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ABSTRACT 

 
 

Performance-Based Robust Nonlinear Seismic Analysis with Application to 
Reinforced Concrete Bridge Systems 

 
 

by 
 

Xiao Liang 
 

Doctor of Philosophy in Engineering – Civil and Environmental Engineering 
 

University of California, Berkeley 
 

Professor Khalid M. Mosalam, Chair 
 
 

The performance-based earthquake engineering (PBEE) approach, developed at the Pacific 
Earthquake Engineering Research (PEER) Center, aims to robustly decompose the performance 
assessment and design process into four logical stages that can be studied and resolved in a 
systematic and consistent manner. However, two key challenges are experienced in this approach, 
namely the accurate seismic structural analysis and the selection and modification of ground 
motions (GMs). This dissertation investigates these two challenges with application to reinforced 
concrete (RC) bridge systems. 

In nonlinear structural dynamics, the most accurate analytical simulation method is the 
nonlinear time history analysis (NTHA). It involves the use of different types of direct integration 
algorithms and nonlinear equation solvers where their stability performance and convergence 
behaviors are of great significance. Lyapunov stability theory, the most complete framework for 
stability analysis of dynamical systems, is introduced in this study. Based on this theory, a new 
nonlinear equation solver is developed and its convergence performance was theoretically 
formulated and verified by several examples. Stability is one of the most important properties of 
direct integration algorithms that must be considered for efficient and reliable NTHA simulations. 
Two Lyapunov-based approaches are proposed to perform stability analysis for nonlinear 
structural systems. The first approach transforms the stability analysis to a problem of existence, 
that can be solved via convex optimization. The second approach is specifically applicable to 
explicit algorithms for nonlinear single-degree of freedom and multi-degree of freedom systems 
considering strictly positive real lemma. In this approach, the stability analysis of the formulated 
nonlinear system is transformed to investigating the strictly positive realness of its corresponding 
transfer function matrix. 

Ground motion selection and modification (GMSM) procedures determine the necessary 
input excitations to the NTHA simulations of structures. Therefore, proper selection of the GMSM 
procedures is vital and an important prerequisite for the accurate and robust NTHA simulation and 
thus for the entire PBEE approach. Although many GMSM procedures are available, there is no 
consensus regarding a single accurate method and many studies focused on evaluating these 
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procedures. In this dissertation, a framework for probabilistic evaluation of the GMSM procedures 
is developed in the context of a selected large earthquake scenario with bidirectional GM 
excitations.  

In urban societies, RC highway bridges, representing key components of the transportation 
infrastructure systems, play a significant role in transporting goods and people around natural 
terrains. Therefore, they are expected to sustain minor damage and maintain their functionality in 
the aftermath of major earthquakes, which commonly occur in California due to many active faults. 
Accurate seismic structural analysis of existing and newly designed RC highway bridges is 
fundamental to estimate their seismic demands. As such important lifeline structures, RC highway 
bridge systems are investigated as an application of the previously discussed theoretical 
developments proposed in this dissertation to address the two key challenges in the PEER PBEE 
approach. 
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1 Introduction 

1.1 MOTIVATION AND OBJECTIVE 

The response of a structure to earthquake excitation and the consequences of this response involve 
various uncertainties at different stages including the definition of hazard, structural response, 
damage, and the corresponding loss determination. Performance-based Earthquake Engineering 
(PBEE) approach, developed at the Pacific Earthquake Engineering Research (PEER) Center, aims 
to robustly divide the performance assessment and design process into these logical stages that can 
be studied and resolved in a systematic and consistent manner [Moehle and Deierlein 2004]. 
Therefore, uncertainties in these stages can be explicitly taken into account to enable 
comprehensive understanding of the structural performance in a probabilistic manner and 
determine the most efficient decision about the seismic risk mitigation actions [Günay and 
Mosalam 2013]. In order to achieve this goal of the PBEE approach, considerable amount of 
structural simulations are required. Due to physical, economical, and time constraints, 
experimental testing is not feasible as the sole structural simulator in PBEE. Alternatively, 
analytical simulations, where the analytical models are calibrated using the results of the 
experimental tests, fit reasonably well within the PBEE framework. 

One of the key challenges involved in the PBEE approach is the accurate and robust seismic 
structural analysis. In nonlinear structural dynamics, the most accurate analytical simulation 
method is accepted to be the nonlinear time history analysis (NTHA). Using this approach, direct 
integration algorithms in conjunction with nonlinear equation solvers are used to solve the 
temporally discretized equations of motion that govern the structural responses under dynamic 
loading. Therefore, the selection of direct integration and nonlinear solution algorithms is essential 
to ensure accurate and robust NTHA. The used integration algorithms are fundamentally 
categorized into either implicit or explicit. Explicit algorithms do not require iterations by adopting 
certain approximations related to the kinematics of the structural system. On the contrary, implicit 
algorithms involve iterations and need to be complemented by nonlinear equation solvers when 
applied to nonlinear structural systems. The most standard nonlinear equation solver is the regular 
Newton-Raphson (NR) algorithm where major drawbacks exist. In order to overcome these 
drawbacks, a new nonlinear equation solver is developed in this dissertation based on Lyapunov 
stability theory. 

Stability is one of the most important properties of direct integration algorithms that must 
be considered for efficient and reliable simulations using NTHA. For linear structures, the stability 
analysis of direct integration algorithms is conducted using the amplification operator and its 
associated spectral radius. Such analysis provides useful insight for the selection of the suitable 
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integration algorithm with the proper time step size to solve a dynamic problem. Integration 
algorithms, however, are usually applied to multi-degree of freedom (MDOF) nonlinear dynamic 
problems. Therefore, the stability analysis of direct integration algorithms involving nonlinear 
dynamics is necessary and should be extended to MDOF structural systems. Two Lyapunov-based 
approaches are proposed to conduct the stability analysis of direct integration algorithms for 
nonlinear structural systems. 

Another key challenge in the PBEE approach is the selection and modification of ground 
motions (GMs) to serve as input excitations for the simulations using NTHA of structures. The 
intricate nonlinear response of structures is highly sensitive to the ground motion selection and 
modification (GMSM) of the input records. Therefore, the GMSM of the input records are vital 
prerequisites for accurate seismic analysis. Numerous research efforts focused on developing 
different GMSM procedures, which are generally categorized into two approaches: (1) amplitude 
scaling and (2) spectrum shape matching procedures. The first approach selects and modifies the 
GM records based on scalar intensity measures (IMs). The second approach that takes the spectrum 
shape into account selects and scales a suite of GM records that has close matching to a target 
spectrum. Although many GMSM procedures are available, there is no consensus regarding a 
single accurate method and many studies focused on evaluating these procedures. The existing 
evaluation studies in the literature are primarily for building structures and considered 
unidirectional input ground motion. In general, bidirectional GM studies should be conducted, 
especially for the structures with very different behaviors in two directions, e.g., bridge structures. 
To fill in this knowledge gap, a framework based on the PBEE approach is proposed to evaluate 
different GMSM procedures conducting NTHA simulations under bidirectional GM excitations. 

In urban societies, reinforced concrete (RC) highway bridges, key components of 
infrastructure systems, play a significant role in transportation and distribution of goods and 
commuting people. Therefore, they are expected to sustain minor damage and maintain their 
functionality in the aftermath of earthquakes, which commonly occur in California due to many 
active faults. In the last two decades, however, even bridges designed according to modern design 
codes were observed to experience poor performance or even collapse during earthquakes caused 
by inherent vulnerability of the bridge structural systems. Thus, accurate seismic structural 
analysis of existing and newly designed RC highway bridges is fundamental to estimate their 
seismic demands. As such important lifeline structures, RC highway bridge systems are 
investigated as an application of the previously discussed theoretical developments proposed in 
this dissertation to address the two key challenges in the PBEE approach. 

In summary, the objective of this study is to enhance the PBEE approach in terms of 
accurate and robust NTHA simulations and probabilistic evaluation of GMSM procedures. In light 
of this objective, the major contributions of this study can be summarized as follows: 

1. Development of a nonlinear equation solver that attempts to overcome the drawbacks 
of the NR algorithms. 

2. Development of a Lyapunov-based approach that enables performing the stability 
analysis numerically. 

3. Development of a Lyapunov-based approach to investigate the stability of explicit 
direct integration algorithms for nonlinear MDOF systems by means of the strictly 

positive real lemma. 
4. Recommendations of accurate and robust NTHA simulations for RC highway bridge 

systems. 
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5. Development of a framework to probabilistically evaluate GMSM procedures with 
application to RC highway bridge systems. 

1.2 ORGANIZATION OF THE DISSERTATION 

This dissertation is organized into 10 chapters as schematically illustrated in Figure 1.1 and discussed 
in this section. After this introductory chapter, Chapter 2 reviews the direct integration algorithms 
and the nonlinear equation solvers investigated in this study. The theoretical developments are 
presented in Chapters 3 through 6. Chapter 3 starts with the introduction of continuous-time and 
discrete-time systems and the definitions of stability. It then introduces the Lyapunov stability 
theory for these two systems. Based on such theory for continuous-time systems, a new nonlinear 
equation solver is developed to overcome the drawbacks of the NR algorithms and its convergence 
performance is demonstrated by several numerical examples. Chapters 4 and 5 utilize the 
Lyapunov stability theory for discrete-time systems to investigate the stability of direct integration 
algorithms for nonlinear structural systems. Chapter 4 proposes a numerical approach to transform 
the problem of seeking a Lyapunov function to a convex optimization problem, i.e., an approach 
that enables performing the stability analysis numerically. In addition, the accuracy of the 
integration algorithms is examined using a geometrically nonlinear problem, which has a closed-
form exact solution. Chapter 5 proposes another Lyapunov-based approach to investigate the 
stability of explicit direct integration algorithms for nonlinear MDOF systems by means of the 
strictly positive real lemma. This approach transforms the stability analysis to pursuing the strictly 
positive realness of the transfer function matrix for the formulated MDOF system. Several 
examples, including a bridge structure and a generic multi-story shear building, are presented in 
this chapter to demonstrate this proposed approach. Chapter 6 starts with the well-known PEER 
PBEE approach. By taking advantage of this approach, it presents a framework for probabilistic 
evaluation of GMSM procedures. 

The application of the theoretical developments in Chapters 3 through 6 is presented in 
Chapters 7 to 9. Chapter 7 provides a brief introduction of RC highway bridge structures selected 
in this study and reviews the computational models of these bridges. Chapter 8 investigates 
solutions to the numerical problems of convergence experienced in the NTHA simulations of these 
RC highway bridge systems. Recommendations are given in Chapters 8 for the accurate and robust 
NTHA simulations. Chapter 9 probabilistically evaluates several GMSM procedures considering 
the distinct structural behaviors in the longitudinal and transverse directions of RC highway 
bridges under bidirectional GM excitations. A brief summary, the main conclusions and future 
extension based on this study are presented in Chapter 10. This dissertation also includes six 
appendices. Appendices A to E give some derivations and details used for the proposed two 
Lyapunov-based approaches of stability analysis. Appendices E and F document all the utilized 
GMs in this dissertation. 
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Figure 1.1 Classification of dissertation chapters. 
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2 Direct Integration Algorithms and Nonlinear 
Solvers 

2.1 INTRODUCTION 

The response of a structure to earthquake excitation and the consequences of this response involve 
various uncertainties at different stages including the definition of hazard, structural response, 
damage, and the corresponding loss determination. Performance-based Earthquake Engineering 
(PBEE) approach aims to consider all these uncertainties in order to determine the most efficient 
decision about the seismic risk mitigation actions [Günay and Mosalam 2013]. In order to achieve 
this goal of the PBEE approach, considerable amount of structural analytical simulations are 
required. Attributed to continuous improvement of computational power [Mosalam et al. 2013], 
nonlinear time history analysis (NTHA) method as the most suitable approach is becoming 
increasingly prevalent for analyzing large and complex structures. 

The structural response under dynamic loading is governed by the differential equations of 
motion. In structural dynamics, direct integration algorithms are commonly used to solve these 
equations of motion after they are temporally time-discretized. Various implicit and explicit direct 
integration methods have been developed. Some examples of well-known methods are the 
Newmark family of algorithms [Newmark 1959], Hilber-Hughes-Taylor (HHT) algorithm [Hilber 
et al. 1977], the generalized- algorithm [Chung and Hulbert 1993], the TRBDF2 algorithm 
[Bathe 2007], and the Operator-Splitting (OS) algorithms [Hughes et al. 1979], among many others. 

Direct integration algorithms for solving a structural dynamics problem are fundamentally 
categorized into either implicit or explicit. An integration algorithm is explicit when the responses 
of the next time step depend on the responses of previous and current time steps only. On the other 
hand, implicit algorithms require iterations because the responses of the next time step depend on 
the responses of previous, current and also next time steps. Therefore, explicit algorithms do not 
require iterations by adopting certain approximations related to the kinematics of the structural 
system. On the contrary, implicit algorithms involve iterations and need to be complemented by 
nonlinear equation solvers when applied to nonlinear structural systems. 

The most standard nonlinear equation solver is the Newton-Raphson (NR) algorithm where 
its local rate of convergence is quadratic [Bathe 2006]. It requires computing and inverting the 
Jacobian matrix explicitly at every iteration that can lead to excessive computations. The modified 
NR algorithm holds the Jacobian matrix constant as the one from the first iteration over the time 
step. It has a lower computational cost per iteration than the regular NR algorithm but possesses 
only linear local rate of convergence. For both modified and regular NR algorithms, the search 
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directions can be improved by line search techniques [Crisfield 1991] when a positive definite 
Jacobian matrix is obtained. Therefore, this improvement may not always be the case with 
degrading materials and analysis involving large displacements. Quasi-Newton methods seek a 
compromise between the modified and regular NR algorithms by modifying the Jacobian matrix 
with low-rank updates during the search for equilibrium, resulting in a superlinear rate of 
convergence. Some examples of Quasi-Newton algorithms are the Broyden algorithm [Broyden 
1965] and the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [Broyden 1970; Fletcher 
1970; Goldfarb 1970; Shanno 1970]. Krylov-Newton algorithm also seeks a balance between the 
regular and modified NR algorithms by matrix-vector operations [Scott and Fenves 2010]. The 
subsequent sections introduce the direct integration algorithms and nonlinear equation solvers 
investigated in this study. 

2.2  DIRECT INTEGRATION ALGORITHMS 

The equations of motion of a multi-degree of freedom (MDOF) system under an external dynamic 
force excitation can be defined as follows: 

 pfucum    (2.1) 

where m  is the mass matrix, c  is the damping matrix, and u , u , f , and p  are the acceleration, 
velocity, restoring force, and external force vectors, respectively. The restoring force can generally 
be defined as a function of displacement. Due to several factors, such as the random variation of 
the external force with time, e.g. due to earthquake shaking, and the nonlinear variation of the 
restoring force vector with displacement, closed form solution of Eq. (2.1) is not possible [Chopra 
2006]. Therefore, numerical integration methods are used for the sought solution. 

Differences between direct integration methods are mainly introduced by the way they 
handle Eqs. (2.2)-(2.4), arranged as the Newmark difference equations for displacement and 
velocity and the discretized dynamic equilibrium equation, respectively. 

       1

2

221
21 


 iii

t
tii uuuuu    (2.2) 

     11 1   iiii γγt uuuu   (2.3) 

 1111   iiii pfucum   (2.4) 

In the above equations, γ  and   parameters define the variation of accelerations over a 
time step, t . For example, 21γ  and 41  represent constant average acceleration over the 

time step, while 21γ  and 61  define linear variation of acceleration during the time step. 

The following sub-sections describe the alternative integration methods and their 
corresponding algorithms, namely the Explicit Newmark, Operator-Splitting, and TRBDF2 
integrators and the commonly utilized Implicit Newmark integration method, and the 
corresponding algorithms. This description starts from the basic three Eqs. (2.2)-(2.4) and 
emphasizes departure points and differences between these methods. 
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2.2.1 Explicit Newmark Algorithm 

Explicit Newmark (EN) integration [Newmark, 1959] is defined by setting 0.0 . In this way, 
the implicit nature of Eq. (2.2) is eliminated, making the method an explicit one, by removal of 
the 1iu  term. Accordingly, Eq. (2.2) becomes 

    
ii

t
tii uuuu 

2

2

1


  (2.5) 

Substituting Eqs. (2.3) and (2.5) in Eq. (2.4), the linear system of equations defined by Eqs. 
(2.6) is obtained, which can be solved to determine the acceleration. Subsequently, Eq. (2.3) is 
used to determine the velocity.  

  
   iiii
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γt
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pum
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eff

eff














111

eff1

 (2.6) 

The algorithm for an integration time step of the EN method is summarized as follows: 

1. Compute the displacement using Eq. (2.2); 

2. Obtain the restoring force, f , corresponding to the computed displacement from the 
constitutive relationships of the defined materials and elements using a state determination 
method [Spacone et al. 1996]; 

3. Calculate the acceleration by solving the linear system of equations defined by Eqs. (2.6); 

4. Determine the velocity using Eq. (2.3); 

5. Increment i and proceed with the next integration time step. 

2.2.2 Operator-Splitting Algorithm 

Similar to the EN method, the Operator-Splitting (OS) method [Hughes et al. 1979] eliminates the 
implicit nature of the solution algorithm. However, instead of the direct elimination adopted by 
the EN, OS uses a prediction-correction technique. The predicted displacement, 1

~
iu , is obtained 

by neglecting the 1iu  term in the bracketed part of Eq. (2.2), i.e., 

       ii

t
tii uuuu  21

2
~

2

1 


  (2.7) 

After the prediction of the displacement, the method is defined by setting the restoring 
force of the integration time step as the sum of the restoring force corresponding to the predicted 

displacement, 1

~
if , and the difference between the corrected and predicted displacements 

multiplied by the tangential stiffness matrix, 
Tk , i.e., 
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  1111
~~

  iiTii uukff  (2.8) 

The difference between the corrected and predicted displacements is defined as follows: 

 11
~

1    iii uuu  (2.9) 

Substituting Eq. (2.9) in Eq. (2.8) gives, 

  111

~
  iTii ukff  (2.10) 

Subtracting Eq. (2.7) from Eq. (2.2) leads to the relationship between 1 iu  and 1iu , i.e., 

 
  2

1
1

t

i
i 


 


u

u  (2.11) 

Substituting Eq. (2.11) in the Newmark difference equation for velocity, i.e., Eq. (2.3), gives, 

       11 1  


 iiii
t

t uuuu


   (2.12) 

The linear system of Eqs. (2.13) is obtained by substitution of Eqs. (2.10), (2.11) and (2.12) in Eq. 
(2.4), which can be solved to determine the displacement along with Eq. (2.14). 

 
 
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 (2.13) 

 111
~

  iii uuu  (2.14) 
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The algorithm for an integration time step of the OS method is summarized as follows: 

1. Compute the predicted displacement using Eq. (2.7); 

2. Obtain the restoring force, f
~ , corresponding to the predicted displacement from the 

constitutive relationships of the defined materials and elements using a state determination 
method [Spacone et al. 1996]; 

3. Determine the difference between the corrected and the predicted displacements by solving the 
linear system of equations defined by Eqs. (2.13); 

4. Determine the acceleration using Eq. (2.11); 

5. Calculate the corrected displacement using Eq. (2.14); 

6. Obtain the restoring force corresponding to the corrected displacement following the procedure 
outlined in step 2 above; 

7. Determine the velocity using Eq. (2.12); 

8. Increment i and proceed with the next integration time step. 

It is noted that the initial stiffness matrix, 
Ik , was used instead of 

Tk  in some of the studies 
in literature. For example, [Combescure and Pegon 1997] used 

Ik  in hybrid simulations involving 
physical and computational substructures due to the difficulties in obtaining the tangent stiffness 
matrices of the test specimens. 

2.2.3 Implicit Newmark Algorithm 

The implicit nature of the solution algorithm is eliminated in the EN and OS methods. In contrast 
to these methods, the Implicit Newmark (IN) integrator [Newmark 1959] treats the governing 
equations (difference and dynamic equilibrium equations) directly without altering their implicit 
nature. Rearranging the time-discrete equilibrium equations, i.e., Eq. (2.4), one obtains 

 0fucump   1111 iiii
  (2.15) 

where 1iu  and 1iu  are functions of 1iu  through Eqs. (2.2) and (2.3). Morover, 1if  is a function 

of 1iu . Therefore, Eq. (2.15) represents a nonlinear system of equations in terms of 1iu . The 

implicit nature of this equation is eliminated in the EN and OS methods as previously discussed, 
which is not the case for the IN integration algorithm [Newmark 1959] considering Eq. (2.15). 

Using a nonlinear equation solver, Eq. (2.15) can be solved for either the acceleration 1iu  

or the displacement increment, 1iu as defined below, referred to as the acceleration and 

displacement formulations, respectively. The displacement formulation is presented herein 
because it leads to fewer convergence problems than the acceleration formulation [Schellenberg 
et al. 2009]. Moreover, OpenSees [McKenna et al. 2010], the computational platform used to 
conduct the analyses presented in the following sections, uses the displacement formulation. 

In order to solve for the displacement increments, the difference Eqs. (2.2) and (2.3) are 
redefined such that the velocities and accelerations are expressed in terms of displacements as 
follows: 
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As a result of the redefined difference equations, 1iu , 1iu  and also 1if  are represented as 

functions of 1iu . The most common nonlinear equation solver that can be used to solve the 

nonlinear system of equations, defined in terms of 1iu  shown in Eq. (2.15), is the regular NR 

method, which seeks the roots of a function as follows: 

    k k k
g x x g x    (2.19) 

where g  and g   represent the function and its derivative with respect to x , respectively, x  is the 

root of the function, k  is the iteration number and k
x  is the difference between the value of x  

in the current and previous iterations. If the left-hand side of Eq. (2.15) is considered as the function 
g  in Eq. (2.19), one can write the following in terms of displacement, 

    1 1 1
k k k

i i ig g    u u u  (2.20) 
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where Tk  is the tangential stiffness matrix corresponding to the displacement vector k

i 1u , which 

can be obtained as a result of a state determination method [Spacone et al. 1996]. Substitution of 
Eqs. (2.21) and (2.22) in Eq. (2.20) leads to the linear system of Eqs. (2.23) in the same format as 
the other methods explained earlier. 
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At this point, it is beneficial to state that all three methods discussed above reduce the 
nonlinear differential equations of motion to a system of linear algebraic equations. However, 
depending on the way each method treats the three basic Eqs. (2.2)-(2.4), the resulting coefficient 
matrix (or the Jacobian matrix), effm  for EN, and effk  for OS and IN, and the effective load vector, 
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effp , differ from one method to the other. Accordingly, these differences determine the adequacy 

and ease of application of each method as explained later. 

After the determination of the displacement increment for iteration k  from Eqs. (2.23), the 
method continues by the calculation of the displacement, velocity and acceleration for iteration 

1k  using Eqs. (2.24)-(2.26), respectively. 
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An iterative method requires an initial guess for the sought value, i.e., for 1
1



k

iu . For the 

regular NR method, displacement of the previous iteration can be used as the initial guess as 
defined in Eq. (2.27). Subsequent substitution of this equation into Eqs. (2.2) and (2.3) leads to the 
corresponding velocity and acceleration, i.e., 1

1



k

iu  and 1
1



k

iu  vectors as follows 
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The algorithm for an integration time step of the IN method is summarized as follows: 

1. Determine the initial guess, 1k , for displacement from Eq. (2.27) and the corresponding 
velocity and acceleration from Eqs. (2.28) and (2.29), respectively; 

For each iteration k =1: N, where N  is the total number of iterations: 

2. Obtain the restoring force, f , corresponding to the computed displacement from the 
constitutive relationships of the defined materials and elements using a state determination 
method [Spacone et al. 1996]; 

3. Determine the displacement increment by solving the linear system of equations defined by 
Eqs. (2.23). 

4. Compute the displacement, velocity and acceleration using Eqs. (2.24)-(2.26); 

5. Check convergence by comparing a calculated norm with a defined tolerance value. If the norm 
is smaller than the tolerance, set kN  , increment i  and proceed to the next time integration 
step; otherwise, increment k  and go to step 2. 

Regarding the above algorithm, two remarks are stated as follows: 

 The presence of the convergence check requires at least two iterations. Therefore, 
unless a solution is separately coded for a linear case, a general nonlinear analysis 
software requires at least two iterations for the IN integration, even for the case of a 
linear problem. 

 Different norms can be used for the convergence check in step 5. Examples of these 
norms are the displacement increment, unbalanced force and energy norms. 

2.2.4 TRBDF2 Algorithm 

TRBDF2 method [Bank et al. 1985; Bathe and Baig 2005; Bathe 2007] is a composite integration 
method, that uses IN and three point backward Euler scheme, alternately in consecutive integration 
time steps. The first step uses the IN method with constant average acceleration, i.e. with 21γ  
and 41  in the difference Eqs. (2.2) and (2.3). The consequent step uses the equations of the 
three-point Euler backward method, i.e., Eqs. (2.30) and (2.31) for the relationship between the 
displacement, velocity and acceleration, instead of the Newmark difference Eqs. (2.2) and (2.3). 

 
t

-iii
i 


 


1

1

341 uuu
u  (2.30) 

 
t

-iii
i 


 


1

1

341 uuu
u

  (2.31) 

Following the regular NR method as demonstrated for IN, the following linear system of 
Eqs. (2.32) is obtained: 
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 (2.32) 

After the determination of the displacement increment for iteration k  from Eqs. (2.32), the 
method continues by the calculation of the displacement, velocity and acceleration for iteration 

1k  using Eqs. (2.33)-(2.35), respectively. 

 k

i

k

i

k

i 11
1
1 

  uuu   (2.33) 

 
t

-ii

k

ik

i 







11

1

341
1 uuu

u  (2.34) 

 
t

-ii

k

ik

i 







11

1

341
1 uuu

u
  (2.35) 

It is noted that the consecutive steps are considered as the sub-steps of a one step in [Bathe and 
Baig 2005; Bathe 2007], rather than considering them as consecutive steps, which is exactly the 
same as the formulation presented above, but with a time step 2t . [Bathe and Baig 2005] and 

[Bathe 2007] used the method in structural dynamics to conserve energy and momentum at large 
deformations (not necessarily involving material nonlinearity) where the IN method may fail to do 
so and become unstable. Herein, it is considered not because of its superior stability performance 
than that of IN, but because of its better convergence behavior, due to the numerical damping 
provided by the Euler backward method, as discussed in the next chapter. 

2.3 NONLINEAR EQUATION SOLVERS 

Eq. (2.4) can be written in a residual form as follows: 

   fucumpur    (2.36) 

The statement of equilibrium requires that the residual forces to be zeros, i.e., 

   0ur   (2.37) 

The following sub-sections describe how each of the discussed nonlinear solvers attempt 
to satisfy Eq. (2.37). It is noted that the subscript i representing the number of the integration time 
step is dropped to simplify the expressions in the following sub-sections. 
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2.3.1 Regular Newton-Raphson Algorithm 

The regular NR algorithm is based on linear approximation of the residual vector as follows: 

       11  



 k

k
kkk u

u

ur
uruur  (2.38) 

The superscript k denotes the iteration number within one time step and the matrix 
 
u

ur


 k

 is 

called the system Jacobian matrix, which can be denoted as follows, 

 
 

T

k

k k
u

ur
J 




  (2.39) 

where Tk  is the tangential stiffness matrix. The algorithm starts with an initial guess and iterates 
with the following equations until a certain convergence criterion is met. 

 
   1 1 1

1 1

k - k - k

k T

k k k



 

   

 

u J u k u

u u u

r r
 (2.40) 

2.3.2 Broyden Algorithm 

In regular NR algorithm, the Jacobian matrix is computed at every iteration, which is a complicated 
and expensive operation. The idea behind Broyden method is to compute the whole Jacobian only 
at the first iteration, and to do a rank-one update at the other iterations [Broyden 1965], i.e., 

  Tk

k

k

k-

k

k-k u
u

uJr
JJ 




 2

1
1  (2.41) 

where   indicates the discrete L2-norm1 and superscript T indicates transpose. 

 
1

1

k-kk

k-kk

rrr

uuu




 (2.42) 

Subsequently, the algorithm proceeds with Eqs. (2.40) as in the regular NR algorithm. It is to be 
noted that the modified NR is a special case where the rank-one update is ignored. 

                                                           

1 


n

i
i

u
1

2
u  where n in the number of components of the vector u 
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2.3.3 Newton-Raphson with Line Search Algorithm 

The direction of u  determined by the regular NR method is often correct. However, the same is 
not always true for the step size u . Furthermore, it is computationally less expensive to compute 

the residual for several points along u  rather than forming and factorizing a new Jacobian matrix 
[Crisfield 1991]. 

In the Newton-Raphson with Line Search (NRLS) algorithm, the regular NR method is 
used to compute u . However, only a certain portion of the calculated u  is used to determine 
the displacement in the next iteration as follows: 

 
   1 1 1

1 1

k - k - k

k T

k k k



 

   

  

u J r u k r u

u u u
 (2.43) 

Four types of line search algorithm are available in OpenSees [McKenna et al. 2010]: 
Bisection, Secant, RegulaFalsi and Interpolated. The different line search algorithms embrace 
different root finding methods to determine the factor  . A root of the function  s  is defined as 
follows: 

    1 1k k k
s      u r u u  (2.44) 

with the following initial guess 

  kk
s uru 1

0
  (2.45) 

2.3.4 Broyden–Fletcher–Goldfarb–Shanno Algorithm 

From an initial guess 0u  and an approximate Hessian matrix2 0B , the following steps in the 

Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm are repeated until convergence [Bathe 
and Cimento 1980]: 

1)  A direction k
u  is obtained by solving the following equation: 

    kk

k uruB   (2.46) 

where kB  is an approximation of the Hessian matrix, which is updated at each iteration, 

and  kur  is the gradient3 of the function evaluated at k
u . 

2) A line search is performed to find the step size k  for the k-th iteration and update the 
displacement as follows: 

                                                           
2Hessian matrix is a square matrix of second-order partial derivatives of a function. 

3 kji
z

f

y

f

x

f
f












 where kji and,  are unit vectors in the directions zyx and, , respectively. 
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 kkkk uuu  1  (2.47) 

3) Set the Hessian matrix, which is updated for the next iteration as follows: 

 
 

 
 

  k

k

Tk

k

Tkk

k

kTk

Tkk

kk

sBs

BssB

sy

yy
BB 1  (2.48) 

where 

 kkk us   (2.49) 

    kkk urury  1  (2.50) 

2.3.5 Krylov-Newton Algorithm 

At each time step, instead of Eq. (2.37), the Krylov-Newton algorithm seeks the solution to the 
system of the following preconditioned residual equations [Scott and Fenves 2010]: 

     0urkuR  -1
0  (2.51) 

where 0k  is the tangential stiffness at the first iteration of the time step. The solution to Eq. (2.51) 

is equivalent to that of Eq. (2.37) as long as 0k  is nonsingular. Thus, Eq. (2.38) becomes 

    1 1k k k    R u R u A u 0  (2.52) 

where A  is the identity matrix when modified NR algorithm is used, while 
TkkA

-1
0  when using 

the regular NR algorithm. The tangent at the initial guess, instead of the current tangent, is used 
for the modified NR algorithm in the iterations. 

The Krylov-Newton algorithm decomposes 1 k
u  into two components as follows: 

 111   kkk qwu  (2.53) 

where 1kw  is the acceleration component and 1k
q  is the standard modified Newton component. 

1kw  is further represented as a linear combination of the vectors from the subspace of 
displacement increments with size m, i.e., 

 m

m

k
cc uuw  1

1
1  (2.54) 

To satisfy Eq. (2.52), the first step is to minimize the norm of vector   1 kk AwuR , which 

represents an over-determined system of equations for the unknown coefficients mcc ,1  in Eq. 

(2.54), by least-squares analysis [Golub and Van Loan 1996]. The second step for satisfying Eq. 
(2.52) is to solve the following equations: 
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   0AqguR   11 k

k

k  (2.55) 

where , and  A  is the identity matrix using the modified NR algorithm. Thus, 

 k

k gq 1  (2.56) 

The displacement increment is then calculated by summing the two components determined from 
Eqs. (2.54) and (2.56). 
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3 Development of Lyapunov-Based Nonlinear 
Equation Solver 

3.1 INTRODUCTION 

The regular Newton-Raphson (NR) algorithm reviewed in Chapter 2 is the most standard and 
commonly used nonlinear equation solver in nonlinear structural analysis subjected to static and/or 
dynamic loading. However, major drawbacks exist in this algorithm: 

1. The Jacobian matrix is required to be computed explicitly, which maybe computationally 
expensive and difficult; 

2. The Jacobian matrix is required to be invertible; 
3. The convergence of this algorithm is not guaranteed, i.e., the initial guess is important and 

needs to be within the region of attraction of the solution point. 

Lyapunov stability theory [Khalil 2002; Haddad and Chellaboina 2008], developed by the 
Russian mathematician Aleksandr Lyapunov in [Lyapunov 1892], is the most complete framework 
of stability analysis for dynamical systems. It is based on constructing a function of the system 
state coordinates (usually considered as the energy function of the system) that serves as a 
generalized norm of the solution of the dynamical system. The appeal of Lyapunov stability theory 
resides in the fact that conclusions about the stability behavior of the dynamical system can be 
obtained without actually computing the system solution trajectories. As a consequence, Lyapunov 
stability theory has become one of the most fundamental and standard tools of dynamical systems 
and control theory. 

This chapter proposes a nonlinear equation solver for nonlinear structural analysis for 
problems involving static and/or dynamic loads based on Lyapunov stability theory. Several recent 
works that are similar in spirit to this development are [Milano 2009; Xie et al. 2013] that are 
applied to power flow problems. The main idea is to reformulate the equations of motions into a 
hypothetical dynamical system characterized by a set of ordinary differential equations, whose 
equilibrium points represent the solutions of the nonlinear structural problems. Starting from the 
Lyapunov stability theory, it is demonstrated that this hypothetical dynamical system is 
characterized by a globally asymptotic stability, i.e., convergence, to the equilibrium points for 
structural dynamics. This feature overcomes the inherent limitations of the traditional iterative 
minimization algorithms and has no restriction on the selection of the initial guess for various 
structural nonlinear behaviors. Comparisons between the proposed algorithm and regular NR 
algorithm are presented using several numerical examples from structural statics and dynamics. 
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3.2 STABILITY OF NONLINEAR SYSTEMS 

The stability of two categories, continuous-time and discrete-time nonlinear systems, is presented 
in this section. 

3.2.1 Continuous-Time Systems 

Consider a continuous-time nonlinear system [Khalil 2002]: 

     xx g      (3.1) 

and assume its equilibrium point is at 0x , i.e.,   00g  . If the equilibrium of interest is *x  that 

is other than zero, i.e., 0*x , let 

    *~ xxx       (3.2) 

and therefore 

         xgxxgxgx ~~~~ *       (3.3) 

which leads to 

      00g ~      (3.4) 

3.2.2 Discrete-Time Systems 

Similarly, consider a nonlinear discrete-time system [Khalil 2002]: 

     
kk xx g1      (3.5) 

and assume that the system has an equilibrium point at the origin, i.e.,   00g  . If the equilibrium 

of interest is *x  that is other than zero, i.e., 0*x , let 

    *
k k
 x x x      (3.6) 

and therefore 

       **
1

~~ xxxxx  kkk gg      (3.7) 

       
kkk xxxxx ~~~~ **

1 gg       (3.8) 

which also leads to Eq. (3.4). 
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3.2.3 Stability Definitions 

Stability: The equilibrium 0x  is stable if for each 0 , there exists 0  such that: 

          txx 0      (3.9) 

for all 0t  [Khalil 2002]. The equilibrium point is unstable if it is not stable. 

Asymptotic stability: The equilibrium 0x  is asymptotically stable if it is stable and 
  00 x  for all  0x  in a neighborhood of 0x . 

Global asymptotic stability: The equilibrium 0x  is globally asymptotically stable if it 
is stable and   00 x  for all  0x . It is noted that   00 x  does not necessarily guarantee 
stability. For example, trajectories may converge to the origin only after a large detour that violates 
the stability definition in Eq. (3.9). 

3.3 LYAPUNOV STABILITY THEORY 

The Lyapunov stability theory is discussed in this section. This discussion focus on the previously 
discussed continuous-time and discrete-time nonlinear systems. 

