
 Open access  Journal Article  DOI:10.1017/S0263574708004700

Performance-based reactive navigation for non-holonomic mobile robots
— Source link 

Michael Defoort, J. Palos, Annemarie Kokosy, Thierry Floquet ...+1 more authors

Institutions: Keio University, École centrale de Lille

Published on: 01 Mar 2009 - Robotica (Cambridge University Press)

Topics: Integral sliding mode, Obstacle avoidance, Mobile robot navigation, Motion planning and Mobile robot

Related papers:

 Flatness and defect of non-linear systems: introductory theory and examples

 Sliding-Mode Formation Control for Cooperative Autonomous Mobile Robots

 Sliding mode control in electromechanical systems

 
Motion planning for cooperative unicycle-type mobile robots with limited sensing ranges: A distributed receding
horizon approach

 Robot Motion Planning

Share this paper:    

View more about this paper here: https://typeset.io/papers/performance-based-reactive-navigation-for-non-holonomic-
4t9qrcybyg

https://typeset.io/
https://www.doi.org/10.1017/S0263574708004700
https://typeset.io/papers/performance-based-reactive-navigation-for-non-holonomic-4t9qrcybyg
https://typeset.io/authors/michael-defoort-anzy0qaftv
https://typeset.io/authors/j-palos-37f9az4aaj
https://typeset.io/authors/annemarie-kokosy-2g53m75owj
https://typeset.io/authors/thierry-floquet-225tlli31s
https://typeset.io/institutions/keio-university-1can04f5
https://typeset.io/institutions/ecole-centrale-de-lille-2xnbr2yl
https://typeset.io/journals/robotica-1zcagwr3
https://typeset.io/topics/integral-sliding-mode-1n46syb6
https://typeset.io/topics/obstacle-avoidance-3ccjp1le
https://typeset.io/topics/mobile-robot-navigation-3ug05iyw
https://typeset.io/topics/motion-planning-3av3bdsk
https://typeset.io/topics/mobile-robot-1is55hi3
https://typeset.io/papers/flatness-and-defect-of-non-linear-systems-introductory-42ot9eoqmh
https://typeset.io/papers/sliding-mode-formation-control-for-cooperative-autonomous-2m0ak6epko
https://typeset.io/papers/sliding-mode-control-in-electromechanical-systems-1a0f8msa3t
https://typeset.io/papers/motion-planning-for-cooperative-unicycle-type-mobile-robots-5g82jdiyon
https://typeset.io/papers/robot-motion-planning-3qlt7dqyo0
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/performance-based-reactive-navigation-for-non-holonomic-4t9qrcybyg
https://twitter.com/intent/tweet?text=Performance-based%20reactive%20navigation%20for%20non-holonomic%20mobile%20robots&url=https://typeset.io/papers/performance-based-reactive-navigation-for-non-holonomic-4t9qrcybyg
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/performance-based-reactive-navigation-for-non-holonomic-4t9qrcybyg
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/performance-based-reactive-navigation-for-non-holonomic-4t9qrcybyg
https://typeset.io/papers/performance-based-reactive-navigation-for-non-holonomic-4t9qrcybyg


HAL Id: hal-00519805
https://hal.archives-ouvertes.fr/hal-00519805

Submitted on 21 Sep 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Performance-Based Reactive Navigation for
Nonholonomic Mobile Robots

Michael Defoort, Jorge Palos, Annemarie Kökösy, Thierry Floquet, Wilfrid
Perruquetti

To cite this version:
Michael Defoort, Jorge Palos, Annemarie Kökösy, Thierry Floquet, Wilfrid Perruquetti. Performance-
Based Reactive Navigation for Nonholonomic Mobile Robots. Robotica, Cambridge University Press,
2009, 27 (2), pp.281-290. 10.1017/S0263574708004700. hal-00519805

https://hal.archives-ouvertes.fr/hal-00519805
https://hal.archives-ouvertes.fr


Performance–Based Reactive Navigation for

Nonholonomic Mobile Robots∗

Michael Defoort1†, Jorge Palos2, Annemarie Kokosy2,

Thierry Floquet1 and Wilfrid Perruquetti1

1LAGIS UMR CNRS 8146, Ecole Centrale de Lille,

BP 48, Cité Scientifique, 59651 Villeneuve-d’Ascq, FRANCE
2ISEN, 41 bvd Vauban, 59 046 Lille Cedex, FRANCE

Abstract

This paper presents an architecture for the navigation of an autonomous mo-

bile robot evolving in environments with obstacles. Instead of addressing motion

planning and control in different contexts, these issues are described in connected

modules with performance requirement considerations. The planning problem is

formulated as a constrained receding horizon planning problem and is solved in

real time with an efficient computational method that combines nonlinear control

theory, B-spline basis function and nonlinear programming. An integral sliding

mode controller is used for trajectory tracking. Closed-loop stability of the track-

ing errors is guaranteed in spite of unknown disturbances. It is also shown that

this strategy is particularly useful if integral sliding mode control is combined with

other methods to further robustify against perturbations. The effectiveness, perfect

performance of obstacle avoidance, real time and high robustness properties are

demonstrated by experimental results.

