

is larger than the process bandwidth, then the same frequency information will be

present within both signals. Since the Hammerstein model based approach takes

advantage of stiction excitation that is usually available in the plant output but not

the controller signal, identification will fail in these cases. Srinivasan et al. have

also proposed a reliability measure to quantify whether enough extra information is

available in the plant output signal for the Hammerstein model stiction detection to

work properly.
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There are few methods available for isolation of stiction to a single valve within

an interacting MIMO system. Haoli et al. proposed to sequentially change the

gain across every loop of the interacting system [56]. In this method, the controller

whose change in gain produces the largest shift in oscillation frequency is assumed

to be connected to the valve with stiction. However, no theoretical backing is pro-

posed, and it is unknown whether this method can have wide-spread application.

Other than this, the only known solution to isolate stiction within an interacting

system is to put the suspected loops under manual control and perform experimen-

tal tests. This type of manual diagnosis is labor intensive, disruptive to the process,

and potentially unsafe [57].

1.1.5 PI and PID Controller Assessment

By far, the PID (proportional-integral-derivative) control law and particularly

its PI (proportional-integral) implementation are unmatched in prevalence within

the process industries, with one industrial survey reporting that 97% of low-level

controllers had a PI or PID structure [1]. Meanwhile, close to 1000 research articles

appear every year on the PI and PID control algorithms. As with the larger field of

process control, there has been increasing interest in recent years to monitor PI/PID

controller performance, diagnose problems, and take corrective action, in an auto-

mated fashion where possible. Therefore, an extensive review of the literature on

PI controller performance diagnosis and automated retuning follows in Chapter 2.
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1.2 Framework for Control Loop Performance Assessment and Di-

agnosis

Figs. 1.1 and 1.2 show proposed frameworks for controller performance as-

sessment of single-input single-output and multiple-input multiple-output systems,

respectively. The framework in Fig. 1.1 is a modification of the framework pre-

sented within [58] and is updated to reflect the state of the available techniques,

while Fig. 1.2 is the extension of this framework to multivariate systems. As in

previous frameworks for controller performance assessment and root cause diagno-

sis [5], a first step is looking for the presence of oscillations in control loop signals.

Since oscillations are detrimental to control loop performance, it is assumed that the

control engineer will want to diagnose and mitigate any oscillation sources before

investigating other potential problems. Another reason for starting with oscillation

detection is that the use of controller performance indices, such as the Hurst Index

and the minimum variance index, are not recommended for use on oscillatory loops

[59, 18].

As in the assessment tree for SISO systems in Fig. 1.1, if no oscillations are

detected, then assessment of the loop can proceed according to one of several per-

formance measures. Here, in Fig. 1.1, it is recommended to use the data-based

measure, called the Hurst Index, as it requires no model information in its calcula-

tion [18]. Currently, in the process industries, model information is not available
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for the large majority of control loops in a form that could be easily accessed by a

large-scale automated assessment tool [60]. If the open-loop time delay is available,

then the minimum variance index proposed by Harris can be used [6], and if a full

plant model is available then either the generalized minimum variance benchmark

can be used [61], or a benchmark specific to the particular controller type, such as

the attainable PI performance benchmark [62], can be implemented. Other special-

ized benchmarks for single-loop control include ones for cascade control [63] or

restricted structure control laws [64].

Whichever performance measure is chosen, the point is to classify the current

loop performance as acceptable or problematic. If performance is not acceptable,

then the diagnosis would move to the next level of the tree of Fig. 1.1. Single-input

single-output control loops are very likely to use a proportional-integral control law.

Therefore, it is useful to have a tool to diagnose problematic loops of this type, and

so, Fig. 1.1 has includes a component for the diagnosis and retuning of this type of

control loop.

For MIMO control loops, Fig. 1.2 shows that the first step is again to perform

oscillation detection. In the case of no oscillations, the benchmarking proposed

is the use of economic performance assessment. This is because a multivariate

system, as the name implies, will have many variables, and the improvement in

the quality of one variable will often be to the detriment of others, therefore this

trade-off should occur in the context of increasing economic benefit. For oscillatory
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Figure 1.1: Performance assessment and root cause diagnosis tree for single-input
single-output control systems
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Figure 1.2: Performance assessment and root cause diagnosis tree for multiple-
input multiple-output control systems
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systems, stiction detection and isolation remains the main priority. Because other

parts of the multivariate performance assessment procedure require a model, it is

possible that a model will be available for use by the stiction detection algorithm.

However, for instances when this is not the case, it is also proposed that data-based

stiction detection in interacting systems should be pursued in the future.

1.3 Motivation

The control loop assessment trees of Figs. 1.1 and 1.2 provide a framework for

determining control loop performance and isolating the cause of problems. How-

ever, several blocks on these trees need more investigation before the overall frame-

work can be implemented:

• The literature on data-based tuning diagnosis and retuning of PI type con-

trollers is fractured. An overall framework for viewing the multitude of dif-

ferent methods available for these purposes is required. Meanwhile, sluggish

and aggressive tuning are commonly used terms with no commonly accepted

definition. Automated retuning algorithms have been proposed that do not

monitor the performance objective that they seek to improve [65]. Further-

more, stability of existing data-based retuning algorithms has not been ex-

plored.
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• It has been noted that automated stiction detection algorithms fail for certain

linear systems [54]. Recently, an explanation has been proposed along with

an associated reliability measure for Hammerstein model based stiction de-

tection [55]. However, theoretical backing for the proposed explanation has

been lacking.

• Very little literature has appeared on isolation of stiction within interacting

MIMO systems. Previous techniques rely on overly invasive methods such

as making large changes in the controller gains several times throughout the

system [56]. For SISO loops, the Hammerstein model based stiction detec-

tion technique requires only routine operating data and no invasive diagnos-

tics [48]. Additionally, model information may be available for isolation of

stiction within interacting systems.

• For economic performance assessment proposed in Fig. 1.2, existing tech-

niques for creating a performance benchmark rely on the use of non-convex

optimization problems, with computationally expensive branch and cut al-

gorithms [46], or else the use of a two stage optimization process [66]. The

optimization problem could be more efficiently solved by linear programming

if piecewise linearization of the constraints is performed.
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1.4 Objectives

Given the stated desire to fill gaps within the control loop assessment trees of

Figs. 1.1 and 1.2, this thesis seeks to perform the following functions:

1. Present a unified classification for data-based loop tuning diagnosis and re-

tuning techniques. Compare the class of data-based loop tuning diagnosis

measures that rely on closed-loop operating data without artificial excitation

or set-point changes. Propose the use of the Hurst exponent as an additional

loop tuning diagnosis measure. Introduce a modification of data-based con-

trol loop retuning techniques for PI controllers in order to increase the per-

formance of these algorithms. Highlight the issue of possible algorithm in-

stability.

2. Provide theoretical justification for the proposed explanation of the failure of

Hammerstein model based stiction detection within certain linear systems.

3. Extend Hammerstein model based stiction detection to MIMO systems. Al-

low for noninvasive isolation of detected stiction to a single valve within the

interacting system.

4. Introduce a new method for the economic performance assessment of con-

strained multiple-input multiple-output systems. Transform the problem into
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a simple form that can be solved through linear programming. Demonstrate

its use for selection of the system operating point.

1.5 Organization

Fig. 1.3 provides an overview of the remainder of this document. Within this

work, a variety of control loop performance assessment problems have been con-

sidered, and these can be categorized based on whether they apply to single-input

single-output systems or for multivariate systems. Chapter 2 is concerned with the

data-based performance assessment and retuning of single-input single-output con-

trol loops under PI control. After an in-depth review of existing techniques, the use

of the Hurst Exponent as a loop tuning diagnosis measure is introduced, followed by

the introduction of two new automated controller retuning algorithms. Simulation

studies provide a comparison of several loop tuning diagnosis techniques and retun-

ing algorithms. Chapter 3 introduces a theoretical result explaining the failure of

stiction detection algorithms in certain linear SISO systems. Simulation examples

demonstrate the effect of the theorized phenomenon in practical situations. Chapters

4 and 5 are concerned with performance assessment and improvement of multiple-

input multiple-output control systems. First, an extension of Hammerstein-based

stiction detection algorithm to the case of MIMO loops under decentralized con-

trol is proposed in Chapter 4. Simulation trials demonstrate the potential of this
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technique. Following this, in Chapter 5, an algorithm for performance assessment

and operating point selection for multivariate constrained control systems is intro-

duced. Simulation examples illustrate the benefits of this new method. Finally,

within Chapter 6, a summary of this work and its contributions is presented, and

future work is proposed.

Figure 1.3: Outline of material contained in this document
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Nomenclature

CLPM&D closed-loop performance monitoring and diagnosis

CPA controller performance assessment

LQG linear quadratic Gaussian

MIMO multiple-input multiple-output

MPC model predictive control

MPM model plant mismatch

PI proportional-integral

PID proportional-integral

SISO single-input single-output
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CHAPTER 2

AUTOMATED DIAGNOSIS AND RETUNING OF PROPORTIONAL-

INTEGRAL (PI) CONTROLLERS

The aim of this chapter is to present a new look at the existing data-based and

non-intrusive PI (proportional-integral) controller tuning assessment methods for

SISO (single-input single-output) systems under regulatory control. Poorly tuned

controllers are a major contributor to performance deterioration in process indus-

tries both directly and indirectly, as in the case of actuator cycling and eventual fail-

ure due to aggressive tuning. In this paper, an extensive review and classification

of performance assessment and automated retuning algorithms, both classical and

recent is provided. A subset of more recent algorithms that rely upon classification

of poor tuning into the general categories of sluggish tuning and aggressive tuning

are compared by their diagnostic performance. The Hurst exponent is introduced

as a method for diagnosis of sluggish and aggressive control loop tuning. Also,

a framework for more rigorous definitions than previously available of the terms

“sluggish tuning” and “aggressive tuning”are provided herein. The performance of

several tuning diagnosis methods are compared, and new algorithms for using these

tuning diagnosis methods for iterative retuning of PI controllers are proposed and

investigated using simulation studies. The results of these latter studies highlight
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the possible problem of loop instability when retuning based upon the diagnoses

provided by data-based measures. This chapter is excerpted from paper T. Spinner,

B. Srinivasan, R. Rengaswamy. “Data-Based Automated Diagnosis and Iterative

Retuning of Proportional-Integral (PI) Controllers. Control Engineering Practice,

29:23-41,2014”.

2.1 Introduction

The typical process control engineer is responsible for several hundred or more

loops. They must split their time between implementing new assets and maintaining

existing controllers [1]. Perhaps as a result, surveys report that more than 60% of

controllers provide less than acceptable levels of performance, leading to poor prod-

uct quality and loss of production [1, 3, 2]. These industrial surveys indicate that

at least 30% of control loops were increasing the variability of the process variable

compared to the use of manual control, and another 36% of processes were in open

loop. Among the major causes exists poor controller tuning, with sometimes one

quarter of all loops never adjusted from the default controller parameters [2]. Lack

of manpower and lack of tuning knowledge, combined with the time varying nature

of process and disturbance behaviors [67] make the disappointing results unsurpris-

ing. The field of closed-loop performance monitoring and diagnosis (CLPM&D)

seeks to provide tools to aid plant personnel in identifying poorly performing loops
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and suggesting remedial action, which may include controller retuning.

CLPM&D is a maturing area with several excellent articles [68, 5, 69, 24, 70]

and books [23, 65, 59] providing a general overview, with additional monographs

available on more specialized topics such as valve stiction detection and diagno-

sis [71, 72]. Some of the major causes for poor control loop performance that

CLPM&D techniques attempt to identify include oscillatory disturbances [73], sen-

sor or actuator faults (such as in the case of valve stiction), or poor controller tuning.

Interest in the field of CLPM&D has increased dramatically following the appear-

ance of Harris’s 1989 paper [6] on the minimum variance benchmarking of loop

performance. Comparing against the theoretical minimum variance of the process

variable provides control engineers a way to quantitatively assess the current per-

formance of each loop. Since the original minimum variance benchmark only con-

sidered the performance limiting effects of time delay, subsequent works sought to

include other limitations on loop performance such as interactions in multivariate

systems [13, 15], right half plane zeros [74], but especially the effects of restricted

controller structure [64]. Notably, several methods exist wherein process and dis-

turbance model information for a given system is used in an attempt to define an

upper bound on performance achievable by PI or PID control [62, 75, 76].

PID is the dominant controller algorithm within the process industries, with one

survey reporting that 97% of controllers were of this type [1], while other references

reporting that the actual implementation of these controllers is usually in PI form
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[77, 78]. Although the seminal work of Ziegler and Nichols occurred over 70 years

ago [79], research in the field of PID control is still experiencing a rapid growth

in the number of publications [80], and a volume by ODwyer contains over 400

tuning correlations for PID controllers [81]. Still, proper tuning of these controllers

for optimal performance is not always a priority that the responsible engineer has

time for. Often these PI controllers are retuned only in the case that oscillations

have been detected and thus remain sluggishly tuned otherwise due to lack of man-

power or expertise [82]. Tuning in times of minimal disturbance can result in loops

unable to properly attenuate common disturbances properly. Retuning is also nec-

essary due to process changes or changes in operating regimes. Instrument wear

and equipment fouling (e.g. [83]) cause the process dynamics to drift and time de-

lays to increase. When applying PI or PID control to nonlinear processes, a change

in operating regime should be an impetus for parameter retuning. Controller or pro-

cess parameter changes within interacting loops will also necessitate retuning. All

of these scenarios indicate a need for CLPM&D techniques to identify problematic

loops in need of retuning.

Long before the formal advent of the CLPM&D field, there has existed a wide

assortment of automated methods to assess and correct poor controller tuning, these

belonging to the fields of automatic tuning and adaptive control [84, 85]. In fact, it

is likely that many of the techniques discussed throughout this work were present

in industry long before being documented in the literature. It is proposed that these
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existing methods should be able to achieve improved outcomes if combined with

other CLPM&D techniques. For example, many adaptive tuning methods would

identify excessive oscillations as being associated with aggressive controller tun-

ing [86], when in fact they could be present for a variety of reasons such as valve

or sensor degradation other sources of hysteresis within the loop, or externally in-

duced oscillations beyond the capable of loop to compensate. This is why it is

recommended [5] to attempt detection of other specific types of malfunctions, for

example by applying nonlinearity indices [87] or Hammerstein stiction detection

methods [48], before assigning poor loop performance to controller tuning. In this

way, controller tuning will not be inadvertently worsened when other problems are

afflicting the loop.

CLPM&D based PI/PID tuning assessment techniques and the previously ex-

isting data-based automated tuning methods can be classified in a similar way. In

one category, a model of the open loop process and possibly a model of the distur-

bance filter are used to calculate an upper bound on performance referred to as PI

or PID achievable performance, and then the current performance is judged against

this benchmark. As a result of the parameter optimization used to predict the best

achievable performance, the optimal controller tunings are also acquired. However,

the requirement of model information by these assessment techniques is not easily

achieved. Process models are available for only a small minority of control loops

[1]. Therefore, use of model-based techniques produces the need for either iden-
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tification experiments or else the existence of specific conditions (excitation by set

point changes) that may not be present in most loops. Thus the model informa-

tion dependent techniques may be severely limited in applicability. Other types of

PI/PID controller assessment and retuning require only operating data that includes

responses to either step-type or stochastic disturbances, in order to diagnose and/or

correct tuning problems. The comparative disadvantage of this type of assessment

technique is that they cannot produce knowledge of the distance from the optimal

set of tuning parameters, so that retuning with these techniques requires an itera-

tive approach towards acceptable performance. However, the largest advantage of

these data-based methods is that they can be implemented without the expense and

intrusion of plant identification experiments.

2.1.1 Contributions of this Chapter

Data-based techniques for controller tuning assessment and correction have an

important role to play in increasing process plant performance. This work presents

review and discussion of several aspects concerning data-based diagnosis and retun-

ing and new ideas and improvements to existing techniques are proposed. It should

be noted that [65] gives a comprehensive overview of a wide range of topics within

the CLPM&D framework and especially that Ch.13 of [65] includes the basis of

several techniques improved by this work. In the following, we present:
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1. A new categorization of the multitude of available loop tuning assessment

and retuning techniques is proposed (Section 2.2).

2. A subset of the tuning assessment techniques is selected, concentrating on

several diagnosis measures which categorize poor controller tuning as either

sluggish or aggressive. First a description of each the selected diagnosis mea-

sures are provided (Section 2.3).

3. A novel use of the Hurst exponent as an additional tuning diagnosis measure

will also be explored. Section 2.4 provides details of this schema.

4. Several definitions of the classifications “sluggish” and “aggressive” are ex-

amined, and a rigorous definition of these terms is proposed (Section 2.5).

5. Comparison studies rate the selected diagnosis measures based upon correct

classification of PI controller parameters sets into the newly defined sluggish

and aggressive categories. The diagnosis measures are calculated upon the

responses of systems subjected to a step in load disturbance magnitude (Sec-

tion 2.6).

6. Finally, use of the selected diagnosis measures within an iterative retuning

algorithm is explored (Section 2.7).

Throughout, issues with and limitations of the use of data-based techniques

are highlighted. The problem of stability during retuning and the insufficiency of
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current and proposed techniques in this regard are stressed.

2.2 Classification of Tuning Assessment and Retuning Techniques

The idea of using automated performance monitoring and adaptive tuning of

PID controller parameters has existed for many years. By 1950, Caldwell [88] had

proposed an intricate mechanical design for adjusting the tuning knobs of a PID

controller in order to reach Ziegler-Nichols [79] type tuning. In Caldwell’s design,

the integral and derivative gains were adjusted to be a set proportion and inverse

proportion, respectively, of the closed-loop cycling period, while the proportional

gain was further adjusted to prevent either continuous cycling or long aperiodic de-

viations. The act of continuously varying a controller’s parameters may seem quite

different from the task of monitoring control loop operating data and alerting op-

erators when a poor condition is detected as a control loop tuning assessment tool

might do. However, techniques for completing either duty can be similarly clas-

sified based upon the information they require from the loop under consideration

along with the way in which they process this information.

Among automated tuning techniques, generally referred to as autotuning or

adaptive algorithms, a first level of demarcation can be made based upon the method

used for initiation of tuning [84, 89]; autotuning is defined as the case where the hu-

man user commands the system to undergo a single automated determination of new
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controller parameters, whereas adaptive controllers continuously monitor the pro-

cess and initiate tuning based upon their internal programmed logic. Among other

identifiable differences, autotuning almost certainly involves some plant experiment

to obtain the required information for tuning to occur, while adaptive control may

or may not require plant experiments. Leva et al. [89] highlights a hybrid case, in

which adaptive tuning is not performed continuously, but only upon fulfillment of

some requirement, e.g. the control error exceeding some threshold. This is how

most commercial applications of adaptive tuning behave in the process industries;

Leva et al. and Jelali [65] refer to this type of implementation as autotuning, while

strm and Wittenmark [84] refer to it as adaptive control. Here, we take the notation

of strm and Wittenmark, so that controllers that even sporadically retune without

user intervention are called adaptive. Adaptive controllers that retune upon detec-

tion of specific criteria use similar methods to CLPM&D tools that continuously

monitor the process and then perform diagnostic functions when some certain con-

ditions are detected.