3.3.1 Continuous-Time Systems 

Let v  be a continuously differentiable scalar function defined on the domain n
RD  that contains 

the origin. The equilibrium point 0x  is stable if the following conditions are satisfied [Khalil 
2002]: 

         00  Dvv xx 0and0      (3.10) 

and 

            Dvv
dt

d
v

T  xxxxx 0g      (3.11) 

Moreover, 0x  is asymptotically stable if 

       0v D    0x x      (3.12) 

If, in addition, n
RD   and the Lyapunov function v  is radially unbounded, i.e., 

       xx v      (3.13) 

then 0x  is globally asymptotically stable. 
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3.3.2 Discrete-Time Systems 

Analogously to the continuous-time systems case, the discrete-time Lyapunov stability theory is 
discussed herein. let v  be a continuously scalar function defined on the domain D  that contains 
the origin. The equilibrium point 0x  is stable if [Khalil 2002] Eqs. (3.10) and (3.14) are 
satisfied. 

        Dvvv kkk   xxx 011      (3.14) 

Moreover, 0x  is asymptotically stable if 

       0  Dxv k 01x      (3.15) 

If, in addition, n
RD   and the Lyapunov function v  is radially unbounded as defined in Eq. 

(3.13), then 0x  is globally asymptotically stable. 

For continuous time systems, it is required that the derivative of the Lyapunov function is 
negative along the trajectories. For discrete-time systems, it is required that the difference in the 
Lyapunov function is negative along the trajectories. Also, quite importantly we do not require 
that v  is continuously differentiable, but to be only continuous. 

3.4 LYAPUNOV-BASED NONLINEAR EQUATION SOLVER 

As stated in Eq. (2.37), the general formulation of nonlinear set of equation is as follows: 

      0g x      (3.16) 

Consider a hypothetical dynamical system characterized by the following first order differential 
equation 

           xxxxg
x

x gΚJgΚ T

T









      (3.17) 

where Κ  is positive definite, i.e., 0ΚΚ T  and the Jacobian matrix 

       x
x

x gJ



      (3.18) 

For this system, the Lyapunov function is chosen as follows: 

         xxx gg
T

v
2

1
      (3.19) 

A sufficient condition for the system, and thus the direct integration algorithm, to be stable is as 
follows: 
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     (3.20) 

Considering the Jacobian matrix  xJ  is well-defined, i.e.,   0J x ,    Txx ΚJJ  is 

positive definite and therefore   0xv  where the asymptotical stability condition of the 
hypothetical dynamical system in Eq. (3.17) is guaranteed. Then any differential equation solver 

can be used to solve Eq. (3.17), starting from the initial condition (or guess)   00t  x x . To 

reduce the computational expense of calculating  xJ , a special case of Eq. (3.17) is to replace 

 xJ  with the constant  0xJ . 

3.4.1 Static Problems 

For static structural problems, Eqs. (3.16) and (3.17) become 

      0ufg       (3.21) 

             ufΚkufuΚJufuf
u

Κu T

T

T

T









      (3.22) 

and the corresponding Jacobian matrix is 

       
Tkuf

u
uJ 




      (3.23) 

where Tk  is the tangent stiffness of the structural system. The Lyapunov function corresponding 
to Eq. (3.19) becomes 

         ufufu
T

v
2

1
      (3.24) 

Therefore, as proved previously, the hypothetical dynamical system in Eq. (3.22) is asymptotically 
stable. Moreover, if the restoring force is radially unbounded, i.e., 

         uufu v      (3.25) 

Then, the hypothetical system in Eq. (3.22) is globally asymptotically stable and converges to the 
equilibrium corresponding to   0uv  and thus   0uf  . It is to be noted that the tangent stiffness 

matrix Tk  can be replaced by the constant stiffness matrix at the initial guess at 0u . 
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3.4.2 Dynamic Problems 

For a structural system subjected to dynamic loadings, e.g., earthquake excitations, the discretized 
equations of nodal equilibrium for the nonlinear dynamic response of the structural system can be 
written in the following residual form 

      11111   iiiii pfucumug       (3.26) 

Consider using the implicit Newmark integration algorithm and reorder the Newmark 
difference equations Eqs. (2.2) and (2.3) as follows: 

          iii t
t
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     (3.27) 
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     (3.28) 

Substituting Eqs. (3.27) and (3.28) into Eq. (3.26) leads to the following 
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     (3.29) 

For the i+1 step, the responses of the previous step, i.e., i-th step, are constants. Therefore, 
Eq. (3.29) can be further simplified as follows: 
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and the corresponding Jacobian matrix is as follows: 
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where 
1iTk  is the tangent stiffness matrix at the i+1 step. Therefore, according to Eq. (3.17), the 

hypothetical dynamical system and corresponding Lyapunov function are as follows: 
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It is clear from Eq. (3.30) that  1iug  is radially unbounded which is independent of the radially 

unboundedness of  1iuf . Therefore, the equilibrium point of the dynamical system in Eq. (3.32) 

is globally asymptotically stable. In other words, it converges to the solution of Eq. (3.32) for all 
initial values or guesses of 1iu . Moreover, similar to the formulation for the static problems, the 

tangent stiffness matrix 
1iTk  can be replaced by the constant stiffness at 0

1iu . 

The general procedures for the proposed Lyapunov-based nonlinear solver are summarized 
as follows: 

1. Compute the Jacobian matrix using Eq. (3.23) and (3.31) for static and dynamical systems, 
respectively; 

2. Form the hypothetical dynamical system represented by Eq. (3.22) and (3.32) for static and 
dynamical systems, respectively; 

3. Solve the set of equation for the hypothetical dynamical system using numerical integration 
scheme starting from the initial condition (or guess). 

3.5 NUMERICAL EXAMPLES 

Several numerical examples are presented in this section to compare the convergence behaviors of 
the regular NR algorithm and that of the proposed algorithm. The first example is a single-degree 
of freedom (SDOF) nonlinear static system characterized by a single parameter. The second 
example is a two-DOF static system with bilinear force-deformation relationships. The third 
example is a two-DOF dynamical system used to compare the convergence behavior of these two 
nonlinear equation solvers with a single time step integrator. The second and third examples are 
performed using the inconsistent Jacobian matrix as discussed below. In this section, the 
hypothetical dynamical system of all the numerical examples is solved by the Dormand–Prince 
method [Dormand and Prince 1980] that is implemented as the differential equation solver ode45 
in MATLAB [Mathworks Inc. 2015]. For convenience, all units are omitted in this section, where 
use of consistent units is taken into account. 

3.5.1 SDOF Nonlinear Static System 

Consider the restoring force of the nonlinear SDOF system, as shown in Figure. 3.1, has the 
following form 
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        r
uusignuf       (3.35) 

where   1usign  if 1u , otherwise   1usign .  

 

Figure 3.1 The sketch of the restoring force for the SDOF nonlinear static system. 

Based on the regular NR algorithm, 
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From Eq. (3.36), it can be seen that the regular NR algorithm is reduced to a linear system where 
the eigenvalue is   rr 1 . Its convergence is guaranteed if    1,11  rr , i.e., 21r . For 

example, if 2r , the regular NR algorithm converges to the solution, i.e., 0u , as shown in 
Figure 3.2a. However, if 21r , e.g., 31r  and 41r , the algorithm diverges as shown in 

Figures 3.2b and 3.2c. It is noted that the algorithm oscillates or flip-flops indefinitely between 0
u  

and 0
u  if 21r  as shown in Figure 3.2d. 

Considering the formulation in the previous section and Eq. (3.35), the first order ordinary 
differential equation for the hypothetical dynamical system and the corresponding Lyapunov 
function are as follows: 

         (3.37) 

         (3.38) 

Figure 3.3 presents the traces of equilibrium search for the same SDOF examples with different 
values of  using the proposed nonlinear equation solver. It is clear that the proposed algorithm is 
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globally asymptotically stable for this example. Figure 3.3 is obtained by solving the hypothetical 
dynamical system is Eq. (3.37), therefore the x-axis of Figure 3.3 is labeled as the number of time 
steps. 

 

 

a) 2r  b) 31r  

  

c) 1 4r   d) 21r  

Figure 3.2 Traces of equilibrium search for the SDOF example using the regular NR algorithm. 
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a) 2r  b) 31r  

  

c) 41r  d) 21r  

Figure 3.3 Traces of equilibrium search for the SDOF example using the proposed Lyapunov-
based algorithm. 

3.5.2 Two-DOF Nonlinear Static System 

A two-story shear building is modeled as the system shown in Figure 3.4. It consists of two uniaxial 
springs with bilinear force-deformation relationships shown in Figure 3.5. A load vector of 

 T2010P  is applied to the system. Taking advantage of the compatibility matrix A, shown in 
Figure 3.4, the consistent Jacobian stiffness matrix is obtained as follows: 
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The restoring vector f , that is radially unbounded, is as follows (q’s are defined in Figure 3.5): 
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Figure 3.4 Two-DOF nonlinear system. 

  

a) Spring 1 b) Spring 2 

Figure 3.5 Force-deformation relationships of the two springs. 

The efficiency of the regular NR algorithm relies heavily on the computation of a 
numerically consistent Jacobian matrix. For complex constitutive models, a consistent Jacobian 
matrix can be difficult to develop and implement. Utilization of an inconsistent Jacobian matrix or 
the one with approximation errors is likely to lead to the non-convergence of the regular NR 
algorithm [Scott and Fenves 2010], as demonstrated in this example. To mimic an error in the 
Jacobian calculations of the element state determination, an artificial coupling of the two springs 
is introduced as assumed in [Scott and Fenves 2010], leading to the following Jacobian matrix:  
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a)  T501000 u  b)  T45200 u  

  

c)  T40200 u  d)  T40200 u  

Figure 3.6 Traces of equilibrium search for the two-DOF static example using the regular NR 
algorithm. 

The equilibrium point of this system is predetermined as  T2139u . Figures 3.6 and 
3.7 show respectively the convergence behavior of the regular NR and that of the proposed 
Lyapunov-based algorithms with different initial guesses. As shown in Figure 3.6, the regular NR 
algorithm either diverges or oscillates around the true solution. It is noted from Figure 3.6d that 
even though the initial guess is just around the equilibrium point, the regular NR algorithm fails to 
converge to the true solution. In contrast, the proposed Lyapunov-based algorithm converges for 
all the initial guesses. This is expected as this proposed algorithm is globally asymptotically stable 
for this system with the property of radially unboundedness shown in Eq. (3.40). 
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a)  T501000 u  b)  T45200 u  

  

c)  T40200 u  d)  T40200 u  

Figure 3.7 Traces of equilibrium search for the two-DOF static example using the proposed 
Lyapunov-based algorithm. 

3.5.3 Two-DOF Nonlinear Dynamical System 

The same two-DOF system as in the previous example is simulated to demonstrate the 
convergence behavior of the two nonlinear equation solvers in the i+1 time step after time 
discretizing the governing equations by the implicit Newmark algorithm with constant acceleration, 
i.e., 21γ  and 41 . The simulations are based on the following numerical conditions: 

         Ti

T

i

T

it 21,50100,100200,1.0 1  puu       (3.42) 

The initial guess of the displacement vector at the time step i+1 is set to equal the obtained one at 
the time step i, i.e., ii uu 

0
1 , and the same inconsistent Jacobian matrix as in Eq. (3.41) is used. 
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Figure 3.8 presents the traces of the displacement vector by the regular NR algorithm where 1u  
ends with oscillation indefinitely for all four displacement vectors at the time step i, leading to the 
commonly experienced convergence problems.  In contrast, as shown in Figure 3.9, the proposed 
algorithm is able to accurately find the solution for all four situations.  

 

a)  T
ii

250100

1
 uu  b)  T

ii
251000

1
 uu  

  

c)  T
ii

2505000

1
 uu  d)  T

ii
100010000

1
 uu  

Figure 3.8 Traces of equilibrium search for the two-DOF dynamic example using the regular NR 
algorithm. 
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Figure 3.9 Traces of equilibrium search for the two-DOF dynamic example using the proposed 
Lyapunov-based algorithm. 
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4 Numerical Lyapunov Stability Analysis 

4.1 INTRODUCTION 

Stability is one of the most important properties of direct integration algorithms that must be 
considered for efficient and reliable simulations. Most of the past studies conducted the stability 
analysis of direct integration algorithms for linear elastic structures (e.g., Bathe and Wilson 1972; 
Hilber et al. 1977; Hughes 1987; Tamma et al. 2000) using the amplification operator and its 
associated spectral radius. These research efforts provide useful insight for the selection of the 
suitable integration algorithm with the proper time step size to solve a dynamic problem. 
Integration algorithms, however, are usually applied to nonlinear dynamic problems. Studies 
involving nonlinear dynamics are therefore necessary but relatively limited in the past literature. 
Hughes (1976) investigated the stability of the Newmark algorithm with constant acceleration 
applied to problems involving nonlinear dynamics. Zhong and Crisfield (1998) developed an 
energy conserving corotational procedure for the dynamics of shell structures. Kuhl and Crisfield 
(1999) developed a generalized formulation of the energy-momentum method within the 
framework of the generalized-  algorithm. Chen and Ricles (2008) explored the stability of 
several direct integration algorithms for nonlinear SDOF systems by utilizing discrete control 
theory.  

 

Figure 4.1 Definition of stiffening and softening systems. 

In this chapter, two general classes of nonlinear SDOF structural systems, stiffening and 
non-degrading softening systems, are considered. The idealized backbone curves (force-
displacement relationship) of these two systems are illustrated in Figure 4.1. Systematic Lyapunov 
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stability and accuracy analyses of several implicit and explicit direct integration algorithms for 
these two nonlinear structural systems are presented [Liang and Mosalam 2015, 2016a]. The 
stability analysis of nonlinear systems, unlike linear ones, is rather complicated and challenging. 
This is attributed to specific properties possessed by nonlinear systems. For example, the stability 
of nonlinear systems is dependent on initial conditions and the principle of superposition does not 
hold in general. 

Lyapunov stability theory that introduced in Chapter 3 is taken advantage of to study the 
stability of nonlinear systems. Generally speaking, constructing the previously mentioned energy 
function for the nonlinear system, which is the basis of Lyapunov stability theory, is not readily 
available. To handle this difficulty, this chapter proposes a numerical approach to transform the 
problem of seeking a Lyapunov function to a convex optimization problem, which can solve the 
problem in a simpler and clearer way. However, this proposed approach may involve extensive 
computations. Accordingly, this chapter proposes an approach that enables performing the stability 
analysis numerically. Convex optimization considers the problem of minimizing convex functions 
over convex sets where a wide range of problems can be formulated in this way. In this 
optimization, any local minimum must be a global minimum, which is an important property 
leading to reliable and efficient solutions using, e.g. interior-point methods, which are suitable for 
computer-aided design or analysis tools [Boyd and Vandenberge 2004]. It is shown that the 
proposed approach is generally applicable to direct integration algorithms for various nonlinear 
behaviors. Moreover, based on Lyapunov stability theory, some arguments of stability regarding 
these direct integration algorithms from past studies are found to be groundless and these findings 
are discussed in this chapter. The chapter also investigates the OS algorithm that uses tangent 
stiffness in the formulation, which has not been previously studied. It is shown that this algorithm 
possesses similar stability properties to those of the implicit Newmark integration. Finally, the 
accuracy of the integration methods is examined using a geometrically nonlinear problem, which 
has a closed-form exact solution. 

4.2 DIRECT INTEGRATION ALGORITHMS 

The discretized equation of motion of a SDOF system under an external dynamic force excitation 
is expressed as: 

 1111   iiii pfucum   (4.1) 

where m  and c  are the mass and viscous damping, and 1iu , 1iu , 1if , and 1ip  are the 

acceleration, velocity, restoring force, and external force at the time step 1i , respectively. The 
restoring force,  uf , is generally defined as a function of displacement, u . 

Usually, single-step direct integration algorithms are defined by the following difference 
equations: 

       31
2

2
2

101    iii utututuu ii
  (4.2) 

     716541 Δ    iiii ututuu   (4.3) 
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In general, Eqs. (4.1)-(4.3) require an iterative solution, which forms the basis of implicit 
algorithms. On the other hand, these algorithms become explicit when 02  . Coefficients of the 
Newmark integration family (Newmark 1959) and the explicit OS algorithms (Hughes et al. 1979) 
are summarized in Table 1 where       1

2
 iktctm   and 1ik  is defined below. 

Table 4.1 Coefficients for the Newmark and the OS Integration Algorithms. 

Coefficient Newmark OS 

0  1   tc  1  

1    221         tc   1221  

2    0 

3  0   11
~
  ii fp  

4  1   tc  1  

5  1      tc   11  

6    0 

7  0     tfp ii    11
~

 

4.3 LYAPUNOV STABILITY ANALYSIS 

For each direct integration algorithm, the relationship between the kinematic quantities at time 
steps 1i  and i  can be established as follows: 

 iiii LA  xx 1  (4.4) 

where     Tiiii uutut   2
x , iA  and iL  are the approximation operator and the loading 

vector at the time step i , respectively. The loading vector, L , is generally independent of the 
vector of kinematic quantities, x . Eq. (4.4) can be further extended as: 
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where 121

1
AAAAA 

 iiij j . In order to investigate the stability of the system in Eq. (4.4), a 

Lyapunov artificial energy function 1iv   [Franklin et al. 2015] at the time step 1i , can be chosen 

as: 

 111   i

T

iiv xx M  (4.6) 
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where M  is positive definite, i.e. 0MM T  and 0  is the null matrix of the same dimension as 
M . The system in Eq. (4.4) is stable if the Lyapunov function in Eq. (4.6) is bounded for i .  
Substituting Eq. (4.5) into Eq. (4.6) with some manipulations leads to the following: 
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 (4.7) 

The loading vector, L , is generally a function of external force, p . Therefore, it is bounded. 

Therefore, based on Eq. (4.7), the boundedness of the Lyapunov function 1iv  for i  leads to 

the boundedness of  

1

ij jA  for i . For linear behavior of structures, the approximation 

operator, A , remains constant, thus  

1

ij jA  becomes iA  that can be decomposed as follows: 

 1-ii
VVDA   (4.8) 

where D  and V  are matrices of eigenvalues and eigenvectors of A , respectively. The 

boundedness of iA  for i  leads to the well-known stability criterion for linear systems, 
namely the spectral radius of the approximation operator  A  must be less than or equal to 1.0. 

For nonlinear structures,  

1

ij jA  is more involved due to the continuous variation of the 

approximation operator iA . Therefore, the stability of a nonlinear system cannot be solely 

determined using the spectral radius of its approximation operator iA . However, the investigation 

of the eigen properties of iA  is still necessary in nonlinear problems. For small values of t , e.g. 

t  required for accuracy as discussed later in the section “Accuracy Analysis,” the increment of 
restoring force can be approximated [Chopra 2006] as: 
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 for the OS algorithms. It should be noted that 

1iTk  is the tangent 

stiffness at the time step 1i , and other parameters are defined before. The tangent stiffness is 
generally a function of the displacement, thus Eq. (4.4) represents a nonlinear system of equations. 
With the approximation in Eq. (4.9), the approximation operator iA  for the Newmark and the OS 

algorithms is derived as follows: 
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where   mkmc Inn  2,2  . Coefficients 0  and  1  for the Newmark integration family 

and the OS algorithms are listed in Table 4.2. 

Table 4.2 Coefficients of approximation operators for the Newmark and the OS Integration 
Algorithms. 

Coefficient Newmark OSinitial OStangent 

0  
1iT  

1

~
iT  

1

~
iT  

1  
1iT  

n  
1

~
iT  

 

where mkmk
iiii TTTT 1111

~~, 22


  . It is obvious that one of the eigenvalues of iA  in Eq. (4.10) 

is 1. For the Newmark and OS algorithms with    21,41,  , the other two eigenvalues are 
obtained as: 
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(4.11) 

On the other hand, for the explicit Newmark algorithm, i.e.,    21,0,  , 
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111  (4.12) 

Different from the integration algorithms above, the TRBDF2 is a multi-step algorithm 
with numerical damping introduced by the Euler backward scheme. Its approximation operator in 
Eq. (4.14) is obtained for the case of zero viscous damping ( 0 ) by similar linearization 
approximation for the tangent stiffness as before and given as follows: 

        iiiiiiiiT uuffuuffk
i

  5.05.05.015.011
 (4.13) 
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where      19 22

16

122

11



ttB

ii TT  . Thus, besides the one obvious eigenvalue of 1, the other 

two are as follows: 
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It can be shown that for 0
1


iTk , magnitudes of the eigenvalues in Eq. (4.15) are always less than 

1 because of introduced numerical damping. 

The conditions for   1iA  are summarized in Table 4.3 for the case of zero viscous 

damping ( 0 ), which is the most critical case for the stability analysis of direct integration 

algorithms. In Table 4.3, 
111

22



iii TTT kmT   and    21,41,   are used for 

implicit Newmark, OSinitial and OStangent and thereafter in this chapter. A noteworthy observation 
is that the approximation operator of the explicit OStangent algorithm is the same as that of the 
implicit Newmark algorithm with 

1iT  replaced by 
1

~
iT  (refer to Table 4.2). This indicates that 

they possess similar stability properties, as indicated in Table 4.3. 

Table 4.3 Conditions for . 

Integration Algorithms Limits 

Implicit Newmark  0
1


iTk  

Explicit Newmark 1
1


iTTt  

OSinitial 
1

0
iT Ik k


   

OStangent 0
~

1


iTk  

TRBDF2 0
1


iTk  

 

The conditions in Table 4.3 are not stability criteria of the listed direct integration 
algorithms used in nonlinear systems. They are only the conditions for   1iA . Some past 

studies, however, determined the stability of direct integration algorithms based solely on the 
spectral radius. Combescure and Pegon (1997) claimed that the OSinitial algorithm is 
unconditionally stable as long as the tangent stiffness is smaller than or equal to the initial stiffness; 
otherwise, the algorithm is unstable. They directly applied the stability criterion that only works 
for linear structures, i.e.   1A , to nonlinear ones. As previously discussed, the boundedness of 

  1iA
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 

1

ij jA  for i  is the stability criterion for both linear and nonlinear structures. For a 

nonlinear structure, with the continuous variation of the approximation operator, it is obvious that 

the boundedness of  

1

ij jA  for i  cannot be guaranteed by   1iA . Moreover, the 

unboundedness of  

1

ij jA  for i  cannot be simply equivalent to   1iA . 

The example below is presented to illustrate that the system can still go unstable with 
  1iA  for every time step, i.e., the stability cannot be strictly guaranteed by   1iA  only. 

The implicit Newmark method with constant average acceleration is used in this example 
considering the following numerical conditions where all units are assumed consistent and omitted 
for convenience: 

   1100201.001.001.0  mkTt Inn   (4.16) 

The response of the i-th time step, ix , with the loading vector 0L  , is as follows: 

      0

1
2

xx 







 

ij

j

T

iiii uutut A  (4.17) 

The total number of simulated time steps is 10,000 with initial conditions 

      TT

uutut 001000
2

0  x . In this example, 10,000 values of tangent stiffness are 

selected randomly under the condition that all of them are larger than the value of initial stiffness 
100Ik , i.e. 

IT kk
i
 , 000,101: i , i.e. assuming a stiffening behavior. Therefore, according to 

Table 4.3,   1iA , 000,101: i . 

 

Figure 4.2 Time history plot of the displacement of an unstable example with .   1iA
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Figure 4.2 shows the time history plot of displacement iu , 000,101: i  where clearly the 

algorithm is unstable even with   1iA , 000,101: i . Moreover, the numerical example used 

in the section “Accuracy Analysis” also shows that the stability criterion based on investigating 
the conditions of the spectral radius fails to identify the stability of the OSinitial algorithm. Chen 
and Ricles (2008) demonstrated using discrete control theory that the Newmark method with 
constant average acceleration and explicit Newmak method are unconditionally stable if the 
stability limits listed in Table 4.3 are satisfied; otherwise, these methods are unstable. However, 
the root locus method presented in [Chen and Ricles 2008] is a frequency domain equivalence of 
investigating the conditions of the spectral radius for the approximation operator. This root locus 
method is only applicable to linear time-invariant systems [Franklin et al. 2015], i.e., linear 
structures, and that is the reason why the obtained results and stability limits are the same as those 
expressed by Eqs. (4.11) and (4.12) and listed in Table 4.3. Accordingly, these published 
arguments of stability, i.e. those by Combescure and Pegon (1997) and Chen and Ricles (2008), 
are incorrect and theoretically groundless and thus, in general, not applicable to nonlinear problems. 

4.4 NUMERICAL LYAPUNOV ANALYSIS 

In this section, a numerical approach is presented to enable investigating the stability discussed in 
the previous sections. This approach is based on transforming the stability analysis to a problem 
of convex optimization, which is applicable to direct integration algorithms applied to nonlinear 
problems.  

As previously discussed, a system is stable if its   

1

ij jA  is bounded for i . This is 

equivalent to investigating the system in Eq. (7) with the loading vector 0L  , i.e., 

 iii xx A1  (4.18) 

iA  can be rewritten non-dimensionally, e.g., in the implicit Newmark algorithm: 
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where InnnnTi kmTTt
i

 22,,
11 
 . Therefore, iA  is a function of 1i . 

Similar to Eq. (4.6), the Lyapunov function 1iv  at the time step 1i  can be selected as:  

 1111   ii

T

iiv xx M  (4.20) 
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where the positive definite matrix T

ii 11  MM  is a function of 1i . A sufficient condition for the 

system and thus the direct integration algorithm to be stable is as follows: 
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 (4.21) 

where 10  tr  controls the rate of convergence, i.e. the smaller the tr , the faster the convergence. 

Eq. (4.21) leads to the negative semi-definiteness of 1iP , i.e. 0P  1i . For a direct integration 

algorithm, 1iM  can be expressed as: 

 


 
N

j

jiji

1
11 )( ΦM  (4.22) 

where 
j  and 

jiδ )( 1Φ  are the j–th constant coefficient and base function, respectively, and N  is 

the total number of base functions. One example set of base functions is given in the Appendix. 
The set of base functions of only 1Φ  to 6Φ  represent constant 1iM . 7Φ  to 12Φ  constitute the set 

of base functions that treats 1iM  as a linear function of 1i . Nonlinear relationship between 1iM  

and 1i  can be considered by additional base functions 13Φ  to 18Φ . 

 

Figure 4.3 Schematic illustration of discretization process. 

With the range of i  and 1i  given, e.g.  baii ,, 1 , points can be sampled within this 

range (Figure 4.3), e.g., sampling 1n  points in  ba,  with interval   nab . This yields 
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 21n  possible pairs of  1, ii  . Accordingly, the stability analysis becomes a problem of 

convex optimization that seeks the determination of the coefficients 
j  by minimizing their norm 

for the selected base functions 
jiδ )( 1Φ  where Nj 1: , subjected to the following conditions on 

the  21n  possible pairs of  1, ii  : 
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 (4.23) 

Moreover, with prior knowledge about the variation of 1i , the range of 
ii  1  can be specified, 

e.g.   ii 1 , where   is an optional parameter that is not necessarily small. For example, 

suppose we are interested in investigating the stability of a certain algorithm in the range of 
 2,1, 1 ii  , and 5.1i  at i-th time step. If prior knowledge is known such that 3.0 , i.e. 

 8.1,2.11 i , fewer possible pairs of  1, ii   that require less computational effort can be 

considered. 

The problem of convex optimization can be solved numerically by CVX, a software 
package for specifying and solving convex programs (CVX Research Inc. 2011). Two examples, 
the softening and the stiffening cases, for the implicit Newmark algorithm are considered based 
on the following conditions: 

   0.105.020205.005.0  trn   (4.24) 

The set of base functions 1Φ  to 12Φ  in the Appendix is used. 

4.4.1 Softening Example 

Suppose we are interested in investigating the stability of the implicit Newmark algorithm in the 
range of  0.1,9.0, 1 ii  , therefore   005.0 nab . The coefficients 

j , 121: j , 

obtained by minimizing the 2-norm of  , i.e. 










12

1

2
min

j

j , are as follows: 
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The existence of such set of 
j  implies the existence of 1iM  in Eq. (4.22) that satisfies the 

inequality in Eq. (4.21), which indicates that the implicit Newmark algorithm is stable for the 
conditions in Eq. (4.24) in the range of   0.1,9.0, 1ii  . 

4.4.2 Stiffening Example 

Following similar procedure to the previous softening example, in the stiffening case with range 
of interest  1.1,0.1, 1ii  , the obtained coefficients 

j , 121: j , are as follows: 
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The set of 
j  in Eqs. (4.25) and (26) from many determined sets has the minimum 2-norm 

explaining the listed small values of 
j . The existence of such set of 

j  implies that the implicit 

Newmark algorithm is stable for the conditions in Eq. (4.24) in the range of  1.1,0.1, 1ii  . The 

accuracy of the proposed numerical stability analysis approach depends on the selection of the 
interval  . Similar to the time step t  used in nonlinear time history analysis, smaller  , that 
requires higher computational effort, leads to more accurate and reliable stability analysis. For 
example, if n+1=41 points (denoted as set A) are sampled ( 0.0025  ) for the softening 
example, 12402141 22   additional pairs of  1, ii  , which require more computational effort, 

need to be considered than that for the case with n+1=21 sampled points (denoted as set B). The 
stability analysis based on set A is closer to that of the continuous interval of  0.1,9.0  than that 
based on set B. Furthermore, it is to be noted that the set of coefficients   that satisfies the 
inequality of Eq. (4.21) for set A, also fulfils the same inequality for set B because the set of the 
possible pairs of  1, ii   for set B is a subset of that for set A. Therefore, the stability of the set 

of larger number of sampled points implies the stability of smaller number of sampled points. It 
should be emphasized that Eq. (4.21) is a sufficient condition for the direct integration algorithm 
to be stable. Therefore, the existence of the coefficients corresponding to the selected base 
functions obtained by the numerical approach proposed in this chapterr that satisfies Eq. (4.21) 
implies that the range of interest for 1i  is a sufficient range for the direct integration algorithm 

to be stable. However, inexistence of such coefficients does not indicate the instability of the direct 
integration algorithm within the range of interest for 1i . 

The proposed approach in this section can be applied to investigating the stability of other 
direct integration algorithms, including the other four methods considered in this chapter. Also, 
various nonlinear problems, including stiffening ( 11 i ) and softening ( 11 i ) behaviors in 

Fig. 1, can be taken into account. Accordingly, the proposed approach is generally applicable to 
direct integration algorithms as long as they can be expressed as given by Eq. (4.18). Moreover, 
this approach can potentially be extended to MDOF systems. For m -DOF systems, the m3 × m3  
approximation operator is a function of j

i 1 , where mj 1:  denotes the j-th DOF, and thus 
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   2391 2
mmm   selected base functions and corresponding coefficients are needed if 1iM  is 

expressed as an affine function of j

i 1 , mj 1: . For example, for each possible pair of 

 m

i

m

iii 1
1

1
1 ,,,,    , the computational effort for 10-DOF systems is 

25.426]2)1319)(11([]2)103109)(110([ 22   times that for SDOF systems. 
Therefore, the proposed approach may involve extensive computations for MDOF systems. 

4.5 ACCURACY ANALYSIS 

The accuracy of the numerical integration algorithms depends on several factors, e.g., the loading, 
the time-step size, and the physical parameters of the system. In order to develop an understanding 
of this accuracy, a nonlinear test problem with an available closed-form exact solution is analyzed 
in this section. 

Consider a simple pendulum (Figure 4.4) of length l , forming a time-dependent angle 

)(t  with the vertical axis and undergoing time-dependent angular acceleration )(t . The 
governing equation, initial conditions, exact solution, and period of vibration are summarized in 

Table 4.4 where g  is the gravitational acceleration,   trKn 0
~  , lg0 ,  rK  is the 

complete elliptical integral of the first kind, and  rnsn ;  is the Jacobi elliptic function 
[Abramowitz and Stegun 1972]. 

 

Figure 4.4 Schematic illustration of the nonlinear pendulum in a general deformed state. 

Table 4.4 Nonlinear pendulum. 

Property Expression 

Governing equation    0sin   lg  

Initial conditions 0)0(,)0( 0  θθθ   

Exact solution (Beléndez et al. 2007)         2sin,;~2sinarcsin2 0
2

0   rrnsnt  

Period    04 rKT   

 

Figures 4.5 and 4.6 present the period elongation and the amplitude decay of the 
investigated integration algorithms for π.θ 1000   and π.θ 5000  , respectively. The period is 
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shortened using explicit Newmark [Chopra 2006], and elongated by the other algorithms. It is 
observed that OStangent and implicit Newmark present similar period elongations. The TRBDF2 has 
the smallest period change while it is about twice computationally expensive compared to the other 
algorithms. Considering roughly the same computational efforts, e.g. 08.0 Tt  for TRBDF2 

and 04.0 Tt  for the others, the accuracy becomes comparable. Moreover, the accuracy of all 

algorithms is indifferent for the integration time steps required for accuracy, i.e. 01.0 Tt  
[Bathe 2006]. All algorithms do not result in any significant amplitude decay except TRBDF2, 
which presents some amplitude decay due to introduced numerical damping. Up to 1.0 Tt , 
period elongation (< ±3%) and amplitude decay (< 1%) are acceptable. 

The nonlinear pendulum problem is also used to demonstrate the incorrectness of the 
stability criterion of the OSinitial algorithm from past studies and the suitability of the proposed 
numerical stability analysis approach in this chapter. The tangent stiffness of this nonlinear 
pendulum is obtained as: 

   coslgkT   (4.27) 

This tangent stiffness Tk  is always positive if  2,2   . The OSinitial algorithm with initial 

condition π.θ 1000   results in the fact that all the values of tangent stiffness are larger than that 

of the initial stiffness, which is    10.0coslg . Recall that the stability criterion by Combescure 
and Pegon (1997), refer to Table 3, implies that the OSinitial algorithm should be unstable for 

π.θ 1000  . The numerical problem is analyzed using the proposed numerical stability analysis 

approach for the following conditions: 

   0.120205.00  trn  (4.28) 

The set of base functions 1Φ  to 6Φ  as in the Appendix is used, which represents constant 1iM . 

Same procedure as in section “Numerical Stability Analysis” is performed for π.θ 1000   in this 

example. Therefore, for the range of interest  01 cos1,0.1,  ii , the coefficients j , 61: j  

obtained by minimizing the 2-norm of  , i.e. )(min
6

1

2

 j j , are as follows: 

 
9

6
9

5
8

4

8
3

10
2

7
1

1058.1,1035.3,1096.5

,1060.1,1059.2,1091.7











 (4.29) 

The existence of such set of j  implies that the OSinitial algorithm is stable for π.θ 1000  . The 

results by the proposed approach is consistent with the fact that the OSinitial algorithm is stable as 
reflected in Figure 4.5, which demonstrates the incorrectness of the stability criterion by 
Combescure and Pegon (1997). 
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a) Period elongation 

 
b) Amplitude decay 

Figure 4.5 Period elongation and amplitude decay for the pendulum problem with π0.10θ
0
 . 
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a) Period elongation 

 
b) Amplitude decay 

Figure 4.6 Period elongation and amplitude decay for the pendulum problem with  π0.50θ
0
 . 
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5 Lyapunov Stability Considering Strictly 
Positive Real Lemma 

5.1 INTRODUCTION 

In Chapter 4, a numerical approach is proposed to conduct Lyapunov stability analysis of various 
implicit and explicit direct integration algorithms for SDOF nonlinear systems. Implicit algorithms 
may encounter numerical convergence problems when applied to nonlinear structural systems, 
especially those with large number of degrees of freedom (DOFs) or complex sources of 
nonlinearity. On the contrary, explicit algorithms do not require iterations by adopting certain 
approximations related to the kinematics of the structural system, making them appealing for use 
in solving nonlinear dynamic problems. Various explicit direct integration algorithms have been 
developed, including the explicit Newmark algorithm [Newmark 1959], the Operator-Splitting 
algorithm [Hughes et al. 1979] and the generalized-   predictor-corrector explicit (PCE) 
algorithm [Chung and Hulbert 1993; Hulbert and Chung 1996]. Liang et al. (2014b, 2016b) 
investigated the suitability of the latter for efficient nonlinear seismic response of multi-degree of 
freedom (MDOF) reinforced concrete highway bridge systems and promising results in terms of 
accuracy and numerical stability were obtained.  