Keywords: Nonholonomic mobile robots, Reactive navigation, Receding horizon plan-

ning, Sliding mode control.

1 Introduction

Wheeled mobile robots (WMRs) have been widely studied in the last two decades due

to their practical importance and theoretically interesting properties. Indeed, there are

considerable research efforts toward solving mobile robot navigation in different appli-

cations in indoor and outdoor environments (see [1, 2] and the survey paper [3]). For

∗This work was partially supported by the Region Nord Pas-de-Calais and the FEDER (European Funds

of Regional Development) under Interreg ACOS, the ARCIR Robocoop and the AUTORIS-TAT T31

project.
†Corresponding author. E-mail: michael.defoort@ec-lille.fr

1



some navigation tasks like planetary exploration, robots are required to travel long dis-

tances within constrained resources (energy, time. . . ). In such cases, efficient motion

planning and control algorithms are needed in order to achieve the goal while meeting

certain performance issue, such as geometric-based or time-based criteria.

Although motion planning and control are closely related in the robot navigation

problem, they are usually addressed as two separate problems in much of the exist-

ing literature. Motion planning consists in generating a collision-free trajectory from

the initial to the final desired positions and control is the determination of the physi-

cal inputs to the robot motion components. These two problems are typically solved

using methods from different areas such as those in artificial intelligence and control

theory. Such a separation makes it difficult to address robot performance in a complete

application, since the planned trajectory may not be efficiently tracked. This fact can

imply that the meaning of optimization in each step is lost. For instance, in a typical

time optimal trajectory planning, the open-loop control schemes result in bang-bang

or bang-singular-bang controls [4]. However, the discontinuities of the planned open-

loop control may not produce a satisfactory path tracking result in practice and will

not be applicable to high speed traveling. In this research, we bridge the gap between

trajectory planning and motion control.

Many theoretically challenging properties stem from the so-called nonholonomic

constraints imposed by the rolling wheels. A survey of nonholonomic control prob-

lems can be found in [5]. Obstacles to the tracking of nonholonomic systems are the

uncontrollability of their linear approximation and the fact that the Brockett’s necessary

condition to the existence of a smooth time-invariant state feedback is not satisfied [6].

To overcome these difficulties, various methods have been investigated: homogeneous

and time-varying feedbacks [7, 8], sinusoidal and polynomial controls [9], piecewise

continuous controls [10], backstepping approaches [11] or discontinuous controls [12].

However, most of these methods do not provide both fast convergence and good ro-

bustness properties. Most of the control laws ensuring exponential or finite time con-

vergence [13] are known to be non-robust under disturbances or modeling errors. On

the other hand, control design methodologies like smooth time varying feedback [8],

are quite insensitive to perturbations but imply a slow convergence.

In this paper, we propose a practical scheme for real time motion planning and con-

trol of nonholonomic mobile robot moving in an uncertain environment. As illustrated

in Fig. 1, the scheme consists of two main parts: (i) a real time collision-free motion

planner; (ii) a trajectory tracking controller. For each module, we explicitly address

the performance considerations. In implementation, the motion planner dynamically

generates the optimal trajectory while the robot runs. High precision motion tracking

is achieved by the combination of integral sliding mode control and time varying state

feedback. The main results are general and can be applied whenever integral sliding

mode control is combined with other techniques to further robustify against distur-

bances. Experimentations support the validity of the theoretical analysis and show that

the performance of a time varying state feedback controller can be increased by this

particular strategy.

The outline of this paper is as follows. In Section 2, the navigation problem is de-

fined and the robot’s nonholonomic model is described. Motion planning is discussed

in Section 3. Trajectory tracking strategy is presented in Section 4. Finally, in Section

2



�

��������

��	��
��

�����
�

�����

�
������

��	��

�������	��


	����	�
������

��������

�������

���
��	��

�����������
�

��������
��

�
���
��

��	�
������
���
��	������

��	�
��

��	��� �
!�

 �
 �

��	��������������
��

Figure 1: Block diagram for navigation of a nonholonomic mobile robot with a motion

planner and a sliding mode controller.

5, we present the integration of the different modules and the experimental results on a

mobile robot.