For the remainder of this section, we will group PID adaptation methods to-

gether with PID controller assessment methods, and segregate this combined group

of methods based upon some essential characteristics. The reasoning behind this is

that several proposed CLPM&D methods incorporate a retuning function [65, 90],

and several others provide estimated optimal controller parameters as a byproduct

of their controller assessment procedure [62, 75]. Likewise many adaptive con-
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trollers incorporate monitoring functions to detect when retuning is necessary and

use diagnostic techniques to decide upon new controller parameters [86, 91]. Figure

2.1 shows the categorization of techniques for automated PID performance assess-

ment and retuning. Techniques in Category I are classical adaptation techniques,

with theory and practical aspects discussed in depth in [84] and [85] among other

sources. These adaptive control algorithms can require intrusive methods such as

relay feedback tests or the injection of pseudo-random binary sequences (PBRS)

[69, 65], or more simply the switch to P-only control [92]. These techniques are

distinguished from techniques in Category II, which do not require a priori models,

change in feedback configurations, or artificial excitation of the loop in order to per-

form, with the possible exception of necessitating a single set-point change. This

practical way of categorization of methods is based on the demands of many indus-

trial users that there be no plant tests or upsets to the process under consideration

during performance assessment and correction procedures [5]. Whether set-point

response is a feature contained in normal operating data-sets varies , since in many

loops of a process plant, set-point might never be changed [93]; however, there exist

some applications where this data is readily available, and in other cases some of

the existing methods relying on set-point responses may be modified to be made ap-

plicable to load disturbance responses, as in [94]. Whether a technique is meant for

performance assessment or parameter retuning, it usually contains some diagnostic

capability to determine the state of the loop.
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PID performance assessment and 

adaptation mechanisms

information requirements

(I)

Require initial model 

or artificial excitation

(II)

Require data available from

normal operation such as from

the response to a load disturbance 

step (Id), stochastic disturbances 

(stc), or a single step in set-point (sp)

tuning diagnosis categories

(IIA)

Closed loop features 
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open-loop model

(IIB)
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updates have direct 

relation with closed 
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(IIC)
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Figure 2.1: Classification of techniques for tuning assessment and retuning
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It is shown in Figure 2.1that techniques in Category II are further divided into

3 subcategories based upon the way in which their functions are performed. Tables

1-3 provide a survey of techniques from categories IIA, IIB, and IIC, respectively.

Within category IIA, features of the closed-loop response to a step change in ei-

ther set-point or load disturbance magnitude are observed, and these features are

combined with knowledge of the current controller settings to identify the parame-

ters within simplified FOPTD (first order plus time delay) or SOPTD (second order

plus time delay) open-loop model structures that are assumed for the plant under

control. From the open-loop models, one of the many existing methods for PI/PID

controller synthesis is used to generate a new set of tuning parameters according

to the specified goal of the control loop. Notable in Category IIA is the work of

Veronesi and Visioli, who applied a model simplification and parameter estimation

technique to develop controller assessment and retuning techniques, first for self-

regulatory loops with set-point changes [94], then later extended this method to

the case of distributed-lag processes [95], processes with integrating plants [96], as

well as cascade control loops [97]. Most recently they adapted their method for as-

sessment and retuning of processes mostly subjected to load disturbances [94] and

also presented methods for tuning of set-point filters when present.

Each of Table 2.1 - 2.3 contains a column describing the information required

for performance assessment or retuning. This information requirement is of three

types: response to a step change in set-point (sp), response to a step change in
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load disturbance (ld), and response to stochastic disturbances (stoch). In Table 2.2,

methods for adaptive tuning of PI and PID controllers are presented from Class IIB.

These rely on identification of certain features of the closed-loop response (rise

time, overshoot, period), and then setting the controller parameters as a prescribed

function of the identified feature values. Several authors state that this procedure

is similar to carrying out Ziegler-Nichols tuning, but in reality, it differs in sev-

eral respects: (i) the features are identified on normal transient responses and not

responses inflicted on the loop by experiments, and (ii) the responses may be de-

caying oscillatory in nature, rather than continuously cycling. Of the adaptive tech-

niques of Category IIB, at least two have reached commercial success, these being

the Foxborro EXACT controller which was installed on thousands of loops [84] and

the PRAC (Pattern Recognition Adaptive Controller) which has been implemented

in 500,000 digital controllers [86].

Table 2.3 describes members of Class IIC, methods which first perform catego-

rization of the control loop tuning state before suggesting retuning action. The re-

mainder of this work concentrates on this category of methods. From Table 2.3, it is

clear that several of the methods involve classifying loop tuning into the categories

“sluggish” and “aggressive”. Rigorous definitions of these sets are absent from the

literature, so Section 2.5 discusses a proposed classification scheme. The methods

of classes IIB and IIC are the ideological descendants of the pattern recognition

adaptive control methods pioneered by Bristol [121, 122]. He championed these
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pattern recognition based approaches due to trouble with identification based adap-

tive controllers, which would sometimes cycle continuously due to poor model-

plant agreement. This type of pattern recognition adaptation was also the basis for

the aforementioned EXACT controller [111]. In Section 2.7, we present results that

suggest that instability is also a concern for data-based retuning based on pattern

classification.

Also notable within Tables 2.1, 2.2, 2.3 are several contributions [91, 86, 107,

108, 117, 116] from researchers in the field of HVAC (heating ventilation air-

conditioning) controls. Like the process industries, this field is also cost sensitive,

with insufficient manpower devoted to controller testing and tuning, and it relies

heavily upon PI regulators [91]. HVAC systems are also nonlinear and subject to

time varying system, loop interaction, and disturbance characteristics [91], compli-

cations which suggest adaptive tuning as necessary to maintain good control. The

relevance of performance assessment and retuning to the field was indicated by a

large survey of research into buildings controls systems issues, examining 40 stud-

ies which incorporated 450 control systems problems reported across more than

70 buildings, which suggested that software problems were responsible for about

1/3 of reported control system issues, and that regulator tuning was a significant

contributor to this category [123, 124]. Moreover, the authors of the prior refer-

ences indicated their suspicion that many system problems reported across other

categories had originally been due to poor controller tuning, such as in the case
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of actuator linkages being continuously cycled until mechanical failure. Within

the presented diagnostic and retuning algorithms, the contributions from the HVAC

field have carefully considered the handling of noise, the proper detection of tran-

sience, and the identification of problems beyond the controller’s capability to cor-

rect [86, 91, 116, 117].

2.3 Review of Diagnosis Measures for Controller Tuning Assess-

ment

This section reviews diagnosis measures available in the literature for assessing

controller tuning. The usefulness of such techniques is by no means restricted to PI

controllers; however, the remainder of this work concentrates upon this simple con-

trol structure both because it provides for tractable analysis and because it holds a

dominant place in industrial applications [77, 78]. The techniques considered were

developed for linear processes with relatively simple disturbances. Nonlinearities

may affect interpretations of these measures by inflicting additional hysteresis in

the response curves, necessitating the use of additional monitoring tools to detect

the presence of sources of these confounding effects.
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2.3.1 Controller Tuning Diagnosis Measures Which Require Step

Changes in Load Disturbance

The methods which fall into this category give best results when the required

controller output and/or process variable data satisfies the following conditions:

1. the data contains the system’s response to a large step change in load distur-

bance so that the data represents a closed-loop step response;

2. when containing multiple step changes in load disturbance, the response to

each are separable in time;

3. generally free of other disturbance types and noise.

To identify when conditions (1) and (2) are met from the recorded process measure-

ment and controller output signals, an abrupt load detection procedure such as in

[125] or [126] will be required. Suitable filtering is specific to each technique and

discussed in the following subsections.

2.3.1.1 Idle Index

Hgglund [82] noted that often during a load disturbance response, sluggish tun-

ing will yield positive correlation between the signs of the slopes in the controller

output (OP) and process variable (PV) signals, and he proposed the idle index to

detect this situation. Upon an isolated step response to a changing load disturbance,
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define tpos as the total time for which the increments of the process variable and con-

troller output have the same sign and tneg as the total time for which the increments

have opposite signs. Then the Idle index (II) is defined as =
(tpos − tneg)

(tpos + tneg)
.

Extensive prefiltering of the data may be necessary in many practical situations.

The range -0.4 < II < 0.4 was originally proposed [82] to indicate well-tuned loops,

with values above 0.4 indicating sluggish tuning, and values below -0.4 providing

no diagnosis as these could result from either well-tuned or aggressive systems.

Later, Visioli [77] , among other requirements, specified that the idle index had to

take on a value of less than -0.6 in order for the loop to be diagnosed as well-tuned.

Advantages: This index was introduced solely for detection of sluggish systems,

which makes it an attractive partner for one or more oscillation detection and diag-

nosis techniques. Notes: As a measure computed upon signal derivatives, this index

is sensitive to the effects of noise, and its calculation requires isolated and denoised

features from the closed loop load disturbance response in OP and PV to be pro-

vided. This can require a multistep procedure of load change detection, denoising,

and exclusion of steady state data. These and various other implementation aspects

are discussed in [127, 128].

2.3.1.2 Area Index

Visioli [77] found that aggressiveness or sluggishness of the loop’s load distur-

bance response is characterized by the manner in which oscillation decays within
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the OP (controller output) signal. For an isolated response to a step change in load

disturbance, define A1 as the area between the first two crossings of the final steady-

state uss of the response of the OP and Atot as the total area in the response of the OP

after the first crossing of the final steady state value. Then, the index is calculated

by AI =
A1

Atot

= A1


∞∑

i=1

Ai


−1

.

Figure 2.2a illustrates the definition of these quantities. If the response of the

controller output signal does not present any crossing of its final steady state value,

the index is simply set to unity. Calculation of the index requires isolated fea-

tures from the closed loop load disturbance response within the OP signal to be

provided, and additionally, it requires the load change response to be sufficiently

abrupt in nature. This will require load change detection and abruptness quantifi-

cation. Separating the effects of the load change from the effects of noise within

the OP data also requires filtering or noise thresholding [77]. The range 0.3 < AI <

0.7, among other requirements, was originally proposed [77] to indicate well-tuned

loops, with lower values indicating aggressive tuning and higher values indicating

sluggishness. Later, Jelali [129] proposed to extend the method to stochastic sys-

tems by applying the index to the estimated impulse response of the process output.

Advantages: As a measure calculated upon areas, it is relatively robust to noise.
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Figure 2.2: Calculation of the (a) the area index, (b) the oscillation index, and (c)
the R-index.
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2.3.1.3 Output Index

Visioli [77] also reported upon how overly high reset time could be diagnosed

in oscillating loops by asymmetry of the oscillations about zero. This asymmetry

occurs because there exists a dominant pole on the real axis within the closed loop

transfer function. For an isolated response within the process variable (PV) data

to a step change in load disturbance, define An as the integral of negative areas

with respect to the final steady state value, and Atot as the sum of all areas after the

first zero crossing of the response. Then the Output Index is simply OI = An/Atot

where An =

∞∑

i=1

Ani and Atot =

∞∑

i=1

Api +

∞∑

i=1

Ani with these quantities illustrated

in Figure 2.2b. The index is only calculated in the case of an aggressive response

being detected by other methods, because it requires the presence of a decaying

oscillatory trend. Calculation of the index requires isolated features from the closed

loop load disturbance response in PV to be provided. The beginning and ending of

the response within the data need to be located with a load detection procedure and

steady state detection, respectively. For loops already detected as being aggressive,

Visioli [77] proposed that a value of OI < 0.35 indicates that the reset time is too

high relative to its optimal setting. Advantages: As a measure calculated upon

areas, it is relatively robust to noise. Note: This measure has only been proposed in

conjunction with other diagnosis measures and possesses little utility on its own.
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2.3.1.4 R-index

According to Salsbury [117], aggressiveness or sluggishness of the loop’s load

disturbance response can be characterized by shape of the initial response peak in

the process output signal. For an isolated response within the PV to a step change in

load disturbance magnitude, define Ar as the area between start of the disturbance

response and its peak value, and define Ad as the area of between this peak value

and the first zero crossing of the response. These quantities are illustrated in Figure

2.2c. Then, the R-index is calculated as RI =
Ar

Ad

. Calculation of the index requires

isolated features from the closed loop load disturbance response in PV to be pro-

vided. Diagnosis criteria were not offered in the original work, but in the several

examples presented, the values 0.7 and 0.85 were obtained from loops considered

sluggish, values of 0.48 and 0.6 were obtained from systems considered well-tuned,

and a value of 0.36 was obtained from data for an aggressively tuned system. Ad-

vantages: As with other measures calculated using areas, it is relatively robust to

noise.

2.3.1.5 PI Controller Assessment using Multiple Diagnosis

Measures

By combining several of the above diagnosis measures into one tuning assess-

ment technique, Visioli [77] was able to give a more specific retuning recommenda-
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tion for PI controllers than a simple sluggish or aggressive diagnosis could provide.

Table 2.4 displays the detection criteria used for that purpose. This technique at-

tempts to solve a very classical pattern recognition/classification problem: allow

identification of systems from several categories by using the measurement of sev-

eral features from each system(in this case, these are features of the closed loop

response) [130]. Advantages: The combination of several features provides a more

thorough diagnosis of incorrect controller tuning then the simple indication of slug-

gish/aggressive.

2.3.2 Controller Tuning Diagnosis Measures that can Handle

Stochastic Systems

For the proper application of the techniques of Section 2.3.1 for tuning assess-

ment, requires either: (i) the existence of a set of very specific conditions (i.e. a

step change in load disturbance, the response to which can be isolated from other

any other inputs to the closed-loop system), and/or (ii) copious data pre-processing

in order to remove noise and steady state data. Many loops in the process indus-

tries may not regularly satisfy (i), and the use of the filtering procedures of (ii) may

require tuning of noise thresholds and other parameters that can vary loop to loop

and preclude ease of large scale automation. This subsection introduces techniques

which are more robust to noise and whose performance may in fact increase with
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noise exciting the closed loop response. The first technique makes use of a closed

loop model fit upon the process variable (PV), while the second relies upon the

autocorrelation function (ACF) of process variable.

2.3.2.1 Impulse Response Curve Method

Goradia et al. [90] suggested making sluggish and aggressive tuning diagnoses

based upon pattern matching the system’s estimated closed loop impulse response

under disturbance to a set of 9 characteristic impulse response curves. The system’s

impulse response is estimated with an AR(20) model fit to the available process

output data, from which a finite impulse response (FIR) model is obtained. Since

the method relies on the estimated impulse response, data from routine operation

(excluding actuator saturation, manual control efforts, or set-point changes) should

be acceptable. It was originally proposed that the FIR coefficients would be vi-

sually matched to the characteristic response curves [90], though the use of neural

networks for this purpose has also been demonstrated [129]. Characteristics of slug-

gish impulse response curves highlighted by the original authors included presence

of offset and lack of zero crossings. For characterizing aggressive tuning, important

quantities were the magnitude of overshoot and the number of discernible cycles of

oscillation due to complex conjugate poles. Advantages: The use of the estimated

impulse-response instead of raw OP or PV signals may allow for many of the di-

agnosis measures reviewed in Section 2.3.1 to have their use extended to purely
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stochastic systems. Note: The method as first presented requires a human to per-

form the pattern matching. One can imagine many ways to automate this method,

and it is an open problem to determine which choice of features of the impulse

response can be used to achieve the most successful classification.

2.3.2.2 Relative Damping Index

It has been known for many years that the autocorrelation function is a valu-

able tool for control loop performance assessment [3, 79, 88, 127, 18]. Howard

and Cooper [119] used the fact that if the closed-loop system can be properly de-

scribed by linear model, then the autocorrelation function of the process variable

data should theoretically have the same poles as the applicable linear model. The

authors demonstrated this relation in a practical situation using boiler level data. A

set of load disturbance response data was shown to be similar in shape to the ACF

of data from a separate time period containing lower magnitude stochastic distur-

bances. Based on this useful property of the ACF, the authors further demonstrated

sluggish/aggressive diagnoses based upon the damping coefficient, ζ, of a second

order model fit to the estimated autocorrelation function of the system’s closed loop

output. The Relative Damping Index (RDI) is a rescaling of the damping coefficient

with user defined bounds on aggressive and sluggish values, denoted by ζagg and

ζslug, respectively. After the estimated ACF is obtained, the second order model is

iteratively fit, where the number of ACF coefficients regressed upon varies between
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successive iterations. We found that it was preferential to fit a discrete time model

to the ACF first, which was then converted to the continuous time equivalent in or-

der to obtain the damping coefficient. The discrete time model can better capture

the behavior of the ACF since both can display a magnitude of one at lag zero,

which is untrue of a continuous time model. An alternative solution was presented

in [78], wherein a transformation of the ACF curve was used to make it take the

appearance of an open loop step response, upon which the second order continuous

time model could be properly fit. The damping coefficient was used to define the

relative damping index, which is given by

RDI =
ζ − ζagg

ζslug − ζ
(2.1)

Since the method index is calculated upon the estimated ACF, any PV data

from routine operation (excluding actuator saturation, manual control efforts, or

set-point changes) should be acceptable. The method has been demonstrated upon

data containing both large load disturbance responses and stochastic noise. For

self-regulating plants, the recommended criteria were that ζ < 0.6 indicates aggres-

sive tuning (ζagg = 0.6) and ζ > 0.8 indicates sluggishness (ζslug = 0.8). Similar

to the characteristic closed-loop impulse response patterns provided by Goradia et

al. [90], the authors a set of autocorrelation curves were provided for visual deter-

mination of poor tuning. Advantages: By using the ACF of the process variable,
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this technique can be applied to systems afflicted by mixtures of deterministic and

stochastic disturbances. Notes: A suggested range of acceptable damping ratios is

provided, however, it is unclear what condition the well-tuned specification indi-

cates, whether it corresponds to minimization of a performance metric, acceptable

bounds on some closed-loop response feature, or something else. Also, whether the

diagnosis measure in this case (RDI) behaves as expected depends on how well a

second order model can fit the ACF.

2.3.3 Remarks on Tuning Assessment Techniques

To assess the state of loop tuning, each of the above techniques identified some

characteristic of a PV and/or OP signal, where these signals were from (i) an iso-

lated load disturbance response, (ii) an estimated closed-loop impulse response, or

(iii) an estimated autocorrelation function. For diagnosis measures defined upon

one type of signal, it may be possible to extend their use to the other signal types

(with a proper adjustment of detection criteria). One example [129] has already

appeared in which the area index, originally designed for use on an isolated load

disturbance response in the OP signal, was extended for use on stochastic data by

calculating it for the estimated closed loop impulse of the PV signal instead. In

Section 2.6, the performance of several of the tuning diagnosis measures reviewed

here is examined. The assessment method relying upon pattern matching of the es-

timated closed-loop impulse response [90] is not considered further because of the
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variety of different ways this technique could be automated.

2.3.4 Applications of Tuning Diagnosis Techniques

Kuehl and Horch [128] demonstrated the use of the idle index upon industrial

flow loop and pressure data. It has also been reported that the idle index has been

implemented in both ABB Industrial IT system [127] as well as a performance mon-

itoring system at Eastman Chemical Company for 14,000 PID loops in 40 plants at

nine sites worldwide [59]. Salsbury [117] gave results from several examples of

using the R-index applied to monitor HVAC control systems. In some prior works,

[90, 129] using the tuning assessment methods for iterative loop retuning towards

an optimal value was proposed. Thus far, no documentation on the application of

these techniques for automated retuning in an experimental or industrial context has

appeared.

2.4 The Hurst Exponent Method for Loop Tuning Assessment

The previously introduced diagnosis measures rely upon the type of features

present in the OP and PV signals, with the methods based upon responses to isolated

step changes in load magnitude more suited to this type of disturbance and those re-

lying upon the estimated impulse response or autocorrelation functions more suited

to processes continuously excited by noise. Here we introduce a technique that

always begins by processing the raw PV (process variable) data. To characterize
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performance of control loops under PI control, we propose the use of the Hurst ex-

ponent, calculated by means of detrended fluctuation analysis (DFA) [3], to detect

and quantify loop sluggishness or aggressiveness. In our previous work [18], a spe-

cific scaling of this quantity, referred to as the Hurst Index, was used to characterize

overall loop performance for a wider class of systems. Therein, it was demonstrated

that the Hurst Index could be used to estimate performance without any process

knowledge, providing an index value that replicated trends in the widely used min-

imum variance index. Now, it is proposed to apply the unscaled Hurst exponent to

diagnose specific types of poor performance in PI controlled loops, namely sluggish

or aggressive loop tuning.

In the context of analyzing process signals, we rely on the Hurst exponent’s abil-

ity to quantify the persistence of correlations or anti-correlations (such as present

in an oscillatory signal) existing in a signal. More generally, the Hurst exponent

is a measure applied to a time series to determine the self-similarity of the signal.