In this chapter, another Lyapunov-based approach is proposed to investigate Lyapunov 
stability of explicit direct integration algorithms for MDOF nonlinear systems [Liang and 
Mosalam 2015, 2016b-d]. Two general classes of MDOF nonlinear responses of structural systems 
are considered. They are stiffening systems, e.g., in situations where gaps between components of 
the system are closed, and softening systems, e.g., due to initiation and propagation of damage 
which is common in modeling reinforced concrete structures when subjected to extreme loads. 
The idealized backbone curves (force-displacement relationships) of these two systems are 
discussed later in the chapter. In this study, the explicit algorithm is formulated for a generic 
MDOF nonlinear system that has responses governed by nonlinear functions of the restoring forces. 
Based on this formulation, a systematic approach is proposed to investigate the Lyapunov stability 
of explicit algorithms for MDOF nonlinear systems by means of the strictly positive real lemma 
[Cains 1989]. This approach transforms the stability analysis to pursuing the strictly positive 
realness of the transfer function matrix for the formulated MDOF system. Furthermore, this is 
equivalent to a problem of convex optimization that can be solved graphically for SDOF systems, 
e.g., by Nyquist plot [Franklin et al. 2015], or numerically for MDOF systems, e.g., by CVX [CVX 
Research Inc. 2011]. Using the proposed approach, a sufficient condition in terms of bounds for 
each basic resisting force in this study, where the explicit algorithm is stable in the sense of 
Lyapunov, can be obtained. Specifically, the maximum and minimum bounds for each basic 
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resisting force for stable (in the sense of Lyapunov) MDOF stiffening and softening systems, 
respectively, are determined. Finally, this proposed Lyapunov stability analysis is demonstrated 
by a SDOF system, a bridge structure, and a generic multi-story shear building with nonlinear 
stiffening or softening behavior to study the stability performance of two types of commonly used 
explicit direct integration algorithms. 

5.2 MATHEMATICAL PRELIMINARIES 

In this section, definitions, notations, the generalized strictly positive real lemma and the 
corresponding corollary are introduced. Here,  T  and  *  denote transpose and complex 

conjugate transpose, respectively;   0  and   0  denote positive and negative definiteness, 
respectively. Denote 

   







DC

BA
G ~z  (5.1) 

as a state-space realization [Cains 1989] of a transfer function matrix  zG  expressed as follows: 

     BAICDG
1 zz  (5.2) 

where j
ez   is a complex variable with 1j  and   2,0 , A , B , C  and D  are real 

constant matrices and I  is the identity matrix with proper dimensions.  

A square transfer function matrix  zG  is called strictly positive real (Kapila and Haddad 

1996) if: (i)  zG  is asymptotically stable, which is stronger than Lyapunov stability as it 

guarantees convergence to a specific value as “time” approaches infinity, and (ii)     jj
ee

*GG   

is positive definite ∀   2,0 . Condition (i) can be guaranteed by the condition that the spectral 

radius of A  must be less than 1.0, i.e.   0.1A . Let Z  be the corresponding controllability 
matrix defined as follows: 

 ][ 12 BABABABZ  n  (5.3) 

where n  is the dimension of the square matrix A .  

With controllability of  BA, , i.e.   nZrank  and   0.1A , based on the generalized 

discrete-time strictly positive real lemma [Kunimatsu et al. 2008; Xiao and Hill 1999], if  zG  is 

strictly positive real, then there exist matrices 0MM T , L  and W  where the following 
conditions are satisfied: 

 LLAMAM TT   (5.4a) 

 LWCAMB0 TT   (5.4b) 
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 WWBMBDD0 TTT   (5.4c) 

Moreover, based on a corollary [Kottenstette and Antsaklis 2010; Lee and Chen 2003], the 
square transfer function matrix  zG  in Eq. (5.2) is strictly positive real and matrix A  is 

asymptotically stable if and only if there exists a matrix 0PP T  such that Eq. (5.5) is satisfied. 

     0
BPBDDCBPA

CBPAPAPA













TTTTT

TTT

 (5.5) 

5.3 EXPLICIT INTEGRATION ALGORITHMS 

The discretized equations of motion of a MDOF system under an external dynamic force excitation 
is expressed as follows: 

 1111   iiii pfucum   (5.6) 

where m  and c  are the mass and viscous damping matrices, and 1iu , 1iu , 1if  and 1ip  are the 

vectors of acceleration, velocity, restoring force and external force at the time step 1i , 
respectively. Due to several factors, such as the random variation of the external force with time, 
e.g. earthquake shaking, and the nonlinear variation of the restoring force vector with deformation 
due to material and/or geometrical nonlinearities, closed form solution of Eq. (5.6) is not always 
possible [Chopra 2006]. Therefore, direct integration algorithms are used for the sought solution. 
Two categories of explicit integration algorithms are considered in this chapter: standard single-
step and predictor-corrector explicit algorithms. 

5.3.1 Standard Single-step Explicit Algorithms 

Standard single-step explicit (SSE) direct integration algorithms considered in this chapter are 
defined by the following difference equations: 

     ii ttηii uuuu  2
101    (5.7a) 

     1321 Δ   iiii tt uuuu    (5.7b) 

For example,    21212113210  η  leads to the explicit Newmark algorithm 

[Newmark 1959]. Substituting Eq. (5.7b) in Eq. (5.6), the following linear system of equations is 
readily obtained. 

 effieff pum 1  (5.8a) 

   cmm teff  3  (5.8b) 

   iiiieff t uucfpp    211   (5.8c) 
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The acceleration can be determined by solving Eqs. (5.8) and then substituting in Eq. (5.7b) to 
determine the velocity.  

5.3.2 Predictor-corrector Explicit Algorithms 

Generalized-  predictor-corrector explicit (PCE) algorithm [Chung and Hulbert 1993; Hulbert 
and Chung 1996] is considered in this section. The predicted displacement and velocity are: 

      
iiii tt uuuu  2

1 5.01~    (5.9a) 

    iii t uuu   1~
1  (5.9b) 

where parameters   and   are defined in Eq. (5.12). The balance equation of this method is: 

 
fffm iiii    1111

~~ pfucum   (5.10) 

where 
fi 1

~
f  is the restoring force vector corresponding to 

fi 1
~u  and 

fi 1p  is the external 

force vector at time step fi 1  with other parameters defined as follows: 

   imimi m
uuu     11 1  (5.11a) 

   ififi f
uuu     11

~1~  (5.11b) 

   ififi f
uuu    11

~1~  (5.11c) 

   ififi ttt
f

   11 1  (5.11d) 

The algorithmic parameters are given by 
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12






 














 




 fmfm  (5.12) 

where   is the desired high-frequency dissipation. The acceleration at time step 1i , 1iu , can 

be calculated using Eqs. (5.10) and (5.11a). Subsequently, the displacement and velocity at time 
step 1i  can be determined by the following correctors: 

   1
2

11
~

  iii t uuu   (5.13a) 

   111
~

  iii t uuu    (5.13b) 
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5.4 MDOF NONLINEAR SYSTEMS 

For a MDOF system with n  DOFs, the j–th term of the restoring force vector,  njf
j ,1,  , can 

be expressed as a linear combination of N  basic resisting forces of the system,  Nlq
l ,1,  , i.e. 

 qα j
N

l

lj

l

j
qf 

1

  (5.14) 

where  NT
qqq ,,, 21 q  and  j

N

jjj  ,,, 21 α . Therefore, 

   αqf 
Tn

fff ,,, 21   (5.15) 

where  Tnαααα ,,, 21   is a n × N  matrix. In general, N  is the summation of the number of the 
basic resisting forces from each element that contribute to the n  DOFs of the system. For the 
special case of a shear building, nN   because of its assumed shear mode behavior. The l–th 
basic resisting force, l

q , is here defined as a function of l
u , which is in itself a linear combination 

of the displacement of each DOF,  nju
j ,1,  , i.e. 

 uβl
n

j

jl

j

l
uu 

1

  (5.16) 

where ],,,[ 21 n
uuu u  and ],,,[ 21

l

n

lll  β . Therefore, 

   βuu 
TN

uuu ,,, 21   (5.17) 

where  TNββββ ,,, 21   is a N × n  matrix. Detailed explanation of N  defining the number of 

columns and rows of the matrices α  and β , respectively, for the bridge and shear building 
examples are discussed in Appendices B and C, respectively. Moreover, the l–th basic resisting 
force, l

q , is restricted to the following range (to be determined in this chapter according to the 
outcome of the conducted Lyapunov stability analysis): 

    22 ll

Max

llll

Min ukuquk   (5.18) 

where l

Mink  and l

Maxk  are the minimum and maximum bounds of l
q , respectively. Therefore, 

summing up all basic resisting forces from 1 to N  gives 

        



N

l

ll

Max

N

l

ll
N

l

ll

Min ukuquk
1

2

11

2
 (5.19) 

Eq. (5.19) is equivalent to the following: 
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 ukuquuku Max

TT

Min

T   (5.20) 

where  

 ],,,diag[ 21 N

MinMinMinMin kkk k  (5.21a) 

 ],,,diag[ 21 N

MaxMaxMaxMax kkk k  (5.21b) 

Defining l

Ik  as the initial bound of l
q , Fig. 1 shows the schematic illustrations of the l–th resisting 

force bounded in the sector between  ll

Min uk  and  ll

Max uk  for stiffening (Figure 5.1a) and 

softening (Figure 5.1b) systems. As mentioned before, the maximum, l

Maxk  and minimum, l

Mink , 

bounds of l
q , where Nl 1: , for stable (in the sense of Lyapunov) stiffening and softening 

MDOF systems, respectively, are to be determined in this chapter. In the next two subsections, the 
explicit integration algorithms introduced in the previous section are formulated for MDOF ( n  
DOFs) nonlinear systems with stiffening and softening behavior (Figure 5.1). 

  
a) Stiffening system b) Softening system 

Figure 5.1 Schematic illustrations of two nonlinear systems with sector-bounded basic resisting 
forces. 

5.4.1 MDOF Stiffening Systems 

For the two categories of explicit direct integration algorithms, the relationship between the 
kinematic quantities at time steps 1i  and i  can be established as follows: 

 1111111   iiiiiii pDqαBApDfBA xxx  (5.22) 

where     TT

i

T

i

T

ii tt uuu   2
x . For the SSE algorithms, A , 1B  and D  are as follows with 

11   ii ff , 11   ii pp  and 11   ii qq : 
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

effeff

effeff

tt

tt

 (5.23a) 

     Teffeff tt 0mmDB 12
3

12
1

    (5.23b) 

where 0  and I  are n × n  null and identity matrices, respectively. The external force vector, p , is 

generally independent of the kinematic quantities, x , and does not affect the Lyapunov stability 
of the direct integration algorithms (Liang and Mosalam 2015, 2016a). Therefore, 1ip  in Eq. (5.22) 

is set to zero in the subsequent parts of this chapter. For the PCE algorithms, A  is listed in Table 

5.1 and considering 
fii   11

~
ff , 

fii   11 pp  and 
fii   11

~qq , we have: 
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Table 5.1 Elements of A  matrix for PCE algorithms. 

Element Expression Element Expression 

11
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m
t   1)(1cm  33

A  I  

 
It is obvious that n  of the eigenvalues of A  are 1.0’s leading to failure to guarantee the previously 
mentioned first condition (i) of the strictly positive realness of the transfer function matrix. 
Therefore, Eq. (5.22) (after setting 0p 1i ) is further manipulated as follows: 
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 (5.25) 

where 

 CβC
~  (5.26a) 
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 ii xCu 1  (5.26c) 

 CkαBAA Mine 11   (5.26d) 

 111   iMinie ukqq  (5.26e) 

5.4.2 MDOF Softening Systems 

For softening systems, similar to Eq. (5.22), with 12 BB   and also setting 0p 1i , as 

mentioned above: 
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 (5.27) 

where 

 CkαBAA Maxe 22   (5.28a) 

 112   iiMaxe qukq  (5.28b) 

Accordingly, both stiffening and softening systems can be expressed in Eq. (5.29) with coefficients 

ee BA ,  and eq  summarized in Table 5.2. 

 eeiei qBA  xx 1  (5.29) 

Table 5.2 Coefficients of MDOF stiffening and softening systems. 

Matrix Stiffening Systems Softening Systems 

e
A  CkαBAA

Mine 11
  CkαBAA

Maxe 22
  

e
B  αB

1  αB
2  

e
q  

iMinie
xCkqq  11
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iiMaxe
qCkq x  

 



56 
 

5.5 LYAPUNOV STABILITY ANALYSIS AS A PROBLEM OF CONVEX 

OPTIMIZATION 

Based on Eq. (5.18) and Table 5.2, the l–th effective basic resisting force, l

eq , expressed as a 

function of l

i 1u  ,  has the following range: 

  211 uu0 l

i

ll

i

l

e kq    (5.30) 

where l

Min

l

Max

l
kkk  . Summing up all effective basic resisting forces from 1 to N  gives 
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e kq
1

2

1
1

1 uu0  (5.31) 

Therefore, eq , expressed as a function of u ,  has the following range: 

 1110   i

T

ie

T

i ukuqu  (5.32)  

where 

 ]diag[ 21 N

MinMax k,,k,k  kkk  (5.33)  

For the system in Eq. (5.29), based on the Lyapunov stability theory introduced in Chapter 
3, a Lyapunov artificial energy function candidate 1iv   [Franklin et al. 2015] at the time step 1i  

can be chosen as follows: 

 111   i

T

iiv xx M  (5.34) 

where 0MM T . A sufficient condition for the system, and thus the explicit direct integration 
algorithm, to be stable in the sense of Lyapunov is as follows: 
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 (5.35) 

Defining the weight coefficient of the constraint in Eq. (5.30) as 0l  with 1
1

 

N

l l , 

multiplying Eq. (5.30) by 0u,u 11 
l

i

l

i

l

el q , which is always positive, and rearranging, one 

obtains: 

   01  
l

i

ll

e

l

el ukqq  (5.36) 

Summing up all effective basic resisting forces from 1 to N  gives the following: 
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where the coefficient matrix ],,,diag[ 21 N λ . Defining 1 iv  as an upper bound of 1 iv  

that incorporates the constraints in Eq. (5.37), Eq. (5.35) becomes 
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where 1 iv  can be further transformed as follows: 
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where L  is a nn 33   matrix. A sufficient condition for 01  iv  and thus 01  iv  is as follows: 
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where W  is a Nn3  matrix. With Eqs. (5.40), Eq. (5.35) becomes 
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Therefore, the Lyapunov stability of the explicit integration algorithm depends solely on the 
existence of M , L  and W such that Eqs. (5.40) are satisfied. Recall the generalized discrete-time 
strictly positive real lemma presented before, i.e. Eqs. (5.4), the comparison between Eqs. (5.4) 
and (5.40) gives 

  W WL  LMMλDCkλCBBAA  ,,,,,, ee  (5.42) 

Accordingly, the stability analysis reduces to seeking k  such that the transfer function matrix 
 zG  in Eq. (5.43) is strictly positive real. 

     eezz BAΙCkλλG
1  (5.43) 

For SDOF systems, the matrices α , β , and λ  become 1, Eq. (5.43) reduces to 
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     eezkzG BAΙC
11   (5.44) 

The strictly positive realness of  zG  can be guaranteed by the asymptotical stability of eA  and 

    0Re zG  (5.45) 

which leads to 

    kzH 1Re   (5.46) 

where 

     eezzH BAΙC
1  (5.47) 

The Nyquist plot [Franklin et al. 2015] can be used to plot  jeH  ∀   2,0 . From this plot, 

the minimum value of   zHRe  that is corresponding to the k1  can be obtained. 

For MDOF systems, recall the corollary in Eq. (5.5), the strictly positive realness of  zG  

in Eq. (5.43) becomes equivalent to Eq. (5.48) with 0PP T : 
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Eq. (5.48) is a linear matrix inequality (LMI) over variables P  and k  [Boyd et al. 1994]. 
Accordingly, the stability analysis becomes a problem of convex optimization, which addresses 
the problem of minimizing convex functions over convex sets, by which a wide range of problems 
can be formulated. In convex optimization, any local minimum must be a global minimum. This 
important property leads to reliable and efficient solutions, e.g. interior-point methods, which are 
suitable for computer-aided design or analysis tools [Boyd and Vandenberge 2004].  This problem 
of convex optimization in Eq. (5.48), which seeks k  and the corresponding P  by minimizing 

certain convex cost function, e.g.   

N

l

l
k

1
min , subjected to the constraints of 0PP T  and 

0k  , can be solved numerically by CVX, a package for specifying and solving convex problems 
[CVX Research Inc. 2011]. It should be noted that a poorly chosen cost function or coefficient 
matrix may lead to reduced sufficient condition, i.e., the difference between the upper and lower 
bounds of the basic resisting force of the system ( k ). In general, a smaller value of the weight 
coefficient for the constraint l  leads to a larger value of l

k . For example, in a two-DOF system, 

 2min k  and 1.02   (5. 9.01 21   ) may not be a good cost function and weight 

coefficient if the basic force 1
q  is of primary interest since this cost function may result in small 

1
k . In this case,  1min k  and 1.01   would be an appropriate selection. Therefore, the 
selection of the cost function and coefficient matrix is important and should take all the basic 
resisting forces of interest into account. 
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It is noteworthy that if q  in Eq. (5.20) is strictly within the following range: 

 ukuquuku Max

TT

Min

T   (5.49) 

Therefore, Eqs. (5.32), (5.37) and (5.41) become 
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Accordingly, the explicit direct integration algorithm is asymptotically stable in this case, i.e. 
 ukuukuqu Max

T

Min

TT , . It should be emphasized that Eq. (5.41) is a sufficient condition for the 

direct explicit integration algorithm to be stable. Therefore, the matrix k  obtained by the approach 
proposed in this chapter that satisfies Eq. (5.48) implies that ],[ ukuukuqu Max

T

Min

TT  , where 

kkk  MinMax , is a sufficient range for the direct explicit integration algorithm to be stable. 

However, having some basic resisting force vector q  that may fall outside this range does not 
indicate the instability of the direct explicit integration algorithm. 

5.6 NUMERICAL EXAMPLES FOR SDOF SYSTEMS 

In this section, the two categories of explicit direct integration algorithms previously discussed are 
used to demonstrate the approach proposed in the previous sections based on the following 
numerical conditions: 

    01.0,05.02,2,1,1  nnInnI TtmcmkTkm                  (5.51) 

For convenience, all units in this and subsequent sections are omitted.  

Based on Eq. (5.51), eA , C  and  eA  for the explicit Newmark algorithm, i.e., 

 2121211η , are as follows: 
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0039.00102.00051.0

eA  (5.52a) 

  0000.10000.15000.0C  (5.52b) 

   9969.0eA  (5.52c) 
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  1eA  implies that eA  is asymptotically stable and thus the first condition of the strictly 

positive realness of  zG  in Eq. (5.44) is satisfied. 

5.6.1 Stiffening Systems 

For stiffening systems, 1BB e  is as follows:  

  Te 00020.00039.0B  (5.53) 

The row ranks of the Kalman’s controllability matrix: 

 ][ 2
eeeee BABABZ   (5.54) 

is equal to 3, i.e.,   3rank Z . Therefore,  ee BA ,  is controllable. 

The Nyquist plot of  zH  in Eq. (5.46) corresponding to eA , C  and eB  in Eqs. (5.52) 

and (5.53) is shown in Figure 5.2, where     7642.4Remin zH  is obtained. Based on Eq. 
(5.45), one obtains: 

    zHk Remin1   (5.55a) 

     2099.0Remin1  zHk  (5.55b) 

Accordingly, for stiffening systems, the explicit Newmark algorithm is stable in the sense of 

Lyapunov in the range that     0,2099.1,1,  ukkkuf II  for the numerical conditions in 

Eq. (5.51). 

 

Figure 5.2 Nyquist plot of   zH  for a stiffening system of the explicit Newmark algorithm. 
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5.6.2 Softening Systems 

For softening systems, 2BB e  is as follows:  

  Te 00020.00039.0B  (5.56) 

Figure 5.3 shows the Nyquist plot of  zH  in Eq. (5.45) corresponding to eA , C  and eB  in Eqs. 

(5.52) and (5.56). Similar to Eqs. (5.40), with     2586.5Remin zH  obtained from Figure 5.3, 
one obtains: 

     1902.0Remin1  zHk  (5.57) 

Therefore, for softening systems, the explicit Newmark algorithm is stable in the sense of 

Lyapunov in the range that     0,1,8098.0,  ukkkuf II  for the numerical conditions in 

Eq. (5.51). 

 

Figure 5.3 Nyquist plot of  zH  for a softening system of the explicit Newmark algorithm. 

Table 5.3 The k  values of different SSE algorithms for stiffening and softening systems. 

η   
e

A  Stiffening Systems Softening Systems 

 4341211  0.9964 0.3333 0.2853 

 4143211  0.9974 0.1387 0.1308 

 2121411  0.9974 0.1727 0.1639 
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Table 5.4 The k  values of different generalized-α  PCE algorithms for stiffening and softening 

systems. 

   
e

A  Stiffening systems Softening systems 

0.1 0.9969 0.2096 0.1901 

0.3 0.9969 0.2101 0.1904 

0.5 0.9969 0.2103 0.1905 

0.7 0.9969 0.2103 0.1905 

0.9 0.9969 0.2103 0.1905 

 

The proposed approach can be applied to investigate the stability of other explicit direct 
integration algorithms. The results of other SSE algorithms defined by the vector η  and the 

generalized- PCE algorithms defined by   are listed in Tables 5.3 and 5.4, respectively. 

5.7 NUMERICAL EXAMPLES FOR MDOF SYSTEMS 

Several numerical examples for MDOF systems are presented in this section. 

5.7.1 MDOF Bridge Structures 

The MDOF bridge structure investigated in this section is depicted in Figure 5.4 with mass per 
unit length and the flexural rigidity ( EI ) given for each member. This bridge structure has the six 
DOFs shown where axial deformation neglected in all members.  

 

Figure 5.4 A MDOF bridge structure. 

The derivation of the N  basic resisting forces ( q  in terms of u ) and the corresponding 

matrices α  and β  for this bridge structure is given in Appendix I. The row rank of the 
controllability matrix: 
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 ][ 172
eeeeeee BABABABZ   (5.58) 

is such that   18rank Z . Therefore,  ee BA ,  is controllable and   19999.0 eA . 

In this section, the generalized- PCE algorithm with 6.0  is used to demonstrate the 
approach proposed in the previous sections on MDOF structural systems with nonlinear stiffening 
or softening behavior. The Lyapunov stability analysis is conducted for the bridge in Figure 5.4 
assuming the following numerical values:  

 8100.1,5,,2,1,0.100,0.1  ccbbicb IEIEiLmm   (5.59a) 

   01.0,
1

 


n

N

l

l Ttllλ   (5.59b) 

where lλ  is the weight coefficient of the l-th constraint, refer to Eq. (5.36), Nl 1: , nT  is the 

period of the n –th mode of vibration, which is sec 19.06 TTn  for the analyzed bridge. Rayleigh 

damping is assigned to the bridge [Chopra 2006], i.e., 

 kmc 10 aa   (5.60) 

where m , c  and k  are the mass, viscous damping and linear elastic stiffness matrices, 
respectively. The constants 0a  and 1a  are determined from specified damping ratio i  and j  for 

the i–th and j–th modes, respectively. With both modes are assumed to possess the same damping 
ratio, i.e. 05.0 , the constants 0a  and 1a  are determined as follows [Chopra 2006]: 
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10  (5.61) 

where i  and j  are the natural frequencies of the i–th and j–th modes. Therefore, the damping 

ratio for the k–th mode is [Chopra 2006]:  

 
22

10 k

k

k

aa 


   (5.62) 

In this example, 1i  and 4j  are selected such that the mean value of the damping ratio 

of all modes, i.e.  621 ,,,mean   , has the closest value to the assigned damping ratio 

05.0 . The determination of the damping matrices for the other examples in this chapter 
follows the same procedure presented above. 
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Table 5.5 The k  of each basic resisting force for the bridge structure. 

Resisting force Number Stiffening systems Softening systems 

1 11234.1 10084.7 
2 3470.2 3478.0 
3 836.4 707.1 
4 725.9 612.7 
5 769.1 723.8 
6 1132.8 1015.1 
7 691.7 644.9 
8 437.6 413.0 
9 908.3 857.2 
10 550.0 528.6 
11 372.8 353.9 
12 527.7 494.7 

Table 5.6 The k  of each basic resisting force for the bridge structure for different λ   and cost 
function. 

Resisting force Number Stiffening systems Softening systems 

1 5791.6 5680.6 
2 430.0 419.8 
3 897.9 890.5 
4 897.9 890.5 
5 802.7 753.3 
6 1144.5 1086.5 
7 834.4 824.0 
8 575.9 564.0 
9 1144.5 1086.5 
10 802.7 753.3 
11 575.9 564.0 
12 834.4 824.0 

 

Under earthquake excitation, nonlinearity usually occurs in the columns of bridge structure 
only where the bridge deck can be modeled using linear elastic elements. Therefore, the basic 
resisting forces associated with the column are of primary interest. Based on Appendix B, only the 
first two basic resisting forces are associated with the horizontal translation DOF of the column, 

. Hence, the weight coefficients in Eq. (5.59b) are chosen such that the two smallest weight 
coefficients are assigned to the constraints corresponding to the first two basic resisting forces. 
Moreover, the cost function for this bridge structure is selected as , which is 

equivalent to maximizing . Accordingly, we perform convex optimization over all 

possible  that has the largest value of  and the obtained result is the  for all the basic 

resisting forces. In this cost function,  and  are the differences of 

the upper and lower bounds of the basic resisting forces  and  associated with the column 

element. With the initial bounds and corresponding matrix  presented in Appendix I, the 

difference of the upper and lower bounds, , of each resisting force are listed in Table 

5.5 for both stiffening,   ],[ ukkuukuqu  I

T

I

TT , and softening systems, 

1
u

 ]min[ 21
kk 
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k  21
kk  k

111
MinMax kkk  222

MinMax kkk 
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MinMax kkk 
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. It is to be noted that the obtained  depends on the selection of the 
coefficient matrix  and the cost function. For example, different coefficient matrix , e.g., 

, or alternative cost function chosen to be minimized, e.g. , will yield different 

 as shown in Table 5.6. 

5.7 MULTI-STORY SHEAR BUILDING STRUCTURES 

The structures investigated in this section are multi-story shear buildings with stiffening or 
softening structural behavior. A general multi-story shear building structure is depicted in Figure 
5.5. The detailed derivation of q  and u  as well as corresponding matrices α  and β  for this 

shear building is given in Appendix C. Accordingly, the maximum, j

Maxk , and minimum, j

Mink , 

stiffness values of the j–th story, where nj 1: , for stable (in the sense of Lyapunov) stiffening 
and softening multi-story shear building systems, respectively, are to be determined for the explicit 
Newmark algorithm, i.e.  2121211η . 

 

Figure 5.5 General multi-story shear building structure. 

The Lyapunov stability analysis is conducted for the following numerical values:  

 01000,05.0,5.0 .km
j

Ij    (5.63a) 

  ],[ ukuukkuqu I

T

I

TT  k

λ λ
Nl 1  1min k

k
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   01.0,2,
1

22 







 


njj

n

j

jjj TtT   (5.63b) 

where nj 1: , 
jT  is the period of the j–th mode of vibration of the analyzed structure, and nT  is 

the period of the n –th mode of vibration, which depends on the number of stories, n , of the 
analyzed shear building. As in the previous example, the initial bound matrix 

],,,diag[ 21 n

IIII kkk k . 

5.7.1 A Two-Story Shear Building 

The Lyapunov stability analysis of the explicit Newmark integrator applied to a 2-story (Figure 
5.5 with 2n ) shear building is conducted. The two periods of this building are sec 23.01 T  and 

sec 09.02 T . Based on Eqs. (5.63a) and (5.63b), eA  and C  are given in Appendix D, and

  19988.0 eA . 

5.7.1.1 Stiffening Systems 

For stiffening systems, IMin kk  , αBB 1e  is given in Appendix III. The row rank of the 

controllability matrix: 

 ][ 52
eeeeeee BABABABZ   (5.64) 

is such that   6rank Z . Therefore,  ee BA ,  is controllable and the following IMax kkk  : 

 









1740

0205
k  (5.65) 

is obtained numerically using CVX [CVX Research Inc. 2011] as follows: 

  21

,
kkMinimize 

kP

 (5.66) 

subjected to 
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






 (5.67) 

where P , given in Appendix D, is a 66  matrix. Accordingly, for the two-story shear building 
with stiffening behavior, the explicit Newmark algorithm is stable in the sense of Lyapunov for 
the numerical values in Eqs. (5.63) in the following range: 

 ukuquuku Max

TT

Min

T   (5.68) 
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where 

 









10000

01000
IMin kk  (5.69a) 

 







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11740

01205
kkk MinMax  (5.69b) 

5.7.1.2 Softening Systems 

For softening systems, IMax kk  , αBαBB 12 e  as given in Appendix III, and the following 

MinI kkk  : 

 









1590

0184
k  (5.70) 

is obtained using similar procedure to Eqs. (5.66) and (5.67). The corresponding P  is also given 
in Appendix D. Therefore, for the two-story shear building with softening behavior, the explicit 
Newmark algorithm is stable in the sense of Lyapunov for the numerical values in Eqs. (5.63) in 
the range of Eq. (5.68) with 

 









10000

01000
IMax kk  (5.71a) 

 









8410

0816
kkk MaxMin  (5.71b) 

5.7.2 A 20-Story Shear Building 

A 20-story (Figure 5.5 with 20n ) shear building is used to investigate the Lyapunov stability 
analysis of the explicit Newmark algorithm. The fundamental and 20th periods of this building are 

sec 83.11 T  and sec 07.020 T , which are within the practical range for the 20-story shear building. 

Same Lyapunov stability analysis as in previous sections is conducted for the analyzed 20-story 
shear building with stiffening or softening behavior. The cost function for this bridge structure is 

selected as   


20

1
min

j

j
k , which is equivalent to maximizing  

20

1j

j
k . In this cost function, 

j

Min

j

Max

j
kkk   is the difference of the upper and lower bounds of the basic resisting force j

q  

associated with the j–th story, where nj 1: . Table 4 shows that the difference of the upper and 

lower bounds, MinMax kkk  , of each resisting force for the explicit Newmark algorithm to be 

stable (5.in the sense of Lyapunov) for both stiffening,   ],[ ukkuukuqu  I

T

I

TT , and softening, 

  ],[ ukuukkuqu I

T

I

TT  , systems. 
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Table 5.7 The k  of each basic resisting force for the 20-story shear building. 

Story 

Number 

Stiffening  

systems 

Softening  

systems 

Story 

Number 

Stiffening  

systems 

Softening  

systems 

1 716.1 203.7 11 31.3 35.9 
2 125.1 149.6 12 25.3 30.8 
3 98.8 150.4 13 21.8 28.5 
4 133.0 166.5 14 19.6 26.7 
5 163.4 140.0 15 17.3 24.0 
6 119.7 97.7 16 15.0 21.2 
7 76.9 74.8 17 14.2 20.4 
8 56.5 64.1 18 16.9 23.7 
9 46.7 55.3 19 29.6 37.3 

10 39.0 44.8 20 116.1 106.7 

 

From Table 5.7, it is observed that the largest difference of upper and lower bounds is 
obtained for the first story for both stiffening and softening systems. Define j  as the difference 
between the upper and lower bounds of the stiffness of the j–th story normalized by the 
corresponding initial stiffness, i.e., 

 j

I

jj
kk  (5.72) 

For shear buildings, usually the first story is the most critical one where high levels of 
nonlinearity may occur. Fig. 4 presents the effects of the total number of stories and damping 
values (2%, 5% and 10%) on 1  for stiffening (Figure 5.6a) and softening (Figure 5.6b) systems. 
The number of stories is investigated up to 25, i.e. 251: n . It can be observed from Fig. 4 that 

1  increases with the increase of the damping values. For the stiffening system (Figure 5.6a),  
also increases in general with the increase of the number of stories; while for the softening system 

(Figure 5.6b),  increases or decreases with the increase of the number of stories for low (2%) or 
high (10%) damping ratios, respectively, while no change is observed for moderate (5%) damping 
ratio. 

5.7.3 Discussion of Broader Scope 

The proposed approach can be applied to investigate the stability of other explicit direct integration 

algorithms defined by the vector  or  for any MDOF nonlinear system defined by the 

matrices  and . Moreover, it is also noted that neither  nor  is necessarily equal to , 

where , for the stiffening or the softening systems, respectively. These bounds values can 
take any other value along the loading path. Furthermore, besides strictly stiffening and softening 
systems as in Fig. 1, other nonlinear problems can be treated using the proposed stability analysis 
approach. This is true as long as Eq. (5.18) is satisfied and thus the nonlinear force is sector-
bounded, e.g., those shown in Figure 5.7 with both stiffening and softening behavior including 
occasionally tangent negative stiffness values. Thus, the proposed approach is generally applicable 
to explicit direct integration algorithms for various MDOF nonlinear systems. 

1

1

η 
α β l

Mink
l

Maxk
l

Ik

Nl 1:
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a) Stiffening systems 

 

b) Softening systems 

Figure 5.6 
1δ  of different number of stories and damping values. 
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a) Stiffening system b) Softening system 

Figure 5.7 Schematic illustrations of sector-bounded basic resisting forces not strictly stiffening 
or softening. 
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6 Development of the Benchmark Probability 
Distribution of Seismic Demands 

6.1 INTRODUCTION 

Besides accurate seismic structural analysis of structures that is fundamental to estimate their 
seismic demands [Liang et al. 2016b], another key challenge in the PBEE approach is the selection 
and modification of ground motions (GMs) to serve as input excitations for NTHA simulations of 
structures. The intricate nonlinear response of structures is highly sensitive to the ground motion 
selection and modification (GMSM) of the input records. Therefore, the GMSM of the input 
records is a vital prerequisite for accurate seismic analysis. 

The GMSM procedures determine the necessary input GM records for the simulations of 
structures using NTHA. Numerous research efforts focused on developing different GMSM 
procedures, which are generally categorized into two approaches: (1) amplitude scaling and (2) 
spectrum shape matching procedures. The first approach selects and modifies the GM records 
based on scalar intensity measures (IMs). Some example choices of these scalar IMs include the 
spectral acceleration at a specific (e.g., fundamental) period of the structure [Watson-Lamprey and 
Abrahamson 2006; Shome et al. 1998], and certain peak response of inelastic single-degree of 
freedom systems [Tothong and Luco 2007; Luco and Cornell 2007; Kalkan and Chopra 2011] to 
account for nonlinear effects. The second approach that takes the spectrum shape into account 
selects and scales a suite of GM records that has close matching to a target spectrum [Naeim et al. 
2004; Kottke and Rathje 2008; Baker 2011]. A comprehensive review of various GMSM 
procedures is given in [Haselton et al. 2009 and Katsanos et al. 2010]. Moreover, many simulated 
GM procedures were developed [e.g., Rezaeian and Der Kiureghian 2011], which are especially 
useful for design scenarios corresponding to scarce recorded GMs in existing databases. In this 
study, the two approaches of GMSM based on real GM records are of interest. 

Although many GMSM procedures are available, there is no consensus regarding a single 
accurate method and many studies focused on evaluating these procedures. Hancock et al. (2008), 
Haselton et al. (2009), and Heo et al. (2010) compared different GMSM procedures in predicting 
median responses of seismic demands against developed reference benchmarks. Recently, Kwong 
et al. (2015) developed a framework for the evaluation of GMSM procedures by determining a 
benchmark seismic demand hazard curve. Later, Kwong and Chopra (2016) applied this 
framework to evaluate two GMSM procedures: (1) exact conditional spectrum [Lin et al. 2013] 
and (2) generalized conditional intensity measures [Bradley 2010]. These evaluation studies were 
primarily focused on building structures and considered unidirectional input ground motion. In 
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general, bridge structures exhibit distinct behaviors in the longitudinal and transverse directions. 
Hence, bidirectional GM studies focused on highway bridges are needed as conducted in this study. 

In order to effectively evaluate the GMSM procedures, a reference benchmark PDSD should 
be established. A framework of performance-based earthquake engineering (PBEE) was developed 
at the Pacific Earthquake Engineering Research (PEER) Center, which explicitly takes into 
account uncertainties in earthquake hazard, structural response, damage and loss estimation 
[Günay and Mosalam 2013]. PEER PBEE enables comprehensive understanding of the structural 
performance in a probabilistic manner. This study takes advantage of the PEER PBEE to develop 
the reference benchmark PDSD for the structures. 