2 Problem statement

2.1 Modeling of mobile robot

The mobile robot, shown in Fig. 2, is of unicycle-type. The robot body is of symmetric

shape and the centre of mass is at the geometric centre C of the body. It has two driving

wheels fixed to the axis which passes through C and one passive centrered orientable

wheel. The two fixed wheels of radius r, separated by 2R, are independently controlled

by two actuators (DC motors) and the passive wheel prevents the robot from tipping

over as it moves on a plane. In this paper, we assume that the motion of the passive

wheel can be ignored in dynamics of the mobile robot. The centre of mass C, whose

coordinates are (x,y), is located at the intersection of a straight line passing through the

middle of the vehicle and the axis of the two driving wheels. The configuration of the

robot can be described by:

q = [x,y,θ]T

where θ is its orientation in the global frame.

In this paper, kinematics of wheeled-mobile robot are shown under the nonholo-

nomic constraints (see [14] for details). The pure rolling and nonslipping nonholo-

nomic conditions are described by:

AT (q)q̇ = 0 with AT (q) =
[
−sinθ cosθ 0

]
.

3



The kinematic equations can be written as follows:

q̇ = f (q)U (1)

where f (q) =




cosθ 0

sinθ 0

0 1



, U = [v,w]T is the control inputs, v and w are the linear and

angular velocities, respectively. The relationship between [v,w]T and the left and right

velocities
[
wle f t ,wright

]T
is described by:

{
v = r

2

(
wright +wle f t

)
,

w = r
2R

(
wright −wle f t

)
.

(2)

�
�

�

�

�

� �

�
��
�
��
�

�	
���

�

��
��

���������

���

Figure 2: Unicycle-type mobile robot

At last, the robot has the following dynamic limitations on velocities:

|v| ≤ vmax and |w| ≤ wmax. (3)

2.2 Problem setup

The following assumptions are made in this study: (i) the robot has on-board sensors

which can detect surrounding objects within a range with a small margin of error; (ii)

the odometry data from the robot has small errors over short distances; (iii) an on-board

camera can update at a slower speed relative to local sensors.

It is assumed that the robot knows its initial configuration qinitial at the initial time

instant tinitial and its goal configuration q f inal . The navigation problem is to decide

wheel velocity inputs
[
wle f t ,wright

]T
within constraint (3) such that the robot starts at

initial configuration, moves collision-free according to a certain performance criteria

4



and arrives in a neighbourhood of the final configuration. To solve this problem, one

can make the following choices without loss of any generality1:

• The robot’s geometric shape is represented by a 2-D circle of centre C = (x,y)
and of radius R. Its motion is controlled but nonholonomic and is represented

by the velocity vector U(t). The range of its sensors is also described by a circle

centrered at C and of radius Rs.

• The itextth object, i = 1, . . . ,No, will be represented by a circle centrered at point

Oi = (Xi,Yi) and of radius ri, denoted by Bi(Oi,ri).

3 Motion planning

Depending on the distance that the robot has to travel, the computation of a complete

trajectory from start until finish may be computationally too expensive. Moreover, the

environment is partially known and further explored in real time. Therefore, the tra-

jectory has to be computed gradually over time while the mission unfolds. It can be

accomplished using an on-line receding horizon planner [15], in which partial trajec-

tories from an initial state toward the goal are computed by solving an optimal control

problem over a limited horizon.

3.1 Receding horizon planner

Contrary to most of the existing trajectory generation modules, the proposed motion

planner explicitly takes into account the real time constraint. Indeed, the mobile robot

has a limited time to compute its reference optimal trajectory qre f (t). The time δt al-

located to make its decision depends on its perception sensors, its computation delays,

etc. The proposed algorithm relaxes the constraint that the final point is reached in

the planning horizon. In each receding horizon planning problem, the same planning

horizon Tp ∈ R
+ and update period Tc ∈ R

+ (δt ≤ Tc < Tp) are used. At each update,

denoted τk (k ∈ N),

τk = tinitial + kTc, (4)

the robot computes an optimal collision-free trajectory satisfying constraints (1) and

(3) using only local information.

To distinguish the different trajectories, we introduce the following notations:

q̂(t,τk) : the predicted trajectory over any interval [τk,τk +Tp] ,
qre f (t,τk) : the optimal planned trajectory over any interval [τk,τk+1τk +Tc[ ,
q(t) : the actual trajectory.

The associated control inputs are Û(t,τk), Ure f (t,τk) and U(t).

1It is trivial to allow the envelope of either the robot or an obstacle to be represented by union/intersection

of several circles. The envelopes could also be polygonal. Mathematically, circular envelopes can be repre-

sented by second order inequalities while polygonal envelopes can be described by first order linear inequal-

ities.

5



Remark 1 From the open-loop trajectory and control inputs associated to the plan-

ning horizon (i.e q̂(t,τk) and Û(t,τk)), only the part which corresponds to the update

horizon is kept (see Fig. 3).