A time series yt is self-similar (contains sub-units which resemble the whole struc-

ture) if it holds that yt(k) ≡ aαy(k/a), where a represents the scaling factor along

the x-axis (time axis), aα the scaling factor along the y-axis, and exponent α is the

self similarity parameter. Letting the scaling factors along the x and y axes be Mx

and My, respectively, then the exponent is given by α =
lnMy

lnMx

, or statistically,

α = lnσy/lnσx. The scaling exponent α is referred to as the (generalized) Hurst

exponent, which can be obtained for a stationary signal mapping the time series
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to a self similar process through integration. The method used here to calculate

the Hurst exponent is detrended fluctuation analysis [131], which is regarded to be

more reliable than several alternative methods [132]. A multitude of applications of

the DFA procedure have been found in finance, earth science, and medicine (a large

list of applications is collected in the introductions of [133, 134]. For example, the

Hurst exponent calculated by DFA exhibits different values between the heart-beat

signals of healthy individuals and sick patients [135].

The DFA procedure is presented in [48, 136] and can be performed on noise

afflicted process loops without modification since the Hurst exponent calculation

requires only routine operating data. Data containing set-point responses should be

excluded from the computation though as these cause additional nonstationarity in

the PV which will be misinterpreted if the exponent is computed without modifica-

tion. Figure 2.3 summarizes the Hurst exponent calculation through DFA. Briefly,

the PV data, of Panel (a) in Figure 2.3 is first numerically integrated resulting in

a nonstationary signal as in Panel (b). This signal is then piecewise detrended by

lines regressed over a data window of length L as seen in Panel (c). The root-mean-

squared (rms) value of the resultant detrended data is termed the fluctuation, F(L),

which is a function of the window length over which linear trends were regressed.

The fluctuation calculation is repeated over a range of window lengths L. Finally,

the Hurst exponent is calculated by fitting a linear trend between the logarithms of

window size and fluctuation magnitude as shown in Panel (d) of Figure 2.3.
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Mathematically, N samples of stationary PV signal yt, which varies around its

setpoint, are mapped to the detrended and integrated signal Yt =

N∑

k=1

(yt − ȳ), where

ȳ is the mean value. The integrated series is then segmented into W windows of

length L. On each window j = 1 . . .W, a linear trend is regressed according in

order to the objective function

mina j,b j
ǫ2j (L) = mina j,b j

jL∑

i=( j−1)L+1

(Yi − a ji − b j)2 (2.2)

and then this trend is subtracted. After this procedure is repeated for every

window of length L, the detrended fluctuation on window length L can be calcu-

lated as F(L) =

√√√
1

WL

W∑

j=1

ǫ2
j
(L). The final scaling exponent reflects the growth in

detrended fluctuations as the window size increases. This can be repeating the cal-

culation over a range of L values, and obtaining the slope from a linear fit between

L and F(L). To avoid spurious artifacts occurring when the ratio of the window size

and sample size becomes too large, it is recommended to keep L ≤ N
4 [136].

For the purposes of sluggish and aggressive tuning diagnosis in this work, the

window length parameter L of the DFA technique was varied from 100 to 400 sam-

ples at increments of 10. Based on the guideline of maximum window size of
N

4
,

this translates to a total requirement of 1600 or more samples in a single record

(with no set-point changes or other irregularities contained in the record). Our Mat-

lab implementation of the Hurst exponent calculation takes less than 1 second to
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Figure 2.3: Illustration of the steps of Hurst exponent calculation.

run on a personal computer. The proposed use of the Hurst exponent as a tuning

diagnosis measure is to combine it with other loop monitoring tools. Specifically,

for an isolated control loop without interactions, these other diagnosis tools might

include a nonlinearity or stiction detection algorithm to monitor equipment prob-

lems and a performance monitor such as the minimum variance index or Hurst

index to indicate overall loop performance. If bad performance is indicated, and

nonlinearity is not suspected to be the cause, the Hurst exponent can be used to

diagnose a possible problem due to aggressive or sluggish (although the possibility

of disturbances beyond the capability of the loop to correct would still remain in

that scenario and false diagnoses would be possible). Table 2.5 shows the theoret-
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ical Hurst exponent values of several basic signal types and the information that

similar behavior within the PV signal of a control loop can yield about controller

tuning. A signal appearing indistinguishable from white noise with no oscillations

or extended deviations from zero is generally preferable to one that contains those

features. Long drifts of the mean PV value indicate sluggish tuning and typically

lead to high Hurst exponent values, while oscillations such as due to aggressive tun-

ing will lead to lower Hurst exponent values. Over a broad range of loop types, the

value of 0.5, indicative of white noise behavior is a useful standard to compare in-

dividual loops Hurst exponent values against. Higher values may indicate sluggish

behavior, while lower values will indicate oscillatory behavior (which may be due

to aggressive tuning). Within the Section 2.6 that follows, we make a comparison

among the several diagnosis measures discussed so far.

2.5 Framework for the Evaluation of Controller Tuning

To proceed with the discussion of data-based controller tuning diagnosis meth-

ods, a framework from within which to understand the different existing diagnosis

techniques is first presented. The methods for diagnosing poor controller tuning

in the literature generally contain at least 2 components, these being: (i) a control

loop performance metric, the optimization of which is the goal of controller retun-

ing, and (ii) a data-based diagnosis measure to indicate in which direction to move

the controller parameters in order to obtain a better value of the performance metric
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Following these, a retuning technique to implement the suggestions of the diagnosis

method is sometimes also considered. Items (i) and (ii) are discussed in subsections

2.5.1 and 2.5.2, respectively.

2.5.1 Control Loop Performance Metrics

In (i) above, the performance metric is often chosen to be either the integral

of absolute error (IAE), integral of squared error (ISE), or the integral of time-

weighted absolute error (ITAE), as reflected in Tables 2.1, 2.2, 2.3 of Section 2.2.

Tuning to minimize ISE punishes large deviations from the set-point, but also pro-

duces aggressive action [138]. Shinskey [139] has suggested that the integral of

absolute error has the closest relationship to economic considerations. Tuning to

produce minimal ITAE gives the most conservative set of controller parameters,

corresponding to the slowest response [138]. In the CLPM&D field, the metric

chosen is often Harris’s minimum variance index (MVI) [6], which is defined as

MVI =
σ2

y

σ2
MV

(2.3)

where σ2
y is the variance of the process output measurement and σ2

MV is the

theoretical minimum variance achievable for the given process with any linear con-

troller. This index has a firm relation with ISE, one being the integrated square er-

ror, and σ2
y being the expected value of the square error when the process fluctuates
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about its set-point. However, the open-loop plant time delay needed to compute the

minimum variance index is likely to be unknown information and is not essential

for the diagnosis and retuning algorithms. Therefore in this work, ISE is consid-

ered itself with the knowledge that the MVI could be recovered with the appropriate

information, and that optimizing one metric should optimize the other too.

In the following, simulation results generated with Matlab Simulink are used to

study the definitions of sluggish and aggressive tuning. Considering now only the

case of systems under PI control, we introduce the symbols K and T to represent,

respectively, controller gain and reset time, so that for continuous time, the PI con-

troller Q has the form Q(s) = K(s+
1
T

)s−1. For illustration, a representative system

with open-loop plant model
e−5s

10s + 1
is chosen, and the closed-loop is subjected to a

unit magnitude step disturbance at the plant input under various sets of PI controller

parameters (K,T ). Simulations are run for 2000 seconds at each parameter set. The

following results seek to illustrate qualitative behavior of systems under PI control,

and it is noted that the exact parameter values where certain features occur will vary

from system to system. Figure 2.4a shows a plot of the K,T -plane with contours

of IAE for the chosen system, along with the set of controller parameters providing

global optimal IAE. In Figure 2.4b an additional boundary is defined to separate

systems responding to the stepwise change in disturbance with overshoot in the PV

signal from systems responding to the disturbance without overshoot. Lack of over-

shoot in the step response is considered necessary by some authors in order for the
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control loop to be considered well-tuned [82], though opinions on this matter vary.

In this case, reaching a constrained global optimum becomes the goal for retuning.

In Figure 2.4b, it can be noted that for the chosen system, the constraint causes a

minimal effect on the location and value of the optimum.

While most previous studies have pursued diagnoses of sluggish and aggressive

tuning, Visioli proposed a method of detecting where the current parameters lie

relative to the global optimum, as discussed in Section 2.3.1.5 and Reference [77].

The combination of diagnosis measures applied was used in an attempt to segment

the K,T -plane into the categories shown in Figure 2.5. A small area of the plane

surrounding the global optimum point is considered to be the region of acceptable

tuning. The numerous classifications of Figure 2.5 make unnecessary the additional

categorization of the loop behavior as sluggish or aggressive. The efficacy of this

method is reviewed along with other proposed methods within Section 2.6.

2.5.2 Proposed Definitions for Sluggish and Aggressive

Now we consider the bulk of the literature on data-based tuning diagnosis,

which concerns itself with the detection of sluggish and aggressive controller tun-

ing. Within the literature, the definitions of what constitutes sluggish and aggres-

sive tuning are almost as numerous as the techniques to detect these conditions.

One way sluggish and aggressive tuning could be defined for PI controllers is by

the corrective action suggested when each of these conditions are diagnosed. For
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sluggish tuning, this corrective action is to increase the proportional gain and/or

decrease the reset time, while for the case of aggressive tuning, it is suggested to

decrease proportional gain and/or increase the reset time. Goradia et al. [90] stated

that the performance metric, which was in their case the minimum variance index,

also referred to as the CLPI (closed-loop performance index), behaved as follows:

“the CLPI, not surprisingly, takes a unimodal locus. Once the proper direction to

improve the controller performance is determined, (i.e., to make the controller ag-

gressive or detuned) one can proceed iteratively in that direction as long as CLPI

continues increasing. After reaching the peak, CLPI starts to decrease even though

we are moving in the same direction. The peak value of CLPI is the PI achievable

performance.” Figures 2.6a and 2.6b below show how the sluggish and aggressive

regions are defined according to this idea, for the case where retuning of each tun-

ing parameter is considered separately. As shown in each (a) and (b), adjusting a

chosen controller parameter to move closer to its corresponding optimal curve will

improve the value of the performance metric.

However, as shown in Figure 2.7a, when both parameters are considered to-

gether, there exist regions where the sluggish diagnoses for one parameter overlap

with the aggressive diagnoses of the other parameter and vice versa. This behavior

occurs because the curves Topt(K) and Kopt(T ) coincide at only a single point, this

being the global optimum. As an example of the resulting contradictory behavior,

at a given parameter set in Region IV, the IAE can be decreased either by decreasing
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K or by decreasing T. So, if we follow the statements of Goradia et al., parameter

sets in this region would be considered aggressive when tuning gain and sluggish

if we were tuning reset time. Obviously this definition of sluggish and aggressive

is troublesome because our next step is to find a data-based diagnosis method to

generally indicate sluggish or aggressive tuning, so we need well-defined regions to

judge our measure’s performance against. To resolve this, it is seen that even when

leaving Regions III and IV in Figure 2.7a undefined, we can still classify most of

the relevant portion of the K,T -plane into the categories of sluggish and aggressive

as shown in Figure 2.7b. Here sluggish tuning corresponds to a condition where

the performance metric could be improved by increasing gain and/or reducing re-

set time, while aggressive tuning is defined as a parameter set within the region

where the performance metric can be improved through reduction of gain and/or

increasing the reset time. At this point, the usefulness of a given data-based diag-

nosis measure can be judged according to whether it takes upon contrasting values

between the sluggish and aggressive regions.

The definition of sluggish and aggressive against the one parameter optimal

curves Topt(K) and Kopt(T ) captures a much larger portion of the K,T -plane com-

pared to if we defined these two tuning classifications by judging the controller

parameters relative to their global optimal values. That the classifications sluggish

and aggressive would occupy a much reduced area in that case is demonstrated in

Figure 2.8, which shows their definitions upon the stable region of parameter space
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for a single system.

2.5.2.1 Definition of Sluggish and Aggressive with Consideration

of Overshoot

Finally, let us revisit the case of a constraint placed upon overshoot within the

load disturbance response. In Figure 2.4b a boundary line was plotted separating

systems with and without overshoot in their disturbance responses. We could de-

fine sluggish tuning as parameter sets having lower gain and higher reset time than

points upon this boundary and aggressive tuning as parameter sets having higher

gain and lower reset time than points lying on the boundary line. Adding these

definitions upon the optimal curves of Figure 2.7b, we can note from the resulting

Figure 2.9 that:

1. Controller parameters in the sluggish region provide no overshoot in their

disturbance step response but have worse performance than the constrained

global optimum.

2. Controller parameters in the aggressive region contain overshoot and may or

may not have a better value of the objective function than the constrained

global optimum.

3. For the region of the K,T -plane shown, the constrained versions of the func-

tions Topt(K) and Kopt(T ) have converged to a single curve (the overshoot
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constraint line which separates sluggish and aggressive systems). The pur-

pose of retuning sluggish systems is to approach the boundary line in order to

increase performance. The purpose of retuning aggressive systems towards

the boundary is to meet the constraint on overshoot.

2.5.2.2 Sluggish and Aggressive Definitions in the Literature

We now consider sluggish and aggressive definitions that have been used with

data-based diagnosis measures in the literature. Jelali [129] largely followed the

definitions of Goradia et al. [90] that were considered above in Figure 2.7. Hgglund

[82] mentions that well-tuned loops have a fast response with no overshoot. This

idea fits into the framework shown in Figure 2.9, which includes the presence of

constraints on overshoot. Salsbury [117] proposed critical damping of the closed

loop system as the optimal condition to aim for. Most closed loop systems will

have too many poles for this goal to be achieved with the PI controller structure.

However, the use of critical damping criteria does indicate that overshoot in the

disturbance response is not considered acceptable to the author, and again we can

view this detection method in the framework of Figure 2.9. Howard and Cooper

[119] have defined sluggish, aggressive, and acceptable tuning based upon the value

of their own diagnosis measure with user specified thresholds. Finally, as mentioned

previously, Visioli [77] largely side-stepped the issue of sluggish and aggressive

categorization by the use of a more thorough classification of controller tuning like
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that shown in Figure 2.5.

2.5.2.3 Use of the Proposed Aggressive and Sluggish

Classification framework

In the following sections, we consider the case of classifying tuning versus the

optimal IAE of the process variable’s load disturbance response (with no constraint

on the amount of overshoot). This corresponds to the definitions of sluggish and

aggressive of Figure 2.7b, discussed in Section 2.5.2.1.

2.6 Performance of Tuning Diagnosis Methods

In each of the works in which data-based controller tuning diagnosis methods

were introduced or discussed, results for only several examples (at most, a few sets

of tuning parameters for any single system) were shown. However, we find that

the performance of the data-based diagnosis methods can vary considerably across

different regions of the controller parameter space (the K,T -plane). By looking at

several systems across a large portion of parameter sets likely to be encountered in

practice, we hope to provide new results on these diagnosis methods performance.
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2.6.1 Evaluation of Several Methods for Sluggish and Aggressive

Detection

Four diagnosis measures from the literature for detecting sluggish or aggres-

sive tuning, as well as the Hurst exponent based diagnosis technique introduced in

Section 2.4, are evaluated on an example set of systems. The criteria for sluggish

and aggressive classification by each method are provided in Table 2.6. These were

chosen by a combination of guidelines from the literature and our experience using

these methods on a set of training systems.

In order to obtain a training set of controller tuning, for each of the five con-

tinuous time systems in Table 2.7, the classifications of Figure 7b are produced

for the case of a unit step change to the input of the corresponding disturbance fil-

ter. The systems in Table 2.7 were obtained from several different references on PI

controller tuning or performance assessment [77, 98, 119, 140]. Notably, this set

of systems contains both a variety of time delays and number of lags. This cor-

responds to a large range of values of the normalized dead-time parameter [141],

η=(dead time)/(time constant), also referred to as the process’s degree of difficulty

[107]. The loop performance goal is taken to be minimum IAE of the disturbance

step response, and the curves Topt(K) and Kopt(T ) were constructed accordingly. In

this way, the classifications of the tuning parameter sets (K,T ) for each of the five

systems in Table 2.7 were created according to Figure 2.7b. For each of the five
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Table 2.4: Visioli’s proposed combination [77] of the area in-
dex, output index, and idle index to diagnose where current PI
controller parameters are located relative to the set providing
minimal IAE

II < -0.6 -0.6 ≤ II ≤ 0 II > 0
(low) (med) (high)

AI < 0.35
K high∗ T high T high

(low)
0.35 ≤ AI ≤0.7

ok K low, T low K low, T high+
(med)

AI > 0.7
K low K low, T low K low, T high

(high)

* if OI <0.35, then T is also too high.
+ this combination is not provided for in Visioli’s original paper and

was given by [129]

Table 2.5: Theoretical Hurst exponent values of several signal types and what their
appearance in process output data suggests about the state of control loop tuning

Signal type Hurst exponent [136, 137] Loop tuning interpretation

Pure sinusoidal oscillation 0 Aggressive controller is caus-
ing oscillations causing oscil-
lations

White noise 0.5 Fast decay of loop response to
disturbances indicates well-
tuned loop

Brownian noise 1.5 Sluggish controller is failing
to reject drifting disturbances

Table 2.6: Detection criteria
Diagnosis Method Sluggish Condition Aggressive Condition

Idle Index (II) II > -0.6 II ≤ -0.6

R-Index (RI) RI < 0.7 RI ≥ 0.7

Damping coefficient (ζ) ζ ¿ 1 ζ ≤ 1

Hurst Exponent (HE) HE > 0.5 HE ≤ 0.5

Area Index (AI) AI > 0.35 AI ≤ 0.35
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systems, 50 sets of tuning parameters were randomly chosen from within both the

sluggish and aggressive classified portions of the (K,T ) -plane. An additional 21

points were chosen from the regions classified as undefined in Figure 2.7b. At each

set of tuning parameters, a closed loop simulation was run for a unit step change

to the input of the disturbance filter. Then each of five diagnosis methods of Ta-

ble 2.6 was applied to the resulting sampled process output and controller signals

recorded once a second for 2000 samples. Simulations were conducted using Mat-

lab Simulink.

The results for each diagnosis method are shown in Table 8, and when com-

pared, it is seen that under the conditions studied the best choice for diagnosing

aggressive and sluggish tuning versus the framework of Figure 2.7b is either the

R-Index or the damping coefficient ζ , since they outperform the other methods in

detecting both sluggish and aggressive systems. For each diagnosis measure, an

approximately equal percentage of sluggish and aggressive systems are correctly

detected (within a few percent). This indicates that changing the values of the de-

tection criteria would have little positive effect on the overall performance. To see

this fact, it is useful to consider each diagnosis measure acting as a simple classifier,

with a threshold value separating sluggish and aggressive diagnoses. Changing the

threshold can increase the correct diagnoses of one type of system (either sluggish

or aggressive), but only at the expense of decreasing correct diagnoses of the other

system type. Also, these results are for the case of a single isolated load distur-
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bance. As discussed in Sections 2.3 & 2.4, the ability of each method to handle

signals with other types of disturbances varies markedly. Notably, the Hurst expo-

nent is expected to perform better in the case of stochastic disturbances.

It is notable that the training parameter sets were chosen from one of three cat-

egories (sluggish, aggressive, undefined), while the diagnosis methods only classi-

fied tuning into the two categories sluggish and aggressive; however, the reason for

this are two-fold: (i) most of the tuning parameter sets in the undefined category

are by no means well-tuned, and by putting these parameter sets into one of the cat-

egories “sluggish” or “aggressive”, the retuning algorithms introduced in the next

section can seek to achieve better tuning for these systems; (ii) Figure 2.10 Parts

b-d show that there is no range of values for the considered diagnosis measures that

can define a localized well-tuned region of the (K,T )-plane. That is because values

of these diagnosis measures present open-contours, which contrast to the closed

contours of the performance metric IAE (Part (a) of Figure 10). Therefore, we sug-

gest, that the diagnosis measures whose plots are in Figure 2.10 (b-d), when used

alone, are better suited for strictly making sluggish or aggressive diagnoses, since

a category of well-tuned would inevitably contain systems far away from optimal

performance when using these diagnosis measures.