6.2 BENCHMARK PROBABILITY DISTRIBUTION OF SEISMIC DEMANDS 

The PEER PBEE methodology aims to robustly divide the performance assessment and design 
process into logical stages that can be studied and resolved in a systematic and consistent manner 
[Moehle and Deierlein 2004]. These stages of the process contain the definition, description, and 
quantification of earthquake intensity measure, structural response, damage and loss. Accordingly, 
uncertainties in these stages can be explicitly taken into account (Günay and Mosalam 2013), 
which enable comprehensive understanding of the structural performance in a probabilistic manner. 
The well-known PEER PBEE formula originally presented in (Cornell and Krawinkler 2000) is 
restated as follows 

             imdimedpdGedpdmdGdmdvGdv
dm edp im

 |||        (6.1) 

where im, edp, dm, and dv are the intensity measure, engineering demand parameter, damage 
measure, and decision variable, respectively,  xλ  is the mean annual rate of events exceeding a 
given level for a given variable x ,  xG  is the complementary cumulative distribution function 
(CCDF) for random variable X , i.e.,    xXxG  Pr , and the corresponding conditional CCDF 
is    yYxXyxG  |Pr| . Moreover, the variables im, edp, and dm can be expressed in a 
vector form (e.g., Bradley 2012), i.e., multiple folds are implied in the integrals. 

In this study, a reference benchmark PDSD is developed based on the PEER PBEE 
framework considering the first two sources of uncertainties, i.e., the earthquake intensity measure 
and the structural response. In addition, this study is extended to account for structural collapse of 
a certain damage group corresponding to a group of structural components affected by the same 
EDP (e.g., Cornell 1999, Baker and Cornell 2005, Lin et al. 2013). This study makes use of Eq. 
(6.2), which presents the general formula for the PDSD. 

           
im

imimim dfedpGedpEDPedpG IM|Pr      (6.2) 

where  
imnimimim ,,, 21 im

 
are values of the intensity measures represented as random 

variables  
imnIMIMIM ,,, 21 IM , imn  is the number of intensity measures considered, 

  im
im

d   is an abbreviated form of     
1 2

21
im im

n
im im

imn

dimdimdim  and will be used thereafter 
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in this chapter,    imim  IM|Pr| edpEDPedpG  is the conditional probability of EDP 

exceeding the demand level edp given the vector of intensity measures im , and  imIMf  is the 
joint probability density function (PDF) of the intensity measures, i.e., IM . 

6.2.1 Intensity Measures 

A non-parametric statistical inference, multivariate kernel density estimation (Härdle et al. 2004) 
is used to estimate  imIMf . For this purpose, we consider an m -dimensional random vector 

 TmXX ,,1 X , where mXX ,,1   are one-dimensional random variables. Drawing a random 

sample of size n  in this setting means that we have n  observations for each of the m  random 
variables, mXX ,,1  . In this case, our goal is to estimate the probability density of 

 TmXX ,,1 X , which is the joint PDF of the random variables mXX ,,1   as follows: 

       
mXX xxff

m
,,1,,1

xX
     (6.3) 

Considering adapting the kernel density estimator to m -dimensional cases, we have  

      






 
 

 m

immi

n

i m h

Xx

h

XxΚ
hhn

f ,,
11ˆ

1

11

1 1




xX      (6.4) 

where , 1,2, ,
j

h j m , is the bandwidth for jX , Κ  is a multivariate kernel function with m  

arguments, ijX  is the i-th observation of the random variable jX . The symbol “^” in Eq. (6.4) 

denotes the estimation, i.e.,  xĝ  is an estimate of  xg . In this study, Eq. (6.4) becomes 

      






 
 

 m

immi
n

i m h

IMim

h

IMimΚ
hhn

f ,,
11ˆ

1

11

1 1




imIM      (6.5) 

In order for this joint PDF estimate to equally weight each intensity measure, a whitening 
transformation [Krizhevsky and Hinton 2009] can be applied to the n  groups of m  intensity 
measures, i.e., m × n  matrix 0IM , as follows: 

    
2/1

0





ΣIMIM

μIMIM





white

     (6.6) 

where μ  is a m × n  matrix with all entries of the j-th column are equal to the mean of the j-th 
intensity measure, mj ,,2,1  , respectively, and Σ  is the m × m  covariance matrix of the m  

columns of IM . After this whitening transformation, each column of whiteIM  has zero mean and 

identity covariance matrix. A kernel density estimator for Κ  and a bandwidth selection method 
for mjhj ,,2,1,  , proposed by Botev et al. (2010), are adopted to estimate the joint PDF 

 imIMf . After such estimation, whiteIM  is transformed back to 0IM , i.e., 
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    μΣIMIM  2/1
0 white      (6.7) 

The procedures of density estimation discussed above can be readily applied to the investigated 
structures. 

6.2.2 Collapse Consideration 

When developing the PDSD of the investigated structures, it is necessary to account for the 
possibility that some GM records, whose IM  are at high levels, may cause collapse of the structure. 
From Eq. (6.2), the conditional probability of exceedance  im|edpG  is computed by the 
summation of probabilities of such occurrences conditioned on the two mutually exclusive 
categories of the bridge collapse (C) and non-collapse (NC), i.e., 

             imimimimim |NCPrNC,||CPrC,||  edpGedpGedpG      (6.8) 

Intuitively, we can set  | ,C 1.0G edp im . Thus, Eq. (9) leads to the following: 

            imimimim |CPr1NC,||CPr|  edpGedpG      (6.9) 

From the prescribed collapse criteria, Eq. (6.9) is further manipulated as follows: 

                cdfedpGedpG ffcimimimim
fc  FC|CPr1NC,||CPr|      (6.10) 

where ),,,( 21 fcnfcfcfcc f  are values of the failure criteria represented as random variables 

),,,( 21 fcnFCFCFC FC , fcn  is the number of failure criteria considered,   cdf
fc   is an 

abbreviated form of     
1 2

21
fc fc

n
fc fc

fcn

dfcdfcdfc  , and  fcFCf  is the joint PDF of failure 

criteria, i.e., FC . The fragility surface or conditional probability of collapse, i.e.,  im|CPr , is 
evaluated using multivariate binary logistic regression [Wasserman 2010] by fitting a binomial 
distribution to the observed collapsed (1: C; 0: NC) versus IM , i.e., 

     
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
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
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1
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1
0

ˆˆexp1

ˆˆexp

|CrP̂




im      (6.11) 

where the coefficients m ˆˆ0  can be obtained by the reweighted least squares algorithm 

[Wasserman 2010]. 
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6.2.3 Non-Collapse Structural Responses 

In Eq. (6.10), the only term that has not been determined is the probability of EDP exceeding the 
demand level edp given the intensity measures for the non-collapse scenario, i.e.,  NC,| imedpG . 
In this study, the distribution of EDPs conditioned on the intensity measures is assumed to be 
lognormal (e.g., Kunnath 2006 and Kunnath et al. 2006). Multivariate linear regression 
(Wasserman 2010) can be used to estimate this distribution. From regression, for a given set of 

iim , mi ,,2,1  , under non-collapse scenario, the mean value of  EDPln  is as follows: 

      



m

i

iiedp im
1

0|ln
ˆˆˆ  im      (6.12) 

where coefficients i̂ , mi ,,2,1  , are determined from the least square estimate [Wasserman 

2010]. An unbiased estimate of the variance of the distribution is given as follows: 

        



N

i

iedp kN
1

22
|ln ˆ1ˆ  im      (6.13) 

     
i
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j

j

iii EDPIM lnˆˆˆ
1

0  


      (6.14) 

where j

iIM  and iEDP  are the i-th sampling point of j
IM , mj ,,2,1  , and EDP, respectively. 

N  is the total number of sampling points that correspond to the NC and k  is the number of the 
free parameters, i.e,, 1 mk  for this case. The probability that the EDP exceeds the demand 
level of edp given im  and for the NC scenario can now be calculated using the normal CCDF: 

             imimim |ln|ln ˆˆln1NC,|ˆ
edpedpedpedpG       (6.15) 

where    denotes the standard normal CDF. 

6.2.4 Integration of Intensity Measures and Structural Responses 

Combination of the intensity measures from the kernel density estimator and the structural 
responses, including C and NC cases, i.e., substituting Eq. (6.10) and required estimates of its 
different terms, as discussed above, into Eq. (6.2), leads to the following 

                  imfcimfcimimim
im fc

ddffedpGedpG    IMDR
ˆˆ|CrP̂1NC,|ˆ|CrP̂ˆ      (6.16) 

The procedures of the benchmark PDSD development is readily extended to the case of multiple 
earthquake scenarios as follows: 
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              
l

N

l

lm ddffedpGedpG
eqs

imfcimfcimimim
im fc  


IMDR

ˆˆ|CrP̂1NC,|ˆ|CrP̂ˆ
1

      

(6.17) 

where  edpGm
ˆ  is the PDSD for multiple earthquake scenarios with number eqsN  and l  [Bradley 

2013] is the activity rate for the l-th earthquake scenario. 

6.3 EVALUATION OF THE GMSM PROCEDURES 

Similar to the development of the reference benchmark PDSD, the PDSD estimates by the GM 
records selected from each GMSM procedure are developed. Analogous to Eqs. (6.8) and (6.9), 
 edpG  is divided into two mutually exclusive categories of C and NC, i.e., 

    
         

      CPr1NC|CPr

NCPrNC|CPrC|




edpG

edpGedpGedpG
     (6.18) 

where it is assumed that  | C 1.0G edp   and  CPr  is the probability of collapse estimated as 

follows: 

     
recordsof#total

collapsecausingrecordsof#
CrP̂       (6.19) 

The probability of exceedance for the NC cases, i.e.,  NC|edpG , can be estimated by a 
non-parametric inference using the following empirical CCDF [Baker 2007; Vamvatsikos and 
Cornell 2004] 

       



m

l

l edpEDPI
m

edpG
1

1
NC|ˆ      (6.20) 

where m  is the number of GM records that produce NC, lEDP  is the value of EDP for the l-th 

record, and  I  represents the indicator function, i.e.,   0.1 edpEDPI l  if edpEDPl  ; 

otherwise,   0.0 edpEDPI l . Recall the previously discussed collapse criteria, along with the 

estimates in Eqs. (6.19) and (6.20), the PDSD estimate, i.e.,  edpĜ , is obtained as follows: 

                fcfc
fc

dfedpGedpG   FC
ˆCrP̂1NC|ˆCrP̂ˆ      (6.21) 
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7 Computational Bridge Structure Models 

7.1 INTRODUCTION 

In any urban transportation system, ordinary standard reinforced concrete (RC) highway bridges 
are essential lifeline structures for transporting goods and people around natural terrains. In 
California where numerous active faults exist, earthquakes occur frequently and therefore bridges 
should sustain minimal damage and remain operational in the aftermath of an earthquake. This 
requirement is essential for recovery and emergency management purposes. RC highway bridges 
were observed to have substandard performance during earthquakes due to the inherent lack of 
high redundancy of the structural system [Benzoti et al. 1996]. Even bridges designed according 
to modern codes were severely damaged or collapsed in different parts of the world during 
earthquakes in the last two decades. Accordingly, determination of the seismic response of existing 
and newly designed RC highway bridges, using techniques of structural analysis, is essential to 
ensure their seismic safety. 

For a bridge to be considered as an ordinary standard bridge, it should satisfy the following 
conditions [Caltrans SDC 2010]: (1) the span length should be less than 300 feet; (2) the bridge 
should be constructed with normal-weight concrete; (3) foundations must be supported on spread 
footings, pile caps with piles, or pile shafts; (4) the soil is not susceptible to liquefaction, lateral 
spreading or scour; and (5) the fundamental period of the transverse and longitudinal directions of 
the bridge should be greater than or equal to 0.7 seconds. This chapter provides a brief description 
of selected ordinary standard RC highway bridge structures and reviews the related OpenSees 
[McKenna et al. 2010] computational bridge structure models by [Kaviani et al. 2014]. 

7.2 BRIDGE STRUCTURES 

Three representative RC highway bridge structures are selected for this study. The selected bridges, 
designed after 2000, reflect common bridge engineering practice in California. The first selected 
bridge is the Jack Tone Road Overcrossing (Bridge A), with two spans supported on a single 
column. The second bridge is the La Veta Avenue Overcrossing (Bridge B), with two spans 
supported on a two-column bridge bent. The third bridge is the Jack Tone Road Overhead (Bridge 
C), with three spans and two three-column bridge bents. The characteristics and configurations of 
the selected bridges are summarized in Table 7.1 and Figure 7.1. 
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Table 7.1 Characteristics of the selected bridges. 

Bridge A B C 

Name Jack Tone Road Overcrossing La Veta Avenue Overcrossing Jack Tone Road Overhead 

 of spans 2 2 3 

Column bent Single-column Two-column Three-column 

Column radius 33.1 in. 33.5 in. 33.1 in. 

Column height 22.0 ft. 22.0 ft. 24.6 ft. 

Abutment Seat type Seat type Seat type 

Seat length 33.85 in. 33.85 in. 33.85 in. 

Superstructure concrete ksiEksif cc 5.4030,5'   ksiEksif cc 5.4030,5'   ksiEksif cc 5.4030,5'   

Column bent concrete and 
reinforcing materials 

Concrete: ksi5  

Steel: ASTM A706 

Concrete: ksi5  

Steel: ASTM A706 

Concrete: ksi5  

Steel: ASTM A706 

Reinforcement details of 
column bent cross-section 

Long.: 44#11 (bundles of 2)

%00.2l  

Trans.: Spiral, #6 @ 3.34 in. 

Long.: 44#11 (bundles of 2)

%95.1l  

Trans.: Spiral, #4 @ 6.00 in. 

Long.: 44#11 (bundles of 2)

%20.2l  

Trans.: Spiral, #6 @ 3.34 in. 

 

 

(a) Bridge A 

  

(b) Bridge B (c) Bridge C 

Figure 7.1 Configurations of the selected bridges. 
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7.3 COMPUTATIONAL MODELS 

Extensive analytical simulations were conducted on these three bridges [Kaviani et al. 2012] using 
OpenSees [McKenna et al. 2010], on which the modeling assumptions adopted were partly based 
on [Aviram et al. 2008]. OpenSees has a sufficient element and material response library and 
empowers scripted execution of repetitive nonlinear time history analyses (NTHA) through which 
the model parameters and input ground motions can be systematically varied. A representative 
bridge model (Bridge B) used in the simulations is depicted in Figure 7.2. Seat-type abutments, 
shear keys, expansion joints, column-bents, and the superstructure are included in the model. The 
adopted modeling is reviewed in this chapter for completeness and a more detailed explanation of 
the modeling assumptions can be found in [Kaviani et al. 2014]. 

 

Figure 7.2 Modeling of Bridge B [Kaviani et al. 2014]. 

7.3.1 Material Properties 

Material properties assigned to the models were on the basis of Caltrans SDC [2010]. The model 
developed by Mander et al. [1988] was used for the RC column of the selected bridges. It is 
recommended by Caltrans SDC [2010] that confined as well as unconfined concrete should be 
taken into account to determine the local capacity of ductile concrete member. 
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In this study, for the unconfined concrete, the compressive strain at the maximum 
compressive stress, ksifce 5'  , and the ultimate compression (spalling) strain were chosen as 

0028.00 c  and 005.0cp , respectively. For the confined concrete, the compressive strain at 

the maximum compressive stress, ksifcc 6.6'  , and the ultimate compression strain were 

employed as 008.0cc  and 025.0cu , respectively. The modulus of elasticity specified by 

Caltrans SDC [2010] is  

     psifwE cc

'5.133       (7.1) 

where 3lb/ft96143.w   and ksifc 5'   are respectively the unit weight of concrete and the 

compressive strength of the unconfined concrete. Reinforcing steel A706/A706M (Grade 
60/Grade 400) was used in this model with the steel modulus of elasticity and the expected yield 
strength were set as ksiEs 000,29  and ksif ye 68  in accordance with Caltrans SDC [2010]. 

7.3.2 Superstructure Modeling 

Caltrans SDC [2010] requires the superstructure of a bridge to be capacity protected and 
accordingly to remain elastic. Considering that the bridge is designed according to the code 
regulations, the bridge deck and the cap-beam that form the bridge superstructure are modeled 
with elastic beam-column elements using uncracked section properties (typical for prestressed 
concrete). The three-dimensional spine-line models for the bridge superstructures, with a series of 
elastic beam-column line elements located at the centroids of the cross-sections following the 
bridge alignment, were used to strike a good balance between computational efficiency and 
accuracy. The width of the deck is incorporated in the model at the two extreme nodes of the spine 
model, and by including a transverse rigid bar whose lengths is the same as the width of the deck. 
This approach allows accounting for the passive resistance of backfill soil distributed along the 
width of the deck. The orientation of the rigid bars and their widths are decided according to the 
abutment skew angle. Zero-length elements with uniaxial behavior—whose properties are 
discussed later below—are distributed along the width of the rigid boundary elements to model 
the passive backfill reaction normal to the backwall as well as the transverse reactions by the shear-
keys. At each abutment, the deck is resting on several elastomeric (polytetrafluoroethylene) 
bearings through which the vertical loads from the superstructure are transferred to the stem wall. 
The two-phase (compressible and incompressible) vertical response of the bearing pads and the 
stem wall is represented with a bilinear force-deformation backbone curve [Kaviani et. al. 2012]. 
Horizontal resistance due to sliding friction between deck and bearing pads has been neglected, 
considering the relatively small value of the friction coefficient between the pads and their mating 
surface [Caltrans SDC 2010]. The integral cap beam is modeled with elastic beam-column 
elements—with very large torsional and bending (out-of-plane of bent) rigidities—and is rigidly 
connected at its central node to the deck spine model.  

Each bridge span was divided into ten segments in the OpenSees model to achieve an 
accurate distribution of mass along the length of the superstructure. Also, the assignment of 
rotational mass (mass moment of inertia) was considered to achieve greater accuracy in the 
predicted dynamic responses and fundamental modes of the bridge, particularly for those modes 
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associated with the torsional and transverse motions. The rotational moment of inertia of a segment 
of superstructure was calculated as follows 

    
 

1212

22
wtribw

XX

dLLmMd
M       (7.2) 

where XXM  is the rotational mass of the superstructure, m  is the total mass of the superstructure, 

M  is the total mass of the superstructure segment, tributary to the node, tribL  is the tributary length, 

wd  is the superstructure width, and L  is the length of the superstructure. The rotational mass, 

ZZM , of the column was calculated as follows 

    
 
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c

tribcccolc
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DLLmRM
M       (7.3) 

where cm  is the total mass of the column, cM  is the total mass of the column segment, tributary 

to the node, c

trib
L  is the tributary length, colR  and colD  are the radius and diameter of the column, 

and cL  is the height of the column. 

7.3.3 Column-bent Modeling 

To model the columns (Figure 7.3), nonlinear force-based beam-column elements were utilized 
with fiber-discretized sections considering 10 integration points along the height. This is usually 
deemed to control the numerical integration errors and provide adequate accuracy [Kaviani et al. 
2012], to consider the progression of column yielding and damage expected under strong ground 
motions. 

Three different constitutive rules are used simultaneously within a fiber-discretized cross-
section: (i) confined concrete for the core concrete, (ii) unconfined concrete for the cover concrete, 
and (iii) steel rebar for the reinforcing bars (Figure 7.3). OpenSees Concrete01 constitutive model 
is a uniaxial Kent-Scott-Park concrete material object with degraded linear unloading/reloading 
stiffness according to the work of Karsan-Jirsa and no tensile strength [OpenSees Wiki 2010]. It 
was used for both the cover and core concrete. The steel rebar is modeled by Steel02 material, a 
uniaxial Giuffre-Menegotto-Pinto steel material object with isotropic strain hardening [OpenSees 
Wiki 2010]. A rigid element is attached to the top of the nonlinear beam-column element to model 
the portion of the column-bent embedded in the superstructure. The boundary condition of the 
column base proves to introduce significant impact on the seismic responses obtained from NLTA 
[Kaviani et al. 2012]. In current models, the single-column bridge (Bridge A) is modeled with a 
fixed base connection, while both pinned and fixed base connection is assigned to the multi-
column bridge (Bridge B and C). 
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Figure 7.3 Column modeling scheme for Bridge B [Kaviani et al. 2014]. 

7.3.4 Abutment Modeling 

The study focused on seat-type abutment modeling. A representative seat-type abutment is 
illustrated in Figure 7.4. Two modeling approaches, namely Type I and Type II, were considered 
for the abutment (Figure 7.5). In both approaches, the longitudinal responses of the backfill and 
the expansion joint, the transverse responses of the shear keys, and the vertical responses of the 
bearing pads and the stemwall were all explicitly considered. In the Type I modeling approach 
(Figure 7.5a), two nonlinear springs, one at each end, connected in series to gap elements, were 
used to model the passive backfill response and the expansion joint [Aviram et al. 2008], 
respectively. The shear key response was modeled using an elastic-perfectly-plastic backbone 
relationship. The vertical response of the bearing pads and stemwall was modeled by two parallel 
springs, one at each end (note that only one side is labelled in Figure 1), to represent the stiffness 
values. The backfill passive pressure was produced by the abutment backwall. The strength and 
initial stiffness of the soil springs were determined according to Caltrans SDC [Caltrans 2010]. In 
the Type II modeling approach, the number of nonlinear springs connected in series to the gap 
elements was increased to five as shown in Figure 7.5b, and the shear key response was modeled 
using a nonlinear spring with a tri-linear backbone relationship (Figure 7.6). 

 

 

Figure 7.4 Configuration of a typical seat-type abutment [Kaviani et al. 2014]. 
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a) Type I abutment modeling 

 

b) Type II abutment modeling 

Figure 7.5 Abutment modeling with springs and gap elements. 
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Figure 7.6 Shear key force-deformation backbone curves [Kaviani et al. 2014]. 
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8 Application of Robust Integration and 
Solution Algorithms Selection 

8.1 INTRODUCTION 

As stated in Chapter 7, determination of the seismic response of existing and newly designed RC 
highway bridges is essential to ensure their seismic safety. The most suitable analysis method that 
can be used for this purpose is nonlinear time history analysis (NTHA). However, one of the factors 
that introduce a challenge to conduct NTHA is the problems of convergence. In general, these 
problems are attributed to three reasons: (1) various forms of nonlinear modeling required for 
accurate representation of the major bridge components (e.g., distributed plasticity models with 
discretized fiber sections for columns, stiffening gap elements used for the abutments, and 
combination of various nonlinear springs required for modeling shear keys); (2) complexity 
introduced by the interaction of the responses in longitudinal, transverse, and sometimes vertical 
directions; (3) dynamic complexity due to the mass distribution along the deck. 

This chapter investigates solutions to the numerical problems of convergence through the 
use of efficient direct integration algorithms. Two of the explicit integration algorithms are the 
Explicit Newmark (EN) and the Operator-Splitting (OS) algorithms, which do not require 
iterations nor convergence checks. The TRBDF2 is an implicit integration algorithm developed to 
rectify potential stability problems of the Implicit Newmark (IN) for problems involving large 
deformations. The formulations of these algorithms are already introduced in Chapter 2. 
Applicability of these integration algorithms to NTHA of RC highway bridges is explored herein 
by using three representative RC highway bridges described in Chapter 7 where modeling of these 
three bridges includes the above-mentioned three sources of possible NTHA convergence issues. 

The considered three integration algorithms can be used individually during the complete 
course of NTHA or selectively during the time steps where the commonly used IN fails to converge. 
Applicability of such adaptive switching of the considered integration algorithms is demonstrated 
in the chapter. Methods of convergence improvement are also investigated for the IN integrator. 
Finally, the efficacy of the proposed solutions is presented for a challenging subject in the context 
of PBEE [Günay and Mosalam 2013] that requires a significant number of NTHA. This subject is 
the identification of predominantly first-mode engineering demand parameters (EDPs) under 
earthquake excitation by making use of different ground motion selection and modification 
methods. 
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8.2 APPLICABILITY OF INTEGRATION ALGORITHMS 

The applicability of the discussed explicit and implicit integration algorithms introduced in 
Chapter 2 for NTHA is discussed in this section. This discussion focuses on the three described 
RC highway bridges. Table 8.1 presents coefficients for the Newmark and the OS integration 

algorithms, i.e., the MDOF version of Table 4.1, where      tt i   ckmη 1
2 . 

Table 8.1 MDOF Coefficients for the Newmark and the OS Integration Algorithms. 

Coefficient Newmark OS 

0
η  I    cηI

11 -
t  

1
η    I221         cηI

11221 -
t   

2
η  I  0 

3
η  0  11

1 ~
  ii

-
fpη  

4
η  I     cηI

1-
t   

5
η   I1         cηI

111 -
t   

6
η  I  0 

7
η  0     11

1 ~
 

ii

-
t fpη  

8.2.1 Explicit Newmark (EN) Algorithm 

The EN integration algorithm, providing a straightforward application and accordingly being 
computationally efficient, is conditionally stable with the following stability limit for linear 
strutures 

 

1




nT

t
 (8.1) 

where nT  is the period of the highest mode of vibration of the analyzed structure. Eq. (8.1) restricts 

the use of the EN method for structures with massless DOF, since the presence of such DOF results 
in a singular mass matrix that yields zero-period modes. Accordingly, the EN method is not 
applicable to building and bridge structures which are modeled with massless rotational DOF, 
unless these DOF are condensed out. It is within the future objectives of this study to implement a 
condensation algorithm in OpenSees [McKenna et al. 2010] to facilitate broader use of the EN 
algorithm. Therefore, the EN algorithm is not pursued further for the NTHA of the investigated 
bridge systems in this chapter. 

8.2.2 Operator-Splitting (OS) Algorithm 

As mentioned in Chapter 4, the version of the OS algorithm considered herein (i.e., the one using 
the tangential stiffness matrix), possesses similar stability properties and accuracies to those of the 
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IN integration [Liang and Mosalam 2015, 2016a]. Moreover, the TRBDF2 algorithm is considered 
because of its superior stability and better convergence behavior due to numerical damping. 

 

Figure 8.1 Superstructure and the column bent of Bridge B. 

The NTHA is conducted for both abutment modeling approaches I and II of Bridges A, B, 
and C using the IN, OS, and TRBDF2 algorithms under 40 pulse-like three-component ground 
motions described in [Jayaram et al. 2010] and documented in the Appendix E. The pulse-like 
ground motions tend to introduce highly nonlinear responses. Therefore, they are selected in this 
study to assess the validity of the discussed integration algorithms for NTHA of bridges. The 
results from the IN algorithm, which is considered as the common algorithm used for NTHA, are 
considered as the reference results. It is to be noted that the use of a numerical solution as the 
reference is attributed to the lack of an available closed-form exact solution or reliable 
experimental data for the analyzed bridges under the selected earthquake excitations. 

For comparison of the results, three EDPs are selected, namely the peak response value of 
abutment unseating displacement, column drift ratio, and column base shear. As identified in 
Figure 8.1 for Bridge B, these three EDPs correspond to the longitudinal displacement of Node 
100, column drift ratio of Node 12, and column base shear of Node 11. Similar nodes are also 
utilized for Bridges A and C to investigate the NTHA results. The comparison is conducted 
quantitatively by using the error measure errorMax , defined as follows: 
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ref

refalt

error
Max

MaxMax
Max


  (8.2) 

where refMax  and altMax  are the maximum absolute response of the considered EDPs provided 

by the IN and by the other algorithms, respectively. The NTHA is conducted for all three bridges 
with detailed results presented for Bridge B and brief ones given for Bridges A and C. Figure 8.2 
and 8.4 show the errorMax  of the OS and TRBDF2 algorithms for the three selected EDPs of 

Bridge B, which were analyzed with both abutment modeling approaches I and II (Figure 7.5), 
from all 40 ground motions. 

It is observed that all obtained errors are insignificant (< 0.2%). The abutment unseating 
displacement from IN and OS with Type I modeling is plotted in Figure 8.3a for ground motion 
#21 (Earthquake: Northridge – 01; Station: Sylmar – Olive View Med FF), which yields the largest 

errorMax  as shown in Figure 8.2a. Figure 8.3b represents the corresponding moment-curvature 

plot ( M ) from the IN to reflect the obtained high level of nonlinearity in this case. 

The good match of the time history responses for the highly nonlinear case in Fig. 8.3a and 
the small values of the error measure in Figure 8.2 indicate that the explicit OS algorithm is suitable 
for the intended objective of overcoming problems of convergence in the NTHA of RC highway 
bridges, while maintaining the accuracy of the results provided by the IN method. Similar good 
match and small error levels are also obtained for Bridges A and C as discussed in the section 8.4. 

8.2.3 TRBDF2 Algorithm 

Figure 8.4 shows the errorMax  of the TRBDF2 algorithm for the three selected EDPs of Bridge B, 

analyzed with both abutment modeling approaches I and II (Figure 7.5), from all 40 ground 
motions. Analogous to the OS results in Figure 8.2, small errors in Figure 8.4 imply that the 
accuracy of the implicit TRBDF2 and IN algorithms are comparable. Furthermore, the TRBDF2 
algorithm exhibits superior convergence features as discussed in the section 8.4. 
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a) Type I abutment modeling 

 

b) Type II abutment modeling 

Figure 8.2 Maxerror of the OS algorithm for the three selected EDPs of Bridge B. 
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a) Abutment unseating displacement 

 

b) Moment-curvature response 

Figure 8.3 Comparison of the IN and OS algorithm results for NTHA of Bridge B with Type I 
abutment modeling (Ground motion #21 as an example). 
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a) Type I abutment modeling 

 

b) Type II abutment modeling 

Figure 8.4 Maxerror of the OS algorithm for the three selected EDPs of Bridge B. 

8.3 PARAMETRIC STUDY TO ASSESS CONVERGENCE PROPERTIES OF IN 

As demonstrated in the previous section, the explicit algorithms are suitable alternatives of the IN 
method to avoid convergence problems. However, there exist some conditions where these explicit 



92 
 

algorithms are not applicable, e.g., the case of significant stiffening response due to closing of the 
gap elements in the above mentioned bridge models. Moreover, aside from the chosen integration 
method, formulation of some of the elements, e.g., the force-based beam-column elements or the 
materials, e.g., Bouc-Wen type, in OpenSees [McKenna et al. 2010] are iterative. Accordingly, the 
implicit algorithm, such as IN method, may be the only option for NTHA of models containing 
such elements and materials if the convergence problems at the element and material levels cannot 
be eliminated while using the alternative integrators. 

The following sections investigate the effect of different parameters in improving the 
convergence properties of the IN method while preserving its accuracy for the bridge models 
described in Chapter 7. It is noted that this investigation is based on the displacement formulation 
of the method, which is observed to result in an improved convergence performance compared to 
the acceleration formulation. The considered parameters are categorized in five groups as follows: 

1. Type and sequence of nonlinear equation solvers 

2. Convergence test type 

3. Convergence tolerance 

4. Integration time step 

5. Adaptive switching of integration algorithms 

8.3.1 Type and Sequence of Nonlinear Equation Solvers 

In order to achieve convergence, OpenSees [McKenna et al. 2010] allows trying various nonlinear 
solvers consecutively for any iteration of an integration time step. Therefore, one of the potential 
items that can be considered to improve convergence is the type and sequence of the nonlinear 
equation solvers. This investigation is further divided into two sub-groups, namely, (a) 
determination of the most suitable initial solver and (b) sequence of other solvers after the initial 
one. Nonlinear equation solvers considered are the ones introduced in Chapter 2, i.e., the regular 
Newton Raphson (NR), Broyden, Newton-Raphson with line search (NRLS), Broyden–Fletcher–
Goldfarb–Shanno (BFGS), and Krylov-Newton algorithms. 

Based on the convergence situations from the simulations with several relatively strong 
ground motions (GM1, GM11, GM18, GM19, GM28, and GM31) with scale factors ranging from 
1.0 to 2.0, NRLS proves to be the most suitable initial solver. Table 8.2 shows the convergence 
condition for different scales of GM31 for Bridge A with Type II abutment modeling as an example, 
where it can be observed that all the simulations which used the NRLS solver as the initial solver 
are completed, whereas the simulations with other initial solvers fail to converge for some of the 
scales. 

Using the NRLS as the initial solver, no difference was found when different subsequent 
orders of other solvers (NR, Broyden, BFGS, and Krylov-Newton) were investigated. It may be 
concluded that as long as a suitable initial solver is determined, the order of subsequent other 
solvers do not have significant impact on the convergence. It is beneficial to note that this finding 
may be specific to the investigated structure since this investigation is not repeated for other 
structures. However, it is still a useful conclusion because of two reasons. First, this finding sets 
the NLS to be a suitable initial solver as the first simulation trial of future nonlinear models. Second, 
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it shows to the analyst the importance of proper selection of the initial solver compared to trying a 
variety of solver combinations afterwards. The same observations were found for the two other 
Bridges B and C. 

Table 8.2 The convergence failure time [sec] of simulations for different initial nonlinear solvers 
under GM31 for Bridge A with Type II abutment modeling. 

Scale Factor NR Krylov-Newton Broyden NRLS BFGS 

1.0 Completed 21.820 Completed Completed Completed 
1.1 35.645 21.820 35.660 Completed 35.820 
1.2 35.650 21.820 Completed Completed 41.010 
1.3 35.655 6.115 35.655 Completed Completed 
1.4 Completed 6.115 35.260 Completed 27.985 
1.5 Completed 6.115 77.505 Completed Completed 
1.6 Completed 6.115 Completed Completed 42.600 
1.7 Completed 6.115 Completed Completed 36.155 
1.8 35.710 6.115 Completed Completed 37.270 
1.9 Completed 6.115 35.265 Completed 35.915 
2.0 35.730 6.115 52.540 Completed 24.675 

 

8.3.2 Convergence Test Type 

The following five convergence tests: Energy Increment, Norm Displacement Increment, Relative 
Norm Displacement Increment, Total Relative Displacement Increment, and Relative Energy 
Increment, are compared for the 4 ground motions (GM18, GM19, GM28 and GM31) with scale 
factors ranging from 1.0 to 2.0. The comparisons are based on counting the total number of 
iterations for each simulation, see Table 8.3 for Bridge A with Type II abutment modeling. It is 
observed that the Energy Increment test leads to significantly less number of iterations compared 
to the other test types. It is to be noted that very small response differences are obtained from the 
simulations with different convergence tests, as indicated by errorMax  for the longitudinal 

direction displacements of one of the nodes of the abutment, i.e., node 100 (Figure 8.1) in Table 
8.4. Here, errorMax  is calculated for the simulations with different convergence tests considering 

the simulations with the Energy Increment test as the reference. 

It is beneficial to note that the same tolerance value of 810  is used for all the convergence 
tests, which is the main factor that makes the Energy Increment test to have the least amount of 
iterations. Multiplication of the displacement increment with the unbalanced force, both less than 
1.0, results in a norm value smaller than the other norms. However, aside from this explanation, 
observing that the simulations with the less stringent Energy Increment leads to practically the 
same results with significantly less number of iterations compared to the other tests, it is concluded 
that the Energy Increment test is the most suitable convergence test for the analyzed model. Similar 
to the investigation in previous sections, this finding may be specific to the investigated model. 
However, for similar reasons as those mentioned above, it is still a useful conclusion by providing 
an initial trial suggestion for other models and simulations. 
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Table 8.3 Total number of iterations for simulations with different convergence tests under GM31 
for Bridge A with Type II abutment modeling. 

Scale 

Factor 
EnergyIncr NormDisIncr 

RelativeNorm 

DispIncr 

RelativeTotal 

NormDisIncr 

Relative 

EnergyIncr 

1.0 31227 48225 55821 55817 40949 
1.1 31510 48514 56481 56472 41726 
1.2 31671 48983 56656 56664 42324 
1.3 32021 49340 56734 56733 42505 
1.4 31979 49567 57093 57075 42605 
1.5 32272 49844 57187 57187 42715 
1.6 32580 50035 57023 57023 42522 
1.7 32573 50074 57015 57011 42162 
1.8 33077 50683 57291 57219 42077 
1.9 33397 51537 57381 57372 42439 
2.0 33780 Failed 61986 57876 42664 

Table 8.4 Maxerror in long. deformation of node 100 for GM31 (different convergence tests) for 
Bridge A with Type II abutment modeling. 