�

�������������������	�
�������

	��

	��

��� �����

�������������������	�
�������

Figure 3: Planning and update horizons

The motion planning problem is solved in two steps:

• an initialisation step before the robot moves,

• a step of iterative computations.

Let the following optimal control problem Pτ0
, associated with the initialisation

step, which consists in determining the optimal predicted control inputs ure f (t,τ0) and

the optimal predicted trajectory qre f (t,τ0):

min

∫ τ0+Tp

τ0

L(q̂(t,τ0), û(t,τ0))dt +G(q̂(τ0 +Tp,τ0),q f inal),

subject to: ∀t ∈ [τ0,τ0 +Tp] ,






˙̂q(t,τ0) = f (q̂(t,τ0))Û(t,τ0),
q̂(τ0,τ0) = q(τ0),

Û(τ0,τ0) = U(τ0),
|v̂(t,τ0)| ≤ vmax − εv,
|ŵ(t,τ0)| ≤ wmax − εw,√

(x̂(t,τ0)−Xi)2 +(ŷ(t,τ0)−Yi)2 > R+ ri, ∀Bi(Oi,ri) in the range of sensors,

where L(.) indicates a certain performance criteria (time-based criteria, physics-based

criteria, geometric-based criteria, etc.) and G(.) represents a terminal penalty function.

The latter should be an estimate of the cost to go from the last predicted state q̂(τ0 +
Tp,τ0) in the planning horizon to the desired final point q f inal .

6



Remark 2 The inclusion of constants εv ∈ R
+ and εw ∈ R

+ in the constraints of the

motion planning problem guarantees that there is sufficient control authority to track

the optimal planned trajectory (see Section 4).

This process is then repeated during the robot’s movement, over the interval [τ0,τ1],
and so on until its reaches a neighbourhood of the goal q f inal . As such, new detected

obstacles can be taken into account in the next iteration. Over any interval [τk,τk+1]
(k ∈N), the following optimal control problem Pτk+1

, associated with the (k+1)th step,

which consists in determining the optimal predicted control inputs ure f (t,τk+1) and the

optimal predicted trajectory qre f (t,τk+1) is solved:

min

∫ τk+1+Tp

τk+1

L(q̂(t,τk+1), û(t,τk+1))dt +G(q̂(τk+1 +Tp,τk+1),q f inal), (5)

subject to: ∀t ∈ [τk+1,τk+1 +Tp] ,

˙̂q(t,τk+1) = f (q̂(t,τk+1))Û(t,τk+1), (6)

q̂(τk+1,τk+1) = q̂(τk+1,τk), (7)

Û(τk+1,τk+1) = Û(τk+1,τk), (8)

|v̂(t,τk+1)| ≤ vmax − εv, (9)

|ŵ(t,τk+1)| ≤ wmax − εw, (10)
√

(x̂(t,τk+1)−Xi)2 +(ŷ(t,τk+1)−Yi)2 > R+ ri,

∀Bi(Oi,ri) in the range of sensors. (11)

Once Pτk+1
is solved, the optimal reference trajectory and control inputs over the in-

terval [τk+1,τk+2] , are stored for use at the next module (i.e. trajectory tracking con-

troller).

Remark 3 One can note that constraints (7) and (8) on the initial conditions need

the optimal predicted control inputs Û(τk+1,τk) and trajectory q̂(τk+1,τk) computed in

the previous step. Therefore, in the proposed strategy, the receding horizon planner is

not used in order to reject external disturbances or inherent discrepancies between the

model and the real process, as it is usually done [16]. However, it takes into account

the computation time δt. Fig. 4 gives an overview of the receding horizon planner.

Remark 4 A compromise must be done between reactivity and optimality. Indeed, the

planning horizon Tp must be sufficiently small in order to have good enough results in

term of optimality for trajectory planning. However, it must be higher than the update

horizon Tc in order to guarantee the reactivity and obstacle avoidance for next receding

horizon planning problems.

3.2 Technique for solving receding horizon planning problems

There are three components to the real time resolution of the optimal control problems

Pτk
(k ∈N): determination of the flat outputs, B-spline parametrization and constrained

feasible sequential quadratic programming.

7



�

����������������	�
�������

���������������	�
������������

	�
������

���

�������������

�����������
�������������

��������

��������������

�

��������

����������������

�

�����

Figure 4: Implementation of the receding horizon planner

The key approach is to determine outputs such that equation (1) is mapped to a

lower dimensional output space. It will imply that the problem becomes computionally

more efficient to solve. Using the flatness property of system (1) (see [17] for further

details about flatness), all system variables can be differentially parameterized by x, y

and a finite number of their time derivatives. Indeed, θ , v and w can be expressed by x,

y and their first and second time derivatives, i.e.