For the Area Index, however, the use of a range of this diagnosis measure’s

values to define a well-tuned region on the K,T -plane makes more sense relative

to the other methods. Figure 2.11 shows a plot of AI contours (solid lines) overlaid
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upon the contours of IAE (dotted lines) for System 3. At the higher values of T

in this plot, the contours have almost completely converged and the combined line

separates systems having an AI value of unity from those having AI values of close

to zero. At lower values of T, the contours of AI have opened up and now take

on intermediate values. These intermediate values occur near the inner contour

of IAE values which makes this diagnosis measure more attractive than the others

to detect close to optimal tuning. In previous works, values of the AI between

0.35 and 0.7 were used to detect close to optimal tuning [77, 129]. Despite the

advantageous behavior of the Area index at higher T values, from Figure 2.11, it is

also seen that when moving from the point of optimal tuning towards the origin (low

K and T values), the IAE increases in value, yet the contours of AI do not close.

This means the index will give incorrect detections in this region if a well-tuned

classification is defined. From the foregoing analysis, it is recommended to use

the tuning diagnosis measures only to provide general diagnoses of sluggishness or

aggressiveness, and not try to indicate well-tuned values, since these methods will

often give this indication at far from optimal values of the performance objective.

When used in this way, these methods will less satisfy the needs of continuous

controller monitoring (because they will constantly indicate tuning is either sluggish

or aggressive), but are instead more applicable for the iterative controller retuning

methods introduced in Section 2.7.
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2.6.2 Evaluation of Alternative Method for Tuning Diagnosis

As previously mentioned, Visioli [77] introduced a tuning diagnosis technique

which combined three indices to qualitatively estimate the position of the con-

troller’s current parameter set versus that of the global optimal tuning set. Since

the results of three separate indices are combined to make each diagnosis, as pre-

viously illustrated in Figure 2.5, many possible categories of diagnoses can result

from the method. Figure 2.12 shows the results of this method applied to a grid of

points on the K,T -plane. To aid in visualization of this method’s performance, the

suggested direction of retuning implied by the diagnosis at each point is depicted

with an arrow. Diagonal arrows indicate that both tuning parameters have been di-

agnosed as away from their optimal values, while vertical and horizontal arrows

indicate that the need for retuning only one of the parameters has been detected.

The plots show large regions of the K,T -plane where the method works correctly

for either one or both parameters. Nevertheless, a problem arises for both systems

near a portion of the stability boundary (in the bottom center of each plot), where

the method recommends decreasing T. The result occurs because even though the

response is decaying oscillatory in this region, the idle index is in the medium range

according to the criteria of Table 2.4. Depending on the magnitude of the step taken,

following the diagnosis method’s advice in this region will likely bring the control

loop to an unstable setting, which of course is highly undesirable. The next section

70



Texas Tech University, T. Spinner, December 2014

will compare the performance of autotuning algorithms which utilize either: (1) one

of the five diagnosis methods evaluated for sluggish and aggressive tuning detection

in Section 2.6.1, or 2.6.2 the tuning classification method of Visioli.

2.7 Data-based retuning of PI controllers

Previous works in the field of CLPM&D have also introduced algorithms for

automated retuning based upon model-free assessment of controller tuning [65,

90, 129]; the algorithms presented here contain additional logic to deal with cases

where the diagnosis measures are incorrectly indicating the proper direction for ad-

justment of controller parameters. It is strongly noted that the tuning maps shown

in the previous sections were for illustration only and are unavailable in practice

unless the process and disturbance models are known, which is usually not the case

(hence the use of data-based diagnosis measures). Therefore, in this section, we as-

sume that the only information available is routine operating data which can be used

to calculate the values of the tuning diagnosis measures. The simulation studies of

this section are for the case of a single unit step in the magnitude of the disturbance

variable, and it is assumed that the process output, controller output, and set-point

data are available. The set-point data is solely used to exclude portions of the pro-

cess variable (PV) and controller output (OP) recordings where set-point changes

have an effect. The suitability of each detection method for other signal types (e.g.

those driven by stochastic disturbances) was discussed in detail in Sections 2.3 &
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2.4.

To retune controllers based upon the diagnosis methods discussed in Sections

3-6, two new algorithms were developed, whose purpose is to obtain better perfor-

mance with regards to a metric such as IAE or ISE. One algorithm is for use with

the user’s choice of a single data-based diagnosis measure, and the second algo-

rithm relies upon the diagnosis technique of Visioli [77] where the AI, II, and OI

are used in complementary fashion. The first algorithm (an improvement of one

proposed in [129]), shown in Figure 2.14, utilizes a user choice of one of the di-

agnosis measures appearing in Section 2.6. Considering the case where IAE is the

performance metric, then for whichever diagnosis measure is chosen, the detection

criteria of Table 2.6 are used to determine a diagnosis of either sluggish or aggres-

sive tuning at the initial tuning parameter set (if a different performance metric is

chosen then the associated detection criteria should be developed). Depending on

the diagnosis at the original controller setting, a 20% change in the controller gain

K is made. If the result is a decrease in IAE, a new diagnosis is made. If a switch

in diagnosis occurs relative to the first one, the diagnosis measure is indicating that

a minimum of IAE with respect to K was just crossed. This possible minimum is

explored with smaller 10% steps in controller gain K. If the first change in gain led

to an increase in IAE (a bad move occurred), the algorithm returns the system to

the original parameter set.

The algorithm tunes one parameter K or T at a time, switching parameters af-
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ter either an optimum point is detected or an IAE increase occured. The proposed

method is supervised by the performance metric (in this case IAE), meaning that if

this performance objective is worsened by moving in one direction, the algorithm

will not continue in the same direction, regardless of the advice of the diagnosis

measure. As previously suggested [90, 129], a basic step of 20% in the varied pa-

rameter was used in each iteration. Smaller steps of 10% were used to explore both

the points providing minimum IAE in the varied parameter and also the boundaries

between sluggish and aggressive diagnoses. To obtain faster convergence, larger

step sizes should be considered in the case that the changes are carried out manu-

ally under human supervision.

The performance of the algorithm was explored with each of the diagnosis meth-

ods of Section 2.6 (Hurst exponent, idle index, area index, R-index, and damping

coefficient ζ). Results were obtained for each choice of diagnosis method at each of

the 250 starting sets of parameters. Two cases were attempted: (i) tuning both gain

K and reset time T, and (ii) only retuning gain. The retuning was applied to noise

free simulations of the system response to a unit step at the input of the disturbance

filter. OP and PV signals were sampled at a rate of once per second during simu-

lations of 2000 seconds. A set of 50 starting points for PI controller tuning on the

K,T -plane were randomly generated for each of the 5 systems of Table 2.7. The

starting points (K,T ) were chosen to satisfy IAE(K,T ) < 4× IAEmin, where IAEmin

is the PI-achievable IAE for each system for the disturbance described, in order to
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provide moderately (but not extremely) poor initial tuning. All simulations were

performed using Matlab Simulink.

Table 2.9 contains one example of the use of the Hurst exponent along with the

retuning algorithm of Figure 2.14 to search for better controller parameters. When

a switch in the diagnosis occurs in Iteration 1, the algorithm neither continues in

the original direction to check if a local minimum has been traversed, nor makes a

full 20% step in the reverse direction as now indicated by the diagnosis measure.

Instead the boundary between diagnosis classifications is explored with a 10% step.

Even though a better value of the performance metric was reached in the first itera-

tion, the retuning algorithm will not continue in the original direction to search for

local minima when it is against the advice of the diagnosis measure, out of concern

for stability. In this case the choice to reverse direction in fact provides us with the

local minimum to within 10%. After reversing directions, the algorithm switches

the tuning parameter to reset time T. In this case, when increasing the reset time ac-

cording to the aggressive diagnosis, both the initial 20% move and a reduced 10%

step in T cause an increase in IAE. Since no further improvement in IAE is occur-

ring when making moves in either K or T according to the recommendations of the

diagnosis measure, the algorithm terminates. The effects upon PV of the iterative

retuning process detailed in Table 2.9 are illustrated in Figure 2.13. Although the

results of the table indicate substantial improvement in performance, from the plot

of PV it appears that the response is still oscillatory and more improvement should
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be possible. This is a characteristic of the data-based retuning methods presented

here, in that the significant improvement is usually achieved, but the algorithm still

terminates far from the optimal controller parameter set due to the desires to limit

the number of iterations and to make parameter changes only on the basis of support

from the diagnosis measure and performance metric.

A second retuning algorithm is presented in Figure 2.15, wherein the determined

direction of retuning relies upon the diagnosis criteria of Visioli [77]. During the

initial step, either a 20% in a single controller parameter or 10% in each controller

parameters is taken in accordance with the diagnosis criteria of Table 2.4. If this

move resulted in an increase in IAE, the parameters were returned half way to-

wards the original set. If at this smaller step, IAE was still increased compared to

the original set, the search is terminated and the controller settings are returned to

the optimal parameter set encountered thus far, against the advice of the diagnosis

method (which is providing incorrect results). Thus this tuning method is super-

vised by IAE. The algorithm can also terminate due to a diagnosis of near optimal

tuning according to the criteria of Table 2.6. One example application of algorithm

of Figure 2.15 is presented in Table 2.10. It is noted that tuning according to the

diagnosis criteria without considering changes in the performance metric, the pa-

rameters tend to cycle back and forth between differently classified regions leading

to a large number of iterations and often times instability. Instead, as shown in Itera-

tion 2 of Table 2.10, when the proposed algorithm with IAE supervision encounters

75



Texas Tech University, T. Spinner, December 2014

an indication that parameter changes need to be reversed, the controller is taken to

the best parameter set encountered so far, and the algorithm is terminated. In this

way, cycling between closely located sets of parameters does not occur.

Full results of all of the algorithms applied to the entire set of 250 retuning

trials are displayed in Table 2.11. The results in the upper portion of the table

refer to the algorithm of Figure 2.14 which was applied to each of the possible

choices of diagnosis measures. One notable observation is that retuning of reset

time in this first algorithm added marginal benefit; most of the improvement in

performance was due to the initial retuning of gain alone. The algorithm terminated

in a similar number of iterations for all five of the diagnosis measures tested, so no

advantage of any technique is seen in this respect. Most notable from Table 2.11,

it is seen that instability could be a major problem when retuning with several of

these diagnosis measures. Specifically, the Hurst exponent, R-Index, and damping

factor ζ all bring the systems to unstable parameter sets numerous times. While

the Area and Idle indices did not have this problem in the trials studied, there is

no guarantee that these methods will keep the loop at stable parameter sets for all

systems. But due to the extreme problems encountered by the three other methods,

it is recommended to only attempt this type of automated retuning with one of the

more stable methods, either the AI or II. It is noted that the stability issue has not

previously been discussed in the literature on these types of data-based controller

diagnosis and retuning methods, and the issue needs more exploration. It is noted
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the instability problem occurs when a set of parameters is diagnosed as sluggish

(either correctly or incorrectly) and the resultant increase in gain or decrease in reset

time moves the parameter set across the stability boundary. This implies that the

problem could be mitigated by adjustment of the sluggish and aggressive detection

criteria to shift the boundary of these classifications away from the stability line.

However, even this solution could not guarantee to eliminate the problem, and it

would be at the expense of algorithm performance.

Also, the lower section of Table 2.11 contains results from the second retun-

ing algorithm of Figure 2.15, the IAE supervised algorithm which makes retuning

decisions based on the criteria of Table 2.4. For contrast, the original version of

this algorithm, proposed in [129], also for use along with the diagnosis method

of [77], was implemented without IAE supervision. Lack of virtual supervision is

ill-advised, since retuning can occur repeatedly in a given direction even though

the performance metric to be minimized becomes worse at each step. As shown in

Table 2.11, this leads to instability: 35 out of 250 trials were brought to unstable pa-

rameter sets for the algorithm without supervision, compared to only 2 trials in total

for the IAE supervised method. Also, lack of supervision by the performance metric

led to more than double the number of average iterations, for a small improvement

in final IAE reached compared to the supervised algorithm. Using Table 11 to com-

pare between the algorithms of Figures 2.14 & 2.15, it is concluded that tuning with

the algorithm using the diagnosis criteria of Visioli provides the most benefit com-
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pared to the other algorithm regardless of the choice of diagnosis measure. This

result indicates the utility of combining the information available from several di-

agnosis measures. In the future, other combinations of diagnosis measures should

be considered to see if further improvements with respect to performance and sta-

bility can be gained. Redundant information between different diagnosis measures

could be investigated by use of singular valued decomposition, and support vector

machines or other learning algorithms could then be applied to synthesize a final

diagnosis based on the values of the set of diagnosis measures. Future work may

also find that certain diagnosis techniques have better performance when dealing

with data having certain disturbance types not considered here. For example, the

Hurst exponent and ζ are both diagnosis measures designed for use with stochastic

disturbances, as the underlying calculation of the detrended variance and the au-

tocorrelation function, respectively, are statistical techniques for use with random

data. Therefore, efficacy of these methods should improve for processes which are

responding to disturbances that occur more frequently (having overlap in their re-

sponse) and varied in direction and magnitude than the single step in load magnitude

used in this study

Above all, the results of this section raise concerns with the stability of au-

tomated data-based techniques and more generally, retuning based upon heuristic

measures of process behavior. It is well known that traditional adaptive systems

require persistently exciting input in order to guarantee global exponential stability,
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and it has been clearly demonstrated that lack of excitation can lead the adaptive

controller to instability ([84] for example). The methods reviewed here, relying

solely upon closed-loop features, are considered advantageous for industrial imple-

mentation because of their low requirements for experimentation and excitation.

However, very little is known about these techniques with respect to stability. We

have shown some very specific examples of how instability can be reached, but

more rigorous mathematical foundations explaining stability of these methods are

lacking both here and in the literature. As a practical matter, as proposed above,

perhaps the combination of several diagnosis measures can also yield a better pre-

diction of whether retuning in a considered direction will result in instability. It has

been demonstrated here that the use of supervision by a performance metric is an-

other way to mitigate the effects of erroneous diagnoses when performing heuristic

data-based retuning.

2.8 Conclusions and Future Work

This work has examined several previously proposed data-based methods for

PI controller tuning diagnosis and retuning. Most of the existing techniques for

controller diagnosis classify poor tuning as sluggish or aggressive, but a rigorous

definition of the meaning of these terms was previously absent. Here, we intro-

duced a definition of the sluggish and aggressive categories upon the controller’s

parameter space that can be used to evaluate the performance of data-based con-
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troller tuning diagnosis techniques. The Hurst exponent as a diagnosis measure

for sluggish and aggressive loop tuning was introduced, and its performance was

deemed comparable to the other available diagnosis measures. By examining be-

havior of the diagnosis measures across the relevant part of the K,T -plane, we

gained insight into how these methods will perform under different tuning condi-

tions. Finally, new adaptive algorithms for PI controller retuning were introduced

that take advantage of the data-based diagnosis measures, and it was found that

stability is a major concern that could limit the applicability of such techniques.

Among the proposed automated retuning techniques based on data-based diagno-

sis measures, it was found that diagnosis based on the combined information from

several measures provided superior performance to any single measure considered

alone. This indicates that, in the spirit of using the values of multiple feature types

for pattern recognition problems, future work in the area of data-based tuning di-

agnosis should concentrate on developing methods which synthesize information

from several diagnostic measures.
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Figure 2.4: (a) Contours of IAE for a load disturbance response over the space
of controller parameters. (b) The dashed line separates systems responding with
overshoot from those which do not and contains the constrained global optimum
(×)
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Figure 2.5: Classification of the current parameter values relative to the global op-
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Table 2.7: Systems used in simulation studies

Open Loop Plant Disturbance Filter Normalized dead-time
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Figure 2.6: For System 1, definitions of sluggish & aggressive: (a) Kopt(T ), the
optimal gain as a function of reset time and (b) Topt(K), the optimal reset time as a
function of gain.
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Figure 2.7: (a) Definitions of sluggish and aggressive resulting from overlapping
the (a & b) plots of Figure 2.6. (b) Proposed segregation of the tuning plane into
regions of sluggish, aggressive, and undefined controller parameters.
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Figure 2.8: Sluggish and aggressive tuning definitions based upon parameter values
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Table 2.8: Results of classification of 600 training sets of parameter pair (K,T ) into
categories sluggish and aggressive

diagnosis 

measures 

sluggish systems 
aggressive 

systems 
systems in undefined regions 

% correctly 

identified 

% correctly 

identified 

% identified as 

sluggish 

% identified as 

aggressive 

HE 85.6 81.2 19.0 81.0 

II 80.4 75.2 61.0 39.1 

AI 66.8 71.2 28.8 71.2 

RI 93.6 97.2 14.3 85.7 

ζ  92.4 95.6 24.8 75.2 
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constrained global optimum (x) and the stability boundary (dotted line).
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nosis measures (Hurst exponent, R-index, ζ). In each plot the dotted line represents
the stability boundary and the (x) is point where minimum IAE is obtained.
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Table 2.9: Demonstration of the retuning algorithm of Figure 2.14 for the case
of isolated load disturbance changes afflicting System 2 with the Hurst exponent
chosen as the method for diagnosis of sluggish or aggressive tuning

Iteratio

n 
K T IAE HE  Comments 

0 3.53 16.2 9.8 0.486  HE indicates aggressive turning, decrease gain 

20%. 

1 2.83 16.2 5.7 0.514  Diagnosis has changed, explore boundary at 

10%. 

2 3.18 16.2 5.3 0.499  Local minimum found within 10%. Now switch 

and increase T by 20% according to the 

aggressive diagnosis. 

3 3.18 19.5 6.1 0.604  IAE has increased, try 10% step instead. 

4 3.18 17.8 5.6 0.552  IAE is still increased, return to best parameter 

set. 

5 3.18 16.2 5.3 0.499  Neither changing K nor T can give decreased 

IAE in indicated direction of retuning. 

Terminate. 

 

PV

sample no.

Iter. 0           Iter. 1            Iter. 2           Iter. 3           Iter. 4            Iter. 5 

Figure 2.13: PV of System 2 corresponding to the results in Table 2.9
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Table 2.10: Demonstration of the retuning method proposed for use with the di-
agnosis method of [77] for the case of isolated load disturbance changes afflicting
System 5

Iterati

on 
K T IAE AI II OI Comments 

0 3.45 18.2 5.3 1.00 0.380  Increase gain and lower reset time according 

to AI, II. 

1 3.80 16.4 4.3 1.00 -

0.349 

 IAE has decreased, so continue retuning 

according to AI, II based diagnosis. 

2 4.18 18.0 4.3 0.01 -

0.787 

0.00

2 

Diagnosis method is indicating to reverse last 

move. Instead terminate at best parameter 

set reached. 

3 3.80 16.4 4.3 1.00 -

0.349 

 AI, II indicate to change turning, but the 

suggested move has previously been 

attempted. Terminate. 

Table 2.11: Summary of retuning results for 5 systems retuned from 50 starting
points

 

methods used 

retuning using both 

parameters 

K adjustment only 

mean 

% 

chang

e in 

IAE 

 

mean 

iteratio

ns 

# of trials 

instability 

reached 

mean 

% 

chang

e in 

IAE 

 

mean 

iteration

s 

# of 

trials 

instabilit

y 

reached 
 

I. retuning based upon a single diagnosis 

measure 
 

HE 

II 

RI 

AI 

Zeta 
 

 

 

 

-20.5 

-23.3 

-25.9 

-18.1 

-27.8 

 

 

 

7.2 

6.8 

7.2 

6.7 

8.4 

 

 

 

38 

0 

24 

0 

17 

 

 

 

-18.3 

-23.2 

-24.4 

-17.8 

-25.0 

 

 

 

5.4 

5.8 

5.6 

5.6 

5.6 

 

 

 

38 

0 

24 

0 

17 

II. turning based on Visioli's diagnosis 

method 
 

unsupervised 

with IAE supervision 
 

 
 

-42.0 

-37.8 

 
 

14.5 

6.3 

 
 

35 

2 

   

 

III. theoretically achievable 
 

-47.5 
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STOP

no

yes

According to the 
diagnosis measure 
(DM), change the 

varied parameter by 
20% steps until DM 
switches diagnosis or 

IAE increases.