Scale 

Factor 
NormDisIncr 

RelativeNorm 

DispIncr 

RelativeTotal 

NormDisIncr 

Relative 

EnergyIncr 

1.0 1.82×10-6 1.82×10-6 1.82×10-6 1.82×10-6 
1.1 0.0 0.0 0.0 0.0 
1.2 1.30×10-4 0.0 0.0 0.0 
1.3 7.67×10-6 7.67×10-6 7.67×10-6 0.0 
1.4 0.0 0.0 0.0 0.0 
1.5 0.0 0.0 0.0 0.0 
1.6 0.0 0.0 0.0 0.0 
1.7 0.0 0.0 0.0 0.0 
1.8 0.0 0.0 0.0 2.21×10-6 
1.9 0.0 0.0 0.0 0.0 
2.0 Failed 1.91×10-4 2.38×10-3 2.70×10-6 

8.3.3 Convergence Tolerance 

For Bridge B with Type II abutment modeling, the effect of different tolerances of 1.0, 0.1, 310  
and 510  on the convergence and accuracy of the obtained results is investigated using the Energy 
Increment test. Analyses are conducted for all 40 GMs with 5 different tolerances, including the 
ones with 810 , with scaling factors presented in Figure 8.5, i.e., the maximum scaling factors 
without convergence issues. In order for the comparison, the longitudinal direction deformation of 
one of the nodes of the abutment, corresponding to node 100 (refer to Figure 8.1), and the 
longitudinal displacement of a column node, node12, are selected. Figure 8.6 presents the largest 

errorMax  of 40 GMs of these selected two nodes for the simulations with 4 different tolerances. In 

the calculation of these error quantities, simulations with the tolerance of 810  are considered as 
the reference. 
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Figure 8.5 The maximum scaling factors for 40 GMs. 

 

Figure 8.6 Maxerror of each tolerance for node 100 and node 12 (longitudinal displacement). 

Selected tolerances may have considerable effect on the nonlinear response. A large 
tolerance may result in a premature convergence and corresponding deviation from the true 
response. The small errors between the simulations with tolerances of 510  and 810  under the 
effect of the considered ground motions resulting in highly nonlinear response indicate that the 
increase of the tolerance can be used as a reasonable option to overcome convergence issues, while 
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preserving accuracy. It is to be noted that the above tolerance values are used for all the integration 
time steps of a particular simulation. Considering that a common application is the increase of the 
convergence tolerance only at the integration time steps with convergence problems, the errors in 
the obtained results in such cases of selective adoption of tolerance values will be even less than 
the errors plotted in Figure 8.6. 

8.3.4 Integration Time Step 

Use of a smaller integration time step during the simulation does not necessarily improve the 
convergence behavior as seen from Table 8.5, which compares the convergence condition for the 
simulations with different scales of GM31 using Newton-Raphson as the initial solver for Bridge 
A with Type II abutment modeling. Based on the simulations conducted with the seed Bridges A, 
B and C in this study, it is observed that reduction of the integration time step, only when needed, 
is useful to overcome the convergence problems. However, this requires attention to be paid to 
preventing the simulation from being completed before the duration of the external excitation, 
where the integration time step should be reset to its original value after completion of all of the 
reduced time steps that represent the original step size, e.g., using automatic adaptive time 

increments [DIANA 2005]. 

Table 8.5 The convergence failure time [sec] of simulations for different integration time steps 
under GM31 for Bridge A with abutment modeling. 

Scale 

Factor 
t  = 0.01 t  = 0.005 t  = 0.0025 t  = 0.001 

1.0 Completed Completed Completed Completed 

1.1 35.6500 35.6450 35.6375 35.6360 

1.2 35.6600 35.6500 35.6450 35.6430 

1.3 35.6700 35.6550 35.6525 35.6510 

1.4 Completed Completed Completed Completed 

1.5 Completed Completed Completed Completed 

1.6 Completed Completed Completed Completed 

1.7 Completed Completed Completed Completed 

1.8 35.7200 35.7100 35.7050 35.7040 

1.9 Completed Completed 41.7225 62.6450 

2.0 35.7400 35.7300 36.3475 36.3460 

8.3.5 Adaptive Switching of Integration Algorithms 

As mentioned and demonstrated in the previous sections, the explicit OS integration algorithm is 
a suitable alternative of the IN to avoid the problems of convergence. However, there exist some 
conditions where this algorithm is not applicable. For example, aside from the chosen integration 
method, formulations of some of the elements and materials, such as the force-based beam-column 
elements or the Bouc-Wen material in OpenSees [McKenna et al. 2010], are iterative. Accordingly, 
the implicit algorithms may be the only option for NLTA of models containing such elements and 
materials if problems of convergence at the element and material levels cannot be eliminated while 
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using the explicit OS integrator. This does not, however, prevent taking advantage of the explicit 
algorithms in certain time steps where the implicit algorithm fails to converge. In OpenSees (2010), 
the adaptive switching of integration algorithms, i.e., from IN to OS, is triggered when IN fails to 
converge, say at time step 1i . Then, the simulation automatically returns to the previously 
converged time step, i.e. time step i , and is rerun from time step i  to 1i  using the OS algorithm. 
Subsequently, the integration algorithm is switched back to IN. Therefore, IN is reused for the 
simulation starting from time step 1i  until another convergence difficulty is encountered. As 
demonstrated in the previous sections, the OS algorithm possesses similar stability and accuracy 
properties to those of the IN integration. Therefore, adaptive switching from IN to OS at 
problematic time steps, where convergence issues are bypassed, does not affect the stability and 
accuracy of simulations [Liang and Mosalam 2015, 2016a].  

NTHA results in Table 8.6 are selected examples from simulations for the seismic response 
of bridges investigated in more detail in the next section. It is observed from Table 8.6 that the IN 
algorithm fails to converge at the indicated times in the 4th column, where the responses are at high 
levels of nonlinearity. It is noted that the ground motions in this table are identified by its sequence 
number in [NGA database 2011]. On the other hand, the simulations with the same ground motions 
are completed using adaptive switching between integration algorithms, i.e. from IN to OS, at the 
time steps when IN fails to converge. Therefore, the adaptive switching of algorithms is considered 
to be a viable and readily available option, e.g., in OpenSees (2010), to overcome the problems of 
convergence. Moreover, this statement is supported by the previously conducted theoretical 
investigation [Liang and Mosalam 2015, 2016a] and successful completion of the simulations 
discussed in the next chapter. 

Table 8.6 The convergence failure time [sec] of simulations for different implicit integration methods. 

NGA 

Sequence 

Number 

Bridge 
Scale 

factor 

Implicit 

Newmark 

Switching Integration 

algorithms 
TRBDF2  

182 A 2.80 6.160 Completed Completed 

1271 A 1.08 13.720 Completed Completed 

964 A 1.47 2.690 Completed Completed 

1263 B 3.00 17.420 Completed Completed 

1011 B 2.10 1.310 Completed Completed 

1541 C 1.00 31.120 Completed Completed 

755 C 1.70 0.495 Completed Completed 

1542 C 1.37 25.040 Completed Completed 

From Table 8.6, it is also observed that simulations that experienced problems of 
convergence are all completed with the use of TRBDF2. This superior convergence performance 
of TRBDF2 is attributed to the numerical damping introduced by the three point backward Euler 
scheme. It is noted that several simulations in Table 8.6 fails to converge at as early as 0.495 sec 
when IN is used. This early stage convergence issues can be attributed to several possible reasons, 
such as near fault ground motions that cause nonlinear responses very early or the abrupt stiffness 
change due to the opening and closing of the gap elements used in the modeling of abutments. 
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8.4 SEISMIC RESPONSE OF BRIDGES 

The solutions for efficient NTHA in previous sections are applied to investigation of the seismic 
response of the three RC highway bridges A, B, and C. The nonlinear structural response of the 
bridge systems, similar to other complex structures, is intricate and it is often highly sensitive to 
the selection and modification of the input ground motions [Liang et al. 2014a, 2016a]. This section 
makes use of different ground motion selection and modification methods for the identification of 
predominantly first-mode EDPs under earthquake excitation. An important stage of PBEE [Günay 
and Mosalam 2013] is structural analysis, which may require an extensive number of NTHA. The 
results of computationally expensive NTHA can be predicted by computationally less demanding 
nonlinear static analysis procedures, such as pushover analysis, for structures with first-mode 
dominant response. In this regard, the identification of predominantly first-mode EDPs is 
beneficial for efficient, practical and routine application of PBEE. 

This investigation requires a large number of NTHA that produce highly nonlinear 
response and may face problems of convergence. Therefore, the solutions for overcoming such 
problems discussed in the previous sections are used in the conducted NTHA simulations. 

The maximum column drift ratio, column base shear, and deck total acceleration are 
selected as the investigated EDPs. With reference to Figure 8.1, these three EDPs correspond to 
the column drift ratio of Node 12, column base shear of Node 11, and deck total acceleration of 
Node 110 in Bridge B. Two groups of ground motions are selected from the NGA Database [2011] 
for the purpose of this investigation. The first group, expected to result primarily in the first-mode 
response, is selected using the conditional mean spectrum, namely the CMS method [Baker 2011]. 
The second group, which serves as the reference for comparison, is selected to match a chosen 
scenario response spectrum, the shape of which allows higher mode response. Therefore, the 
ground motions in the second group are considered as the ones with higher mode effects. Both 
groups of ground motions are selected using a method that seeks to match the mean and variance 
of the target spectrum [Jayaram et al. 2011].  

For each bridge, three earthquake scenarios are considered, namely those with 2%, 10% 
and 50% probability of exceedance (POE) in 50 years. The attenuation model by Campbell and 
Bozorgnia (2008) is used to generate these three hazard levels. The CMS (Baker 2011), which is a 
response spectrum associated with a target value of the spectral acceleration aS  at a single period, 

is the target spectrum for the first group of ground motions. In this study, this single period is the 
fundamental one of the bridge. The second “reference” group is selected to match the spectrum 
predicted by the attenuation model of Campbell and Bozorgnia (2008). 

Fig. 8.7a shows the response spectrum by the attenuation model from Campbell and 
Bozorgnia (2008) at hazard level of 10% POE in 50 years for Bridge B site, i.e., the target spectrum 
for the second “reference” group. Also shown in Fig. 8.7a is the CMS [Baker 2011] anchored at 
the Bridge B fundamental period of 1.1 sec, which is the target spectrum for the first group. As 
mentioned before, both groups of ground motions are selected using a method proposed by 
Jayaram et al. (2011) that seeks to match the mean and variance of the target spectrum (Fig. 8.7b). 
A detailed explanation of this method can be found in [Jayaram et al. 2011]. 
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a) Median 

 

b) Median and variance 

Figure 8.7 Campbell and Bozorgnia (CB) 2008 spectrum and CMS for 10% POE in 50 years for 
Bridge B site. 
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As discussed before, two approaches for abutment modeling, namely Type I and Type II 
(Figure 7.5), are considered. For each abutment modeling (2) of each scenario (3), 40 GM records 
are selected for each ground motion group (2). These GM records are documented in Appendix E. 
Therefore, 40×2×3×2×3=1440 NTHA simulations in total are conducted for the considered bridge 
systems (3). A large number of problems related to convergence, e.g., those indicated in Table 8.6, 
are encountered. Most of these problems are overcome by the proposed solutions, i.e., OS, 
TRBDF2, and approaches to improve convergence properties of IN presented in Section 8.3. The 
NTHA simulations that still fail to converge are primarily due to the large ground motions, e.g., 
several ones in the “reference” group at hazard level of 2% POE in 50 years, which lead to 
significantly large nonlinear responses in the range of collapse limit state and probably correspond 
to physical partial or complete bridge collapse. 

Figures 8.8-8.10 present the ratios of the median EDPs obtained from the ground motions 
of the first group (CMS), i.e., first-mode dominant, to those obtained from the ground motions of 
the second “reference” group, i.e., higher mode response. Therefore, the smaller the ratio, the more 
the considered EDP is affected by the higher modes. It is observed that the ratio for the column 
base shear is close to 1.0 and almost invariant for both modeling cases and all three scenarios. On 
the other hand, the ratios for the column drift and deck acceleration are always less than 1.0 and 
generally reduce as the hazard level and the corresponding nonlinearity level increase. Accordingly, 
it is concluded that the higher mode effects are more pronounced on column displacements and 
deck accelerations than on column shear forces. Moreover, the effects of higher modes on the 
column drift and deck acceleration increase with increasing hazard level and nonlinearity. The 
column base shear is likely to be a first-mode dominant EDP, irrespective of the hazard level. 
Accordingly, an investigation that uses the base shear as the EDP of interest may make use of 
computationally less demanding single mode nonlinear static analyses in PBEE computations. On 
the contrary, NTHA must be used if the column drift and deck acceleration are the important EDPs.  

The results in Figures 8.8-8.10 are in agreement with the statement that the higher modes 
affect the response of bridges to a greater extent than that of buildings in [Kappos et al. 2013]. To 
evaluate the accuracy of the two methods of ground motion selection, an estimate of the true 
response can be obtained using the concept of high-end prediction (HEP) [Haselton et al. 2009], 
which is discussed in the next chapter. 
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a) Type I abutment modeling 

 

b) Type II abutment modeling 

Figure 8.8 Ratios of median EDPs for the two abutment modeling cases of Bridge A. 
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a) Type I abutment modeling 

 

b) Type II abutment modeling 

Figure 8.9 Ratios of median EDPs for the two abutment modeling cases of Bridge B. 
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a) Type I abutment modeling 

 

b) Type II abutment modeling 

Figure 8.10 Ratios of median EDPs for the two abutment modeling cases of Bridge C. 
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9 Probabilistic Evaluation of Ground Motion 
Selection and Modification Procedures 

9.1 INTRODUCTION 

The objective of this chapter is to evaluate several popular GMSM procedures in predicting the 
PDSD of RC highway bridges with nonlinear response due to large earthquakes [Liang and 
Mosalam 2016e, 2017]. In engineering practice, the seismic design on the basis of a prescribed 
earthquake scenario is a common approach. Therefore, all conducted analyses in this chapter are 
based on a selected large earthquake scenario. In the context of a given large earthquake scenario, 
this study takes advantage of the framework proposed in Chapter 6 to develop the reference 
benchmark PDSD for the investigated bridge structures considering different intercept angles of 
the input GMs. The intercept angle is defined herein as the angle between the Fault-Normal 
direction (i.e., strike-normal GM component) and the longitudinal direction of the bridge structure 
[Kaviani et al. 2014] as shown in Figure 9.1. The accuracy and reliability of all PDSD estimates 
from the investigated GMSM procedures are then evaluated against this reference benchmark 
PDSD. Such evaluations are conducted on several selected EDPs for the three selected RC 
highway bridges described in Chapter 7. 

 

Figure 9.1 GM intercept angle scheme for the strike-normal component. 
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9.2 EARTHQUAKE SCENARIO 

The evaluation of the PDSD estimates from the investigated GMSM procedures against the 
reference benchmark PDSD in this study is based on a selected large earthquake scenario defined 
as follows: 

M7 Scenario: A magnitude (M) 7.0 earthquake event occurring on a strike-slip fault, 

at a site that is at a distance ® 10 km from the fault rupture on a soil with 30sV  (shear 

wave velocity for the top 30 m of the soil profile) based on the bridge soil profile from 

[Omrani et al. 2015]. The target spectrum for this scenario is selected as the one with 

1.5 standard deviation above (i.e., 5.1 ) the median spectrum using the attenuation 

model in [Campbell and Bozorgnia 2008]. 

This scenario is selected to be consistent with a typical level of far-field GM used for the evaluation 
of a Caltrans bridge [Caltrans SDC 2013]. Figure 9.2 shows the median and 5.1  spectra in 
terms of spectral acceleration, 

aS , associated with this scenario from the selected attenuation 

model [Campbell and Bozorgnia 2008]. Also shown in Figure 9.2 is the conditional mean spectrum 
(CMS) [Baker 2011] anchored at the fundamental period of Bridge B, i.e., sec1.1T . 

 

Figure 9.2 Response spectra for the selected earthquake scenario of Bridge B site. 

9.3 BENCHMARK PROBABILITY DISTRIBUTION OF SEISMIC DEMANDS 

In this chapter, a reference benchmark PDSD is developed based on the framework proposed in 
Chapter 6. The following sub-sections present detailed procedures of developing the benchmark 
PDSD for the RC highway bridge systems. 
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9.3.1 Ground Motion Selection for the Benchmark PDSD  

The reference benchmark PDSD is developed from a large amount of NTHA simulations. The GM 
records for these simulations are selected based on the following procedure: 

1. Select bidirectional GM records from an expanded range of the given earthquake scenario. In 
this study, the selection criteria are as follows: 

c) 5.75.6  M ; 

d) kmRkm 0.200.0  ; 

e) smVs /18330  ; 

f) Lowest usable frequency = 0.25 Hz; 

g) Faulting: Not constrained. 

Thus, 99 pairs of bidirectional horizontal GM records are selected from the PEER Next 
Generation Attenuation (NGA) Project GM database [PEER 2011]. 

2. Scale the selected 99 pairs of GM records based on peak ground velocities (PGVs) of one 
standard deviation above (  ) and one standard deviation below (  ) the PGV of the target 
earthquake scenario, i.e., 

               
ii

i

PGVPGV

PGV
SF

21

Target
minmax/


       (9.1) 

where i
SFmax  and i

SFmin  are the maximum and minimum scaling factors for the i-th GM pair of 

components defined by subscripts 1 and 2 and scaled by the same scaling factor. Two rules are 
applied simultaneously to exclude the GM pairs that are over modified or unrealistic: 

i. Exclude the GM pair of components whose maximum scaling factor is larger than 5 to 
avoid excessive modification; 

ii. Exclude the GM pair of components if any peak ground acceleration (PGA) of its 
components after scaling is larger than 1.6g to avoid unrealistic large PGA. 

60 pairs of bidirectional horizontal GMs (documented in Appendix F) are left after the 
application of these two rules. 

3. Interpolate between   SF
i

max  and   SF
i

min  to obtain 10 scale factors in total for each GM pair 

yielding a total of 600 pairs of bidirectional horizontal GMs. 
For evaluating the PDSD estimates from different GMSM procedures, four EDPs are 

selected, namely the peak abutment unseating displacement, the column drift ratio, the column 
base shear, and the column top curvature. Moreover, different intercept angles, varying from 0o to 
150o with an increment of 30o, are investigated. Therefore, considering the three selected RC 
highway bridges, two abutment analytical modeling types I and II, and the above-mentioned six 
intercept angles for all 600 scaled GMs, 600×3×2×6=21,600 NTHA simulations are performed in 
total for the determination of the reference benchmark PDSD. 
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9.3.2 Intensity Measures 

Many research efforts were devoted to the intensity measures, e.g., Bradley 2013. Various studies 
have shown that PGV can be considered as a reasonable GM intensity measure that correlates well 
with the peak nonlinear oscillator response, e.g., Riddell 2007, Akkar and Özen 2005, Kurama and 
Farrow 2003, and Akkar and Küçükdoğan 2008. Küçükdoğan (2007) also demonstrated that PGV 
reveals a good correlation with the global nonlinear seismic demands. In this study, the natural 
logarithm of PGVs of two directions of GM records are selected as the intensity measures, i.e., 

    21 lnln PGVPGVIM , to account for the distinct behaviors in the longitudinal and 

transverse directions of the considered bridge structures. Therefore,  imIMf  in Eq. (6.2) becomes 

the joint PDF of  1ln PGV  and  2ln PGV . In this study, on the basis of 600 pairs of 1PGV  and 

2PGV  for each investigated RC highway bridge, Eq. (6.5) becomes 
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     (9.2) 

where 1h  and 2h  are the bandwidths for  1ln PGV  and  2ln PGV , respectively. In addition, the 

whitening transformation in Eq. (6.6) is applied to the 600 pairs of  1ln PGV  and  2ln PGV , i.e., 

600×2 matrix  0ln PGV , as follows: 

    
   
    2/1

0

lnln

lnln

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ΣPGVPGV

μPGVPGV





white

     (9.3) 

where μ  is a 600×2 matrix with all entries of the first and second columns are equal to the means 

of  1ln PGV  and  2ln PGV , respectively, and Σ  is the 2×2 covariance matrix of the two columns 

of  PGVln . After this whitening transformation, each column of  whitePGVln  has zero mean and 

identity covariance matrix. The kernel density estimator for Κ  and a bandwidth selection method 
for 1h  and 2h  introduced in Chapter 6 [Botev et al. 2010)], are adopted to estimate the joint PDF 

 imIMf . After such estimation, similar to Eq. (6.7),  whitePGVln  is transformed back to 

 0ln PGV , i.e., 

        μΣPGVPGV  2/1lnln white      (9.4) 

The procedures of density estimation discussed above are applied to the investigated three RC 
highway bridges. As an example, the joint PDF for Bridge B is illustrated in Figure 9.3. It is noted 
that the results of this process depend on the selected 600 pairs of GM records, which are based 
on the selected earthquake scenario and 30sV  of the bridge site [Omrani et al. 2015]. Therefore, the 

600 GM records are different for the three considered bridges as their sites have different 30sV . 
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Figure 9.3 Joint PDF of  1PGVln  and  2PGVln  of Bridge B by kernel density estimation. 

9.3.3 Collapse Consideration 

In this study, two failure criteria are defined: (1) deck unseating and (2) column excessive rotation; 
whichever takes place first will imply the occurrence of collapse. Deck unseating is assumed to 
occur when the relative displacement between the bridge deck and the abutment is larger than the 
length of the abutment seat, which is taken as 33.85 inches (Table 6.1). The limit state 
corresponding to column excessive rotation is defined as exceeding certain threshold value of the 
column drift ratio, DR . Hutchinson et al. (2004) demonstrated that, on the basis of the mean trend 
from their experimental data, if the maximum drift ratios are less than about 8%, the residual drift 
ratios are generally less than 1%, which is the allowable residual drift ratio suggested in [MacRae 
and Kawashima 1997]. The maximum drift ratios of about 6% were recommended in [Hutchinson 
et al. 2004] if a higher degree of confidence is required. In this study, DR  is assumed to have a 
gamma distribution (Figure 9.4) with mean and mode equal to 8% and 6%, respectively. 

 

Figure 9.4 Assumed gamma distribution of DR . 
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From the prescribed collapse criteria above, Eq. (6.10) is further manipulated as follows: 

                drddrfedpGedpG
dr DR  imimimim |CPr1NC,||CPr|      (9.5) 

where  drf
DR

 is the PDF of the DR  defined in Figure 9.4. Based on Eq. (6.11), the fragility 

surface or conditional probability of collapse, i.e.,  im|CPr , is estimated using multivariate 
binary logistic regression [Wasserman 2010] as follows 

          
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


im      (9.6) 

where the coefficients 0̂ , 1̂  and 2̂  are obtained by the reweighted least squares algorithm 

[Wasserman 2010]. For illustration, Figure 9.5 presents  im|CrP̂  for Bridge B with Type I 

abutment model when DR  equals 8%, i.e., the mean of the gamma distribution in Figure 9.4. 

 

Figure 9.5 The fragility surface for Bridge B (Type I abutment model) with 8%DR  . 

9.3.4 Non-collapse Structural Responses 

Based on Eq. (6.12), for a given pair of  1ln pgv  and  2ln pgv  under non-collapse scenario, the 

mean value of  EDPln  is as follows: 

         22110|ln lnˆlnˆˆˆ pgvpgvedp  im      (9.7) 

where coefficients 0̂ , 1̂  and 2̂  are determined from the least square estimate [Wasserman 

2010). An unbiased estimate of the variance of the distribution, i.e., Eqs. (6.13) and (6.14) become 
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        



N

i

iedp N
1

22
|ln ˆ31ˆ  im      (9.8) 

         iii

i EDPPGVPGV lnlnˆlnˆˆˆ 22110        (9.9) 

where i
PGV1 , i

PGV2  and iEDP  are the i-th sampling point of 1PGV , 2PGV  and EDP, 

respectively. N  is the total number of sampling points that produce NC. The probability that the 
EDP exceeds the demand level of edp given im  and for the NC scenario can now be calculated 
using the normal CCDF in Eq. (6.15). Figure 9.6 illustrates the linear regression surface of the 
column drift for Bridge B with Type I abutment model when DR  equals 8%. 

 

Figure 9.6 Linear regression surface of column drift for Bridge B (Type I abutment model) with 

8%DR  . 

9.3.5 Integration of Intensity Measures and Structural Responses 

Combination of the intensity measures from the kernel density estimator and the structural 
responses, including C and NC cases, i.e., substituting Eq. (9.5) and the required estimates of its 
different terms, as discussed above, into Eq. (6.2), leads to the followingL 

                  imimimimim
im

ddrdfdrfedpGedpG
dr DR   IM

ˆˆ|CrP̂1NC,|ˆ|CrP̂ˆ      (9.10) 

In general, it is impossible to determine the exact solution of the integrations in Eq. (9.10). Instead, 
in practice,  edpĜ  in Eq. (9.10) is computed from the following discretized form: 

             jk

k j i

ijkiijkjki dredpGedpG imimimim rP̂rP̂|CrP̂1NC,|ˆ|CrP̂ˆ        

(9.11) 
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where  jki im|CrP̂  and  ijkedpG NC,|ˆ im  are respectively the estimated probabilities of collapse 

and exceedance in the context of NC, when idrdr  , conditioning on jkimIM , i.e., 

   jpgvPGV 11 lnln   and    k
pgvPGV 22 lnln  .  idrrP̂  and  jkimrP̂  are estimated from: 

          
 drN

j
i

DR
i

DR
i drfdrfdr

1
ˆˆrP̂      (9.12a) 

           
 1 2

1 1
ˆˆrP̂ im imN

p

N

q pqjkjk ff imimim IMIM
     (9.12b) 

where drN , 1imN  and 2imN  are the numbers of points considered for DR ,  1ln PGV  and 

 2ln PGV , respectively. Thus, as expected,   1rP̂
1

 

drN

i
idr  and   1rP̂1 2

1 1
  

im imN

j

N

k jkim . In this 

study, 100
dr

N   and 1 2 64im imN N  . Comparing Eq. (9.11) with Eq. (9.10), the integrals, the 

PDF and the joint PDF are replaced with the summations, the probability mass function (PMF) 
and the joint PMF, respectively. In Eq. (9.11), the symbol “ ” signifies the approximation due to 
the discretization of the continuous integral of the seismic hazard and structural demand. 

9.3.6 Effects of Intercept Angles on PDSD Estimates 

The reference benchmark PDSD is developed on the basis of the implicit assumption that the 
earthquake is likely to occur at the previously mentioned six different intercept angles with equal 
probability. In this section, PDSD estimates from each intercept angle are compared against the 
benchmark to investigate the effects of intercept angles. Figures 9.7-9.9 present such comparisons 
for several EDPs of samples of the studied three bridges where the percentage error is defined as 
follows: 

    100



i

fRe

i

fRe

i

i
PDSD

PDSDPDSD
error      (9.13) 

where i

fRePDSD  and i
PDSD  are the i-th EDP point from the benchmark PDSD and the PDSD 

estimate from each of the six intercept angles, respectively. Therefore, the positive or negative 

ierror  signifies the overestimation or underestimation of the i-th EDP point, respectively. 

Figures 9.10-9.12 present the maximum errors, defined as 
i

i
errormax , of different intercept 

angles for all four investigated EDPs of the three bridges with both Types I and II abutment 
modeling. It can be observed that the maximum errors are generally below 10%, with few 
exceptions, but clearly not negligible. As shown in Figures 9.7b and 9.10b, the maximum error 
can be as large as about 20%. Therefore, the intercept angle causes certain differences in estimating 
the PDSD. This is expected as bridge structures clearly possess different geometric properties in 
the longitudinal and transverse directions. It is to be noted that the results presented in Figures 
9.10-9.12 are based on NTHA simulations of 600 GM records for each intercept angle. Larger 
differences are expected if the number of GM records for NTHA simulations is much less than 
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600 as will be shown in a latter section in which only 40 GM records are selected from each 
investigated GMSM procedure. 

 
a) PDSD comparison 

 
b) Error comparison 

Figure 9.7 PDSD and error for column shear force of Bridge A with Type II abutment model. 
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a) PDSD comparison 

 
b) Error comparison 

Figure 9.8 PDSD and error for column drift ratio of Bridge B with Type I abutment model. 
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a) PDSD comparison 

 
b) Error comparison 

Figure 9.9 PDSD and error for abutment unseating displacement of Bridge C with Type I abutment 
model. 
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a) Type I abutment modeling 

 
b) Type II abutment modeling 

Figure 9.10 Maximum errors of different intercept angles for Bridge A. 
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a) Type I abutment modeling 

 
b) Type II abutment modeling 

Figure 9.11 Maximum errors of different intercept angles for Bridge B. 



117 
 

 
a) Type I abutment modeling 

 
b) Type II abutment modeling 

Figure 9.12 Maximum errors of different intercept angles for Bridge C. 

9.4 GMSM PROCEDURES 

Three GMSM procedures from the two categories previously mentioned in Chapter 6 are 
investigated in this study. The first is an amplitude scaling procedure using the conventional first 
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mode spectral acceleration, i.e.,  1TSa , selection and scaling method. The other two, namely the 

conditional mean spectrum (CMS) and the unconditional selection (US) methods, are spectrum 
shape matching procedures. The following sub-sections describe these three methods and their 
selection procedures, as considered in this study, in detail. 

9.4.1  1a TS  Selection and Scaling Method 

This method selects GM records from earthquakes with magnitude M and type of faulting F, 
recorded at sites with distance R and soil classification S as close as possible to those of the 
earthquake scenario of interest. After applying the selection criteria, the GMs are selected 
randomly from the candidate set of motions if the number of eligible ground motions is larger than 
the target number; otherwise, the selection criteria would need to be relaxed. 

Once the GMs are selected, each of them is scaled in amplitude such that its  1TSa  is equal 

to the target  1TSa  of the earthquake scenario. This procedure to select and scale GMs does not 

take into account the shape or the variability of the target response spectrum, as it considers only 
the target  1TSa . The selection procedure of  1TSa  scaling method is summarized below: 

1. Select the GM based on an M-R-S-F (magnitude, source-to-site distance, site classification and 
type of faulting) bin that is consistent with the given earthquake scenario. The criteria utilized 
in this GMSM procedure are: 

i. 4.76.6  M ; 

ii. kmRkm 0.150.5  ; 

iii. smVs /18330  ; 

iv. Lowest usable frequency = 0.25 Hz; 

v. Faulting: Not constrained. 

2. Scale each component of record to the target GM level based on their geometric mean as given 
by Eq. (9.14). The target  1TSa  is the median 5.1  predicted by the attenuation model from 

[Campbell and Bozorgnia 2008] for the given M, R, S and F scenario. 

            
 

     ia

i

a

a

i

TSTS

TS
SF

2111

Target1


      (9.14) 

where iSF  is the scaling factor of the i-th GM pair of components with subscripts 1 and 2 and 

having the same scaling factor. 

3. Select desired number of records from the bin. In this study, 40 records are selected, which are 
determined by the following two algorithms: 

i. Based on the equation for the proportion of pulse-like records [Hayden et al. 2012], 
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     (9.15) 

substitution of R = 10 km and 5.1  in Eq. (9.15) results in the value of proportion = 0.7. 
Thus, 28 of the 40 motions should be pulse-type. Select 28 records from the pulse-type bin 
and 12 records from the no pulse-type bin with smallest scaling factors from step 2. This 

procedure is denoted as  
pa TS 1  method in this dissertation. 

ii. Another algorithm is to select 40 records solely based on the scaling factors. Thus, 40 
records with smallest scaling factors are selected from the bin with both pulse-type and no 
pulse-type GMs. This procedure is called  1TSa  method in this dissertation. 

9.4.2 Conditional Mean Spectrum (CMS) Method 

This method selects GMs such that their response spectra match the mean and variance of the CMS 
in the period range of interest. The method consists of two stages: (1) Determination of the CMS 
and (2) application of the GM selection algorithm for matching a target response spectrum mean 
and variance proposed by [Jayaram et al. 2011]. The CMS is a response spectrum associated with 
a target aS  value at a single period, i.e.,  1TSa  in this study. According to [Baker 2011], the steps 

for computing this response spectrum are: 

1. Determine the target aS  at a given period of interest 1T ,  1TSa , for the associated M, R and  . 

Similar to the previous GMSM method, the target  1TSa  is computed as the median 5.1  

predicted by the attenuation model from (Campbell and Bozorgnia 2008). The M, R and   are 
those of the previously defined target GM scenario, i.e., M = 7.0, R = 10 km and 5.1 . Given 
an arbitrary period, T,   is defined as the number of standard deviations by which the natural 
logarithm of  TSa , i.e.,   TSaln , differs from the predicted mean of   TSaln  for a given M 

and R.   is defined as follows: 

                         TRMTRMTST
aa SSa ,,,,ln lnln        (9.16) 

where   TRM
aS ,,ln  and   TRM

aS ,,ln  are the predicted mean and standard deviation of 

  ln aS T , respectively, computed from (Campbell and Bozorgnia 2008). From Eq. (9.16), the 

target   1ln aS T  can be expressed as follows: 

                         1ln1ln11 ,,,,ln TRMTRMTTS
aa SSa        (9.17) 

2. Compute the mean and standard deviation of the response spectrum at other periods, given M 
and R. They are the quantities in Step 1, i.e.,   TRM

aS ,,ln  and   TRM
aS ,,ln , respectively. 

In this step, these values are computed at periods included in the range of interest. Existing GM 
models, such as the attenuation model from [Campbell and Bozorgnia 2008] used in this study, 
can be used to compute these terms.  
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3. Compute   at other periods, given  1T . This step consists of computing conditional mean  -

values,    1| TTi  , for the other periods iT , which can be calculated as the product of  1T  and 

the correlation coefficient between the  -values at the two periods  1,TTi , i.e., 

                 11| ,
1

TTTiTTi
        (9.17) 

According to [Baker 2011], the following simple predictive equation, valid for periods between 
0.05 and 5.0 sec. can be used to obtain  1,TTi : 
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where  189.0min TI  is an indicator function that equals 1.0 if sec189.0min T  and 0.0 otherwise, 

and minT  and maxT  are respectively smaller and larger periods of interest. 

4. Compute CMS. At each period of interest, iT , the corresponding spectral accelerations that 

define the CMS can be computed by substituting Eq. (9.17) in place of  1T  in Eq. (9.16) after 

replacing 1T  with iT  of both sides, i.e., 

                          iSiiSTSTS TRMTTTTRM
aaaia

,,,,, ln11lnln|ln 1
       (9.19) 

where   iS TRM
a

,,ln  and   iS TRM
a

,,ln  are derived from [Campbell and Bozorgnia 2008], 

 1,TTi  is computed from Eq. (27), and values of M, R and  1T  are those indicated in Step 1. 

As mentioned earlier, once the CMS associated with a period of interest is determined, the 
GM selection algorithm proposed by Jayaram et al. (2011) is used to select and modify sets of 
records that match the target CMS and its variance. With a target distribution, Monte Carlo 
simulation is used to probabilistically generate multiple realizations of response spectra, and then 
GM records whose response spectra individually match the simulated response spectra are selected. 
Furthermore, a greedy optimization is applied to improve the match between the target and the 
sample means and variances. This is performed by replacing one previously selected GM record 
at a time with a record from the database that generates the best improvement in the match. A 
detailed explanation of this method can be found in [Jayaram et al. 2011]. Similar to the  1TSa  

scaling method, 40 records are considered herein. 

9.4.3 Unconditional Selection (US) Method 

This method uses exactly the same algorithm for matching both the mean and variance of the target 
spectrum mentioned in the previous section. However, instead of the CMS used in the CMS method, 
the median 5.1  spectrum associated with the selected earthquake scenario defined with the 
attenuation model by [Campbell and Bozorgnia 2008] is used as the target spectrum. Similar to 
the first two methods, 40 GM records are selected herein. All the GMs selected from these 
investigated GMSM procedures for the three selected bridges are documented in Appendix F. 
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9.5 EVALUATION OF THE GMSM PROCEDURES 

For each bridge with each abutment modeling, 40 GM records are selected for each investigated 
GMSM procedure, including two versions of  1TSa  scaling and selection method, i.e. a total of 

four GMSM procedures. Similar to the development of the reference benchmark PDSD, these 
GMs are applied to each bridge with six different intercept angles. Thus, besides the 21,600 NTHA 
simulations for the development of the benchmark PDSD, 40×4×3×2×6=5,760 more NTHA 
analyses are performed for all the four GMSM procedures. 