θ = arctan
ẏ

ẋ
, v =

√
ẋ2 + ẏ2 and w =

ÿẋ− ẍẏ

ẋ2 + ẏ2
. (12)

Once the performance criteria (5) and constraints (6)-(11) are mapped into the flat

output space, the optimal predicted trajectory is planned in this space (see Fig. 5).

Then, in order to transform the optimal trajectory generation problem into a pa-

rameter optimization one, a piecewise polynomial function, B-spline, is adopted to

approximate the trajectory. The B-spline functions are chosen as basis functions due

to their flexibility and ease of enforcing continuity across breakpoints. B-Spline is the

function defined by a series of knots called control knots. In our study, the three-order

B-spline basis functions are used to parameterize the trajectory. For problem Pτk
, the

time interval [τk,τk +Tp] is divided into nknot equal segments with nknot +4 knots to be

control knots:

nod0 = . . . = nod3 = τk < nod4 < .. . < nodnknot+3 = τk +Tp (13)

The trajectories of the flat outputs are written in terms of finite dimensional B-spline

curves as: [
x̂(t,τk)
ŷ(t,τk)

]
=

3+nknot

∑
j=1

C jB j,3(t) (14)

where C j ∈ R
2 are the coefficients of the third-order B-spline and B j,3 is the B-spline

8



�

������������

	
���������

��������������

�����������������
���
�������

���
������

Figure 5: Flatness and motion planning

basis function computed recursively as follows:

B j,0(t) =

{
1 if nod j ≤ t < nod j+1,
0 otherwise .

∀d ∈ {1,2,3}, (15)

B j,d(t) =
t −nod j

nod j+d+2 −nod j

B j,d−1(t)+
nod j+d+1 − t

nod j+d+1 −nod j+1
B j+1,d−1(t).

Finally, the time domain is truncated into smaller intervals by quadratic laws. The

optimal coefficients C j are numerically found using the constrained feasible sequential

quadratic optimization algorithm [18]. See [19] for a detailed analysis of the efficiency

of this approach. To finish, the open-loop control inputs are deduced using equation

(12).

4 Trajectory tracking controller

The task, for this module, is to design the wheel velocities such that the robot tracks

the reference trajectory generated in the previous one.

9



4.1 Formulation of the tracking problem

The reference trajectory (xr,yr,θr), generated by the motion planning algorithm fulfills

the differential equation:




ẋr

ẏr

θ̇r



 =




cosθr 0

sinθr 0

0 1




[

vr

wr

]
, (16)

where the desired velocities vr and wr satisfy:

|vr| ≤ vmax − εv and |wr| ≤ wmax − εw.

By directly applying vr and wr, the robot does not follow the reference trajectory with

a good accuracy. It is obvious that the real control inputs v and w rely on the state

measurements x, y and θ . Due to measurement noise and modeling uncertainties, there

are input uncertainties for v and w. That is to say, the actual equation of the robot

trajectory fulfills the following uncertain differential equation:




ẋ

ẏ

θ̇



 =




cosθ 0

sinθ 0

0 1




[

v+δv

w+δw

]
(17)

where δv and δw represent the uncertainties.

Control inputs v and w must be designed such that system (17) follows reference

(16) in spite of the perturbations. In fact, the goal is to asymptotically stabilize the

tracking errors ex = xr − x, ey = yr − y and eθ = θr −θ to zero while respecting the

saturation constraints (3).

Transforming the tracking errors expressed in the inertial frame to the robot frame,

the error coordinates can be denoted as:



e1

e2

e3



 =




cosθ sinθ 0

−sinθ cosθ 0

0 0 1








ex

ey

eθ



 .

Accordingly, the tracking error dynamics is represented by:

ė = f1(e, t)+ f2(e, t)(U +δ) (18)

where 




e = [e1,e2,e3]
T ,

U = [v,w]T ,
δ = [δv,δw]T ,

f1(e, t) =




vr cose3

vr sine3

wr



 ,

f2(e, t) =




−1 e2

0 −e1

0 −1



 .

10



It should be pointed out that such a system cannot be stabilized by continuously

differentiable, time-invariant, state feedback control laws. In this paper, we combine

integral sliding mode control with time-varying state feedback in order to further ro-

bustify against perturbations.

4.2 Proposed methodology

The basic idea is to use an integral sliding mode controller to reject the matched pertur-

bation (i.e. perturbations that enter the state equation at the same point as the control

inputs). The integral sliding mode control algorithm is designed in two steps [20]:

1. the selection of a suitable integral sliding variable s such that, while sliding, the

control objective is fulfilled,

2. the design of corresponding control inputs U constraining the system trajectories

to evolve on the sliding surface from the initial time instant.

For system (18), the control law is defined as follows:

U(q, t) = U0(q, t)+U1(q, t). (19)

The nominal control U0(q, t) is responsible for the performance of the nominal system.