Fine tuning by 10% 
steps according to 

values of DM and the 
change in IAE

Switch the tuning 
parameter being 
varied (K or T)

Has this
set of (K,T) and choice 
of varied parameter 
been encountered 

previously?

Starting K, T
Let K vary

Fix parameter T

Figure 2.14: Proposed retuning algorithm using one of the sluggish/aggressive con-
troller diagnosis methods (DM).
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Starting K, T

(K,T)* = (K,T)
Obtain OP, PV data
Set IAE* = IAE
Calculate AI, II 
(OI if necessary)

If moving one of K or 
T, move 20%.

If moving both K and 
T, move each 10%.
Obtain OP, PV
Calculate IAE

Return ½ way 
towards (K,T)*
Obtain OP, PV
Calculate IAE

Return 
to (K,T)*

STOP

yes

no

yes

no

Does diagnosis 
chart suggest 
changing K or 

T?

IAE(PV) < IAE*
?

IAE(PV) < IAE*
?

no

yes

Figure 2.15: Proposed retuning algorithm using the controller diagnosis method of
Visioli [77].
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Nomenclature

ACF autocorrelation function

AR autoregressive

CLPM&D closed-loop performance monitoring and diagnosis

CLPI closed-loop performance index

DFA detrended fluctuation analysis

FIR finite impulse response

FOPTD first order plus time delay

HVAC heating ventilation airconditioning

IAE integral of absolute error

ISE integral of squared error

ITAE integral of timeweighted absolute error

MVI Harris’s minimum variance index

OP output

PI proportional-integral

PID proportional-integral-derivative

PRAC pattern recognition adaptive controller

PV process variable

RDI relative damping index

SISO single-input single-output

SOPTD second order plus time delay
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AI area index

F fluctuation

HE Hurst Exponent

II idle index

K controller gain

Kopt(T) optimal gain for a given integral time

L rang of window length

Mx scaling factors along the x axes

My scaling factors along the y axes

N number of samples

OI output index

Q PI controller

RI R-index

W number of windows

Yt detrended and integrated signal

T reset time

Topt(K) optimal reset time for a given gain

a the scaling factor along the x-axis

tpos the total time for which the increments of the process variable and controller output

have the same sign

tneg the total time for which the increments of the process variable and controller output

have the opposite sign

yt a time series

ȳ mean value of y
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α the (generalized) Hurst exponent

ζ damping coefficient

ζagg the damping coefficient with user defined bounds on aggressive values

ζslug the damping coefficient with user defined bounds on sluggish values

σy variance of the process output measurement

σMV theoretical minimum variance achievable for the given process with any linear controller

η normalized dead-time parameter
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CHAPTER 3

THEORETICAL CONDITIONS FOR THE DETECTION

OF VALVE STICTION IN LINEAR SYSTEMS

Previous works introduced control valve stiction detection and quantification

methods for closed-loop systems based on the identification of a Hammerstein el-

ement between the feedback controller and plant output signals. These techniques

each rely upon the fact that the presence of valve stiction introduces nonlineari-

ties in the closed-loop system, yet, no theoretical discussions have been presented

which explain the conditions under which these methods will succeed or fail in

properly detecting valve stiction. Therefore, the present work uses frequency do-

main analysis to provide a theoretical investigation of the identification of stiction

in otherwise linear closed-loop systems. In this way, the failure of Hammerstein

stiction detection techniques to positively identify valve stiction in certain systems

in which it known to be present can be explained accordingly. This chapter is ex-

cerpted from paper: “T. Spinner, B. Srinivasan, R. Rengaswamy. On the detection

of valve non-linearities in closed svstems. Automatica (under review)”.
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3.1 Introduction

Control valve stiction, static friction preventing proper movement, is one of

the long-standing and common causes for oscillations in the process industries

[142, 143], leading to poor controller performance, inferior quality products and

larger rejection rates [144, 145]. As a result, much attention has been paid towards

the development of techniques for detection and quantification of stiction in control

valves. The presence of stiction in the control valve introduces non-linear behavior

between the controller signal and manipulated variable [146, 143], and detection

of these stiction induced nonlinearities forms the basis of several automated tech-

niques to identify when oscillations are caused by stiction. These include shape

based [147, 148], frequency based [149], and model based methods. Of the latter,

Srinivasan et al. [150] first presented a Hammerstein model based identification

technique for the diagnosis and quantification of valve stiction. The idea behind

this approach is to fit a Hammerstein model (linear model & nonlinear element)

between the controller output and process variable data. Later, several variants of

this method were proposed by Jelali et al. [151], Lee et al. [152], Ivan et al. [153],

Choudhury et al. [146] and Karra et al. [154] for stiction detection in linear closed-

loop systems.

The Hammerstein model based approaches generally first filter the controller

output data through their respective nonlinear valve models, which contain either
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one or several parameters quantifying the amount of stiction present. An optimal

ARMAX model is then found between this filtered controller output and the process

variable, with the best linear model chosen on the basis of Akaike’s Information Cri-

terion [155]. This is step is repeated over a search of stiction parameter values to

find the parameter (and associated best linear model) that minimizes the squared er-

ror between predicted and recorded process outputs. An optimal stiction parameter

which is nonzero indicates the presence of valve stiction, while a parameter value

of zero indicates its absence. While there have been several comparative studies of

the various algorithms [59, 72] based on simulations, these studies do not provide

any fundamental insights on the underlying reasons for the success or failure of

these algorithms. In this work, frequency domain analysis is performed to identify

certain conditions under which Hammerstein model based detection methods could

succeed or fail in properly identifying the presence of control valve stiction. The

approach proposed in this work is general and may also be used when analyzing

other types of nonlinearities in control valves.

3.2 Motivation

Suppose valve stiction can be described by the following model:

v(t) = Υ(η)u(t), t = 1, 2, . . . ,N (3.1)
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where t denotes the observations of input and output at sampling instants t = kT

(sampling time T = 1) with input kept constant between the sampling instants. In

the above equation, u(t) is what the valve position would be in the absence of stic-

tion and v(t) is the actual valve position, which is the output of the nonlinear and

possibly discontinuous operator Υ(η), where Υ has a known structure but depends

on the unknown real vector of stiction parameters η. A special value of the param-

eter vector, η = 0 has the unique property that for all t, Υ(η = 0)u(t) = u(t). For all

other values of η, this property does not hold. An estimate of η, denoted η̂, results

in estimated valve position v̂(t) from the relation

v̂(t) = Υ(η̂)u(t) (3.2)

Now suppose that output measurement sequence y(t) is generated by the output

error process

y(t) = G(q)v(t) + e(t) (3.3)

where y(t) and v(t) are as above, e(t) is a sequence of independent samples from a

white noise sequence, and G(q) is a linear transfer function model. Here, q denotes

the forward time shift operator. Also, suppose that u(t) is related to y(t) by the

linear control law u(t) = −K(q)y(t). Using an estimate of η̂, known values of u(t),

and (3.2) to estimate the sequence v̂(t), an estimate of y(t), denoted ŷ(t), is obtained
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from the following estimation equation

ŷ(t) = Ĝ(q)v̂(t) (3.4)

where Ĝ is an estimate of G(q) selected from the setM. Then, the prediction error

of y(t) is

ǫ(t) = y(t) − ŷ(t) (3.5)

= G(q)v(t) − Ĝ(q)v̂(t) + e(t)

Suppose the pair (Ĝ, η̂) is chosen to minimize the mean squared error of estimate

ŷ(t), which is given by

mse(ŷ(t)) =
1
N

N∑

t=1

ǫ2(t). (3.6)

In the following it will be demonstrated that in the presence of stiction (η , 0),

under some conditions, the choice η̂ = 0 allows the quantity mse(ŷ(t)) to become

minimum so that stiction is incorrectly identified as absent, and under other condi-

tions, this cannot happen so that stiction will be correctly identified.

3.3 Main Result

In this section, Lemma 1 will provide frequency domain conditions for the min-

imization of mse(ŷ(t)), Theorem 1 will provide a sufficient condition for the correct
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detection of the presence of stiction, and Theorem 2 will provide a sufficient condi-

tion for stiction to be incorrectly identified as absent. First, appropriate assumptions

are introduced so that these developments may proceed.

Assumptions:

1. Signals u(t) and y(t) are known for all values of t ∈ 1, 2, . . . ,N with t denoting

the observations at sampling instant t = kT (sampling Time T = 1). Further

it is assumed that the input is kept constant during the sampling interval.

2. G(q) is contained in M which is the search space for Ĝ(q) with q denoting

the time shift operator.

3. G(q) and all of the models inM are stable.

4. G(q) and all of the models in M have at least one unit time delay meaning

that both G(q) = 0 and Ĝ(q) = 0 when q = 0.

5. G(ωk), the frequency response of G(q), has maximum magnitude G∞ = max
ωk

|G(ωk)|

and all models Ĝ ∈ M have the property max
ωk

|Ĝ(ωk)| ≤ G∞. By Assumption

3, G∞ < ∞.

6. The Discrete Fourier Transform of signal v(t), denoted V(ωk), has a maximum

bound V∞ = max
ωk

|V(ωk)| < ∞.

7. Let e(t) be a zero mean white noise process with independent samples, and
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let its Discrete Fourier transform E(ωk) have minimum and maximum bounds

Emin = min
ωk

|E(ωk)| > 0 and E∞ = max
ωk

|E(ωk)| < ∞, respectively.

8. The Discrete Fourier Transform of the control law satisfies the relation U(ωk) =

−K(ωk)(G(ωk)V(ωk) + E(ωk)) exactly.

9. Assume that the controller output maintains some minimum power over all

frequencies, so that |U(ωk)| ≥ Umax, where Umax = sup(|K(ωk)|)Emin.

Lemma 1. Under the above assumptions, the minimization of mse(ŷ(t)) re-

quires that |G(ωk)V(ωk) − Ĝ(ωk)V̂(ωk)| = 0 for all ωk =
2πk
N

, k = 1, 2, . . . ,N, and

this results in mse(ŷ(t)) = var(e(t)).

Proof. Signal u(t) depends upon the signal e(t) according to control law u(t) =

−K(q)y(t) and (3.3), and therefore v(t) also has dependence by (3.1). Specifically

sample ut of signal u(t) and therefore sample vt of signal v(t) depend upon samples

et, et−1, ..., e0 of signal e(t). However, assuming plant models G(q) and Ĝ(q) each

contain at least one unit time delay, sample t of plant filtered signals G(q)v(t) and

Ĝ(q)v(t) are independent of sample et. Therefore,

E[ǫ2(t)] = E[ǫ2r (t)] + var(e(t)) (3.7)
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where E is the expectation operator, and the quantity ǫr(t) is defined

ǫr(t) = G(q)v(t) − Ĝ(q)v̂(t). (3.8)

It is assumed that the sampled versions of each quantity also satisfy the same rela-

tionship, so that

mse(ŷ(t)) =
1
N

N∑

t=1

ǫ2(t) =
1
N

N∑

t=1

ǫ2r (t) + var(e(t)) (3.9)

and therefore the mean squared modelling error is divided into two independent

components,
1
N

∑N
t=1 ǫ

2
r (t) which can be affected by choice of (Ĝ, η̂), and var(e(t))

which cannot. Therefore the choice of (Ĝ, η̂) which minimizes MSE is the one that

minimizes

1
N

N∑

t=1

ǫ2r (t) =
1
N

N∑

t=1

(G(q)v(t) − Ĝ(q)v̂(t))2. (3.10)

Let ξ(ωk), Y(ωk), U(ωk), V(ωk), Ŷ(ωk), and V̂(ωk) represent the Discrete Fourier

Transforms of signals ǫr(t), y(t), u(t), v(t), ŷ(t), and v̂(t), respectively. Also let

G(ωk), Ĝ(ωk), and K(ωk) represent the frequency response functions of G(q), Ĝ(q),

and K(q), respectively. By Parseval’s theorem,

N∑

t=1

ǫ2r (t) =
N∑

k=1

|ξ(ωk)|2 (3.11)
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where ξ(ωk) = ξ(2πk/N) =
1
√

N

∑N
t=1 ǫr(t)e

− j2πkt/N is the Discrete Fourier Transform

(DFT) of ǫr(t). Taking the DFT of each side of (3.8) yields

ξ(ωk) = G(ωk)V(ωk) − Ĝ(ωk)V̂(ωk) + R′(ωk) (3.12)

where R′(ωk) is an artifact of the Discrete Fourier Transform which can be neglected

for large sample size N [156]. Then the problem of minimizing mse(ŷ(t)) over (Ĝ, η̂)

is equivalent to minimizing the quantity
∑N

k=1

∣∣∣G(ωk)V(ωk) − Ĝ(ωk)V̂(ωk)
∣∣∣2.

It has been assumed that the pair (G, η) is in the search space for (Ĝ, η̂), so that it

is possible for |G(ωk)V(ωk)− Ĝ(ωk)V̂(ωk)| to become zero for all ωk. This provides

a minimum value of mse(ŷ(t)), mse(ŷ(t)) = var(e(t)). By Equations (9)-(12), if for

any ωk, |G(ωk)V(ωk) − Ĝ(ωk)V̂(ωk)| > 0, then mse(ŷ(t)) > var(e(t)). Therefore,

the choice of a pair (Ĝ, η̂) that is a minimizer for mse(ŷ(t)) requires |G(ωk)V(ωk)

−Ĝ(ωk)V̂(ωk)| = 0 for all ωk, which results in mse(ŷ(t)) = var(e(t)).

Observation 1. When no stiction is included in the estimated model (η̂ = 0),

ξr(ωk) =
∣∣∣G(ωk)V(ωk) − Ĝ(ωk)U(ωk)

∣∣∣

≥ |G(ωk)V(ωk)| − |Ĝ(ωk)U(ωk)|

≥ |G(ωk)V(ωk)| − |Ĝ(ωk)| |U(ωk)|

≥ |G(ωk)V(ωk)| −G∞ |U(ωk)|
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Therefore, ξr(ωk) > 0 if G∞ <
|G(ωk)V(ωk)|
|U(ωk)|

.

Theorem 1. If there exists ωC > 0 such that for all ωk > ωC, K(ωk) < κ =
1

2G∞
,

and there also exists a frequency ωk > ωC, k = 1...N, such that |G(ωk)V(ωk)| > E∞,

and also η > 0, then the η̂ minimizing mse(ŷ(t)) will require η̂ > 0.

Proof. Given ωk > ωC, by Assumption 8 and the existence of upper bound κ,

|U(ωk)| =

|K(ωk) (G(ωk)V(ωk) + E(ωk))| < κ(|G(ωk)V(ωk)| + E∞). Therefore,

|G(ωk)V(ωk)|
|U(ωk)|

>
|G(ωk)V(ωk)|

κ |G(ωk)V(ωk) + E(ωk)|
(3.13)

≥ |G(ωk)V(ωk)|
κ (|G(ωk)V(ωk)| + E∞)

>
1
2κ
= G∞

where the final inequality holds due to |G(ωk)V(ωk)| > E∞. Then by Observation

1, ξr(ωk) > 0 for at least one ωk for the choice η̂ = 0. Since G and η are in the

search space for (Ĝ,η̂), it is possible to choose (Ĝ,η̂) giving ξr(ωk) = 0 for all ωk,

and therefore any pair (Ĝ,η̂ = 0) is not a minimizer for mse(ŷ(t)).

Remark 1. The above theorem states that under the present assumptions stiction

will be correctly identified given the presence of (i) a cutoff frequency past which

the magnitude of the controller’s frequency response is sufficiently low and (ii)

the presence of sufficient magnitude of plant-filtered stiction induced excitation

G(ωk)V(ωk) at frequencies greater than the controller cutoff frequency. This re-

quires a sufficiently high plant cutoff frequency such that G(ωk) has great enough
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magnitude for this condition to be satisfied at some frequency ωk > ωC. Theorem 1

gives a sufficient condition for identification of stiction when it is present.

Remark 2. In prior works, the identified Hammerstein model used an ARMAX

type model instead of an output error type model to model the linear component. In

that case, the white noise filter included in the identified model could possibly be

manipulated to capture the effects of stiction induced excitation at frequencies past

the controller cutoff frequency. To prevent this from occurring in the prior works,

the order of the ARMAX model was restrained by using the Akaike Information

Criterion during linear model selection [155], which penalizes use of more model

coefficients.

Observation 2. From discrete linear systems theory, if
|G(ωk)V(ωk)|
|U(ωk)|

≤ G∞ for all

ωk then there exists a Ĝ ∈ M such that
∣∣∣G(ωk)V(ωk) − Ĝ(ωk)U(ωk)

∣∣∣ = 0 for all ωk.

Theorem 2. If there exists a ωC > 0 such that for all ωk < ωC, K(ωk) > κ =
V∞

Emin

,

and if there also exists ωG (0 < ωG < ωC) such that for all ωk > ωG, G(ωk) < γ =

G∞EminKmin

V∞
, where Kmin = min

ωk

|K(ωk)|, then η̂ = 0 will always be a minimizer of

mse(ŷ(t)) no matter the value of η.

Proof. By Assumption 9, |U(ωk)| ≥ |K(ωk)|Emin for all ωk, and for ω < ωC,
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|K(ωk)|Emin > κEmin. Also, in general, |G(ωk)V(ωk)| ≤ G∞V∞, so that therefore

|G(ωk)V(ωk)|
|U(ωk)|

≤ G∞V∞

|K(ωk)|Emin

(3.14)

<
G∞V∞

κEmin

= G∞.

Alternatively, when ωk ≥ ωC > ωG, |G(ωk)V(ωk)| ≤ γV∞, and in general, |U(ωk)|

≥ KminEmin, so that therefore

|G(ωk)V(ωk)|
|U(ωk)|

≤ γV∞

KminEmin

= G∞. (3.15)

Therefore, since
|G(ωk)V(ωk)|
|U(ωk)|

≤ G∞ for all ωk, then by Observation 2, there exists

a Ĝ ∈ M such that
∣∣∣G(ωk)V(ωk) − Ĝ(ωk)U(ωk)

∣∣∣ = 0 for all ωk Therefore, η̂ = 0 is

a minimizer for mse(ŷ(t)), and a model without stiction can be identified regardless

of the value of the value of η.

Remark 3. The prior theorem states that under the existence of appropriate con-

ditions, if plant cutoff frequency ωG is less than the controller cutoff frequency ωC

(with appropriate definitions for each ωC and ωG), then a process model assuming

no stiction (η̂ = 0) can always be identified that gives minimum mse, even in the

presence of stiction. Theorem 2 provides a sufficient condition for incorrectly iden-

tifying the absence of stiction when it is present.

Remark 4. While there has been much debate in the literature on the effect of the
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quality of the stiction model (one or two parameters) and its effect on stiction de-

tection, theorem 2 shows that even in the case where the true process and stiction

models are contained in the search space, under certain conditions, stiction will not

be detected when present. While we have not shown that these are the only condi-

tions (necessity) under which stiction detection could be compromised, establishing

such conditions exist is of critical importance in further development of these tech-

niques.

Remark 5. In [59], it can be seen that there are cases where Hammerstein based

stiction detection fails whereas a shape based approach works. The shape based and

other similar approaches can be viewed as imposing further constraints (frequency

shaping) on the identified model that could help in improving stiction detection in

some specific instances.