The PDSD estimates by the 40 GM records from each GMSM investigated procedures are 
compared against the benchmark PDSD to evaluate their accuracy and reliability. Based on Eq. 
(6.19),  CPr  in Eq. (6.18) is the probability of collapse estimated as: 

     
40

collapsecausingrecordsof#
CrP̂       (9.20) 

The probability of exceedance for the NC cases, i.e.,  NC|edpG  in Eq. (6.18), can be estimated 
by Eq. (6.20). Recall the previously discussed collapse criterion, along with the estimates in Eqs. 
(6.20) and (9.20), the PDSD estimate, i.e.,  edpĜ , is obtained as follows: 

                drddrfedpGedpG
dr DR  ˆCrP̂1NC|ˆCrP̂ˆ      (9.21) 

Following similar procedure from Eqs. (9.10) and (9.11),  edpĜ  in Eq. (9.21) is computed from 
the following discretized form: 

              
i

iiii dredpGedpG rP̂]}CrP̂1[NC|ˆCrP̂{ˆ      (9.22) 

where  
iCrP̂  and  iedpG NC|ˆ  are respectively the estimated probabilities of collapse and 

exceedance in the NC cases when idrdr  , and  idrrP̂  is estimated by Eq. (9.12a). Figures 9.13-
9.44 present the comparison of the PDSD estimates from the four investigated GMSM procedures 
and the benchmark PDSD. Such comparisons are given for all four selected EDPs of the six 
different intercept angles on Bridges A and B with both Types I and II abutment modeling. Figures 
9.45-9.48 show the PDSD estimates of the peak column drift ratio from the four GMSM 
procedures on Bridge C with Types I and II abutment modeling. As mentioned previously, 
comparing to the difference of the PDSD estimated by the 600 GMs, larger differences, e.g., from 
Figures 9.21-9.28, are observed in the PDSD estimates from the different intercept angles. 

It is observed from Figures 9.13-9.20 that the PDSD estimates from the  1TSa  and  
pa TS 1  

procedures generally underestimate the seismic demands from the benchmark PDSD for Bridge A 
with both abutment modeling. However, the  

pa TS 1  method gives reasonably accurate PDSD 

estimates of the three global EDPs, i.e., peak column shear force (Figure 9.17a), drift ratio (9.18a), 
and abutment unseating displacement (9.19a), for Bridge A with Type I abutment modeling. In 
general, e.g., from the comparison of Figures 9.29-9.32 and 9.33-9.36, the PDSD estimates from 
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the  
pa TS 1  procedure are larger and more accurate than the ones estimated from the  1TSa  

procedure. Such observations are attributed to the fact that more pulse motions that result in large 
responses are selected in the  

pa TS 1  procedure. From Figures 9.21-9.24 and 9.37-9.40, the PDSD 

estimates from the CMS method almost always underestimate the seismic demands of all four 
EDPs, especially on the large values of EDPs (the tail of the PDSD curve), for Bridges A and B 
with both abutment modeling. In contrast, as shown in Figures 9.25-9.28 and 9.41-9.44, the PDSD 
estimates by the US method are almost always on the conservative side with approximately 10-
20% overestimation of the probability of exceedance over the benchmark PDSD. For bridge C, all 
four GMSM procedures overestimates the seismic demands of all four investigated EDPs (only 
the peak column drift ratio is shown in Figures 9.45-9.48 for brevity) for both Type I (Figures 9.45 
and 9.46) and Type II (Figures 9.47 and 9.48) abutment modeling. It is observed from Figures 
9.13-9.48 that the PDSD estimates by the first mode GMSM procedures, i.e., CMS,  1TSa  and 

 
pa TS 1  methods, generally underestimate the benchmark PDSD for Bridges A and B, and 

overestimate the benchmark PDSD for bridges C. Also, the overestimations of PDSD by US 
method for bridges A, B and C are about 10%, 20% and 25%, respectively. Among these three 
investigated RC highway bridges, it can be concluded that the effects of higher modes are most 
pronounced on Bridge A, a bridge with two spans supported on a single-column bent, and are the 
least on Bridge C, a bridge with three spans and two three-column bents. 

Based on the simulation results, the estimates by the US procedure are almost always on 
the conservative side and are usually the most conservative of all GMSM procedures for all three 
bridges. The  1TSa  and  

pa TS 1  procedures show some superiority over the CMS method (e.g., in 

predicting the PDSD for bridges A and B); while they sometimes underestimate the responses, e.g., 
in bridge A. As discussed previously, RC highway bridges play a crucial role in transportation and 
thus require short downtime after severe earthquakes from an emergency response and, more 
generally, community resiliency points of view. Therefore, among these four investigated GMSM 
procedures, it is suggested to use the US method for the selection and modification of GMs. 
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a) Type I abutment modeling 

 
b) Type II abutment modeling 

Figure 9.13 PDSD estimates of column shear force of different intercept angles from  
1a

TS  

procedure for Bridge A. 
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a) Type I abutment modeling 

 
b) Type II abutment modeling 

Figure 9.14 PDSD estimates of column drift ratio of different intercept angles from  
1a

TS  

procedure for Bridge A. 
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a) Type I abutment modeling 

 
b) Type II abutment modeling 

Figure 9.15 PDSD estimates of abutment unseating displacement of different intercept angles 

from  
1a

TS  procedure of for Bridge A. 
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a) Type I abutment modeling 

 
b) Type II abutment modeling 

Figure 9.16 PDSD estimates of column top curvature of different intercept angles from  
1a

TS  

procedure for Bridge A. 



127 
 

 
a) Type I abutment modeling 

 
b) Type II abutment modeling 

Figure 9.17 PDSD estimates of column shear force of different intercept angles from  
p1a

TS  

procedure for Bridge A. 
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a) Type I abutment modeling 

 
b) Type II abutment modeling 

Figure 9.18 PDSD estimates of column drift ratio of different intercept angles from  
p1a

TS  

procedure for Bridge A. 
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a) Type I abutment modeling 

 
b) Type II abutment modeling 

Figure 9.19 PDSD estimates of abutment unseating displacement of different intercept angles 

from  
p1a

TS  procedure for Bridge A. 
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a) Type I abutment modeling 

 
b) Type II abutment modeling 

Figure 9.20 PDSD estimates of column top curvature of different intercept angles from  
p1a

TS  

procedure for Bridge A. 
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a) Type I abutment modeling 

 
b) Type II abutment modeling 

Figure 9.21 PDSD estimates of column shear force of different intercept angles from CMS 
procedure for Bridge A. 
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a) Type I abutment modeling 

 
b) Type II abutment modeling 

Figure 9.22 PDSD estimates of column drift ratio of different intercept angles from CMS procedure 
for Bridge A. 
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a) Type I abutment modeling 

 
b) Type II abutment modeling 

Figure 9.23 PDSD estimates of abutment unseating displacement of different intercept angles 
from CMS procedure for Bridge A. 
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a) Type I abutment modeling 

 
b) Type II abutment modeling 

Figure 9.24 PDSD estimates of column top curvature of different intercept angles from CMS 
procedure for Bridge A. 
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a) Type I abutment modeling 

 
b) Type II abutment modeling 

Figure 9.25 PDSD estimates of column shear force of different intercept angles from US procedure 
for Bridge A. 
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a) Type I abutment modeling 

 
b) Type II abutment modeling 

Figure 9.26 PDSD estimates of column drift ratio of different intercept angles from US procedure 
for Bridge A. 
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a) Type I abutment modeling 

 
b) Type II abutment modeling 

Figure 9.27 PDSD estimates of abutment unseating displacement of different intercept angles 
from US procedure for Bridge A. 
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a) Type I abutment modeling 

 
b) Type II abutment modeling 

Figure 9.28 PDSD estimates of column top curvature of different intercept angles from US 
procedure for Bridge A. 
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a) Type I abutment modeling 

 
b) Type II abutment modeling 

Figure 9.29 PDSD estimates of column shear force of different intercept angles from  
1a

TS  

procedure for Bridge B. 
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a) Type I abutment modeling 

 
b) Type II abutment modeling 

Figure 9.30 PDSD estimates of column drift ratio of different intercept angles from  
1a

TS  

procedure for Bridge B. 
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a) Type I abutment modeling 

 
b) Type II abutment modeling 

Figure 9.31 PDSD estimates of abutment unseating displacement of different intercept angles 

from  
1a

TS  procedure for Bridge B. 
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a) Type I abutment modeling 

 
b) Type II abutment modeling 

Figure 9.32 PDSD estimates of column top curvature of different intercept angles from  
1a

TS  

procedure for Bridge B. 
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a) Type I abutment modeling 

 
b) Type II abutment modeling 

Figure 9.33 PDSD estimates of column shear force of different intercept angles from  
P1a

TS  

procedure for Bridge B. 
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a) Type I abutment modeling 

 
b) Type II abutment modeling 

Figure 9.34 PDSD estimates of column drift ratio of different intercept angles from  
P1a

TS  

procedure for Bridge B. 
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a) Type I abutment modeling 

 
b) Type II abutment modeling 

Figure 9.35 PDSD estimates of abutment unseating displacement of different intercept angles 

from  
P1a

TS  procedure for Bridge B. 
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a) Type I abutment modeling 

 
b) Type II abutment modeling 

Figure 9.36 PDSD estimates of column top curvature of different intercept angles from  
P1a

TS  

procedure for Bridge B. 
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a) Type I abutment modeling 

 
b) Type II abutment modeling 

Figure 9.37 PDSD estimates of column shear force of different intercept angles from CMS 
procedure for Bridge B. 



148 
 

 
a) Type I abutment modeling 

 
b) Type II abutment modeling 

Figure 9.38 PDSD estimates of column drift ratio of different intercept angles from CMS procedure 
for Bridge B. 



149 
 

 
a) Type I abutment modeling 

 
b) Type II abutment modeling 

Figure 9.39 PDSD estimates of abutment unseating displacement of different intercept angles 
from CMS procedure for Bridge B. 
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a) Type I abutment modeling 

 
b) Type II abutment modeling 

Figure 9.40 PDSD estimates of column top curvature of different intercept angles from CMS 
procedure for Bridge B. 
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a) Type I abutment modeling 

 
b) Type II abutment modeling 

Figure 9.41 PDSD estimates of column shear force of different intercept angles from US procedure 
for Bridge B. 
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a) Type I abutment modeling 

 
b) Type II abutment modeling 

Figure 9.42 PDSD estimates of column drift ratio of different intercept angles from US procedure 
for Bridge B. 
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a) Type I abutment modeling 

 
b) Type II abutment modeling 

Figure 9.43 PDSD estimates of abutment unseating displacement of different intercept angles 
from US procedure for Bridge B. 
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a) Type I abutment modeling 

 
b) Type II abutment modeling 

Figure 9.44 PDSD estimates of column top curvature of different intercept angles from US 
procedure for Bridge B. 
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a)  
1a

TS  

 

b)  
P1a

TS  

Figure 9.45 PDSD estimates of column drift ratio of different intercept angles from  
1a

TS  and 

 
P1a

TS  procedures for Bridge C with Type I abutment modeling. 
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a)  
1a

TS  

 

b)  
P1a

TS  

Figure 9.46 PDSD estimates of column drift ratio of different intercept angles from  
1a

TS  and 

 
P1a

TS  procedures for Bridge C with Type II abutment modeling. 
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a) CMS 

 
b) US 

Figure 9.47 PDSD estimates of column drift ratio of different intercept angles from CMS and US 
procedures for Bridge C with Type I abutment modeling. 
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a) CMS 

 
b) US 

Figure 9.48 PDSD estimates of column drift ratio of different intercept angles from CMS and US 
procedures for Bridge C with Type II abutment modeling. 
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10 Summary, Conclusions and Future 
Extensions 

10.1 SUMMARY 

The study completed in this dissertation investigated two key challenges related to the application 
of the performance-based earthquake engineering (PBEE) approach such as the methodology 
developed with the Pacific Earthquake Engineering Research (PEER) Center. Accurate and robust 
nonlinear time history analysis (NTHA) that is fundamental to estimate the seismic demands of 
structures is the first challenge investigated in this study. It involved the use of different types of 
direct integration algorithms and nonlinear equation solvers where their stability performance and 
convergence behavior are of great significance to ensure accurate and robust NTHA simulations, 
especially for nonlinear multi-degree of freedom (MDOF) structural systems. Lyapunov stability 
theory, the most complete framework for stability analysis of dynamical systems, was introduced 
in this study. Based on this theory, a new nonlinear equation solver was developed and its 
convergence performance was theoretically formulated and verified by several examples. In 
addition, two Lyapunov-based approaches were proposed to perform stability analysis of nonlinear 
structural systems. The first approach transformed the stability analysis to a problem of existence 
that can be solved via convex optimization, over the discretized domain of interest of the restoring 
force. The second approach was specifically applicable to explicit algorithms for nonlinear single-
degree of freedom (SDOF) and MDOF systems considering strictly positive real lemma. In this 
approach, a generic explicit algorithm was formulated for a system governed by a nonlinear 
function of the basic force without adopting any approximations. Starting from this formulation 
and based on the Lyapunov stability theory, the stability analysis of the formulated nonlinear 
system was transformed to investigating the strictly positive realness of its corresponding transfer 
function matrix. The two Lyapunov-based approaches of stability analysis were demonstrated by 
several SDOF and MDOF numerical examples. 

The second challenge experienced in the PBEE approach is the selection of the ground 
motion selection and modification (GMSM) procedure that determine the input GM records for 
the NTHA simulations. Therefore, proper selection of GMSM approach is vital and represents an 
important prerequisite for the accurate and robust NTHA simulation and thus for the entire PBEE 
approach. In this dissertation, a framework for probabilistic evaluation of GMSM procedures was 
developed in the context of a selected large earthquake scenario with bidirectional GM excitations. 

As an important application, the aforementioned theoretical developments were 
investigated for reinforced concrete (RC) highway bridge systems, which are key components of 
the infrastructure in urban cities. Solutions for overcoming the problems of convergence 
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encountered in NTHA of RC highway bridges were presented and recommendations were given. 
In addition, this dissertation evaluated several GMSM procedures in predicting the probability 
distribution of the seismic demands (PDSD) of RC highway bridges subjected to large earthquakes 
that result in highly nonlinear responses. The accuracy and reliability of all the PDSD estimates 
from the investigated GMSM procedures were evaluated against the reference benchmark PDSD 
developed by the PEER PBEE framework. Such evaluations were conducted considering four 
selected engineering demand parameters (EDPs) of three representative RC highway bridges in 
California accounting for two types of abutment modeling. In total, 27,360 NTHA simulations, 
where 21,600 ones for the development of the benchmark PDSD and 5,760 ones for the PDSD 
estimates by the GMSM procedures, were performed for this evaluation. 

10.2 CONCLUSIONS 

The major developments and findings of this study are summarized as follows: 

 A new nonlinear equation solver is developed on the basis of reformulation of the equations 
of motion into a hypothetical dynamical system characterized by a set of ordinary differential 
equations. The equilibrium points of this hypothetical system are the solutions of the nonlinear 
structural problems. Starting from the Lyapunov stability theory, it is demonstrated that this 
hypothetical dynamical system is characterized by a globally asymptotic stability, i.e., 
convergence, to equilibrium points for structural dynamics. This feature overcomes the 
inherent limitations of the traditional iterative minimization algorithms and has no restriction 
on the selection of the initial guess for various structural nonlinear behaviors. 

 Another important feature of the proposed Lyapunov-based nonlinear equation solver, as 
shown in the several numerical examples, is its ability to solve the equilibrium equations for 
models where a numerically consistent tangent may be difficult to determine.  

 An integration algorithm is stable if its Lyapunov artificial energy function is bounded. The 

general condition that the boundedness of 121

1
AAAAA 

 iiij j  for i  is derived 

from the boundedness of the Lyapunov function. For linear structures, the stability criterion 
is that the spectral radius of the approximation operator is less than or equal to 1.0, which is 
applied to nonlinear structures by some researchers. It should be emphasized that the stability 
limit for linear structures, however, does not automatically hold for nonlinear structures. 
Therefore, basic methodologies used in some well-known stability limits of direct integration 
algorithms, e.g., the Operator-Splitting (OS) algorithm with initial stiffness (OSinitial), are not 
applicable to nonlinear problems. 

 The study also investigates the OS algorithm that uses tangent stiffness in the formulation 
(OStagent), which has not been previously studied. It is shown that this explicit algorithm 
possesses similar stability properties to those of the implicit Newmark (IN) integration. 

 An approach is proposed to perform the stability analysis numerically. This approach 
transforms the stability analysis to the solution of a convex optimization problem over the 
discretized domain of interest of the restoring force. The proposed approach is shown to be 
generally applicable to direct integration algorithms for nonlinear problems and can 
potentially be extended to MDOF systems 
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 A geometrically nonlinear pendulum problem with a closed-form exact solution is used to 
investigate the accuracy of the investigated integration algorithms. The period is shortened by 
explicit Newmark and elongated by the other algorithms. The OStangent and IN algorithms 
present similar period elongations. The more computationally expensive TRBDF2 has the 
smallest period change. All algorithms present no amplitude decay except the TRBDF2 
method undergoes some amplitude decay due to the introduced numerical damping. Observed 
period elongation (< ±3%) and amplitude decay (< 1%) values are practically acceptable. 
Moreover, the incorrectness of the stability criterion of the OSinitial algorithm from past studies 
and the suitability of the proposed numerical stability analysis approach herein have been 
demonstrated by the same nonlinear pendulum example. 

 The systematic approach to investigate the Lyapunov stability of explicit direct integration 
algorithms for MDOF systems considering strictly positive real lemma is presented. The 
stability analysis of two types of MDOF nonlinear systems (stiffening and softening) has been 
presented using the proposed approach. The explicit algorithm is formulated for a generic 
nonlinear MDOF system represented by a general nonlinear restoring force vector. In this 
study, the l–th basic resisting force of the system is a nonlinear function bounded in the sector 
between ll

Mink u  and ll

Maxk u , where l

Mink  and l

Maxk  are lower and upper bounds for the l–th 

basic resisting force of the system and lu  is a linear combination of the DOFs. Based on this 
formulation, the approach transforms the stability analysis to investigating the strictly positive 
realness of the transfer function matrix for the formulated system. Furthermore, this is 
equivalent to a problem of convex optimization that can be solved numerically. A sufficient 

condition, in terms of the difference between the upper and lower bounds of each basic 
resisting force of the system, where the explicit algorithm is stable in the sense of Lyapunov 
can be obtained numerically. Moreover, the explicit algorithm is asymptotically stable if the 
basic resisting force vector is strictly within a specific range defined in Eq. (5.49).  

 The proposed approach to investigate the Lyapunov stability of the explicit Newmark and the 
generalized- predictor-corrector explicit algorithms is demonstrated by several numerical 
examples of nonlinear SDOF and MDOF systems with stiffening or softening structural 
behavior. The structural systems investigated in these numerical examples include a bridge 
system and multi-story (number of stories ranging from 1 to 25) shear building systems. 
Detailed results from these examples have been presented. Moreover, detailed Lyapunov 
stability analysis has been demonstrated by an example of a nonlinear 2-story shear building. 
For the multi-story shear building, the difference between the upper and lower bounds of the 
stiffness of the first story ( 1 ), where high levels of nonlinearity may occur, is observed to 
increase with the increase of the damping values. It was also observed that 1  increases with 
the increase of the number of stories for the stiffening system or softening system with low 
damping. On the other hand, 1  decreases with the increase of the number of stories for the 
softening system with high damping. It is noted that the matrix k , representing the difference 
between the upper and lower bounds of the basic resisting force of the system, depends on the 
selection of the coefficient matrix and the cost function. In conclusion, the proposed approach 
is shown to be applicable for investigating the Lyapunov stability of explicit direct integration 
algorithms used to determine the dynamic response of nonlinear MDOF structural systems. 

 Solutions for overcoming the problems of convergence associated with the NTHA of RC 
highway bridges is presented in terms of efficient direct integration algorithms. For this 
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purpose, the applicability of the explicit OS and implicit TRBDF2 has been investigated for 
three RC highway bridges in California. The simulations of the investigated three bridges 
show that the OS and TRBDF2 algorithms provide very close results to those of the IN 
algorithm. Moreover, the TRBDF2 algorithm shows improved convergence performance as 
compared to the IN algorithm. Accordingly, the OS and TRBDF2 are suitable alternatives to 
the IN for NTHA of RC highway bridges.  

 For the implicit integration methods, Newton-Raphson with Line Search is observed to be the 
most suitable initial nonlinear solver in terms of convergence. Accordingly, an analyst can 
start with this method as the initial solver in the first simulation trial of an analytical model. 

 The sequence of the nonlinear solvers after a proper selection of the initial solver is observed 
to be insignificant. Accordingly, an analyst should pay more attention to the determination of 
the initial solver than the determination of the sequence of the subsequent solvers in the NTHA. 

 Simulations with the convergence test based on the Energy Increment lead to the same solution 
with significantly less number of iterations compared to other convergence tests. Accordingly, 
an analyst can consider the Energy Increment test in the first simulation trial of an analytical 
model subjected to NTHA. 

 Simulations conducted with tolerances of 10-5 and 10-8 selected for the Energy Increment test 
for all the integration time steps (of the simulation) are observed to result in very similar 
response calculations. Accordingly, the increase of the convergence tolerance for the 
integration time steps with convergence problems is a valid option to achieve convergence 
improvement. 

 Use of a smaller integration time step during the simulation does not necessarily improve the 
convergence behavior. However, selective reduction of the integration time step, i.e., only 
when needed, is useful to overcome the convergence problems, as long as the integration time 
step is reset to its original value after completion of the reduced time steps representing the 
original size of a time step. This resetting process is essential to prevent the simulation from 
being completed before the duration of the ground motion input. 

 Adaptive switching of integration algorithms shows improved convergence performance as 
compared to the use of IN algorithm only. Therefore, use of explicit integrators, e.g., OS 
algorithm, only at the numerically problematic steps is a viable and effective option to 
overcome the problems of convergence. 

 The efficacy of the proposed solutions is presented for a challenging subject in the context of 
PBEE that requires a large number of NTHA. This subject is the identification of 
predominantly first-mode EDPs under earthquake excitation by making use of different 
GMSM methods. In that regard, 1,440 NTHA were conducted where a significant number of 
problems related to convergence were encountered and overcome using the proposed solutions. 
The results obtained from these NTHA indicate that the higher mode effects are more 
pronounced on column displacements and deck accelerations than on column shear forces. 
Therefore, the column base shear is likely to be a first-mode dominant EDP, irrespective of 
the hazard level. Moreover, the effect of higher modes is observed to increase with increasing 
the hazard level and the nonlinearity. 
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 Taking advantage of the PBEE approach, a framework for probabilistic evaluation of the 
GMSM procedures is developed in the context of a selected large earthquake scenario with 
bidirectional GM excitations. 

 Two intensity measures are selected to account for the distinct behaviors in the longitudinal 
and the transverse directions of the bridge structures. A non-parametric inference, multivariate 
kernel density estimation, is utilized to estimate the joint probability density function (PDF) 
of the two intensity measures. 

 The structural collapse scenario, including the uncertainty of the collapse criteria, is 
considered and incorporated into the PDSD estimate. The conditional probability of collapse 
and that of EDPs are respectively estimated by multivariate binary logistic and linear 
regressions. 

 The reference benchmark PDSD is developed on the basis of equally treating the probability 
of earthquake occurrence at six different intercept angles between the direction of the 
earthquake and that of the longitudinal axis of the bridge. The difference of the PDSD estimate 
from each intercept angle and the benchmark is generally below 10% but can be up to 20% in 
few cases. Thus, the effect of the intercept angle on PDSD estimates is considerable. 

 The procedures of the benchmark PDSD development in the context of a given large 
earthquake scenario can be readily extended to the case of multiple earthquake scenarios. 
Future investigation will focus on simulations considering such multiple scenarios. 

 In general, the PDSD estimates from the amplitude scaling procedure using the spectral 
acceleration at the fundamental period (T1) with special attention to the pulse-like GMs, 

 
pa TS 1 , are larger and more accurate than the ones estimated from the  1TSa  procedure 

without special consideration of the pulse-like GMs. The  1TSa  and  
pa TS 1  procedures 

present certain superiority over the spectrum shape matching procedure using the conditional 
mean spectrum (CMS) while all three procedures underestimate the seismic demands for some 
bridges. 

 The PDSD estimates by the spectrum shape matching procedure using the unconditional 
selection (US) are almost always on the conservative side and accordingly the most 
conservative of all investigated GMSM procedures. The RC highway bridges are essential 
lifelines of the transportation infrastructure and thus their possible long downtime after severe 
earthquakes is not affordable for both the emergency response and community resiliency. 
Thus, among all four investigated GMSM procedures, it is recommended to use the US for 
selection and modification of GMs. 

10.3 FUTURE EXTENSIONS 

Several research topics that are appropriate for future investigations can be extended from this 
study. A list of such topics is given below: 
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1. Implement the proposed Lyapunov-based nonlinear equation solver in some software 
framework, e.g., OpenSees, and apply it to more complex structural systems, e.g., RC highway 
bridge systems utilized in this dissertation. 

2. Develop a new parameterized direct integration algorithm on the basis of Lyapunov stability 
theory and considering its applicability for nonlinear problems to investigate the stability 
performance. 

3. In this study, the distributions of the intercept angle for input GMs, the threshold drift ratio for 
failure criterion, and the EDPs conditioning on the intensity measures are respectively assumed 
to be of uniform, gamma, and lognormal distributions. These three assumptions can be 
revisited considering, e.g., the Kernel Density Maximum Entropy Method (KDMEM), refer to 
[Alibrandi and Mosalam, 2016], which is a method that determines the least biased distribution 
of a random variable from a sample data, which is very useful for good approximations of the 
tails (corresponding to low probability as in collapse) of the distribution. 

4. Stochastic GM simulated procedure can be included in the evaluation process. 

5. The GMSM selection and evaluation can be extended to the case of multiple earthquake 
scenarios. 
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Appendix A: Base Functions Used for Numerical 
Stability Analysis 

This Appendix gives an example set of base functions used for numerical stability analysis 
presented in Chapter 4. This example set includes constant ( 1Φ  to 6Φ ), linear ( 7Φ  to 12Φ ) and 

nonlinear ( 13Φ  to 18Φ ) base functions. 
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Appendix B: Derivation of α and β  for the Bridge 
Structure 

This appendix presents the derivation of α  and β  for the MDOF bridge structure depicted in 
Figure 5.4 to illustrate the Lyapunov-based approach of stability analysis proposed in Chapter 5.  
In the linear range of the investigated bridge structure, shown in Figure B.1 with identified DOFs 
and circled element numbers, the restoring forces are as follows: 
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Figure B.1 A MDOF bridge with identified DOFs and element numbers. 

Table B.1 List of elements contributing to the restoring force associated with each DOF. 

DOF Number 
Number of 

Elements  

Associated 

Elements 

1 1 1 
2 3 1, 3, 4 
3 2 2, 3 
4 2 2, 3 
5 2 4, 5 
6 2 4, 5 

 

Table B.1 shows the list of basic resisting forces that contribute to the restoring force associated 
with each DOF. For example, only one basic resisting force, which is from the column element 

(element 1), contributes to the restoring force associated with 1
u . Therefore, the total number of 

the basic resisting forces is 12222231 N . Based on the restoring forces in the linear 
range, redefine the DOFs ],,,[ 621

uuu
T u  using linear transformation to ],,,[ 1221

uuu
T u , 

i.e. βuu  , as follows: 
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Accordingly, the 12×6 matrix β  can be written as follows: 
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Defining the l–th basic resisting force l
q  as a function of  Nlu

l ,1,  , the restoring forces in the 

nonlinear range, i.e. αqf  , can be written as follows: 
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Accordingly, the 6×12 matrix α  can be written as follows: 
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The initial bounds, i.e. lower and upper bounds for stiffening and softening systems, respectively, 
for the basic resisting forces based on the numerical values in Eqs. (42), are as follows: 
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Therefore, the initial bound matrix Ik  is defined as ],,,diag[ 1221
IIII kkk k . 
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Appendix C: Derivation of α and β  for the Multi-
Story Shear Building 

This appendix presents the derivation of α  and β  for the MDOF shear building depicted in Figure 

5.5. Due to its assumed shear mode behavior, the number of the basic resisting forces, N , is equal 
to the number of DOFs, n . In the linear range of this shear building, the j–th restoring force is as 
follows: 
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where nlj  1:  with 01 n

Ik , 00 u  and j

Ik  is the initial stiffness of the j–th story. For such 

a building, the elements of the nn  ( nN  ) matrices α  and β  are as follows: 
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Thus, the elements of the row vectors jα  and lβ  , based on Eqs. (10) and (12), are as follows: 
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Based on Eqs. (9) and (11), we have 
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where nlj  1:  with 01 n
q , 00 u  and j

q  is the resisting force of the  j–th story. Therefore, 

the resisting force of the j–th story, j
q , is a function of the relative displacement of the j–th story, 

j
u . 
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Appendix D: Numerical Results for the 2-Story 
Shear Building 

This appendix documents all the numerical results for the 2-story shear building (Figure 5.5 with 
2n ) with stiffening and softening systems using the Lyapunov-based approach of stability 

analysis proposed in Chapter 5. 
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Softening Systems 
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Appendix E: Documentation of the Utilized 
Ground Motions in Chapter 8 

This appendix documents all the 40 pulse-like GMs utilized to demonstrate the applicability of 
investigated integration algorithms and nonlinear solvers. Moreover, the GMs utilized for the 
identification of predominantly first-mode EDPs under earthquake excitation are documented in 
this appendix. 

Table E.1 Documentation of 40 pulse-like GMs. 

Record 

Number 

NGA Record 

Sequence Number 

Earthquake 

Name 
Station Magnitude 

1 170 Imperial Valley-06 EC County Center FF 6.53 

2 171 Imperial Valley-06 EC Meloland Overpass FF 6.53 

3 179 Imperial Valley-06 El Centro Array #4 6.53 

4 180 Imperial Valley-06 El Centro Array #5 6.53 

5 181 Imperial Valley-06 El Centro Array #6 6.53 

6 182 Imperial Valley-06 El Centro Array #7 6.53 

7 183 Imperial Valley-06 El Centro Array #8 6.53 

8 184 Imperial Valley-06 El Centro Differential Array 6.53 

9 451 Morgan Hill Coyote Lake Dam (SW Abut) 6.19 

10 763 Loma Prieta Gilroy-Gavilan Coll. 6.93 

11 779 Loma Prieta LGPC 6.93 

12 879 Landers Lucerne 7.28 

13 900 Landers Yermo Fire Station 7.28 

14 982 Northridge-01 Jensen Filter Plant 6.69 

15 983 Northridge-01 Jensen Filter Plant Generator 6.69 

16 1044 Northridge-01 Newhall-Fire Sta 6.69 

17 1045 Northridge-01 Newhall - W Pico Canyon Rd. 6.69 

18 1063 Northridge-01 Rinaldi Receiving Sta 6.69 

19 1084 Northridge-01 Sylmar-Converter Sta 6.69 

20 1085 Northridge-01 Sylmar-Converter Sta East 6.69 

21 1086 Northridge-01 Sylmar-Olive View Med FF 6.69 

22 1106 Kobe, Japan KJMA 6.90 

23 1119 Kobe, Japan Takarazuka 6.90 

24 1161 Kocaeli, Turkey Gebze 7.51 

25 1197 Chi-Chi, Taiwan CHY028 7.62 

26 1244 Chi-Chi, Taiwan CHY101 7.62 

27 1489 Chi-Chi, Taiwan TCU049 7.62 

28 1492 Chi-Chi, Taiwan TCU052 7.62 

29 1493 Chi-Chi, Taiwan TCU053 7.62 

30 1494 Chi-Chi, Taiwan TCU054 7.62 
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Table E.1 (Cont.) Documentation of 40 pulse-like GMs. 

Record 

Number 

NGA Record 

Sequence Number 

Earthquake 

Name 
Station Magnitude 

31 1505 Chi-Chi, Taiwan TCU068 7.62 
32 1510 Chi-Chi, Taiwan TCU075 7.62 

33 1511 Chi-Chi, Taiwan TCU076 7.62 

34 1515 Chi-Chi, Taiwan TCU082 7.62 

35 1519 Chi-Chi, Taiwan TCU087 7.62 

36 1528 Chi-Chi, Taiwan TCU101 7.62 

37 1529 Chi-Chi, Taiwan TCU102 7.62 

38 1530 Chi-Chi, Taiwan TCU103 7.62 

39 1546 Chi-Chi, Taiwan TCU122 7.62 

40 1595 Chi-Chi, Taiwan WGK 7.62 
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Table E.2 Documentation of 40 GMs of CMS group of Bridge A with Type I abutment modeling for 
50% POE in 50 years. 

Record 

Number 

NGA Record 

Sequence Number 
Earthquake Name Station Magnitude 

Scaling 

Factor 

1 974 Northridge-01 Glendale-Las Palmas 6.69 1.65 
2 1454 Chi-Chi, Taiwan TAP090 7.62 0.73 
3 2116 Denali, Alaska TAPS Pump Station #12 7.90 2.03 
4 1427 Chi-Chi, Taiwan TAP035 7.62 1.20 
5 323 Coalinga-01 Parkfield-Cholame 12W 6.36 2.27 
6 1211 Chi-Chi, Taiwan CHY052 7.62 1.23 
7 756 Loma Prieta Dublin-Fire Station 6.93 1.48 
8 464 Morgan Hill Hollister Diff Array #3 6.19 1.67 
9 1293 Chi-Chi, Taiwan HWA046 7.62 1.68 
10 1275 Chi-Chi, Taiwan HWA026 7.62 1.60 
11 1797 Hector Mine LA-City Terrace 7.13 2.67 
12 1206 Chi-Chi, Taiwan CHY042 7.62 1.36 
13 2472 Chi-Chi, Taiwan-03 CHY046 6.20 2.30 
14 184 Imperial Valley-06 El Centro Differential Array 6.53 0.37 
15 1256 Chi-Chi, Taiwan HWA002 7.62 2.29 
16 993 Northridge-01 LA-Fletcher Dr 6.69 0.71 
17 1574 Chi-Chi, Taiwan TTN022 7.62 1.46 
18 1277 Chi-Chi, Taiwan HWA028 7.62 0.92 
19 881 Landers Morongo Valley 7.28 0.56 
20 1094 Northridge-01 West Covina-S Orange Ave 7.62 2.23 
21 1541 Chi-Chi, Taiwan TCU116 7.62 0.68 
22 1349 Chi-Chi, Taiwan ILA066 7.62 1.19 
23 1318 Chi-Chi, Taiwan ILA014 7.62 1.47 
24 779 Loma Prieta LGPC 6.93 0.17 
25 1068 Northridge-01 San Bernardino-Co Service  6.69 2.94 
26 1247 Chi-Chi, Taiwan HWA025 7.62 1.18 
27 1795 Hector Mine Joshua Tree N.M.-Keys View 7.62 2.53 
28 760 Loma Prieta Foster City-Menhaden Court 6.93 0.71 
29 2743 Chi-Chi, Taiwan-04 CHY087 6.20 2.24 
30 1433 Chi-Chi, Taiwan TAP047 7.62 2.03 
31 3342 Chi-Chi, Taiwan-06 HWA029 6.30 2.27 
32 1547 Chi-Chi, Taiwan TCU123 7.62 0.75 
33 1452 Chi-Chi, Taiwan TAP086 7.62 2.55 
34 1295 Chi-Chi, Taiwan HWA049 7.62 1.25 
35 126 Gazli, USSR Karakyr 6.80 0.30 
36 266 Victoria, Mexico Chihuahua 6.33 0.98 
37 549 Chalfant Valley-02 Bishop-LADWP South St 6.19 0.92 
38 749 Loma Prieta Berkeley-Strawberry Canyon 6.93 2.58 
39 1019 Northridge-01 Lake Hughes #1 6.69 1.11 
40 1789 Hector Mine Hesperia-4th & Palm 7.13 2.09 
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Table E.3 Documentation of 40 GMs of CMS group of Bridge A with Type II abutment modeling for 
50% POE in 50 years. 