U1(q, t) is a discontinuous control action that reject the perturbations by ensuring the

sliding motion.

4.2.1 Integral sliding mode controller

Let us define the sliding variable s(q, t) = [s1(q, t),s2(q, t)]T ∈ R
2 as:

s(q, t) = P

[
e(t)− e(tinitial)−

∫ t

tinitial

( f1(e,ν)+ f2(e,ν)U0(q,ν))dν
]
, (20)

where matrix P ∈ R
2×3 is such that P f2(e, t) is invertible for all t ∈ R

+. Making

P =

[
−1 0 0

0 0 −1

]
, the above condition is fulfilled. One can note that, at the initial

time instant t = tinitial , the sliding variable satisfies s(q, t) = 0, such that the controlled

system always starts on the sliding surface {s(q, t) = 0}.

Remark 5 To simplify notation, we will omit some of the functions’ arguments from

now on.

Based on the following Lyapunov function candidate, V = 1
2
sT s, the discontinuous

control term can be determined such that V̇ < 0, guaranteeing the attractivity of the

11



sliding surface. One can obtain:

V̇ = sT (Pė−P( f1 + f2U0))

= sT (P( f1 + f2(U +δ))−P( f1 + f2U0))

= sT (P f2(U1 +δ))

=
(
[P f2]

T
s
)T

(U1 +δ)

=
[
s1 −e2s1 + s2

]
(U1 +δ) < 0

The above condition holds if:

U1 =

[
−M1 sign(s1)

−M2 sign(−e2s1 + s2)

]
(21)

where M1 and M2 are gain high enough to enforce the sliding motion.

The trajectory evolves on {s = 0} from t = tinitial and remains there in spite of the

perturbations. To determine the motion equations on the sliding surface, the equivalent

control method [21] is used. The time derivative of the sliding variable is:

ṡ = P(ė− f1 − f2U0)
= P f2(U1 +δ)

The equivalent control is obtained by solving the equation s = 0 for U1:

U1eq = −δ (22)

By substituting U1eq for U1 in (18), one can obtain the sliding dynamics:

ė = f1(e)+ f2(e)U0 (23)

Remark 6 From equation (23), several conclusions can be drawn. Firstly, the sliding

dynamics do not contain the matched perturbation: it has been successfully rejected.

Secondly, with respect to the conventional sliding mode control, we have gained some

extra degrees of freedom. Indeed, U0 can be used in order to stabilize the nominal

system and to deal with the unmatched perturbation.

4.2.2 Time-varying state feedback controller

The second part of the controller design is to find a saturated control law U0 such that

the sliding dynamics (23) is globally asymptotically stable. The chosen control law

U0 has been developed by Jiang in [22]. The motivation for such a choice is that this

design takes into account the actuator bounds. It is described by:

U0 =

[
v0 = vr cose3 +λ3 tanhe1

w0 = wr + λ1vre2

1+e2
1+e2

2

sine3
e3

+λ2 tanhe3

]
(24)

12



Note that the positive parameters λ1, λ2 and λ3 can be designed such that the bounds

of the controls are met for our controllers. Indeed, it can be seen that:

|v0| ≤ vmax − εv +λ3, |w0| ≤ wmax − εw +
λ1(vmax − εv)

2
+λ2

Remark 7 The control gains can be designed such that the bounds on the control in-

puts are satisfied. In order to design these constants, a compromise must be found

between the optimality, the performance and the robustness with respect to perturba-

tions.

From (2), it is straightforward to obtain the wheel velocities:

{
wright = v−Rw

r

wle f t = v+Rw
r

5 Experimental results

5.1 Experimental setup

The proposed motion planning and control algorithms are implemented on the mobile

robot Pekee manufactured at Wany Robotics company (see Fig. 6). An overview of

the experimental setup is shown in Fig. 7. An Intel 486 micro-processor running

at 75MHz hosts the integral sliding mode controller written in C. The robot operates

under linux real time and its software integrates sensor and communication data. It

communicates through wireless Ethernet capable of transmitting data up to 3Mb/s.

One miniature color vision camera C-Cam8 is mounted on the robot. A C program

accesses the streaming data coming into the frame grabber from the camera and stores

the data in a 320×240 image file. The robot is also equipped with 15 infra-red sensors

used for local identification of the environment and two encoders.