3.4 Simulation Examples

In this section, two simulation case study results are provided to illustrate The-

orems 1 and 2 of the previous section. In the first case, corresponding to Theorem

1, the plant model is a discrete time transfer function G(z) =
0.957z−1

1 − 0.043z−1
and the

controller, K(z) =
0.5 − 0.45z−1

1 − z−1
, is of discrete PI form. The Bode magnitude plot

of these two transfer functions is given in Figure 3.1 (a), which shows that the mag-

nitude of the controller frequency response becomes lower than that of the plant by
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10−2 Hz. Within Simulink, a one parameter valve stiction model [150] with η = 2

was added between the controller and plant blocks to simulate stiction. The closed

loop was excited by both a unit step change in set point, as well as white noise of

variance 2.5 × 10−3 added to the plant output. The simulation was conducted for

104 seconds with a sample time of 1 second. The resulting controller, plant, and

valve signals (u(t), y(t), and v(t)) are shown in Figure 3.1 (b). In Figure 3.1 (c), the

Discrete Fourier transform of each u(t) and y(t) are shown, as well as the extra in-

formation Ye(ωk) which is defined as Ye(ωk)= |G(ωk)V(ωk)| −G∞|U(ωk)|. For each

the case η̂ = 2 and η̂ = 0, ARX model identification with stability enforced was

performed using the Matlab System Identification Toolbox. The G∞ constraint was

not explicitly enforced on the identified models, but enforcing stability led to this

condition being satisfied over most of the frequency range of each estimated model.

Fitting ARX models with up to 20 poles and 30 zeros, models for the η̂ = η = 2

case achieved mse(ŷ(t)) as low as 2.51× 10−3, while in the case of η̂ = 0, the lowest

mse(ŷ(t)) was 0.13, meaning that, here, stiction is considered to be correctly iden-

tified. Additional coefficients may reduce the mse value further, however, due to

the large amount of extra information present, it is unlikely models assuming η̂ = 0

will give lower mse than those using η̂ = 2 even if the G∞ constraint is not strictly

enforced.

In the second example, corresponding to the results of Theorem 2, a continuous
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time plant G(s) =
3e−s

100s + 1
and controller K(s) =

1
s + 1

were simulated for 103

seconds with a stiction parameter of η = 0.4. The variance of the white noise added

to the plant output was 0.005, otherwise all other simulation conditions were the

same as stated for the previous example. The Bode magnitude plots of Figure 3.1

(e) show that in this case the plant frequency response cuts out much earlier than

that of the controller, and (f) of this figure displays the controller, plant, and valve

signals from the response to a unit step change in set point. Figure 3.1 (g) contains

the Discrete Fourier Transforms of each the controller and plant outputs. The extra

information Ye(ωk)= |G(ωk)V(ωk)| − G∞|U(ωk)| is not shown, as it is zero at all

frequencies for this system. Fitting ARX models with up to 20 poles and 30 zeros,

the lowest mse achieved for the case of models using η̂ = η = 0.4 was 0.597, while

for the case of models using η̂ = 0 a lower mse of 0.591 was obtained. Different

results might be achieved by altering the maximum numbers of ARX coefficients,

but in this case, using amounts of parameters similar to practical algorithms, no

stiction was identified even though stiction was present.

3.5 Industrial Case Studies

In this section, the results of Section 3.3 are used to analyze stiction detection

on industrial control loop datasets provided by Horch et al. [54]. Datasets for both

an integrating level loop (tag name: LC011) and a non-integrating flow control loop
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(tag name:FC525) are considered. The true cause for oscillations in these control

loops was the presence of stiction in control valves (reported in [54]). The level

control loop is an interesting case study since it has been reported in [54] that the

model based segmentation approach for stiction detection of Stenman et al. [157]

detected that there is no stiction in this loop. The controller and process outputs,

u(t) and y(t), for the two loops are shown in Figure 3.2 (a) and (b). Hammerstein

based approaches with both one parameter and two parameter stiction models are

applied to each loop. The method using the one parameter stiction model provide

estimated values of η̂ = d̂ = 0 (no stiction detected) for level loop and η̂ = d̂ = 2.16

(stiction detected) for the flow loop. Similar results were obtained by using a two

parameter model [146]. For the level loop, the value of the two parameters are

η̂ = [Ŝ , Ĵ] = [0, 0] (indicating no stiction) while for the flow loop the values are

η̂ = [Ŝ , Ĵ] = [2, 0.5] (indicating presence of stiction).

The Discrete Fourier Transform of controller and process outputs for each loop

are provided in Figure 3.2 (c) and (d). For the level loop there is no significant am-

plitude difference at high frequencies between the process and controller outputs.

In other words, no extra amplitude information at frequencies beyond the controller

cutoff frequency ωc is found. However, for the flow loop data, there is a significant

amplitude in process output at frequencies where the controller output magnitude

is near zero. In this case, it is strongly suspected that ωG > ωC. For these industrial

datasets, the plant and controller models are unknown so that extra information will
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have to be analyzed differently than for the simulation examples. A threshold value

of 1% of the maximum power value in the power spectrum of the process output is

selected. Figure 3.2 (e) and (f) show the power of process output (|Y(ω)|2) at fre-

quencies where the power spectrum of controller output (|U(ω)|2) is less than this

threshold. From these plots it is evident that the necessary conditions for detection

of the stiction nonlinearity by Hammerstein methods is not present in the integrat-

ing level loop, while for the flow loop, stiction detection is successful because of

excitation that is present in the process output but absent in the controller signal.

3.6 Conclusions and Future Work

A frequency domain analysis of closed loop systems is performed to identify

success and failure conditions for Hammerstein based stiction detection approaches

in linear systems. In this work we demonstrate that under certain conditions stic-

tion detection could be compromised even when there are no inherent limitations

imposed on the identified process and stiction models vis a vis the true system. This

important result could be used in the development of reliability measures for stic-

tion detection algorithms. Simulation studies were used to illustrate the theoretical

results. Case studies were presented to demonstrate the applicability of the pro-

posed theoretical arguments in the industrial environment. Future work should also

be directed towards theoretically studying the effect of both the process and stiction

model mismatches on the Hammerstein model based stiction detection algorithms.
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Figure 3.1: Simulation Ex. 1: (a) Bode magnitude plots for plant G(ωk) and con-
troller K(ωk) for first the system. (b) Process output y(t), controller output u(t),
and valve position v(t) for the first system (c) DFT magnitudes of signals u(t) and
y(t) and extra information |Ye(ωk)| for the first system. (d) Bode magnitude plots
for plant G(ωk) and controller K(ωk) for the second system. (e) Process output
y(t), controller output u(t), and valve position v(t) for the second system (f) DFT
magnitudes of signals u(t) and y(t) for the second system.
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Normalized Frequency (F/Fs) Normalized Frequency (F/Fs) 

Normalized Frequency (F/Fs) 

(e) 

Figure 3.2: Simulation Ex. 2: (a) Process output y(t) and controller output u(t)
from level loop (b) Process output y(t) and controller output u(t) from flow loop
(c) DFT magnitudes of level loop signals u(t) and y(t) (d) DFT magnitudes of flow
loop signals u(t) and y(t) (e) Significant power values in process output not found
in controller signal for the level loop (f) Significant power values in process output
not found in controller signal for the flow loop
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Nomenclature

DFT Discrete Fourier Transform

ARMAX Autoregressivemoving-average model

E(ωk) discrete fourier transform of signal e(t)

G(q) a linear transfer function model

G(ωk) the frequency response of G(q)

T sampling time

V(ωk) discrete fourier transform of signal v(t)

e(t) sequence of independent samples from a white noise sequence

q the forward time shift operator

t sampling instants

v(t) actual valve position

v̂(t) estimate valve position

u(t) the valve position in the absence of stiction

y(t) output measurement sequence

ŷ(t) estimated output measurement sequence

E the expectation operator

Υ the nonlinear and possibly discontinuous operator

ǫr(t) model output error

η stiction parameter

η̂ an estimate of η

ξ(ωk) Discrete Fourier Transforms of signals ǫr(t)

M set of models containing G(q)
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CHAPTER 4

DETECTION OF STICTION IN INTERACTING SYS-

TEMS USING A HAMMERSTEIN MODEL APPROACH

Automated non-invasive diagnosis and localization of the root cause of oscil-

lations in process plants is a widely held industry goal sought in order to stabilize

product qualities and reduce equipment problems and energy costs. As stiction in

control valves is one of the leading causes of oscillations in plant variables, detec-

tion and localization of valve stiction is a major part of any method for root cause

diagnosis. Previous contributions have introduced a number of techniques that seek

to achieve this objective, but most of the approaches presented are only applicable

for the case of single-input single-output (SISO) processes. The current work seeks

to extend one widely used approach, Hammerstein-model-based stiction detection,

to the case of interacting plants. Because of the difficult nature of the problem, we

first consider the case where a nominal linear plant model is known for the interact-

ing system in question. With these approximate linear dynamics, we introduce an

approach to identify in which loop the valve stiction is originating from, under the

assumption that only a single valve in the interacting system is afflicted by stiction.

The method efficacy is explored using simulation studies. The feasibility of ex-

tending the method to the case of unknown plant model via multivariate time-series
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identification of the linear plant model is then briefly discussed. This chapter is

excerpted from the conference paper: “T. Spinner, B. Srinivasan, R. Rengaswamy.

Stiction Detection in Interacting Systems. ADCONIP 2014, Hiroshima, Japan”.

4.1 Introduction

In the process industries, oscillations in the values of process variables can have

immense economic costs due to equipment wear and increased product variability.

Previous industrial surveys have indicated that a large percentage of control loops

are affected by oscillations [158, 1]. A major cause for these oscillations is valve

stiction (stiction being a term meaning static friction). The control valve is a weak

link in the control loop, as it is often the only moving component in many processes

[159]. Stiction induced oscillations caused by one control valve may propagate

from control loop to control loop until a large portion of the entire plant is affected.

Since large industrial processes may have hundreds to thousands of control loops,

reliable and noninvasive automated stiction detection would serve as a valuable

resource in order to locate the original source of oscillations so that the problem

can be eliminated.

With this goal in mind, many valve stiction detection algorithms have appeared

in the literature in recent years. Huang et al.[160] suggested that these methods

could be classified into (i) descriptive statistic, (ii) pattern recognition, and (iii)

model-based approaches. Alternatively, Babji et al. [73] have suggested to classify
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stiction detection approaches into the categories of (i) shape-based, (ii) frequency-

domain based, and (iii) model-based. In each case, the model-based methods re-

ferred to are those based on representing the process as a Hammerstein model. This

technique was first introduced by [48], and many variants have been introduced

since [49, 50, 51, 52, 53].

With few exceptions, the available techniques are focused on single-input single-

output (SISO) processes. However, many industrial control loops are interacting,

wherein the controlled or manipulated variables from one loop have direct impact

on the controlled variables of one or more other loops. In this case, the nonlinear

input-output behavior induced by stiction can appear in several loops simultane-

ously. Choudhury et al. [57] provided several methods for confirmation of valve

stiction, two of which should be applicable to interacting systems, and these are (1)

putting the controller for the suspected loop with stiction into manual control and

see if the stiction induced limit cycles die down or (2) use valve positioner data and

compare to the op (controller output) data to check for stiction. A third method pre-

sented in the same work was to change the controller gain and observe whether the

oscillatory plant signals exhibited a change in frequency, with a change indicating

the presence of valve stiction. Haoli et al. [56] have demonstrated that for inter-

acting systems, this gain change method could fail to give the correct indication. A

change in any controller gain within the interacting system could cause a shift in the

oscillation frequency of the plant signals. Therefore, they proposed a modification
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of this technique, wherein for an interacting system having several valves where the

presence of stiction has been detected but not isolated to a particular valve, every

controller gain in the interacting system was changed from its original setting, in

order to see in which loop the controller gain change caused the largest magnitude

change in oscillation frequency. The valve within the loop whose controller gain

change caused the largest frequency shift is deemed to be the source of the stiction

induced oscillations within the system.

All of the aforementioned methods that should correctly isolate valve stiction

within interacting systems are fairly intrusive (unless a valve positioner was already

installed). For instance, the modification of the gain change method presented in

[56] requires 2 significant changes in gain for every control loop within the inter-

acting system. Putting the loop in manual to complete the diagnosis is disruptive

and possible unsafe [57], so this should be done as rarely as possible. An alterna-

tive to these methods is to use knowledge of the process topology to create a plant

adjacency matrix, which can then be used to isolate the source of oscillation based

upon the additional knowledge of which combination of process loops are exhibit-

ing oscillations at the same frequency [161]. This method was designed in order

to isolate the source of any type of oscillation whether due to poor tuning, exter-

nal disturbance, or equipment malfunction or degradation, valve stiction included.

However, in some instances, it is possible that the necessary topology information

is not fully available or else possible that even with this information, the specific
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fault and location cannot be resolved completely. Therefore, other techniques for

resolving the location of valve stiction in interacting systems should still be useful.

In this work we will explore the localization of stiction detection on interacting

systems using a Hammerstein-model-based detection approach wherein the linear

plant model is assumed to be approximately known, and the nonlinear stiction el-

ement uses a one-parameter valve model during data-fitting. In the Section 2, the

detection approach is described. In Section 3 several simulation examples are used

to demonstrate the efficacy of the method as well as to highlight possible pitfalls.

Finally, Section 4 contains discussion of the approach and conclusions are provided.

4.2 Stiction Detection Approach

This section introduces a stiction detection method for systems with internal

interactions between control loops. First, some data-based valve stiction models

are introduced which are useful for simulation and detection of stiction. Following

this, a Hammerstein model-based stiction detection approach is proposed.

4.2.1 Valve Stiction Modeling

There are two types of valve stiction models, these being (i) physics-based mod-

els and (ii) data-driven models. In practical applications, a large number of the

parameters required for physics based modelling have unknown value, and so data-

driven models are used within stiction detection techniques. The phase plot pro-
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Figure 4.1: Idealized phase plot for a valve with stiction

duced by the data driven models of [162] and [144] is displayed in Fig. 4.1. These

authors used two parameters to characterize a valve’s stiction behavior, combined

deadband and stickband, denoted S , and slip-jump J. A study by Garcia [163]

comparing many types of physics based and data-driven valve models found that

the model of [144] gave physically realistic input-output behavior under the simu-

lations performed, and therefore this model is selected as the simulation model used

in later sections.

For stiction detection however, a simpler data-driven model is used, this being

the one-parameter model, which was used along with the original Hammerstein

model-based stiction detection technique [48]. Here valve position v(t) is related

to its previous value v(t − 1) and the controller output u(t) by the following simple

expression,
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v(t) =



u(t), if |u(t) − v(t − 1)| > d

v(t − 1), otherwise

where d is the parameter describing the magnitude of stiction present in the

valve.

4.2.2 Hammerstein Model for Interacting Systems

A Hammerstein model is a block oriented model in which a nonlinear system is

broken into two parts: a block containing a static nonlinearity, followed by a block

containing linear dynamics. Several of the previous proposed methods for stic-

tion detection rely upon this Hammerstein structure for stiction quantification, with

the nonlinear data-driven stiction model contained in the first block, followed by a

linear plant model. Then an iterative search is undertaken for identifying the pa-

rameters from each the linear and nonlinear blocks, with an outer loop for selecting

the valve stiction parameters and an inner loop for identifying the linear dynamics.

The previously introduced methods pertained to SISO systems, which we now

propose to extend to the case of interacting multiple-input multiple-output (MIMO)

systems. Fig. 4.2 displays the assumed block form of the system under the Ham-

merstein assumption for the case of a 2 × 2 MIMO system. Controller outputs u1

and u2 enter the nonlinear element and are modified by data-driven valve models V1
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Figure 4.2: Example Hammerstein stiction model for a 2 × 2 system

and V2 into valve positions v1 and v2. The linear dynamics then transform the valve

position into measured outputs y1 and y2. Under the assumption of only one valve

having stiction at a time, either V1 or V2 will be a nonlinear transformation, while

the other simply acts as a pass-through of the controller signal.

Previous works used several types of models to identify the linear dynamics,

including ARMAX (auto-regressive moving average with exogenous input) ([48],

[53], [52]), extended ARMAX [51], and low-order model with time delay [50]. Pos-

sible multivariate extensions of these models include VARMAX (vector-ARMAX)

or matrix transfer function models. In this work, we assume that a VARX (vector

auto-regressive) approximation of the continuous-time multivariate system dynam-

ics is available. Using the same one parameter valve stiction model as [48], we

propose the following stiction location procedure for multivariate interacting sys-

tems:

1. Obtain a positive detection of stiction within the interacting system using one
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of the previously existing techniques.

2. Assume the valve in Loop i has stiction and the other valves do not. Perform

steps 2-6 for each i = 1 . . . n where n is the number of control loops in the

system considered.

3. Perform a grid search over estimated stiction parameter d̂i from 0 to di,max,

where di,max is defined ui,max − ui,min, while holding (d̂ j = 0, j , i).

4. At each value of d̂i, transform ui to linear plant input vi using the one param-

eter valve model. Each of the other inputs u j, j , i, enters the plant unaltered

(v j = u j) since currently no stiction is assumed in the other valves.

5. Transform the plant inputs by the approximate VARX model to obtain plant

output estimates ŷk, k = 1 . . . n. Calculate the mse (mean-squared error) for

each plant output, which is mse(ŷk) = (yk − ŷk)2 where yk is the measurement

signal of plant output k.

6. Calculate the MSE index, defined by Imse(d̂1, . . . , d̂n) =
∑n

k=1
mse(ŷk)
var(yk)

for the

current set d̂i > 0 , d̂ j = 0 (∀ j , i), where var(yk) is the variance of plant

output signal k.

7. After looping through steps 2-6 for i = 1 . . . n, select the valve most likely

to contain stiction and the estimated severity based on the lowest value of

Imse(d̂1, . . . , d̂n). Since the search space consisted of having of only one nonzero
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stiction parameter d̂i at a time, the minimum will correspond to stiction in a

single valve.

4.3 Simulation Results

To test the efficacy of the proposed method, simulation studies were carried out

using Matlab and Simulink. For an example 2×2 MIMO system, we considered the

distillation column model of [164]. The original continuous time transfer function

model is used to simulate the plant, and two PI controllers were added. To simulate

valve stiction, the model of [144] was used because of favorable characteristics of

the model discussed in [163]. Within one valve model, the parameter set (S , J)

was set to nonzero values to simulate stiction, while for the other loop, the valve

parameters remained at (S , J) = (0, 0). Simulations were run for 1000 seconds with

sampling at a frequency of 1 Hz. In each case, a set-point change was used to excite

the loop and no other external disturbances or nonlinearities were added.

Fig. 4.3 shows the controller and process outputs when the parameter sets (S 1, J1) =

(0.6, 0.06) and (S 2, J2) = (0, 0) are used. Stiction induced oscillations are present

in all plant signals, even though the valve in loop 2 had no stiction simulated. If

considering the control loops separately, loop 1 takes on the classic appearance of a

nonintegrating process under PI control that has stiction, with triangular wave con-

troller output (u1) and approximately rectangular wave process output (y1). How-

ever, the effects of the valve nonlinearity will also appear in loop 2, and it can be
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Figure 4.3: Simulated controller and process outputs for the Wood and Berry system
under the case (S 1, J1) = (0.6, 0.06)

shown that using SISO Hammerstein stiction detection on this loop will result in

positive detection even though stiction is absent from the second valve.

An approximate linear model of the process was generated by taking a zero-

order hold discretization of the original continuous time transfer function model

to produce a discrete transfer function model, and then converting this into VARX

form. Using the controller output data from Fig. 4.3, and assuming stiction sequen-

tially in one loop at a time, predicted outputs ŷ1 and ŷ2 were generated for a range

of stiction parameters on each valve.