Record 

Number 

NGA Record 

Sequence Number 
Earthquake Name Station Magnitude 

Scaling 

Factor 

1 974 Northridge-01 Glendale-Las Palmas 6.69 1.24 
2 1221 Chi-Chi, Taiwan CHY052 7.62 0.63 
3 860 Landers Hemet Fire Station 7.28 2.68 
4 2490 Chi-Chi, Taiwan-03 CHY074 6.20 1.40 
5 1242 Chi-Chi, Taiwan CHY099 7.62 1.64 
6 1427 Chi-Chi, Taiwan TAP035 7.62 1.43 
7 1587 Chi-Chi, Taiwan TTN042 7.62 2.10 
8 1271 Chi-Chi, Taiwan HWA022 7.62 1.08 
9 1256 Chi-Chi, Taiwan HWA002 7.62 1.89 
10 1155 Kocaeli, Turkey Bursa Tofas 7.51 0.91 
11 2699 Chi-Chi, Taiwan-04 CHY024 6.20 2.06 
12 2694 Chi-Chi, Taiwan-04 CHY015 6.20 1.16 
13 1291 Chi-Chi, Taiwan HWA044 7.62 1.69 
14 851 Landers Downey-Co Maint Bldg 7.28 2.81 
15 1177 Kocaeli, Turkey Zeytinburnu 7.51 0.98 
16 753 Loma Prieta Corralitos 6.93 0.23 
17 3313 Chi-Chi, Taiwan-06 CHY094 6.30 1.90 
18 1452 Chi-Chi, Taiwan TAP086 7.62 2.41 
19 1791 Hector Mine Indio-Coachella Canal 7.13 1.29 
20 1120 Kobe, Japan Takatori 6.90 0.21 
21 1211 Chi-Chi, Taiwan CHY052 7.62 0.96 
22 734 Loma Prieta APEEL 3E Hayward CSUH 6.93 2.07 
23 990 Northridge-01 LA-City Terrace 6.69 0.96 
24 1318 Chi-Chi, Taiwan ILA014 7.62 1.41 
25 1019 Northridge-01 Lake Hughes #1 6.69 1.24 
26 1541 Chi-Chi, Taiwan TCU116 7.62 0.69 
27 1775 Hector Mine Castaic-Old Ridge Route 7.13 2.57 
28 3503 Chi-Chi, Taiwan-06 TCU122 6.30 1.42 
29 1426 Chi-Chi, Taiwan TAP034 7.62 2.13 
30 1279 Chi-Chi, Taiwan HWA030 7.62 1.61 
31 796 Loma Prieta SF-Presidio 6.93 0.96 
32 964 Northridge-01 Compton-Castlegate St 6.69 1.47 
33 1198 Chi-Chi, Taiwan CHY029 7.62 0.36 
34 850 Landers Desert Hot Springs 7.28 1.02 
35 1445 Chi-Chi, Taiwan TAP075 7.62 1.72 
36 993 Northridge-01 LA-Fletcher Dr 6.69 0.56 
37 1210 Chi-Chi, Taiwan CHY050 7.62 1.91 
38 2465 Chi-Chi, Taiwan-03 CHY034 6.20 1.56 
39 1345 Chi-Chi, Taiwan ILA061 7.62 2.22 
40 1528 Chi-Chi, Taiwan TCU101 7.62 0.53 



184 
 

Table E.4 Documentation of 40 GMs of CMS group of Bridge A with Type I abutment modeling for 
10% POE in 50 years. 

Record 

Number 

NGA Record 

Sequence Number 
Earthquake Name Station Magnitude 

Scaling 

Factor 

1 1238 Chi-Chi, Taiwan CHY092 7.62 2.43 
2 1350 Chi-Chi, Taiwan ILA067 7.62 1.48 
3 547 Chalfant Valley-01 Zack Brothers Ranch 5.77 1.81 
4 1176 Kocaeli, Turkey Yarimca 7.51 0.80 
5 838 Landers Barstow 7.28 1.97 
6 900 Landers Yermo Fire Station 7.28 1.29 
7 778 Loma Prieta Hollister Diff. Array 6.93 0.68 
8 1243 Chi-Chi, Taiwan CHY100 7.62 2.61 
9 773 Loma Prieta Hayward-BART Sta 6.93 2.74 
10 1317 Chi-Chi, Taiwan ILA013 7.62 1.03 
11 1329 Chi-Chi, Taiwan ILA037 7.62 2.45 
12 1605 Duzce, Turkey Duzce 7.14 0.45 
13 162 Imperial Valley-06 Calexico Fire Station 6.53 1.70 
14 1268 Chi-Chi, Taiwan HWA017 7.62 2.48 
15 756 Loma Prieta Dublin-Fire Station 6.93 2.90 
16 762 Loma Prieta Fremont-Mission San Jose 6.93 2.34 
17 779 Loma Prieta LGPC 6.93 0.33 
18 1206 Chi-Chi, Taiwan CHY042 7.62 2.66 
19 139 Tabas, Iran Dayhook 7.35 1.40 
20 3271 Chi-Chi, Taiwan-06 CHY032 6.30 2.46 
21 1303 Chi-Chi, Taiwan HWA058 7.62 2.18 
22 1234 Chi-Chi, Taiwan CHY086 7.62 1.25 
23 1349 Chi-Chi, Taiwan ILA066 7.62 2.34 
24 170 Imperial Valley-06 EC County Center FF 6.53 0.98 
25 467 Morgan Hill Hollister Diff. Array 6.19 2.51 
26 1784 Hector Mine Frink 7.13 2.77 
27 1490 Chi-Chi, Taiwan TCU050 7.62 1.37 
28 1263 Chi-Chi, Taiwan HWA012 7.62 2.53 
29 761 Loma Prieta Fremont-Emerson Court 6.93 1.80 
30 772 Loma Prieta Halls Valley 6.93 1.63 
31 1149 Kocaeli, Turkey Atakoy 7.51 2.84 
32 1810 Hector Mine Mecca-CVWD Yard 7.13 1.98 
33 2715 Chi-Chi, Taiwan-04 CHY047 6.20 2.67 
34 3276 Chi-Chi, Taiwan-06 CHY037 6.30 1.79 
35 1187 Chi-Chi, Taiwan CHY015 7.62 1.36 
36 2714 Chi-Chi, Taiwan-04 CHY046 6.20 2.64 
37 1489 Chi-Chi, Taiwan TCU049 7.62 1.08 
38 1048 Northridge-01 Northridge-17645 Saticoy St 6.69 0.73 
39 850 Landers Desert Hot Springs 7.28 1.71 
40 1536 Chi-Chi, Taiwan TCU110 7.62 1.00 
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Table E.5 Documentation of 40 GMs of CMS group of Bridge A with Type II abutment modeling for 
10% POE in 50 years. 

Record 

Number 

NGA Record 

Sequence Number 
Earthquake Name Station Magnitude 

Scaling 

Factor 

1 1336 Chi-Chi, Taiwan ILA048 7.62 1.90 
2 3312 Chi-Chi, Taiwan-06 CHY093 6.30 2.92 
3 2110 Chi-Chi, Taiwan-02 CHY111 5.90 2.52 
4 1332 Chi-Chi, Taiwan ILA042 7.62 2.03 
5 1481 Chi-Chi, Taiwan TCU038 7.62 1.38 
6 1350 Chi-Chi, Taiwan ILA067 7.62 1.36 
7 183 Imperial Valley-06 El Centro Array #8 6.53 0.73 
8 1528 Chi-Chi, Taiwan TCU101 7.62 1.03 
9 1810 Hector Mine Mecca-CVWD Yard 7.13 1.79 
10 126 Gazli, USSR Karakyr 6.80 0.52 
11 1211 Chi-Chi, Taiwan CHY052 7.62 1.88 
12 1074 Northridge-01 Sandberg - Bald Mtn 6.69 2.71 
13 1508 Chi-Chi, Taiwan TCU072 7.62 0.51 
14 1293 Chi-Chi, Taiwan HWA046 7.62 2.60 
15 1187 Chi-Chi, Taiwan CHY015 7.62 1.42 
16 3503 Chi-Chi, Taiwan-06 TCU122 6.30 2.78 
17 1478 Chi-Chi, Taiwan TCU033 7.62 1.69 
18 1206 Chi-Chi, Taiwan CHY042 7.62 2.89 
19 3473 Chi-Chi, Taiwan-06 TCU078 6.30 1.05 
20 801 Loma Prieta San Jose-Santa Teresa Hills 6.93 1.08 
21 3271 Chi-Chi, Taiwan-06 CHY032 6.30 2.08 
22 1555 Chi-Chi, Taiwan TCU147 7.62 2.13 
23 465 Morgan Hill Hollister Diff Array #4 6.19 2.96 
24 2461 Chi-Chi, Taiwan-03 CHY028 6.20 1.68 
25 2458 Chi-Chi, Taiwan-03 CHY025 6.20 2.43 
26 3510 Chi-Chi, Taiwan-06 TCU139 6.30 2.14 
27 983 Northridge-01 Jensen Filter Plant Generator 6.69 0.58 
28 1295 Chi-Chi, Taiwan HWA049 7.62 2.54 
29 1509 Chi-Chi, Taiwan TCU074 7.62 0.46 
30 754 Loma Prieta Coyote Lake Dam (Downst) 6.93 1.83 
31 1049 Northridge-01 Pacific Palisades-Sunset 6.69 1.41 
32 300 Irpinia, Italy-02 Calitri 6.20 1.34 
33 1177 Kocaeli, Turkey Zeytinburnu 7.51 1.92 
34 2715 Chi-Chi, Taiwan-04 CHY047 6.20 2.50 
35 1791 Hector Mine Indio-Coachella Canal 7.13 2.53 
36 1263 Chi-Chi, Taiwan HWA012 7.62 2.70 
37 1427 Chi-Chi, Taiwan TAP035 7.62 2.80 
38 832 Landers Amboy 7.28 2.36 
39 1087 Northridge-01 Tarzana-Cedar Hill A 6.69 0.22 
40 1546 Chi-Chi, Taiwan TCU122 7.62 1.13 
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Table E.6 Documentation of 40 GMs of CMS group of Bridge A with Type I abutment modeling for 
2% POE in 50 years. 

Record 

Number 

NGA Record 

Sequence Number 
Earthquake Name Station Magnitude 

Scaling 

Factor 

1 1520 Chi-Chi, Taiwan TCU088 7.62 2.39 
2 1186 Chi-Chi, Taiwan CHY014 7.62 1.03 
3 182 Imperial Valley-06 El Centro Array #7 6.53 0.81 
4 1045 Northridge-01 Newhall-W Pico Canyon Rd. 6.69 1.36 
5 1155 Kocaeli, Turkey Bursa Tofas 7.51 2.43 
6 1234 Chi-Chi, Taiwan CHY086 7.62 2.08 
7 1794 Hector Mine Joshua Tree 7.13 2.87 
8 1282 Chi-Chi, Taiwan HWA033 7.62 2.41 
9 2632 Chi-Chi, Taiwan-03 TCU084 6.20 2.59 
10 776 Loma Prieta Hollister-South & Pine 6.93 1.32 
11 779 Loma Prieta LGPC 6.93 0.54 
12 821 Erzican, Turkey Erzincan 6.69 0.95 
13 900 Landers Yermo Fire Station 7.28 2.15 
14 1489 Chi-Chi, Taiwan TCU049 7.62 1.79 
15 1454 Chi-Chi, Taiwan TAP090 7.62 2.38 
16 1297 Chi-Chi, Taiwan HWA051 7.62 2.87 
17 1204 Chi-Chi, Taiwan CHY039 7.62 2.81 
18 1120 Kobe, Japan Takatori 6.90 0.66 
19 1509 Chi-Chi, Taiwan TCU074 7.62 0.52 
20 1493 Chi-Chi, Taiwan TCU053 7.62 1.94 
21 1495 Chi-Chi, Taiwan TCU055 7.62 1.82 
22 761 Loma Prieta Fremont-Emerson Court 6.93 2.98 
23 1158 Kocaeli, Turkey Duzce 7.51 1.38 
24 723 Superstition Hills-02 Parachute Test Site 6.54 1.06 
25 803 Loma Prieta Saratoga-W Valley Coll. 6.93 1.47 
26 1198 Chi-Chi, Taiwan CHY029 7.62 1.16 
27 1201 Chi-Chi, Taiwan CHY034 7.62 1.09 
28 316 Westmorland Parachute Test Site 5.90 1.99 
29 1521 Chi-Chi, Taiwan TCU089 7.62 1.92 
30 1044 Northridge-01 Newhall-Fire Sta 6.69 0.62 
31 772 Loma Prieta Halls Valley 6.93 2.71 
32 1187 Chi-Chi, Taiwan CHY015 7.62 2.26 
33 881 Landers Morongo Valley 7.28 1.84 
34 796 Loma Prieta SF-Presidio 6.93 2.26 
35 558 Chalfant Valley-02 Zack Brothers Ranch 6.19 0.84 
36 1300 Chi-Chi, Taiwan HWA055 7.62 2.84 
37 1529 Chi-Chi, Taiwan TCU102 7.62 1.26 
38 1481 Chi-Chi, Taiwan TCU038 7.62 2.43 
39 1490 Chi-Chi, Taiwan TCU050 7.62 2.28 
40 755 Loma Prieta Coyote Lake Dam (SW Abut) 6.93 1.67 
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Table E.7 Documentation of 40 GMs of CMS group of Bridge A with Type II abutment modeling for 
2% POE in 50 years. 

Record 

Number 

NGA Record 

Sequence Number 
Earthquake Name Station Magnitude 

Scaling 

Factor 

1 1205 Chi-Chi, Taiwan CHY041 7.62 0.79 
2 1088 Northridge-01 Terminal Island-S Seaside 6.69 2.57 
3 412 Coalinga-05 Pleasant Valley P.P.-yard 5.77 1.91 
4 1350 Chi-Chi, Taiwan ILA067 7.62 2.22 
5 1201 Chi-Chi, Taiwan CHY034 7.62 0.92 
6 1116 Kobe, Japan Shin-Osaka 6.90 1.36 
7 1481 Chi-Chi, Taiwan TCU038 7.62 2.25 
8 184 Imperial Valley-06 El Centro Differential Array 6.53 1.26 
9 755 Loma Prieta Coyote Lake Dam (SW Abut) 6.93 1.48 
10 1509 Chi-Chi, Taiwan TCU074 7.62 0.76 
11 801 Loma Prieta San Jose-Santa Teresa Hills 6.93 1.77 
12 779 Loma Prieta LGPC 6.93 0.61 
13 1456 Chi-Chi, Taiwan TAP095 7.62 2.08 
14 900 Landers Yermo Fire Station 7.28 2.67 
15 1434 Chi-Chi, Taiwan TAP049 7.62 2.92 
16 1810 Hector Mine Mecca-CVWD Yard 7.13 2.93 
17 730 Spitak, Armenia Gukasian 6.77 2.99 
18 1155 Kocaeli, Turkey Bursa Tofas 7.51 2.93 
19 1317 Chi-Chi, Taiwan ILA013 7.62 1.48 
20 1234 Chi-Chi, Taiwan CHY086 7.62 2.10 
21 1165 Kocaeli, Turkey Izmit 7.51 1.96 
22 986 Northridge-01 LA-Brentwood VA Hospital 6.69 2.00 
23 1519 Chi-Chi, Taiwan TCU087 7.62 2.42 
24 1292 Chi-Chi, Taiwan HWA045 7.62 2.79 
25 1508 Chi-Chi, Taiwan TCU072 7.62 0.83 
26 1009 Northridge-01 LA-Wadsworth VA Hospital  6.69 2.2 
27 1529 Chi-Chi, Taiwan TCU102 7.62 1.52 
28 1187 Chi-Chi, Taiwan CHY015 7.62 2.33 
29 1493 Chi-Chi, Taiwan TCU053 7.62 2.10 
30 2461 Chi-Chi, Taiwan-03 CHY028 6.20 2.75 
31 1282 Chi-Chi, Taiwan HWA033 7.62 2.55 
32 1495 Chi-Chi, Taiwan TCU055 7.62 1.76 
33 731 Loma Prieta APEEL 10-Skyline 6.93 2.85 
34 776 Loma Prieta Hollister-South & Pine 6.93 1.38 
35 778 Loma Prieta Hollister Diff. Array 6.93 1.27 
36 1158 Kocaeli, Turkey Duzce 7.51 1.27 
37 1515 Chi-Chi, Taiwan TCU082 7.62 1.70 
38 1048 Northridge-01 Northridge-17645 Saticoy St 6.69 1.08 
39 1227 Chi-Chi, Taiwan CHY074 7.62 1.86 
40 2467 Chi-Chi, Taiwan-03 CHY036 6.20 2.94 



188 
 

Table E.8 Documentation of 40 GMs of reference group of Bridge A for 50% POE in 50 years. 

Record 

Number 

NGA Record 

Sequence Number 
Earthquake Name Station Magnitude 

Scaling 

Factor 

1 2650 Chi-Chi, Taiwan-03 TCU116 6.20 3.00 
2 2899 Chi-Chi, Taiwan-04 TCU141 6.20 1.60 
3 1177 Kocaeli, Turkey Zeytinburnu 7.51 2.70 
4 900 Landers Yermo Fire Station 7.28 0.80 
5 1164 Kocaeli, Turkey Istanbul 7.51 2.90 
6 1315 Chi-Chi, Taiwan ILA010 7.62 3.00 
7 1799 Hector Mine LA-Obregon Park 7.13 2.80 
8 1531 Chi-Chi, Taiwan TCU104 7.62 0.50 
9 1148 Kocaeli, Turkey Arcelik 7.51 1.20 
10 2756 Chi-Chi, Taiwan-04 CHY114 6.20 2.80 
11 2695 Chi-Chi, Taiwan-04 CHY016 6.20 2.60 
12 1350 Chi-Chi, Taiwan ILA067 7.62 1.10 
13 761 Loma Prieta Fremont-Emerson Court 6.93 2.20 
14 439 Borah Peak, ID-01 TAN-719 6.88 2.80 
15 803 Loma Prieta Saratoga-W Valley Coll. 6.93 0.60 
16 2655 Chi-Chi, Taiwan-03 TCU122 6.20 1.50 
17 1577 Chi-Chi, Taiwan TTN025 7.62 2.70 
18 833 Landers Anaheim-W Ball Rd 7.28 2.30 
19 776 Loma Prieta Hollister-South & Pine 6.93 0.70 
20 946 Northridge-01 Antelope Buttes 6.69 2.00 
21 1049 Northridge-01 Pacific Palisades-Sunset 6.69 1.20 
22 1783 Hector Mine Fort Irwin 7.13 1.10 
23 2706 Chi-Chi, Taiwan-04 CHY032 6.20 2.60 
24 1762 Hector Mine Amboy 7.13 1.00 
25 780 Loma Prieta Larkspur Ferry Terminal (FF) 6.93 2.30 
26 1358 Chi-Chi, Taiwan KAU012 7.62 1.90 
27 751 Loma Prieta Calaveras Reservoir 6.93 1.30 
28 1206 Chi-Chi, Taiwan CHY042 7.62 1.90 
29 1400 Chi-Chi, Taiwan NCU 7.62 1.70 
30 28 Parkfield Cholame-Shandon Array #12 6.19 1.40 
31 333 Coalinga-01 Parkfield-Cholame 8W 6.36 2.90 
32 2994 Chi-Chi, Taiwan-05 CHY116 6.20 2.80 
33 1503 Chi-Chi, Taiwan TCU065 7.62 0.70 
34 2646 Chi-Chi, Taiwan-03 TCU109 6.20 2.10 
35 792 Loma Prieta SF-1295 Shafter 6.93 1.20 
36 247 Mammoth Lakes-06 Bishop-Paradise Lodge 5.94 2.10 
37 2639 Chi-Chi, Taiwan-03 TCU100 6.20 2.40 
38 855 Landers Fort Irwin 7.28 1.50 
39 1551 Chi-Chi, Taiwan TCU138 7.62 0.60 
40 1434 Chi-Chi, Taiwan TAP049 7.62 1.40 
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Table E.9 Documentation of 40 GMs of reference group of Bridge A for 10% POE in 50 years. 

Record 

Number 

NGA Record 

Sequence Number 
Earthquake Name Station Magnitude 

Scaling 

Factor 

1 1310 Chi-Chi, Taiwan ILA004 7.62 2.60  
2 1201 Chi-Chi, Taiwan CHY034 7.62 3.00  
3 1472 Chi-Chi, Taiwan TCU017 7.62 2.30  
4 1488 Chi-Chi, Taiwan TCU048 7.62 1.10  
5 1147 Kocaeli, Turkey Ambarli 7.51 1.50  
6 1244 Chi-Chi, Taiwan CHY101 7.62 0.60  
7 1476 Chi-Chi, Taiwan TCU029 7.62 1.10  
8 1794 Hector Mine Joshua Tree 7.13 3.00  
9 171 Imperial Valley-06 EC Meloland Overpass FF 6.53 1.70  
10 1234 Chi-Chi, Taiwan CHY086 7.62 2.20  
11 143 Tabas, Iran Tabas 7.35 0.30  
12 1350 Chi-Chi, Taiwan ILA067 7.62 0.80  
13 888 Landers San Bernardino-E Hospitality 7.28 2.30  
14 1614 Duzce, Turkey Lamont 1061 7.14 2.90  
15 126 Gazli, USSR Karakyr 6.80 0.50  
16 880 Landers Mission Creek Fault 7.28 2.70  
17 285 Irpinia, Italy-01 Bagnoli Irpinio 6.90 1.60  
18 3509 Chi-Chi, Taiwan-06 TCU138 6.30 2.40  
19 1193 Chi-Chi, Taiwan CHY024 7.62 1.20  
20 825 Cape Mendocino Cape Mendocino 7.01 0.60  
21 767 Loma Prieta Gilroy Array #3 6.93 0.60  
22 1493 Chi-Chi, Taiwan TCU053 7.62 2.30  
23 3266 Chi-Chi, Taiwan-06 CHY026 6.30 1.90  
24 2458 Chi-Chi, Taiwan-03 CHY025 6.20 1.10  
25 184 Imperial Valley-06 El Centro Differential Array 6.53 0.80  
26 1148 Kocaeli, Turkey Arcelik 7.51 1.70  
27 1116 Kobe, Japan Shin-Osaka 6.90 1.90  
28 1507 Chi-Chi, Taiwan TCU071 7.62 1.10  
29 730 Spitak, Armenia Gukasian 6.77 1.60  
30 900 Landers Yermo Fire Station 7.28 2.00  
31 2655 Chi-Chi, Taiwan-03 TCU122 6.20 0.70  
32 755 Loma Prieta Coyote Lake Dam (SW Abut) 6.93 2.60  
33 1547 Chi-Chi, Taiwan TCU123 7.62 2.60  
34 185 Imperial Valley-06 Holtville Post Office 6.53 1.40  
35 879 Landers Lucerne 7.28 1.20  
36 1503 Chi-Chi, Taiwan TCU065 7.62 0.50  
37 1521 Chi-Chi, Taiwan TCU089 7.62 0.70  
38 2473 Chi-Chi, Taiwan-03 CHY047 6.20 2.70  
39 1495 Chi-Chi, Taiwan TCU055 7.62 2.00  
40 1491 Chi-Chi, Taiwan TCU051 7.62 1.40  
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Table E.10 Documentation of 40 GMs of reference group of Bridge A for 2% POE in 50 years. 

Record 

Number 

NGA Record 

Sequence Number 
Earthquake Name Station Magnitude 

Scaling 

Factor 

1 190 Imperial Valley-06 Superstition Mtn Camera 6.53 1.90 
2 1476 Chi-Chi, Taiwan TCU029 7.62 1.90 
3 1486 Chi-Chi, Taiwan TCU046 7.62 2.00 
4 900 Landers Yermo Fire Station 7.28 2.00 
5 1505 Chi-Chi, Taiwan TCU068 7.62 0.80 
6 1147 Kocaeli, Turkey Ambarli 7.51 3.00 
7 1521 Chi-Chi, Taiwan TCU089 7.62 2.40 
8 1503 Chi-Chi, Taiwan TCU065 7.62 0.50 
9 1478 Chi-Chi, Taiwan TCU033 7.62 2.70 
10 1176 Kocaeli, Turkey Yarimca 7.51 2.40 
11 170 Imperial Valley-06 EC County Center FF 6.53 2.30 
12 1511 Chi-Chi, Taiwan TCU076 7.62 2.30 
13 285 Irpinia, Italy-01 Bagnoli Irpinio 6.90 2.80 
14 1541 Chi-Chi, Taiwan TCU116 7.62 2.60 
15 1488 Chi-Chi, Taiwan TCU048 7.62 1.70 
16 1244 Chi-Chi, Taiwan CHY101 7.62 0.90 
17 723 Superstition Hills-02 Parachute Test Site 6.54 2.30 
18 879 Landers Lucerne 7.28 1.60 
19 728 Superstition Hills-02 Westmorland Fire Sta 6.54 2.50 
20 182 Imperial Valley-06 El Centro Array #7 6.53 2.80 
21 779 Loma Prieta LGPC 6.93 1.00 
22 1149 Kocaeli, Turkey Atakoy 7.51 2.80 
23 1048 Northridge-01 Northridge-17645 Saticoy St 6.69 1.20 
24 1529 Chi-Chi, Taiwan TCU102 7.62 1.90 
25 1525 Chi-Chi, Taiwan TCU096 7.62 3.00 
26 126 Gazli, USSR Karakyr 6.80 0.70 
27 803 Loma Prieta Saratoga-W Valley Coll. 6.93 1.80 
28 184 Imperial Valley-06 El Centro Differential Array 6.53 3.00 
29 721 Superstition Hills-02 El Centro Imp. Co. Cent 6.54 2.30 
30 1534 Chi-Chi, Taiwan TCU107 7.62 2.60 
31 1762 Hector Mine Amboy 7.13 2.80 
32 1297 Chi-Chi, Taiwan HWA051 7.62 2.40 
33 175 Imperial Valley-06 El Centro Array #12 6.53 2.30 
34 1158 Kocaeli, Turkey Duzce 7.51 2.70 
35 1198 Chi-Chi, Taiwan CHY029 7.62 2.20 
36 1546 Chi-Chi, Taiwan TCU122 7.62 2.40 
37 1111 Kobe, Japan Nishi-Akashi 6.90 1.90 
38 3472 Chi-Chi, Taiwan-06 TCU076 6.30 2.40 
39 1527 Chi-Chi, Taiwan TCU100 7.62 2.10 
40 776 Loma Prieta Hollister-South & Pine 6.93 1.60 
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Table E.11 Documentation of 40 GMs of CMS group of Bridge B for 50% POE in 50 years. 

Record 

Number 

NGA Record 

Sequence Number 
Earthquake Name Station Magnitude 

Scaling 

Factor 

1 2709 Chi-Chi, Taiwan-04 CHY035 6.20 1.05 
2 354 Coalinga-01 Parkfield-Gold Hill 5W 6.36 2.13 
3 900 Landers Yermo Fire Station 7.28 0.73 
4 12 Kern County LA-Hollywood Stor FF 7.36 2.95 
5 1551 Chi-Chi, Taiwan TCU138 7.62 0.77 
6 1267 Chi-Chi, Taiwan HWA016 7.62 2.12 
7 838 Landers Barstow 7.28 1.52 
8 126 Gazli, USSR Karakyr 6.80 0.46 
9 1297 Chi-Chi, Taiwan HWA051 7.62 1.22 
10 993 Northridge-01 LA-Fletcher Dr 6.69 1.68 
11 1092 Northridge-01 Ventura-Harbor & California 6.69 1.77 
12 2490 Chi-Chi, Taiwan-03 CHY074 6.20 2.98 
13 762 Loma Prieta Fremont-Mission San Jose 6.93 2.52 
14 1262 Chi-Chi, Taiwan HWA011 7.62 1.15 
15 885 Landers Pomona-4th & Locust FF 7.28 2.29 
16 1791 Hector Mine Indio-Coachella Canal 7.13 1.36 
17 1177 Kocaeli, Turkey Zeytinburnu 7.51 2.05 
18 892 Landers Sun Valley-Roscoe Blvd 7.28 2.95 
19 1206 Chi-Chi, Taiwan CHY042 7.62 1.62 
20 721 Superstition Hills-02 El Centro Imp. Co. Cent 6.54 0.78 
21 1817 Hector Mine North Shore - Durmid 7.13 2.39 
22 266 Superstition Hills-02 El Centro Imp. Co. Cent 6.54 1.56 
23 882 Landers North Palm Springs 7.28 1.65 
24 803 Loma Prieta Saratoga-W Valley Coll. 6.93 0.41 
25 1349 Chi-Chi, Taiwan ILA066 7.62 2.35 
26 1155 Kocaeli, Turkey Bursa Tofas 7.51 1.17 
27 1511 Chi-Chi, Taiwan TCU076 7.62 0.58 
28 1459 Chi-Chi, Taiwan TAP100 7.62 1.36 
29 2459 Chi-Chi, Taiwan-03 CHY026 6.20 2.79 
30 1275 Chi-Chi, Taiwan HWA026 7.62 2.33 
31 759 Loma Prieta Foster City-APEEL 1 6.93 0.49 
32 1243 Chi-Chi, Taiwan CHY100 7.62 2.14 
33 1337 Chi-Chi, Taiwan ILA049 7.62 1.22 
34 1454 Chi-Chi, Taiwan TAP090 7.62 0.94 
35 1489 Chi-Chi, Taiwan TCU049 7.62 0.75 
36 730 Spitak, Armenia Gukasian 6.77 1.21 
37 2467 Chi-Chi, Taiwan-03 CHY036 6.20 2.00 
38 1334 Chi-Chi, Taiwan ILA044 7.62 0.95 
39 1476 Chi-Chi, Taiwan TCU029 7.62 1.34 
40 2461 Chi-Chi, Taiwan-03 CHY028 6.20 0.91 
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Table E.12 Documentation of 40 GMs of CMS group of Bridge B for 10% POE in 50 years. 

Record 

Number 

NGA Record 

Sequence Number 
Earthquake Name Station Magnitude 

Scaling 

Factor 

1 1080 Northridge-01 Simi Valley-Katherine Rd 6.69 1.04 
2 1297 Chi-Chi, Taiwan HWA051 7.62 2.64 
3 1113 Kobe, Japan OSAJ 6.90 2.55 
4 900 Landers Yermo Fire Station 7.28 1.58 
5 827 Cape Mendocino Fortuna-Fortuna Blvd 7.01 2.95 
6 1550 Chi-Chi, Taiwan TCU136 7.62 1.38 
7 1155 Kocaeli, Turkey Bursa Tofas 7.51 2.52 
8 1317 Chi-Chi, Taiwan ILA013 7.62 2.14 
9 1492 Chi-Chi, Taiwan TCU052 7.62 0.53 
10 1530 Chi-Chi, Taiwan TCU103 7.62 2.08 
11 1529 Chi-Chi, Taiwan TCU102 7.62 0.91 
12 1534 Chi-Chi, Taiwan TCU107 7.62 1.73 
13 1472 Chi-Chi, Taiwan TCU017 7.62 2.37 
14 182 Imperial Valley-06 El Centro Array #7 6.53 0.93 
15 1414 Chi-Chi, Taiwan TAP008 7.62 2.62 
16 1204 Chi-Chi, Taiwan CHY039 7.62 2.96 
17 856 Landers Fountain Valley-Euclid 7.28 2.97 
18 776 Loma Prieta Hollister-South & Pine 6.93 0.91 
19 1295 Chi-Chi, Taiwan HWA049 7.62 2.58 
20 1149 Kocaeli, Turkey Atakoy 7.51 2.42 
21 1264 Chi-Chi, Taiwan HWA013 7.62 1.78 
22 1787 Hector Mine Hector 7.13 1.23 
23 803 Loma Prieta Saratoga-W Valley Coll. 6.93 0.89 
24 1459 Chi-Chi, Taiwan TAP100 7.62 2.93 
25 126 Gazli, USSR Karakyr 6.80 1.00 
26 1044 Northridge-01 Newhall-Fire Sta 6.69 0.63 
27 1489 Chi-Chi, Taiwan TCU049 7.62 1.63 
28 170 Imperial Valley-06 EC County Center FF 6.53 1.59 
29 1329 Chi-Chi, Taiwan ILA037 7.62 2.96 
30 3265 Chi-Chi, Taiwan-06 CHY025 6.30 2.59 
31 864 Landers Joshua Tree 7.28 1.04 
32 1262 Chi-Chi, Taiwan HWA011 7.62 2.49 
33 1234 Chi-Chi, Taiwan CHY086 7.62 2.32 
34 1536 Chi-Chi, Taiwan TCU110 7.62 1.34 
35 1147 Kocaeli, Turkey Ambarli 7.51 1.29 
36 1509 Chi-Chi, Taiwan TCU074 7.62 0.61 
37 1039 Northridge-01 Moorpark-Fire Sta 6.69 2.31 
38 285 Irpinia, Italy-01 Bagnoli Irpinio 6.90 2.06 
39 1541 Chi-Chi, Taiwan TCU116 7.62 1.49 
40 1334 Chi-Chi, Taiwan ILA044 7.62 2.06 



193 
 

Table E.13 Documentation of 40 GMs of CMS group of Bridge B for 2% POE in 50 years. 