�

Figure 6: Pekee mobile robot

13



�

����������	

������	�������

•  �	��	����������

•  �
������	�������

�

�

�

�

�

�

�

�

���������
�����������

� �������������
��

�

�

•   �����!������	��

•  ������������"�����


	"��	���	�����

�

�

�

�

�

�

�

#��$	��"�����������%&�'(����

� �������������
��

�

•  ��)�����"�"����

•  *���	��"����

+�)������

	���
���

���,��	�-�

•  ��)�����"�"����

•  *���	��"����

+�)������

	���
���

���,��	�-�

Figure 7: Overview of the experimental setup

The vehicle’s wheelbase is taken to R = 0.3m with vmax = 0.8m/s, wmax = 5rad/s

and the sampling period is 100ms. The computation time δt including the image

processing and the motion planning algorithm is about two minutes on the on-board

75MHz PC. In order to decrease the computation delay, we used the socket protocol

communication and wireless communication link. The vision data are sent to a Pentium

IV 2.4GHz PC for image processing and for the generation of the optimal trajectory.

This protocol enables to reduce δt to less than 0.2s.

5.2 Experimental results

We run experiments on different environments cluttered with obstacles. The corre-

sponding videos are available at: http://www.isen.fr/∼sst lille/fichiers/Icra.wmv.

In these experiments, obstructed areas are created with circular obstacles in the

workspace. Some of them are initially out of view from the robots’ on-board sensors

and may be discovered during the robot movement. The performance criteria is the

length of the traveled distance. For the motion planner, the chosen parameters are

described in Tab. 1. Furthermore, the parameters for the tracking algorithm are given

in Tab. 2. For comparison purpose, the gains M1 and M2 needed to enforce the sliding

mode are the same in all the experiments in which they occur. The discontinuous

14



Tp 2s

Tc 0.5s

nknot 6

εv 0.3m/s

εw 1rad/s

Table 1: Parameters of the motion planner

λ1 0.5

λ2 1

λ3 0.5

M1 0.2

M2 0.2

Table 2: Parameters of the tracking algorithm

controls are approximated by:

U1 =

[
−M1

s1
|s1|+0.0001

−M2
−e2s1+s2

|−e2s1+s2|+0.0001

]

Figures 10(a) and 11 depict the executed trajectories in unknown environments.

First, the robot visualizes the scene and applies the image processing. The nearest ob-

stacles in view from its on-board sensors are detected. In order to take into account

the size of the robot, the radius of these obstacles is increased by 0.3m (dotted lines

around obstacles). According to the detected obstacles, a collision-free trajectory is

planned. Then, the integral sliding mode controller enables to track the desired trajec-

tory in spite of uncertainties and errors. During the execution, the robot plans, in real

time, its next optimal collision-free trajectory by taking into account new information

from its infra-red and camera sensors. The effectiveness, perfect performance of ob-

stacle avoidance, real time and high robustness properties are demonstrated by these

experimental results.

Figures 8, 9 and 10 highlight the performance for the proposed tracking module.

The first experiment is made without using feedback controller. By directly apply-

ing the open-loop control inputs, the robot does not follow its planned trajectory due

to measurement noise and modeling uncertainties. One can see in Fig. 8(b) that the

distance between the actual and planned trajectories, i.e.
√

(x− xr)2 +(y− yr)2, di-

verges. The second one is made using only the time-varying state feedback controller.

The third experiment is made using the combination “integral sliding mode controller

plus the time-varying state feedback controller”. One can note that using only the time-

varying state feedback controller, the robustness performance is not good enough. The

use of an integral sliding mode controller enables to improve the precision motion

tracking.

15



6 Conclusion

An architecture for real time navigation of an autonomous mobile robot evolving in an

uncertain environment with obstacles is proposed. It provides the following practical

advantages:

• First, it enables to take into account the dynamic limitations on velocities.

• Further, receding horizon planner is a viable method for real time trajectory gen-

eration. Depending on computing resources, the use of flatness, B-spline para-

metrization and constrained feasible sequential quadratic programming can take

less than one second to compute an optimal collision-free trajectory.

• Also, the combination of integral sliding mode control with other methods like

time-varying state feedback improves the robustness properties of the closed-

loop system. Therefore, high precision trajectory tracking is achieved in spite of

uncertainties and modeling errors.

Experimental results show the effectiveness of our practical scheme (real time, high

robustness properties and good performance for obstacle avoidance).

References

[1] J.-P. Laumond, “Robot Motion planning and Control”, Springer-Verlag, 1998.

[2] J. C. Latombe, “Robot Motion Planning”, Boston: Kluwer Academic Publisher,

1991.

[3] M. Salichs and L. Moreno, “Navigation of mobile robots: open questions”, Ro-

botica, 18, pp.227-234, 2000.

[4] Y. Chen and A. Desrochers, “Structure of Minimum-Time Control Law for Ro-

botic Manipulators with Constrained Paths”, IEEE International Conference on

Robotics and Automation, pp. 971-976, 1989.

[5] I. Kolmanovsky and N. H. McClamroch, “Developments in nonholonomic con-

trol problems”, IEEE Control Systems Magazine, 15, pp. 20-36, 1995.