Fig. 4.4 shows the mean-square error for each output with stiction assumed on

each valve sequentially (one valve with stiction, the other without) during detection.
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The pointed lines on each plot represent the mean square error (mse) resulting from

assuming stiction in the first valve and no stiction in the second, while the circled

lines provide the mse when stiction is assumed to be present only in the second

valve. On the plots, each estimated stiction parameter (d̂1 in the case of the pointed

line, d̂2 in the case of the circled line) is scaled by the span of the corresponding

op signal so that the results can be presented together. For both estimated outputs

ŷ1 and ŷ2, the minimum mean squared error is achieved when d̂1 > 0.6 (d̂2 = 0)

(on the plots d̂1 = 0.6 corresponds to approximately 0.9 when scaled by span of the

op). Since the minimum value of mse is obtained for each output when assuming

stiction in valve 1 (pointed line), the method is correctly indicating stiction in this

valve.

In this case, the results from each plot in Fig. 4.4 agree, and so the plot of

Imse in Fig. 4.5 reflects this, having a minimum value for d̂1 ≥ 0.6 (≥ 0.9 on the

plot after scaling by dmax) and d̂2 = 0. Therefore, it is concluded that stiction

is correctly detected in the valve within loop 1 for this case. Interestingly, the

indicated values of the stiction parameter (d̂1 ≥ 0.6) correspond to the case where

the valve is completely immobile for the duration of the predicted series. This

result is probably due to different valve models being used during simulation and

detection.

The simulation was again repeated, this time with stiction simulated in the valve

in loop 2 with stiction parameter magnitudes of (S 2, J2) = (0.05, 0.05) ((S 1, J1) =

128



Texas Tech University, T. Spinner, December 2014

mse(y
)

mse(y
) > 0, = 0= 0, > 0

Figure 4.4: MSE of each predicted output for the Wood and Berry system under the
case (S 1, J1) = (0.6, 0.06)

> 0, = 0= 0, > 0

Figure 4.5: MSE index computed for the Wood and Berry system under the case
(S 1, J1) = (0.6, 0.06)
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Figure 4.6: Simulated controller and process outputs for the Wood and Berry system
under the case (S 2, J2) = (0.05, 0.05)

(0, 0)). This is a special case where the deadband and stickband are equal, which

provides input-output behavior quite similar to the one-parameter model used dur-

ing identification. The data from this simulation is presented in Fig. 4.6, wherein

each plant signal is vaguely sinusoidal. Again, the stiction detection proceeded

according the method of the previous section. The mse for each output is plotted

separately in Fig. 4.7. For each output, minimum mse was obtained for the parame-

ter set (d̂1 = 0, d̂2 = 0.048) (on the plots, this value of d̂2 is scaled to approximately

0.37). Here, as could be expected in this special case, the result achieved gives

d̂2 ≈ S = J. The agreement of the results between each of the plots in Fig. 4.7

is also reflected in the MSE index in Fig. 4.8, wherein the same parameter set is

identified.
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Figure 4.7: MSE of each predicted output for the Wood and Berry system under the
case (S 2, J2) = (0.05, 0.05)

> 0, = 0= 0, > 0

Figure 4.8: MSE index computed for the Wood and Berry system under the case
(S 2, J2) = (0.05, 0.05)
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Figure 4.9: MSE of each predicted output for the Ogunnaike and Ray system under
the case (S 1, J1) = (0.06, 0.04)

A final simulation example uses a 3 × 3 MIMO transfer function simulation

model obtained from [165]. Valve stiction was simulated in loop 1 using the same

two parameter model as before and parameters (S 1 = 0.06, J1 = 0.04). The sim-

ulated output was sampled at 1 Hz for 1200 seconds. Again, stiction detection

occurs using the approach of the previous section, with an approximate model gen-

erated by taking a zero-order hold of the original transfer function model. Fig. 4.9

presents results from attempting to identify stiction on each valve. For each output,

the lowest mse is obtained by assuming (d̂1, d̂2, d̂3) = (0.54, 0, 0) (scaled values).

The MSE index was calculated, with the results in Fig. 4.10. A correct lo-
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> 0, = 0, = 0= 0, > 0, = 0= 0, = 0, > 0

Figure 4.10: MSE index computed for the Ogunnaike and Ray system under the
case (S 1, J1) = (0.06, 0.04)

calization to the valve in loop 1 is provided with the minimum IMS E reached at

(d̂1, d̂2, d̂3) = (0.54, 0, 0) (scaled by span of op). The MSE index is useful for se-

lection of a final detection in cases where the results for each output considered

separately do not agree, although this case was not found in any of the simulation

results of this section.

4.4 Discussion and Conclusions

The results of the previous section indicate that performing localization of stic-

tion detection in interacting multivariate systems using approximately known model

information shows promise. The results of each detection were correct, with appre-

ciable margin between correct and erroneous detection. These relatively convincing

results in the case where an approximately known model is available, lead us to the
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next question, which is the ability of this method to work when a model is not

available and would have to be identified, in which case model structure (order)

and time delays would have to be estimated too. The additional task of estimating

multivariate linear dynamics from the closed-loop data will have unknown effect

on the reliability of the method. The reliability could decrease if the parameter

estimates converge far from true values, but the use of simultaneous linear model

identification could also provide the flexibility to reduce errors due to plant or dis-

turbance changes compared to the case of using previously determined dynamics.

One possible way to decrease error may be to use a valve model for detection which

is more able to capture the input-output behavior of the valve generating the data (in

this study, the detection valve model is a one-parameter and the simulation model

was a 2 parameter type). For practical applications, it would be necessary to know

which valve model provides the most similar input-output characteristics as the

sticky valve in the closed loop. There is some disagreement in the literature in this

regard, with recent work [166] suggesting that a suitable valve model should have

the valve reaching a stationary state during each sampling period, which is in con-

trast to the assumption in many previous works wherein the valve was assumed to

stay in motion across sampling periods.

Extensive studies on industrial data-sets [72] have shown that, at best, the cur-

rently existing automated data-based techniques should be relied on as a screening

mechanism in order to identify which subset of control valves should be selected
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for more invasive tests in order to confirm valve stiction. This conclusion is be-

cause of the limited accuracy of the non-invasive techniques studied. This is still

a valuable role for this type of technique to serve as it can greatly reduce the time

and effort of plant personnel in locating the source of oscillations. In this role, it is

essential that a stiction detection technique should have a low false negative rate,

to avoid eliminating the sticky valve from consideration. Of course, reducing the

number of false positives is also beneficial as it will reduce the number of invasive

tests necessary in order to locate the valve with stiction that is the root cause of

the oscillations. In a similar way, the currently proposed technique is not meant to

provide a definite answer as to which valve contains stiction, but it can provide the

most probable location for plant personnel to begin more invasive testing.

Future work can proceed in several directions, such as dropping the assumption

that a nominal plant model is available for use. In the SISO case, it is known that

the presence of stiction provides sufficient excitation for the closed-loop identifi-

cation of plant models [48]. For the MIMO case, it would be necessary to fit a

multivariate linear model, such as a VARX, VARMAX, or matrix transfer function

model. Even in the SISO case, fitting linear dynamics is a computationally inten-

sive procedure, which must be repeated at a large sampling of stiction parameters,

so it is unknown if the multivariate case is feasible to be completed in a timely

manner. A final challenge is industrial validation of the proposed approach, which

will require obtaining data sets from the correct type of process (interacting) with
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enough additional information (the condition of each control valve in the system,

knowledge of disturbances, controller tunings, plant models) to properly test the

diagnosis technique.
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Nomenclature

di, d̂i stiction parameter for valve i, and its estimate
Imse MSE index
Ji slip-jump parameter for valve i

S i stickband parameter for valve i

ui controller output, loop i

vi valve position, loop i

Vi valve transformation, loop i

yi, ŷi output variable of loop i, and its estimate

MIMO multiple-input multiple-output
MSE mean squared error
SISO single-input single-output
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CHAPTER 5

ECONOMIC PERFORMANCE ASSESSMENT OF MUL-

TIVARIATE PROCESSES WITH CONSTRAINTS

Plant economic performance is most often related to the mean values of mean

values of process variables; meanwhile most performance assessment techniques

involve examining the variance and covariance of output variables. The combined

approach is to trade-off between variances of different process variables in order

to move the plant as close to the optimal economic operating point as operating

constraints will allow. This problem is referred to as the minimum backed-off point

operating point selection, and previous works have formulated it as a non-convex

constrained optimization problem. The current work uses linearization of the rela-

tionship between the standard deviations of input and output variables in order to

allow the problem to be solved as a small number of linear programs. This new

approach is illustrated using simulation examples.

5.1 Introduction

Automated closed loop monitoring and diagnosis techniques for the process in-

dustries seek to aid plant personnel identify poorly performing control loops, find
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root causes for problems, and perform remedial action. Identification of which

control loops need attention is often achieved by comparing the current control

loop performance against a historical, designed, or theoretical performance bench-

mark. Harris introduced the minimum variance index for single-input single-output

(SISO) systems, with this measure comparing the variance of the measured variable

against the benchmark of the theoretical achievable minimum variance [6]. Fol-

lowing the introduction of the minimum variance index, many other performance

assessment techniques based on the variance and/or covariance of the output vari-

able(s) have appeared in the literature, with techniques developed for both for SISO

and interacting systems. The usefulness of these methods is often based on the

assumption that reducing product variances will allow the operating point to be

moved closer to the process constraints, and that this action will bring increased

profits [167, 43]. While this assumption holds true for many cases, proper bench-

marking of economic performance requires considering operating constraints along

with price and cost information in addition to plant and disturbance model informa-

tion.

Many performance assessment methods for interacting systems rely on a com-

bination of open-loop plant information and closed-loop operating data. These in-

clude techniques developed by Huang et al. [168] and Harris [15] which are based

on the use of the system interactor matrix. Ko and Edgar created a method capa-

ble of producing similar results using matrices of open-loop plant Markov coeffi-
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cients [17]. Ko and Edgar also proposed techniques for determining the minimum

variance benchmark for constrained systems [17], which requires a full plant and

disturbance models. Each of the methods of Haung et al., Harris, and Ko and

Edgar determines a lower bound on a weighted combination of output variances.

It has been frequently stated that minimum variance control of the outputs is not a

common goal in industry, partly because this leads to excessive movement of ma-

nipulated variables. To simultaneously consider input and output variances, several

techniques have been proposed, and these rely on full knowledge of the open-loop

plant. Huang et al. proposed using the LQG (linear-quadratic Gaussian) tradeoff

curve between a function of the input variances and a function of the output vari-

ances [23].

Another way to look at the input and output variances, providing a clearer con-

nection to plant economics, is as limitations on the choice of the plant operating

point. The standard deviations of plant variables determines how close that the ac-

tual plant operating point can come to the optimal operating point that lies upon the

boundary formed by operating constraints. Finding the optimal backed-off point

is called the minimum backed-off operating point selection [44, 45]. This usually

involves transforming the original operating constraints on input and output val-

ues into a probabilistic form, wherein the constraint on each variable is written

in terms of the standard deviation of that variable. Then the choice of operating

point along with the input and output variance of each variable is selected within an
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optimization problem, with a (usually linear) objective function representing plant

economics.

The work of Chmielewski and Manthanwar [169] along with that of Peng et al.

[46] formulated this as a problem with a linear objective function with convex and

reverse convex constraints. They required the use of a branch and bound solution

technique to solve for the optimal operating point. Nabil et al. formulated the

problem in a similar manner, and used an iterative solution technique to deal with

the non-convexity [66]. All of the aforementioned works use a state space model

of the plant. Zhao et al. considered a more restricted problem in which not all of

the input and output variances were free to vary [170]. Their formulation was valid

for any model type provided that the relation between input and output standard

deviations could be provided.

The current work provides economic performance assessment and operating

point selection for a class of multivariate systems. It uses a multivariate finite im-

pulse response model of the plant and disturbances. A collection of Pareto opti-

mal standard deviations is then generated. A piecewise linearization of the Pareto

optimal space is then used to generate linear inequality constraints and linear rela-

tionships for the standard deviations. The optimal economic operating performance

can then be determined by solving a small sequence of linear programs. Section 2

contains the formulation of the operating point and variance tradeoff problem to be

solved. Section 3 contains the proposed method for solving this problem. Section
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4 contains a simulation example to demonstrate the proposed approach. Finally,

conclusions and ideas for future extensions are provided.

5.2 Preliminaries

This chapter will rely on several techniques from the field of machine learn-

ing including k-means clustering, principle component analysis, and support vector

machines. Therefore, this section provides a brief overview of each of these three

methods.

5.2.1 k-Means Clustering

Clustering is the task of grouping a collection of unlabeled (unclassified) data

points into several distinct categories. Clustering techniques are widely applied

across the fields of machine learning, data-mining, and pattern recognition. One

popular method to achieve the desired data-partitioning is the use of k-means clus-

tering, which is also variously referred to as the isodata algorithm or Lloyd’s algo-

rithm [130], which divides the data into k sets, S i, i = 1 . . . k, each with centroid

mi. For every data point x j ∈ RN , j = 1 . . . n (N is the dimension of the data, n

is the number of data points), through assignment to a particular set S i, k-means

aims to minimize the within cluster sum of squares (WCSS), defined as the squared

Euclidean distance of the point to centroid of its assigned cluster. The algorithm

comprises iterating a two-step procedure which consist of:
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1. Set membership assignment based on minimum WCSS,

S i = {x j‖x j − mi‖2 ≤ ‖x j − mp‖2,∀p = 1 . . . k}. (5.1)

2. Recalculation of the centroid of each set,

mi =
1
|S i|

∑

x j∈S i

x j,i = 1 . . . k (5.2)

where |S i| is the number of elements assigned to cluster i.

In Matlab, the seeding of the initial centroid positions is performed randomly

by default [171]. The algorithm has converged to a local minimum when the clas-

sification of each individual point does not change between consecutive iterations.

Many variants of the k-means algorithm exist [172], including those which seek to

provide a global minimum WCSS to every data point.

5.2.2 Support Vector Machines

Within machine learning applications, one common objective is to separate data

from two or more sets through the creation of one or more decision boundaries.

Support vector machines (SVMs) are one popular and powerful tool for achieving

this goal. In order to create the decision boundary between two types of data, first

SVM must be provided with labelled training data from the two classes. If it is
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possible that a single hyperplane is able to separate the training data from the two

separate classes, then the data is referred to as linearly separable. If an SVM is

applied in this case, the resulting decision hyperplane (boundary) will maximize its

distance from each set, being placed in what can be intuitively thought of as the

middle of margin between the two sets of training data [130]. The closest points to

the decision boundary are referred to as the support vectors.

Often times, it is impossible to separate the training data by a single hyperplane

boundary, and therefore the data is only nonlinearly separable. Nonlinear separation

can possibly be achieved through the combination of support vector machines with

the so-called kernel trick in order to nonlinearly transform the the training data

[173]. However, it is commonly desired to still use a linear boundary, and instead

minimize some measure of classification error. In this case, soft-margin SVM is

the preferred approach, wherein the distance from the decision boundary of each

incorrectly classified point is added to the objective function to be minimized [174].

In the current work, linear soft-margin support vector machines are used to provide

boundaries on a set of linear surfaces.

5.2.3 Principle Component Analysis

Principle component analysis (PCA) is a statistical technique that is used for

both identifying patterns in data and dimension-reduction of data. In the pattern-

recognition framework, the data considered is a set of feature vectors. A feature
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vector can be described as either an N-dimensional set of features or as a data point

in N-dimensional space.

To begin the PCA procedure [175, 176], the data are first placed in an N × n

matrix, X, where the rows correspond to different features and the columns cor-

respond to different data points (with each point corresponding to, for example, a

separate observation of a process or a different object in a collection, depending on

the problem in question). The mean across each row is collected in N × 1 vector µ,

which is subtracted from each column to provide mean-subtracted matrix X̄. The

covariance matrix, C, of the data contained in X, is then provided by

C =
1

n − 1
X̄X̄T .

Assuming C is positive definite, its eigendecomposition can be written

C = VDVT

where D is an N×N diagonal matrix whose entries are the eigenvalues of C, ordered

from largest to smallest, while V is an N × N orthogonal matrix whose rows are

the eigenvectors of C, ordered according to their corresponding eigenvalues. The

largest eigenvalue corresponds to the direction of maximum variation in the original

data. If the eigenvalues are scaled so that they sum to unity, the largest scaled
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eigenvalue is the fraction of the total variation captured by the first eigenvector, the

value of the second eigenvalue is the additional variation captured by the second

eigenvector, and so forth. The direction of maximum variation is referred to the

first principle component, the direction capturing the maximum amount of residual

variation is called the second principle component, and so on.

During data reduction, components of less significance are ignored and thereby

the final data set will have lesser dimension. For example, to reduce the feature di-

mension from N dimensions to L dimensions, the first L columns of the eigenvectors

matrix V are used to form N × L matrix W. To project a given N × 1 feature-vector

or data-point, x, to L dimensions, the formula

x̃ = WT (x − µ)

where L × 1 vector x̃ is the projection of x onto the first L eigenvectors of C. To

obtain the point corresponding to x̃ in the original N-dimensional space, the relation

x̂ = Wx̃ + µ = WWT (x − µ) + µ

is used. The point x̂ lies on the hyperplane formed by the first L eigenvectors of C.

For a given value of the reduced dimension, L, PCA provides the linear projec-

tion giving the lowest mean-squared-error compared to the original data set. There-
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fore, PCA can be used to provide the hyperplane of a given dimension that provides

the best-fit linear relationship between a set of data points. In the current work,

PCA is used to simultaneously lower the data dimension and provide piecewise

linearization of the set of data.

5.3 Problem Formulation

In this section, an optimization problem is formulated for choosing the operating

point for a certain class of constrained linear systems subjected to stochastic distur-

bances. A key component of the method, which has also been applied in previous

works, is the use of a probabilistic formulation using both hard and soft constraints,

a soft constraint referring to one that is satisfied at some confidence level. The for-

mulation uses the assumption of a normal distribution of the process variables. For

example, given the pair of lower and upper bound soft constraint vectors (y, ȳ) on

plant output y, if the constraints are permitted to be violated at up to 5% of the time,

the constraint can be written as y+ zyσy ≤ y∗ ≤ ȳ− zyσy where zy = 1.96 is the stan-

dard deviation multiplier, y∗ is the mean of y, and σy is the standard deviation of y.

Standard deviation multiplier zy can be adjusted based on the level of tolerance for

constraint violations on each variable. In the case of plant inputs u, the upper and

lower bound constraint vectors y and ȳ are often hard constraints due to physical

limitations, such as the opening range on a valve. In this case, a similar inequality

can be written, u+ zuσu ≤ u∗ ≤ ū− zuσu, where the standard deviation multiplier of
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the inputs is set to zu = 3. This will cause the controller to respect the constraint at

least 99.7% of the time. Then the occurrences of actuator saturation should be rare,

and have very little effect on process performance.

The multivariate model form assumed for this work is that of a discrete finite

impulse response model

(yt − yo) = H(z−1)(ut − uo) + N(z−1)at (5.3)

where yt is the vector of output values at time step t, ut is the vector of input

values, at is the vector of random disturbance impulses from a multivariate normal

distribution, (yo, uo) is the nominal operating point around which the linear model

is valid, z−1 is the backshift operator, H(z−1) =
N∑

i=1

Hiz
−i is the finite impulse model

for the plant, and N(z−1) =
N∑

i=1

Niz
−i is the finite impulse model of the disturbance

filter, with N the order of the finite impulse response models.

Assuming a linear dependence of plant output revenues and plant input costs on

the output and input values, then the plant economic optimization should proceed
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according to:

max J = cyy
∗ − cuu∗ (eqn.5.4a)

sub ject to : y∗ = yo + ∆y (eqn.5.4b)

u∗ = uo + ∆u (eqn.5.4c)

∆y = K∆u (eqn.5.4d)

y + zyσy ≤ y∗ ≤ ȳ − zyσy (eqn.5.4e)

u + zuσu ≤ u∗ ≤ ū − zuσu (eqn.5.4 f )

(yt − yo) = H(z−1)(ut − uo) + N(z−1)at (eqn.5.4g)

(5.4)

where (y∗, u∗) is the chosen steady-state operating point, ∆y and ∆u are vectors

of the deviations of the chosen operating point from the nominal point (yo, uo), K

is the steady state gain matrix, cy is the economic benefit coefficient vector, and cu

is the cost coefficient vector. The following section details how this problem can be

solved as a series of linear programs.

5.4 Solution Method

The problem of Eqn. 5.4 above is not yet in a solvable format. This section

details how a relationship between the entries in the vector of output standard de-

viations σy and the entries in the vector of standard deviations of the manipulated

variables, σu, can be generated. Following this, a piecewise linear relationship be-

tween the entries in these vectors can be created by a novel method. This allows the
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problem of Eqn. 5.4 to be solved by solving a small set of linear programs.

5.4.1 Generating Pareto Optimal Standard Deviations

The objective function J of Eqn 5.4 is linear and each of the constraints 2a-2f

is linear, however, in Eqn 5.4, it is not explicit how the set of output and input

variances (σy, σu) are to be generated. A formula included within the work of

Ko & Edgar [17] allows for the generation of optimal variances σ2
y and σ2

u for a

given weighting of the each individual input and output variable, in the case that

the process model is of the form of Eqn 5.4g. Therefore, this method can be used to

generate a collection of points (σy, σu)
i
where each point i corresponds to a different

set of weighting coefficients.

Before proceeding with the method of Ko & Edgar, one notable modification

is that the current technique seeks to simultaneously minimize a weighted sums

of variances of both inputs and outputs, instead of only output variances as in the

previous method. To proceed, the plant and disturbance models must be augmented

with the plant inputs treated as additional outputs. The augmented model takes the

form
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ỹt =



(yt − yo)

(ut − uo)


=



H(z−1) 0

0 I


(ut − uo) +



N(z−1)

0


at = H̃(z−1)(ut − uo) + Ñ(z−1)at

(5.5)

where H̃(z−1) is the augmented plant filter, and Ñ(z−1) is the augmented distur-

bance filter.

Now returning to the method of Ko & Edgar, from the MIMO plant filter im-

pulse coefficients H̃i that make up plant model H̃(z−1), a dynamic matrix can be

defined:

GN+1 =



0 0 0 0

H̃1 0 0 0

...
. . . 0 0

H̃N · · · H̃1 0

0 H̃N · · · H̃1

0 0 H̃N · · ·
...
. . . · · · ...

0 · · · 0 H̃N



(5.6)
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Also, matrix DN+1 =



Ñ0

...

ÑN



can be constructed from disturbance filter impulse

coefficients Ñi describing the total disturbance effect resulting from a single white

noise vector impulse a0. Therefore, the effect of a0 on augmented output ỹt can be

written



ỹ0

...

ỹN



= GN+1



(u0 − u0)

...

(uN − u0)



+ DN+1a0 (5.7)

Suppose it is desired to achieve the minimum of a weighted sum of input and

output variances σ2
Y =

p∑

i=1

wy,iσ
2
y,i +

n∑

j=1

wu, jσ
2
u, j through proper manipulations of

(ut−uo). First construct weighting matrix Q = diag

([
wy,1 . . . wy,p wu,1 . . . wu,n

])

and also QN+1, which contains N + 1 repetitions of Q on its block diagnonal. The

augmented closed-loop output corresponding to minimum σ2
Y is given by (ỹt)opt =

2N∑

i=0

Yiat−i where Yi are the filter coefficients calculated from the least squares pro-

jection:



Y0

...

YN



= [I −GN+1(GT
N+1QN+1GN+1)+GT

N+1QN+1]DN+1 (5.8)
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The output covariance matrix Σỹ corresponding to the minimized σ2
Y is com-

puted through Σỹ =

2N∑

i=0

YiΣaYT
i . This final result is due to the statistical indepen-

dence of any terms within white-noise sequence at, which provides cov(at−i, at− j) =

0 [23]. Finally, the vectors σy and σu can be obtained by taking the square root

of the diagonal elements of Σỹ. To create the space of Pareto optimal (σy, σu), the

elements of weighting matrix Q should each be varied from 10−4 to 104.

5.4.2 Linearization of (σy, σu) Space

The Pareto optimal standard deviations will lie within a space over (nu + ny) di-

mensions, where nu is the number of inputs and ny the number of outputs. To create

a piecewise linear approximation of this set, the first requirement is to segregate

the original set into a finite number of subsets. Then for the second step, on each

subset, a linear approximation is performed. The methods chosen for these steps in

this work are (i) k-means clustering and (ii) principle component analysis (PCA).

Since k-means clustering has a random component, steps (i) and (ii) are repeated in

parallel 5-10 times in order to find a segregation and projection providing minimum

total projection error.

The hyperplanes resulting from PCA will not be bounded. As a first step in

bounding these planes, it is proposed to segregate the subsets determined by k-

means via planes determined by support vector machines. Further bounding can

be performed by fitting a bounding polytope [177]. In the 2-input 2-output case, a
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simple procedure is demonstrated in the next section. Finally, from the lineariza-

tion, the constraint Eqn 5.4g is turned into a pair of matrix equality and inequality

constraints that describe each approximating hyperplane and its bounds, such as

Ai



σy

σu


≤ bi

(eqn.2g′)

Ci



σy

σu


= di

(5.9)

where Ai, bi,Ci, di are coefficient matrices corresponding to the ith linearized

cluster, i = 1 . . . k, where k is the number of clusters used. An overview of the

proposed piecewise linearization procedure is given in Fig. 5.1. A detailed example,

illustrating how this procedure is used follows in the next section.

5.5 Simulation Example

The system studied is a discrete approximation of the Wood & Berry column

model [164] having plant model

T (z) =



0.744z−2

1−0.9419z−1
−0.8789z−4

1−0.9535z−1

−1.302z−4

1−0.9329z−1
−0.5786z−8

1−0.9123z−1


(5.10)
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with steady state gain, K =



12.8 −18.9

6.60 −19.4


, output noise filter

N(z) =



0.09
(1−0.7z−1)(1−0.7z−1)

0.2z−1

1−0.8z−1

−0.2z−1

1−0.8z−1
−0.09

(1−0.7z−1)(1−0.7z−1)


(5.11)

and noise covariance Σa =



100 0

0 100


. The proposed method requires transforma-

tion of the plant and disturbance models, and so each discrete transfer function was

approximated by a finite impulse response model of length N = 100.

The nominal operating point and input and output constraints were:



y1,o

y2,o

u1,o

u2,o



=



90

90

55

55



(
y, ȳ

)
=





0

0


,



100

100





(
u, ū

)
=





0

0


,



60

60




.

The objective function was:

max
∆y,∆u,σu,σy

J = cyy
∗ − cuu∗ =

[
5 5

]


y∗1

y∗2


−

[
2 2

]


u∗1

u∗2



The Ko & Edgar method is used to minimize the weighted sum: wy,1σ
2
y,1 +

wy,2σ
2
y,2 + wu,1σ

2
u,1 + wu,2σ

2
u,2, providing the Pareto optimal standard deviations for
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each particular set of chosen weights, where each of the weights wy,1,wy,2,wu,1,wu,2

were varied in the range 10−4 to 104. This resulted in about 35000 points in

(σu,1, σu,2, σy,1, σy,2) space. Two subspaces of the resulting 4-dimensional space

are shown in Fig. 5.2.

In order to reduce the space of Pareto optimal standard deviations to a piece-

wise linear form, the procedure of Fig. 5.1 is used. Data is clustered using k-means

(using k = 5), then each cluster is reduced to 2-dimensions using principle compo-

nent analysis (PCA). This was repeated on the original data-set 10 times, since the

k-means has a random component, and it was desired to minimize the final residual

of the projected data. For the final set of selected clusters, the first 2 covariance

eigenvectors determined via PCA captured about 96 % of the data variance. The

data was projected onto the PCA-determined planes associated with each cluster,

and then boundaries separating the clusters were determined using support vector

machines. Each cluster had (k − 1) = 4 boundaries determined via use of support

vector machines (SVM) to separate it from the other data clusters. The Pareto op-

timal standard deviation points divided into the five clusters, as well as the lower

dimension planes determined by PCA, are shown in Fig. 5.5. Each plane has al-

ready been restricted by the SVM determined boundaries. However, it is clear that

each plane extends significantly outside of the region that the data covers.

To eliminate the extensions outside the region of the data, each cluster of data

is projected into 2-dimensional space via the previously determined PCA eigenvec-
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tors, and within this space, simple bounding lines are fit. Then the 2-d boundary

lines are transformed back into planes in 3-dimensional space using the inverse of

the PCA projection. Fig. 5.5 shows boundary lines in the projected 2-dimensional

space for an example projected data cluster. Two lines are extended from each the

left-most, right-most, bottom-most, and top-most projected data points, creating a

polytope containing all of the projected points.

Through the previous steps, the original (σu,1, σu,2, σy,1, σy,2) space could then

be approximated in the form of five piecewise linear and bounded spaces. Each

space was described by a best-fit plane formed via PCA, boundaries separating the

space from the other data clusters (determined through SVM), and the additional

linear boundaries created to contain the space. The plane and boundaries were

added to the optimization problem as linear constraints, and with the objective and

other constraints already in linear form, the problem could be easily solved using

linear programming. Therefore, the optimization was carried out once for every

piecewise linear space, then the results for each were compared to pick a final opti-

mal operating point. The best case was found to be



y∗1

y∗2

u∗1

u∗2



=



94.3

92.6

55.3

55.0



&



σy,1

σy,2

σu,1

σu,2



=



2.84

3.72

1.57

1.30



(5.12)
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Now, this second matrix of standard deviations refers to a point that exists on

the linear piecewise approximation of the space of Pareto optimal standard devi-

ations, and it might be questioned whether such a point is really obtainable. To

provide validity to the result, the data set generated by the Ko & Edgar method was

searched for a similar point, and a very close one was found, (σy,1, σy,2, σu,1, σu,2) =

(2.83, 3.73, 1.56, 1.30). From this estimate of the optimal operating point, the cur-

rent economic performance can be assessed by a ratio measure showing percent of

economic potential that has been lost due to the current choice of operating point, or

γ =
Jopt − Jcurrent

Jopt

× 100 . If we considered the initial operating point (uo, yo) versus

the optimal point for instance, we would get γ =
613.8 − 580.0

613.8
× 100 = 5.8% lost

profit relative to the optimal case.

Considering the case traditionally referred to as “minimum variance” or “sin-

gular LQ” where the weights wy,1 = wy,2 = 1 and wu,1 = wu,2 = 0, the standard

deviations take on the values



σy,1

σy,2

σu,1

σu,2



=



2.53

3.72

3.79

2.09



. Comparing this result to the optimal

case above shows that the system is close to minimum variance on variable y2 in

the optimal case. Because of the problem formulation (initial operating point and

constraints), there is apparently no operating point where the minimum variance

relation can hold. This is an important result showing the benefit of the current
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analysis. The traditional benchmark of multivariate minimum variance is unachiev-

able by this system due to constraints. Since some limiting constraints refer to

physical limits such as the amount a valve can open, they must be considered in or-

der to provide an accurate benchmark for system performance. Additionally, even

if minimum variance were achievable, it might not provide the optimal economic

operation.

The piecewise linearization component is the most complex component of the

proposed performance assessment procedure. Although the procedure is currently

automated, using the user-input of plant and disturbance models to generate a piece-

wise linearized set of spaces to represent the space of Pareto optimal standard devia-

tions, it is also encouraged for the user to examine the quality of the piecewise linear

approximation. If the original space is too skewed by the linearization procedure, it

is suggested to perhaps adjust the number of iterations that the clustering/PCA loop

runs or else change the number of piecewise linear spaces used in the procedure.

Continuing work is examining the use of generalized PCA in order to streamline

the process of approximating the optimal space with piecewise hyperplanes.

5.6 Conclusion

A novel approach for economic performance assessment of constrained mul-

tivariate systems has been proposed. The proposed method requires plant, dis-

turbance, and constraint information, but returns an estimate of both the optimal
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achievable economic performance as well as the minimum backed-off operating

point that can provide this performance level.

Future work will explore the use of generalized principle component analysis to

streamline the linearization and dimension reduction of the Pareto optimal standard

deviations. Also, analytical approaches towards the piecewise linearization of the

relationship between Pareto optimal standard deviations will also be attempted.
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Figure 5.1: Pareto space linearization procedure.
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Figure 5.2: Subspaces of the (σu,1, σu,2, σy,1, σy,2) space.
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Figure 5.3: Subspaces of the Pareto optimal data showing clusters and the PCA-
determined planes associated with each cluster.
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Figure 5.4: Boundary lines through the left-most (L1) and bottom-most (B1) points.
Not shown are boundaries created using the top-most (T1) and right-most (R1)
points.
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Figure 5.5: (a) (σu,1, σu,2) coordinates of the Pareto optimal points on the
(σu,1, σu,2, σy,1, σy,2). (b) (σu,1, σu,2) coordinates after linearization of the previous
data.
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Nomenclature

a0 single white noise vector impulse
A coefficient matrices
C coefficient matrices
at the vector of random disturbance impulses from a multivariate normal distribution
cu cost coefficient vector
cy economic benefit coefficient vector
H the finite impulse function
H̃(z−1) augmented plant filter
H̃i augmented plant filter impulse coefficient
J objective function
nu the number of inputs
ny the number of outputs
N the order of the finite impulse response models
Ñi disturbance filter impulse coefficient
Ñ(z−1) the augmented disturbance filter
Q weighting matrix
u plant input
u∗ steady-state operating point of plant input
uo nominal input operating point
wu,i weight factor of input variance
wy,i weight factor of output variance
y plant output
y∗ steady-state operating point of plant output
yo nominal output operating point
y lower bound on plant output
ȳ upper bound on plant output
Yi the filter coefficients calculated from the least squares projection
z−1 backshift operator
zu the standard deviation multiplier of the inputs
zy the standard deviation multiplier
y∗ the mean of the plant output y
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∆u vectors of the deviations of the chosen operating point from the nominal point uo

∆y vectors of the deviations of the chosen operating point from the nominal point yo

σy the standard deviation of the plant output y

σu the standard deviation of the plant input u

Σ output covariance matrix
γ percent of potential economic potential lost due to the current choice of operating point

PCA principle component analysis
SVM support vector machines
SISO single-input single-output
MIMO multi-input multi-output
LQG linear-quadratic Gaussian
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CHAPTER 6

SUMMARY, CONTRIBUTIONS, AND FUTURE WORK

6.1 Summary

The noninvasive controller performance assessment and diagnosis techniques

presented in this document offer a promising set of tools for plant personnel to iden-

tify poorly performing control loops, diagnose root causes of poor performance, and

seek remedial action. Chapter 1 presents two sets of performance assessment and

diagnosis trees that allow for an overall framework to be applied loop by loop in

a large process plant, and the techniques of Chapters 2-5 contribute to filling in

several nodes within this framework.

It is important for researchers and practitioners to be aware of the pitfalls of

methods presented in the literature. In Chapter 2, it is shown that several tech-

niques for diagnosing sluggish or aggressive tuning, techniques both present in the

literature and newly introduced, often provide incorrect diagnoses. This is not un-

expected; any simple classifier is bound to give erroneous results sometimes. How-

ever, it is noted that few examples of wrong classifications were presented in liter-

ature, and automated retuning algorithms have appeared in prior works that take no

account of the possibility for wrong classifications. It was shown herein how such
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oversights can lead to poor performance and control loop instability.

The work of Chapter 3 presents a similar theme. Hammerstein model based

stiction detection sometimes gives wrong results, therefore we should seek to un-

derstand under which conditions this method fails. Srinivasan et al. presented a

stiction diagnosis reliability measure that can be run in parallel to the stiction de-

tection algorithm [55]. The results of Chapter 3 provide more support for the use of

this measure. Chapter 4 proposed one way to bring noninvasive stiction detection to

interacting systems. As this is one of the initial efforts in this area, the uncertainties

and limitations that accompany the method are still waiting to be explored.

Chapters 4 and 5 attempt to contribute some new techniques to field of mul-

tivariate control system performance assessment and diagnosis. For multivariate

systems, it’s all about the interactions. In the case of stiction detection, interactions

can cause confounding results if SISO control loop techniques are simply applied to

each loop in the multivariate system. For performance assessment, interactions can

either aid or inhibit loop performance compared to a SISO point of view, although it

is usual for the interactions to be detrimental if trying to apply decentralized control

in a loop by loop fashion. But the main suggestion for performance assessment of

multivariate systems is to choose the right objective to examine. In SISO systems,

it is often the case that if you can reduce the variance of the (single) output variable,

then you can push the operating point closer to the constraint boundary, and higher

profit may follow. As more variables and more objectives are added, the number
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of tradeoffs increase. The way that the problem was handled in this work was to

directly optimize the economic objective, and any other information was viewed as

constraints on this goal. Many works in the performance benchmarking literature

have focused on the interactor matrix, the weighted interactor, or other solutions

to the singular LQ problem, but as of yet these techniques have not been strongly

connected to the actual objectives of process plants, which are often economic in

nature with some other requirements (operability, safety, reliability) mixed in.

6.2 Contributions

The main contributions of this work include:

1. Rigorous definitions of sluggish and aggressive tuning were provided. The

use of the Hurst exponent as a tuning diagnosis measure was proposed. New

frameworks for viewing the efficacy of tuning diagnosis measures and retun-

ing algorithms were introduced. Tuning algorithms were proposed that can

incorporate a variety of tuning diagnosis measures in their operation. Poten-

tial instability of data-based retuning algorithms was demonstrated.

2. Theoretical results were introduced providing the failure condition for Ham-

merstein model based stiction detection algorithms, providing an explanation

for results previously seen in the literature. These results lend support to
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a previously proposed reliability measure for model-based stiction detection

algorithms.

3. A method to adapt the Hammerstein model based stiction detection algorithm

to the isolation of stiction to a particular valve within interacting multivariate

systems was proposed.

4. A new algorithm for economic performance assessment was proposed. Un-

like existing methods, the new algorithm transforms the economic bench-

marking and operating point selection problem into a linear problem, allow-

ing for efficient solution by linear programming.

6.3 Future Work

Future work can proceed in several directions:

1. The multivariate methods proposed in this document rely heavily on open-

loop plant model information. This could be a hindrance to wide-scale adop-

tion in industry, as models are not maintained for a majority of process loops.

Therefore, data-based performance assessment and diagnosis tools should be

continued to be explored for multivariate systems. This is most likely not an

easy problem to solve, for example:

• Attempts to extend the Hurst Index to multivariate systems either in
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a loop by loop fashion or else through the use of the detrended cross

correlation coefficient has so far yielded no conclusive results.

• Data-based Hammerstein based stiction detection may produce an un-

wieldily large space of model structure parameters if straightforward

extension to multivariate systems is pursued.

However, the economic benefit of these control loop assessment and diagno-

sis techniques increases if they become easier to implement on more loops.

Therefore, data-based assessment of multivariate loops should still be pur-

sued.

2. The theoretical results on Hammerstein stiction detection presented herein are

valid for single-input single-output loops only. The extension of these results

to multivariate systems could be very interesting, as several sets of plant and

controller dynamics will determine whether the presence of stiction is able

to be isolated to a particular loop. Most importantly, it is suggested that the

stiction reliability measure previously proposed for SISO systems should be

extended to multivariate systems.

3. For multivariate systems, PI/PID control is commonly implemented in in-

dustry within a decentralized control framework. Very little literature on the

assessment of these systems is currently available. Tuning of these systems is

difficult as the change in parameters for one controller will affect all interact-
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ing loops. Also, the controller designer must be concerned with robust sta-

bility in the event of sensor, actuator, or controller failures. These difficulties

should not be seen as a drawback to the problem, but instead an opportunity

for control loop assessment tools to provide assistance to plant personnel in

increasing performance from their control systems.
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Nomenclature

LQ Linear - Quadratic

PI Proportional-Integral

PID Proportional-Integral-Derivative

SISO Single-Input Single-Output
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