[6] R. Brockett, “Asymptotic stability and feedback stabilization”, in R. Brockett, R.

Millman, and H. Sussmann (eds.), Differential geometric control theory (Boston,

MA: Birkhauser), pp. 181-195, 1983.

[7] J. Pomet, “Explicit design of time-varying stabilizing control laws for a class of

controllable systems without drift”, Systems and Control Letters, 18(2), pp. 147-

158, 1992.

[8] C. Samson, “Control of chained systems: Application to path following and time-

varying point-stabilization of mobile robots”, IEEE Trans. on Automatic Control,

40, pp. 64-77, 1995.

16



[9] R. Murray and S. Sastry, “Nonholonomic Motion Planning: Steering Using Sinu-

soids”, IEEE Trans. on Automatic Control, 38(5), pp. 700-716, 1993.

[10] J. P. Hespanha and A. S. Morse, “Stabilization of nonholonomic integrators via

logic-based switching”, Automatica, 35(3), pp 385-393, 1999.

[11] Z. P. Jiang and H. Nijmeijer, “Tracking control of mobile robots: a case study in

backsteeping”, Automatica, 33(7), pp. 1393-1399, 1997.

[12] T. Floquet, J. P. Barbot and W. Perruquetti, “Higher-order sliding mode stabi-

lization for a class of nonholonomic perturbed systems”, Automatica, 39(6), pp.

1077-1083, 2003.

[13] S. Monaco and D. Normand-Cyrot, “An introduction to motion planning under

multirate digital control”, Proceedings of the 31st Conference on Decision and

Control, pp. 1780-1785, 1992.

[14] C. de Wit and O. Sordalen, “Exponential stabilization of mobile robots with non-

holonomic constraints”, IEEE Trans. on Automatic Control, 37(11), pp. 1791-

1797, 1992.

[15] D. Mayne, J. Rawlings, C. Rao and P. Scokaert, “Constrained model predicitive

control: Stability and Optimality”, Automatica, 36, No 6, pp. 789-814, 2000.

[16] F. A. Cuzzolaa, J. C. Geromel and M. Morari, “An improved approach for con-

strained robust model predictive control”, Automatica, 38, No 7, pp. 1183-1189,

2002.

[17] M. Fliess, J. Lévine, Ph. Martin and P. Rouchon, “Flatness and defect of nonlinear

systems: introductory theory and examples”, Int. J. of Control, 61(6), pp 1327-

1361, 1995.

[18] C. Lawrance, J. Zhou and A. Tits, “User’s guide for CFSQP Version 2.5”, Institute

for Systems Research, University of Maryland, College Park.

[19] M. B. Milam, “Real time optimal trajectory generation for constrained dynamical

systems”, California Institute of Technology, Dissertation, 2003.

[20] V. Utkin and J. Shi, “Integral sliding mode in systems operating under uncertainty

conditions”, Proceedings of the 35th Conference on Decision and Control, pp.

4591-4596, 1996.

[21] V. Utkin, “Sliding Modes Control in Electromechanical Systems”, Taylor and

Francis, 1999.

[22] Z. P. Jiang, E. Lefeber and H. Nijmeijer, “Saturated stabilization and track control

of a nonholonomic mobile robot”, Syst. and Cont. Letters, 42(5), pp. 327-332,

2001.

17



2 3 4 5 6 7 8 9

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x (m)

y 
(m

)

reference trajectory
actual trajectory
detected obstacles
augmented obstacles

(a)

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t (s)

tr
ac

ki
ng

 e
rr

or
s 

(m
)

(b)

Figure 8: Experimental results without using the trajectory tracking module

18



0 1 2 3 4 5 6 7 8 9
−1

0

1

2

3

4

5

6

x (m)

y 
(m

)

reference trajectory
actual trajectory
detected obstacles
augmented obstacles

(a)

0 5 10 15
0

0.02

0.04

0.06

0.08

0.1

t(s)

tr
ac

ki
ng

 e
rr

or
s 

(m
)

(b)

Figure 9: Experimental results using the time-varying state feedback controller

19



2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

x (m)

y 
(m

)
reference trajectory
actual trajectory
detected obstacles
augmened obstacles

(a)

0 5 10 15
0

0.01

0.02

0.03

0.04

0.05

0.06

t(s)

tr
ac

ki
ng

 e
rr

or
s 

(m
)

(b)

Figure 10: Experimental results using the integral sliding mode and time-varying state

feedback controllers

20



−2 −1 0 1 2 3 4 5 6
0

1

2

3

4

x (m)

y 
(m

)

actual trajectory
detected obstacles
augmented obstacles

Figure 11: Experimental results using the integral sliding mode and time-varying state

feedback controllers in a more complex map

21