Record 

Number 

NGA Record 

Sequence Number 
Earthquake Name Station Magnitude 

Scaling 

Factor 

1 1419 Chi-Chi, Taiwan TAP017 7.62 2.35 
2 732 Loma Prieta APEEL 2-Redwood City 6.93 1.07 
3 1264 Chi-Chi, Taiwan HWA013 7.62 2.79 
4 1410 Chi-Chi, Taiwan TAP003 7.62 2.48 
5 1492 Chi-Chi, Taiwan TCU052 7.62 0.83 
6 776 Loma Prieta Hollister-South & Pine 6.93 1.43 
7 1044 Northridge-01 Newhall-Fire Sta 6.69 0.99 
8 1201 Chi-Chi, Taiwan CHY034 7.62 1.78 
9 341 Coalinga-01 Parkfield-Fault Zone 2 6.36 2.85 
10 1084 Northridge-01 Sylmar - Converter Sta 6.69 0.58 
11 759 Loma Prieta Foster City-APEEL 1 6.93 1.66 
12 1045 Northridge-01 Newhall-W Pico Canyon Rd. 6.69 1.34 
13 300 Irpinia, Italy-02 Calitri 6.20 2.17 
14 1411 Chi-Chi, Taiwan TAP005 7.62 2.23 
15 1504 Chi-Chi, Taiwan TCU067 7.62 1.22 
16 780 Loma Prieta Larkspur Ferry Terminal (FF) 6.93 2.42 
17 1547 Chi-Chi, Taiwan TCU123 7.62 2.19 
18 744 Loma Prieta Bear Valley #12 6.93 1.81 
19 1517 Chi-Chi, Taiwan TCU084 7.62 0.69 
20 1529 Chi-Chi, Taiwan TCU102 7.62 1.43 
21 1147 Kocaeli, Turkey Ambarli 7.51 2.02 
22 1182 Chi-Chi, Taiwan CHY006 7.62 1.53 
23 1509 Chi-Chi, Taiwan TCU074 7.62 0.96 
24 1116 Kobe, Japan Shin-Osaka 6.90 2.75 
25 900 Landers Yermo Fire Station 7.28 2.48 
26 1498 Chi-Chi, Taiwan TCU059 7.62 1.88 
27 182 Imperial Valley-06 El Centro Array #7 6.53 1.46 
28 771 Loma Prieta Golden Gate Bridge 6.93 2.68 
29 803 Loma Prieta Saratoga-W Valley Coll. 6.93 1.40 
30 126 Gazli, USSR Karakyr 6.80 1.57 
31 1536 Chi-Chi, Taiwan TCU110 7.62 2.11 
32 864 Landers Joshua Tree 7.28 1.63 
33 1292 Chi-Chi, Taiwan HWA045 7.62 2.35 
34 527 N. Palm Springs Morongo Valley 6.06 2.32 
35 1550 Chi-Chi, Taiwan TCU136 7.62 2.16 
36 1457 Chi-Chi, Taiwan TAP097 7.62 2.85 
37 1120 Kobe, Japan Takatori 6.90 0.51 
38 1503 Chi-Chi, Taiwan TCU065 7.62 0.78 
39 723 Superstition Hills-02 Parachute Test Site 6.54 1.24 
40 1541 Chi-Chi, Taiwan TCU116 7.62 2.34 
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Table E.14 Documentation of 40 GMs of reference group of Bridge B for 50% POE in 50 years 

Record 

Number 

NGA Record 

Sequence Number 
Earthquake Name Station Magnitude 

Scaling 

Factor 

1 2497 Chi-Chi, Taiwan-03 CHY082 6.20 1.40 
2 1536 Chi-Chi, Taiwan TCU110 7.62 1.60 
3 900 Landers Yermo Fire Station 7.28 1.20 
4 1397 Chi-Chi, Taiwan KAU086 7.28 3.00 
5 186 Imperial Valley-06 Niland Fire Station 6.53 2.00 
6 2700 Chi-Chi, Taiwan-04 CHY025 6.20 2.10 
7 879 Landers Lucerne 7.28 0.40 
8 880 Landers Mission Creek Fault 7.28 0.60 
9 1011 Northridge-01 LA-Wonderland Ave 6.69 2.10 
10 1147 Kocaeli, Turkey Ambarli 7.51 1.00 
11 1553 Chi-Chi, Taiwan TCU141 7.28 1.10 
12 1505 Chi-Chi, Taiwan TCU068 7.28 0.40 
13 126 Gazli, USSR Karakyr 6.80 0.50 
14 728 Superstition Hills-02 Westmorland Fire Sta 6.54 1.30 
15 1791 Hector Mine Indio-Coachella Canal 7.13 2.30 
16 762 Loma Prieta Fremont-Mission San Jose 6.93 0.80 
17 1148 Kocaeli, Turkey Arcelik 7.51 1.50 
18 1267 Chi-Chi, Taiwan HWA016 7.28 1.90 
19 2893 Chi-Chi, Taiwan-04 TCU122 6.20 2.00 
20 549 Chalfant Valley-02 Bishop-LADWP South St 6.19 1.40 
21 862 Landers Indio-Coachella Canal 7.28 2.60 
22 2115 Denali, Alaska TAPS Pump Station #11 7.90 2.40 
23 1057 Northridge-01 Playa Del Rey-Saran 6.69 1.50 
24 739 Loma Prieta Anderson Dam (Downstream) 6.93 1.40 
25 293 Irpinia, Italy-01 Torre Del Greco 6.90 3.00 
26 767 Loma Prieta Gilroy Array #3 6.93 0.60 
27 1193 Chi-Chi, Taiwan CHY024 7.28 1.00 
28 1297 Chi-Chi, Taiwan HWA051 7.28 1.80 
29 171 Imperial Valley-06 EC Meloland Overpass FF 6.53 1.10 
30 1074 Northridge-01 Sandberg - Bald Mtn 6.69 2.50 
31 778 Loma Prieta Hollister Diff. Array 6.93 2.00 
32 2715 Chi-Chi, Taiwan-04 CHY047 6.20 2.30 
33 1762 Hector Mine Amboy 7.13 1.70 
34 1113 Kobe, Japan OSAJ 6.90 3.00 
35 1324 Chi-Chi, Taiwan ILA030 7.28 1.90 
36 1158 Kocaeli, Turkey Duzce 7.51 0.60 
37 1552 Chi-Chi, Taiwan TCU140 7.28 2.90 
38 1287 Chi-Chi, Taiwan HWA038 7.28 2.50 
39 1776 Hector Mine Desert Hot Springs 7.13 2.20 
40 761 Loma Prieta Fremont-Emerson Court 6.93 2.60 
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Table E.15 Documentation of 40 GMs of reference group of Bridge B for 10% POE in 50 years. 

Record 

Number 

NGA Record 

Sequence Number 
Earthquake Name Station Magnitude 

Scaling 

Factor 

1 587 New Zealand-02 Matahina Dam 5.99 3.00 
2 755 Loma Prieta Coyote Lake Dam (SW Abut) 6.93 3.00 
3 1528 Chi-Chi, Taiwan TCU101 7.62 2.50 
4 1762 Hector Mine Amboy 7.13 2.50 
5 161 Imperial Valley-06 Brawley Airport 6.53 2.10 
6 1488 Chi-Chi, Taiwan TCU048 7.62 1.40 
7 183 Imperial Valley-06 El Centro Array #8 6.53 1.20 
8 2115 Denali, Alaska TAPS Pump Station #11 7.90 3.00 
9 1481 Chi-Chi, Taiwan TCU038 7.62 1.70 
10 1147 Kocaeli, Turkey Ambarli 7.51 1.70 
11 143 Tabas, Iran Tabas 7.35 0.60 
12 1492 Chi-Chi, Taiwan TCU052 7.62 2.40 
13 1509 Chi-Chi, Taiwan TCU074 7.62 1.30 
14 2752 Chi-Chi, Taiwan-04 CHY101 6.20 3.00 
15 900 Landers Yermo Fire Station 7.28 2.40 
16 1531 Chi-Chi, Taiwan TCU104 7.62 2.70 
17 985 Northridge-01 LA-Baldwin Hills 6.69 2.20 
18 1505 Chi-Chi, Taiwan TCU068 7.62 0.70 
19 1483 Chi-Chi, Taiwan TCU040 7.62 3.00 
20 1547 Chi-Chi, Taiwan TCU123 7.62 3.00 
21 827 Cape Mendocino Fortuna-Fortuna Blvd 7.01 2.30 
22 855 Landers Fort Irwin 7.28 2.30 
23 1501 Chi-Chi, Taiwan TCU063 7.62 2.30 
24 1201 Chi-Chi, Taiwan CHY034 7.62 1.30 
25 1198 Chi-Chi, Taiwan CHY029 7.62 3.00 
26 1503 Chi-Chi, Taiwan TCU065 7.62 1.00 
27 1263 Chi-Chi, Taiwan HWA012 7.62 3.00 
28 723 Superstition Hills-02 Parachute Test Site 6.54 2.40 
29 1471 Chi-Chi, Taiwan TCU015 7.62 1.00 
30 803 Loma Prieta Saratoga-W Valley Coll. 6.93 1.60 
31 179 Imperial Valley-06 El Centro Array #4 6.53 2.10 
32 1553 Chi-Chi, Taiwan TCU141 7.62 2.20 
33 266 Victoria, Mexico Chihuahua 6.33 2.10 
34 730 Spitak, Armenia Gukasian 6.77 2.60 
35 719 Superstition Hills-02 Brawley Airport 6.54 1.70 
36 1545 Chi-Chi, Taiwan TCU120 7.62 1.30 
37 171 Imperial Valley-06 EC Meloland Overpass FF 6.53 1.50 
38 1476 Chi-Chi, Taiwan TCU029 7.62 2.80 
39 2710 Chi-Chi, Taiwan-04 CHY036 6.20 3.00 
40 1045 Northridge-01 Newhall-W Pico Canyon Rd. 6.69 2.20 
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Table E.16 Documentation of 40 GMs of reference group of Bridge B for 2% POE in 50 years. 

Record 

Number 

NGA Record 

Sequence Number 
Earthquake Name Station Magnitude 

Scaling 

Factor 

1 1468 Chi-Chi, Taiwan TCU010 7.62 2.90 
2 1477 Chi-Chi, Taiwan TCU031 7.62 3.00 
3 900 Landers Yermo Fire Station 7.28 3.00 
4 1550 Chi-Chi, Taiwan TCU136 7.62 3.00 
5 728 Superstition Hills-02 Westmorland Fire Sta 6.54 2.50 
6 1488 Chi-Chi, Taiwan TCU048 7.62 2.70 
7 776 Loma Prieta Hollister-South & Pine 6.93 3.00 
8 1503 Chi-Chi, Taiwan TCU065 7.62 2.70 
9 1148 Kocaeli, Turkey Arcelik 7.51 3.00 
10 1491 Chi-Chi, Taiwan TCU051 7.62 3.00 
11 1198 Chi-Chi, Taiwan CHY029 7.62 3.00 
12 1476 Chi-Chi, Taiwan TCU029 7.62 2.00 
13 1149 Kocaeli, Turkey Atakoy 7.51 2.10 
14 1528 Chi-Chi, Taiwan TCU101 7.62 2.40 
15 1492 Chi-Chi, Taiwan TCU052 7.62 2.40 
16 143 Tabas, Iran Tabas 7.35 1.00 
17 1084 Northridge-01 Sylmar-Converter Sta 6.69 3.00 
18 1505 Chi-Chi, Taiwan TCU068 7.62 1.60 
19 1509 Chi-Chi, Taiwan TCU074 7.62 2.00 
20 1078 Northridge-01 Santa Susana Ground 6.69 2.90 
21 719 Superstition Hills-02 Brawley Airport 6.54 2.00 
22 1787 Hector Mine Hector 7.13 2.50 
23 1548 Chi-Chi, Taiwan TCU128 7.62 2.80 
24 1478 Chi-Chi, Taiwan TCU033 7.62 2.90 
25 1106 Kobe, Japan KJMA 6.90 2.50 
26 803 Loma Prieta Saratoga-W Valley Coll. 6.93 2.90 
27 1486 Chi-Chi, Taiwan TCU046 7.62 2.70 
28 1529 Chi-Chi, Taiwan TCU102 7.62 2.80 
29 1176 Kocaeli, Turkey Yarimca 7.51 3.00 
30 184 Imperial Valley-06 El Centro Differential Array 6.53 2.20 
31 723 Superstition Hills-02 Parachute Test Site 6.54 2.20 
32 802 Loma Prieta Saratoga-Aloha Ave 6.93 1.80 
33 1498 Chi-Chi, Taiwan TCU059 7.62 3.00 
34 1244 Chi-Chi, Taiwan CHY101 7.62 1.60 
35 1510 Chi-Chi, Taiwan TCU075 7.62 2.80 
36 1542 Chi-Chi, Taiwan TCU117 7.62 3.00 
37 721 Superstition Hills-02 El Centro Imp. Co. Cent 6.54 2.20 
38 170 Imperial Valley-06 EC County Center FF 6.53 2.10 
39 779 Loma Prieta LGPC 6.93 1.70 
40 1501 Chi-Chi, Taiwan TCU063 7.62 2.80 
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Table E.17 Documentation of 40 GMs of CMS group of Bridge C for 50% POE in 50 years. 

Record 

Number 

NGA Record 

Sequence Number 
Earthquake Name Station Magnitude 

Scaling 

Factor 

1 2463 Chi-Chi, Taiwan-03 CHY032 6.20 1.67 
2 1538 Chi-Chi, Taiwan TCU112 7.62 0.69 
3 1234 Chi-Chi, Taiwan CHY086 7.62 1.18 
4 1817 Hector Mine North Shore-Durmid 7.13 1.76 
5 1304 Chi-Chi, Taiwan HWA059 7.62 1.59 
6 3297 Chi-Chi, Taiwan-06 CHY069 6.30 1.95 
7 900 Landers Yermo Fire Station 7.28 0.46 
8 784 Loma Prieta Oakland-Title & Trust 6.93 0.59 
9 983 Northridge-01 Jensen Filter Plant Generator 6.69 0.25 
10 1154 Kocaeli, Turkey Bursa Sivil 7.51 1.34 
11 1783 Hector Mine Fort Irwin 7.13 2.36 
12 2598 Chi-Chi, Taiwan-03 TCU039 6.20 2.74 
13 1359 Chi-Chi, Taiwan KAU015 7.62 1.81 
14 1491 Chi-Chi, Taiwan TCU051 7.62 0.54 
15 464 Morgan Hill Hollister Diff Array #3 6.19 1.81 
16 1383 Chi-Chi, Taiwan KAU062 7.62 2.41 
17 1791 Hector Mine Indio-Coachella Canal 7.13 1.30 
18 1259 Chi-Chi, Taiwan HWA006 7.62 2.57 
19 803 Loma Prieta Saratoga-W Valley Coll. 6.93 0.34 
20 1426 Chi-Chi, Taiwan TAP034 7.62 2.54 
21 1587 Chi-Chi, Taiwan TTN042 7.62 2.34 
22 1834 Hector Mine Sylmar-County Hospital 7.13 2.92 
23 1185 Chi-Chi, Taiwan CHY012 7.62 1.51 
24 1232 Chi-Chi, Taiwan CHY081 7.62 1.32 
25 1504 Chi-Chi, Taiwan TCU067 7.62 0.22 
26 981 Northridge-01 Inglewood-Union Oil 6.69 1.73 
27 1574 Chi-Chi, Taiwan TTN022 7.62 1.31 
28 1314 Chi-Chi, Taiwan ILA008 7.62 0.83 
29 176 Imperial Valley-06 El Centro Array #13 6.53 1.32 
30 1495 Chi-Chi, Taiwan TCU055 7.62 0.49 
31 800 Loma Prieta Salinas-John & Work 6.93 1.64 
32 1794 Hector Mine Joshua Tree 7.13 0.99 
33 1611 Duzce, Turkey Lamont 1058 7.14 1.22 
34 1503 Chi-Chi, Taiwan TCU065 7.62 0.17 
35 1521 Chi-Chi, Taiwan TCU089 7.62 0.59 
36 1287 Chi-Chi, Taiwan HWA038 7.62 2.16 
37 785 Loma Prieta Olema-Point Reyes Station 6.93 1.01 
38 1317 Chi-Chi, Taiwan ILA013 7.62 0.59 
39 2654 Chi-Chi, Taiwan-03 TCU120 6.20 1.05 
40 2711 Chi-Chi, Taiwan-04 CHY039 6.20 1.83 
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Table E.18 Documentation of 40 GMs of CMS group of Bridge C for 10% POE in 50 years. 

Record 

Number 

NGA Record 

Sequence Number 
Earthquake Name Station Magnitude 

Scaling 

Factor 

1 2459 Chi-Chi, Taiwan-03 CHY026 6.20 2.37 
2 1361 Chi-Chi, Taiwan KAU020 7.62 1.63 
3 1542 Chi-Chi, Taiwan TCU117 7.62 0.84 
4 2649 Chi-Chi, Taiwan-03 TCU115 6.20 2.84 
5 2718 Chi-Chi, Taiwan-04 CHY054 6.20 2.74 
6 883 Landers Northridge-17645 Saticoy St 7.28 2.93 
7 1295 Chi-Chi, Taiwan HWA049 7.62 1.41 
8 740 Loma Prieta Anderson Dam (L Abut) 6.93 2.00 
9 1418 Chi-Chi, Taiwan TAP014 7.62 1.53 
10 1457 Chi-Chi, Taiwan TAP097 7.62 2.45 
11 1232 Chi-Chi, Taiwan CHY081 7.62 2.80 
12 1574 Chi-Chi, Taiwan TTN022 7.62 2.79 
13 1509 Chi-Chi, Taiwan TCU074 7.62 0.41 
14 2650 Chi-Chi, Taiwan-03 TCU116 6.20 1.23 
15 1412 Chi-Chi, Taiwan TAP006 7.62 2.69 
16 1494 Chi-Chi, Taiwan TCU054 7.62 0.97 
17 1541 Chi-Chi, Taiwan TCU116 7.62 1.00 
18 1787 Hector Mine Hector 7.13 0.99 
19 1297 Chi-Chi, Taiwan HWA051 7.62 2.26 
20 1791 Hector Mine Indio-Coachella Canal 7.13 2.78 
21 2744 Chi-Chi, Taiwan-04 CHY088 6.20 2.64 
22 1263 Chi-Chi, Taiwan HWA012 7.62 1.81 
23 1147 Kocaeli, Turkey Ambarli 7.51 1.17 
24 169 Imperial Valley-06 Delta 6.53 0.79 
25 1536 Chi-Chi, Taiwan TCU110 7.62 0.54 
26 900 Landers Yermo Fire Station 7.28 0.97 
27 1165 Kocaeli, Turkey Izmit 7.51 1.19 
28 1508 Chi-Chi, Taiwan TCU072 7.62 0.69 
29 1193 Chi-Chi, Taiwan CHY024 7.62 0.91 
30 2458 Chi-Chi, Taiwan-03 CHY025 6.20 1.48 
31 1317 Chi-Chi, Taiwan ILA013 7.62 1.26 
32 755 Loma Prieta Coyote Lake Dam (SW Abut) 6.93 1.70 
33 2710 Chi-Chi, Taiwan-04 CHY036 6.20 2.72 
34 326 Coalinga-01 Parkfield-Cholame 2WA 6.36 2.66 
35 1158 Kocaeli, Turkey Duzce 7.51 0.80 
36 3265 Chi-Chi, Taiwan-06 CHY025 6.30 1.70 
37 2708 Chi-Chi, Taiwan-04 CHY034 6.20 2.68 
38 319 Westmorland Westmorland Fire Sta 5.90 0.99 
39 756 Loma Prieta Dublin-Fire Station 6.93 2.59 
40 836 Landers Baker Fire Station 7.28 2.47 
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Table E.19 Documentation of 40 GMs of CMS group of Bridge C for 2% POE in 50 years. 

Record 

Number 

NGA Record 

Sequence Number 
Earthquake Name Station Magnitude 

Scaling 

Factor 

1 341 Coalinga-01 Parkfield-Fault Zone 2 6.36 1.66 
2 1575 Chi-Chi, Taiwan TTN023 7.62 2.42 
3 732 Loma Prieta APEEL 2-Redwood City 6.93 1.73 
4 1316 Chi-Chi, Taiwan ILA012 7.62 2.20 
5 2509 Chi-Chi, Taiwan-03 CHY104 6.20 1.83 
6 1295 Chi-Chi, Taiwan HWA049 7.62 2.28 
7 1418 Chi-Chi, Taiwan TAP014 7.62 2.48 
8 1509 Chi-Chi, Taiwan TCU074 7.62 0.67 
9 1527 Chi-Chi, Taiwan TCU100 7.62 1.98 
10 885 Landers Fort Irwin 7.28 2.91 
11 1328 Chi-Chi, Taiwan ILA036 7.62 2.83 
12 2650 Chi-Chi, Taiwan-03 TCU116 6.20 1.99 
13 1492 Chi-Chi, Taiwan TCU052 7.62 0.48 
14 1320 Chi-Chi, Taiwan ILA016 7.62 2.83 
15 1263 Chi-Chi, Taiwan HWA012 7.62 2.93 
16 1494 Chi-Chi, Taiwan TCU054 7.62 1.58 
17 1044 Northridge-01 Newhall-Fire Sta 6.69 0.83 
18 1455 Chi-Chi, Taiwan TAP094 7.62 2.61 
19 1311 Chi-Chi, Taiwan ILA005 7.62 2.87 
20 1292 Chi-Chi, Taiwan HWA045 7.62 2.64 
21 1204 Chi-Chi, Taiwan CHY039 7.62 2.35 
22 2507 Chi-Chi, Taiwan-03 CHY101 6.20 1.98 
23 1194 Chi-Chi, Taiwan CHY025 7.62 1.45 
24 2458 Chi-Chi, Taiwan-03 CHY025 6.20 2.40 
25 2752 Chi-Chi, Taiwan-04 CHY101 6.20 2.43 
26 1534 Chi-Chi, Taiwan TCU107 7.62 1.59 
27 776 Loma Prieta Hollister-South & Pine 6.93 1.47 
28 2663 Chi-Chi, Taiwan-03 TCU141 6.20 2.80 
29 77 San Fernando Pacoima Dam (upper left abut) 6.61 0.84 
30 1187 Chi-Chi, Taiwan CHY015 7.62 2.02 
31 864 Landers Joshua Tree 7.28 1.63 
32 1536 Chi-Chi, Taiwan TCU110 7.62 0.87 
33 1116 Kobe, Japan Shin-Osaka 6.90 2.26 
34 1262 Chi-Chi, Taiwan HWA011 7.62 2.22 
35 900 Landers Yermo Fire Station 7.28 1.58 
36 803 Loma Prieta Saratoga-W Valley Coll. 6.93 1.18 
37 1542 Chi-Chi, Taiwan TCU117 7.62 1.37 
38 1317 Chi-Chi, Taiwan ILA013 7.62 2.04 
39 1361 Chi-Chi, Taiwan KAU020 7.62 2.65 
40 170 Imperial Valley-06 EC County Center FF 6.53 1.41 
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Table E.20 Documentation of 40 GMs of reference group of Bridge C for 50% POE in 50 years. 

Record 

Number 

NGA Record 

Sequence Number 
Earthquake Name Station Magnitude 

Scaling 

Factor 

1 1498 Chi-Chi, Taiwan TCU059 7.62 1.90  
2 1424 Chi-Chi, Taiwan TAP028 7.62 2.20  
3 1117 Kobe, Japan TOT 6.90 1.20  
4 1476 Chi-Chi, Taiwan TCU029 7.62 1.00  
5 2893 Chi-Chi, Taiwan-04 TCU122 6.20 2.40  
6 1377 Chi-Chi, Taiwan KAU050 7.62 1.30  
7 2714 Chi-Chi, Taiwan-04 CHY046 6.20 0.90  
8 2756 Chi-Chi, Taiwan-04 CHY114 6.20 3.00  
9 1618 Duzce, Turkey Lamont 531 7.14 1.20  
10 1817 Hector Mine North Shore-Durmid 7.13 2.90  
11 1223 Chi-Chi, Taiwan CHY067 7.62 0.90  
12 265 Victoria, Mexico Cerro Prieto 6.33 1.30  
13 1301 Chi-Chi, Taiwan HWA056 7.62 1.60  
14 2115 Denali, Alaska TAPS Pump Station #11 7.90 1.20  
15 1214 Chi-Chi, Taiwan CHY057 7.62 2.10  
16 1308 Chi-Chi, Taiwan ILA002 7.62 3.00  
17 1190 Chi-Chi, Taiwan CHY019 7.62 2.20  
18 1450 Chi-Chi, Taiwan TAP083 7.62 1.90  
19 1148 Kocaeli, Turkey Arcelik 7.51 0.90  
20 1182 Chi-Chi, Taiwan CHY006 7.62 1.00  
21 891 Landers Silent Valley-Poppet Flat 7.28 2.70  
22 1489 Chi-Chi, Taiwan TCU049 7.62 1.00  
23 266 Victoria, Mexico Chihuahua 6.33 1.30  
24 1261 Chi-Chi, Taiwan HWA009 7.62 0.70  
25 1465 Chi-Chi, Taiwan TCU007 7.62 1.70  
26 1512 Chi-Chi, Taiwan TCU078 7.62 0.60  
27 326 Coalinga-01 Parkfield-Cholame 2WA 6.36 2.10  
28 1149 Kocaeli, Turkey Atakoy 7.51 2.10  
29 1164 Kocaeli, Turkey Istanbul 7.51 1.80  
30 2948 Chi-Chi, Taiwan-05 CHY032 6.20 2.20  
31 1475 Chi-Chi, Taiwan TCU026 7.62 1.80  
32 178 Imperial Valley-06 El Centro Array #3 6.53 0.50  
33 3267 Chi-Chi, Taiwan-06 CHY027 6.30 2.90  
34 68 San Fernando LA-Hollywood Stor FF 6.61 1.00  
35 862 Landers Indio-Coachella Canal 7.28 2.00  
36 180 Imperial Valley-06 El Centro Array #5 6.53 0.20  
37 2951 Chi-Chi, Taiwan-05 CHY039 6.20 1.70  
38 808 Loma Prieta Treasure Island 6.93 1.20  
39 838 Landers Barstow 7.28 1.20  
40 2711 Chi-Chi, Taiwan-04 CHY039 6.20 2.70  
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Table E.21 Documentation of 40 GMs of reference group of Bridge C for 10% POE in 50 years. 

Record 

Number 

NGA Record 

Sequence Number 
Earthquake Name Station Magnitude 

Scaling 

Factor 

1 2492 Chi-Chi, Taiwan-03 CHY076 6.20 1.50  
2 1410 Chi-Chi, Taiwan TAP003 7.62 3.00  
3 1147 Kocaeli, Turkey Ambarli 7.51 1.70  
4 1611 Duzce, Turkey Lamont 1058 7.14 2.50  
5 900 Landers Yermo Fire Station 7.28 1.40  
6 2115 Denali, Alaska TAPS Pump Station #11 7.90 2.90  
7 744 Loma Prieta Bear Valley #12 6.93 2.70  
8 1184 Chi-Chi, Taiwan CHY010 7.62 2.80  
9 762 Loma Prieta Fremont-Mission San Jose 6.93 3.00  
10 1489 Chi-Chi, Taiwan TCU049 7.62 1.20  
11 1762 Hector Mine Amboy 7.13 1.40  
12 1541 Chi-Chi, Taiwan TCU116 7.62 1.60  
13 1615 Duzce, Turkey Lamont 1062 7.14 2.40  
14 801 Loma Prieta San Jose-Santa Teresa Hills 6.93 1.90  
15 1223 Chi-Chi, Taiwan CHY067 7.62 3.00  
16 730 Spitak, Armenia Gukasian 6.77 1.20  
17 1476 Chi-Chi, Taiwan TCU029 7.62 1.20  
18 1553 Chi-Chi, Taiwan TCU141 7.62 3.00  
19 1013 Northridge-01 LA Dam 6.69 1.50  
20 1149 Kocaeli, Turkey Atakoy 7.51 2.90  
21 1498 Chi-Chi, Taiwan TCU059 7.62 3.00  
22 1554 Chi-Chi, Taiwan TCU145 7.62 2.10  
23 1198 Chi-Chi, Taiwan CHY029 7.62 2.20  
24 2700 Chi-Chi, Taiwan-04 CHY025 6.20 2.00  
25 779 Loma Prieta LGPC 6.93 0.70  
26 1350 Chi-Chi, Taiwan ILA067 7.62 0.80  
27 2457 Chi-Chi, Taiwan-03 CHY024 6.20 2.70  
28 1492 Chi-Chi, Taiwan TCU052 7.62 0.70  
29 880 Landers Mission Creek Fault 7.28 1.50  
30 1318 Chi-Chi, Taiwan ILA014 7.62 3.00  
31 879 Landers Lucerne 7.28 0.70  
32 2893 Chi-Chi, Taiwan-04 TCU122 6.20 2.50  
33 169 Imperial Valley-06 Delta 6.53 0.90  
34 1513 Chi-Chi, Taiwan TCU079 7.62 0.70  
35 796 Loma Prieta SF-Presidio 6.93 3.00  
36 184 Imperial Valley-06 El Centro Differential Array 6.53 1.50  
37 143 Tabas, Iran Tabas 7.35 0.50  
38 838 Landers Barstow 7.28 2.40  
39 549 Chalfant Valley-02 Bishop-LADWP South St 6.19 1.70  
40 767 Loma Prieta Gilroy Array #3 6.93 1.30  
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Table E.22 Documentation of 40 GMs of reference group of Bridge C for 2% POE in 50 years. 

Record 

Number 

NGA Record 

Sequence Number 
Earthquake Name Station Magnitude 

Scaling 

Factor 

1 1605 Duzce, Turkey Duzce 7.14 2.60 
2 1176 Kocaeli, Turkey Yarimca 7.51 2.90 
3 1492 Chi-Chi, Taiwan TCU052 7.62 2.40 
4 1509 Chi-Chi, Taiwan TCU074 7.62 1.40 
5 825 Cape Mendocino Cape Mendocino 7.01 0.30 
6 1147 Kocaeli, Turkey Ambarli 7.51 2.40 
7 1149 Kocaeli, Turkey Atakoy 7.51 3.00 
8 2115 Denali, Alaska TAPS Pump Station #11 7.90 3.00 
9 1234 Chi-Chi, Taiwan CHY086 7.62 3.00 
10 169 Imperial Valley-06 Delta 6.53 1.10 
11 900 Landers Yermo Fire Station 7.28 1.50 
12 1528 Chi-Chi, Taiwan TCU101 7.62 1.50 
13 803 Loma Prieta Saratoga-W Valley Coll. 6.93 1.20 
14 779 Loma Prieta LGPC 6.93 0.70 
15 744 Loma Prieta Bear Valley #12 6.93 3.00 
16 1201 Chi-Chi, Taiwan CHY034 7.62 1.80 
17 1505 Chi-Chi, Taiwan TCU068 7.62 1.40 
18 721 Superstition Hills-02 El Centro Imp. Co. Cent 6.54 1.70 
19 143 Tabas, Iran Tabas 7.35 0.30 
20 1148 Kocaeli, Turkey Arcelik 7.51 3.00 
21 1472 Chi-Chi, Taiwan TCU017 7.62 2.90 
22 1158 Kocaeli, Turkey Duzce 7.51 1.20 
23 175 Imperial Valley-06 El Centro Array #12 6.53 2.30 
24 776 Loma Prieta Hollister-South & Pine 6.93 1.80 
25 1792 Hector Mine Indio-Riverside Co Fair Grnds 7.13 2.30 
26 1042 Northridge-01 N Hollywood-Coldwater Can 6.69 2.40 
27 549 Chalfant Valley-02 Bishop-LADWP South St 6.19 2.30 
28 767 Loma Prieta Gilroy Array #3 6.93 2.80 
29 183 Imperial Valley-06 El Centro Array #8 6.53 1.30 
30 879 Landers Lucerne 7.28 1.20 
31 186 Imperial Valley-06 Niland Fire Station 6.53 2.80 
32 1491 Chi-Chi, Taiwan TCU051 7.62 2.70 
33 1510 Chi-Chi, Taiwan TCU075 7.62 1.90 
34 1497 Chi-Chi, Taiwan TCU057 7.62 2.40 
35 729 Superstition Hills-02 Wildlife Liquef. Array 6.54 3.00 
36 184 Imperial Valley-06 El Centro Differential Array 6.53 2.60 
37 1488 Chi-Chi, Taiwan TCU048 7.62 1.90 
38 1504 Chi-Chi, Taiwan TCU067 7.62 2.10 
39 1533 Chi-Chi, Taiwan TCU106 7.62 2.00 
40 1476 Chi-Chi, Taiwan TCU029 7.62 3.00 
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Appendix F: Documentation of the Utilized 
Ground Motions in Chapter 9 

This appendix documents all the GMs utilized to develop reference benchmark PDSD for the 
investigated RC highway bridge systems. The GMs selected by the investigated four GMSM 
procedures are also documented in this appendix. 

Table F.1 Documentation of 60 GMs used for the development of benchmark PDSD. 

Record 

Number 

NGA Record 

Sequence Number 

Earthquake 

Name 
Station Magnitude 

1 125 Friuli, Italy-01 Tolmezzo 6.50 

2 126 Gazli, USSR Karakyr 6.80 

3 143 Tabas, Iran Tabas 7.35 

4 158 Imperial Valley-06 Aeropuerto Mexicali 6.53 

5 159 Imperial Valley-06 Agrarias 6.53 

6 161 Imperial Valley-06 Brawley Airport 6.53 

7 165 Imperial Valley-06 Chihuahua 6.53 

8 170 Imperial Valley-06 EC County Center FF 6.53 

9 171 Imperial Valley-06 EC Meloland Overpass FF 6.53 

10 173 Imperial Valley-06 El Centro Array #10 6.53 

11 174 Imperial Valley-06 El Centro Array #11 6.53 

12 179 Imperial Valley-06 El Centro Array #4 6.53 

13 180 Imperial Valley-06 El Centro Array #5 6.53 

14 181 Imperial Valley-06 El Centro Array #6 6.53 

15 182 Imperial Valley-06 El Centro Array #7 6.53 

16 183 Imperial Valley-06 El Centro Array #8 6.53 

17 184 Imperial Valley-06 El Centro Differential Array 6.53 

18 185 Imperial Valley-06 Holtville Post Office 6.53 

19 285 Irpinia, Italy-01 Bagnoli Irpinio 6.90 

20 292 Irpinia, Italy-01 Sturno 6.90 
21 721 Superstition Hills-02 El Centro Imp. Co. Cent 6.54 
22 722 Superstition Hills-02 Kornbloom Road (temp) 6.54 
23 723 Superstition Hills-02 Parachute Test Site 6.54 
24 725 Superstition Hills-02 Poe Road (temp) 6.54 
25 728 Superstition Hills-02 Westmorland Fire Sta 6.54 

26 741 Loma Prieta BRAN 6.93 

27 753 Loma Prieta Corralitos 6.93 

28 764 Loma Prieta Gilroy-Historic Bldg. 6.93 

29 766 Loma Prieta Gilroy Array #2 6.93 

30 768 Loma Prieta Gilroy Array #4 6.93 
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Table F.1 (Cont.) Documentation of 60 GMs used for the development of benchmark PDSD. 

Record 

Number 

NGA Record 

Sequence Number 

Earthquake 

Name 
Station Magnitude 

31 779 Loma Prieta LGPC 6.93 

32 801 Loma Prieta San Jose-Santa Teresa Hills 6.93 

33 802 Loma Prieta Saratoga-Aloha Ave 6.93 

34 803 Loma Prieta Saratoga-W Valley Coll. 6.93 

35 821 Erzican, Turkey Erzincan 6.69 

36 827 Cape Mendocino Fortuna-Fortuna Blvd 7.01 

37 828 Cape Mendocino Petrolia 7.01 

38 829 Cape Mendocino Rio Dell Overpass-FF 7.01 

39 864 Landers Joshua Tree 7.28 

40 879 Landers Lucerne 7.28 

41 949 Northridge-01 Arleta-Nordhoff Fire Sta 6.69 

42 953 Northridge-01 Beverly Hills-14145 Mulhol 6.69 

43 959 Northridge-01 Canoga Park-Topanga Can 6.69 
44 960 Northridge-01 Canyon Country-W Lost Cany 6.69 
45 1004 Northridge-01 LA-Sepulveda VA Hospital 6.69 
46 1013 Northridge-01 LA Dam 6.69 
47 1042 Northridge-01 N Hollywood-Coldwater Can 6.69 
48 1044 Northridge-01 Newhall-Fire Sta 6.69 
49 1045 Northridge-01 Newhall-W Pico Canyon Rd. 6.69 
50 1048 Northridge-01 Northridge-17645 Saticoy St 6.69 
51 1050 Northridge-01 Pacoima Dam (downstr) 6.69 

52 1052 Northridge-01 Pacoima Kagel Canyon 6.69 

53 1063 Northridge-01 Rinaldi Receiving Sta 6.69 

54 1086 Northridge-01 Sylmar-Olive View Med FF 6.69 

55 1106 Kobe, Japan KJMA 6.90 

56 1111 Kobe, Japan Nishi-Akashi 6.90 

57 1116 Kobe, Japan Shin-Osaka 6.90 

58 1602 Duzce, Turkey Bolu 7.14 

59 1605 Duzce, Turkey Duzce 7.14 

60 1787 Hector Mine Hector 7.13 
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Table F.2 Documentation of 40 GMs of  
1a

TS  procedure for Bridge A with Type I abutment 

modeling. 

Record 

Number 

NGA Record 

Sequence Number 
Earthquake Name Station Magnitude 

Scaling 

Factor 

1 179 Imperial Valley-06 El Centro Array #4 6.53 1.94 
2 292 Irpinia, Italy-01 Sturno 6.90 2.41 
3 829 Cape Mendocino Rio Dell Overpass-FF 7.01 1.52 
4 189 Imperial Valley-06 SAHOP Casa Flores 6.53 2.12 
5 495 Nahanni, Canada Site 1 6.76 1.65 
6 725 Superstition Hills-02 Poe Road (temp) 6.54 2.34 
7 949 Northridge-01 Arleta-Nordhoff Fire Sta 6.69 1.54 
8 1082 Northridge-01 Sun Valley-Roscoe Blvd 6.69 1.45 
9 170 Imperial Valley-06 EC County Center FF 6.53 1.94 
10 184 Imperial Valley-06 El Centro Differential Array 6.53 1.43 
11 766 Loma Prieta Gilroy Array #2 6.93 1.64 
12 767 Loma Prieta Gilroy Array #3 6.93 2.13 
13 802 Loma Prieta Saratoga-Aloha Ave 6.93 2.28 
14 803 Loma Prieta Saratoga-W Valley Coll. 6.93 1.75 
15 825 Cape Mendocino Cape Mendocino 7.01 1.75 
16 828 Cape Mendocino Petrolia 7.01 0.61 
17 983 Northridge-01 Jensen Filter Plant Generator 6.69 0.89 
18 1013 Northridge-01 LA Dam 6.69 1.42 
19 1044 Northridge-01 Newhall-Fire Sta 6.69 0.74 
20 1045 Northridge-01 Newhall-W Pico Canyon Rd. 6.69 1.62 
21 1050 Northridge-01 Pacoima Dam (downstr) 6.69 1.99 
22 1051 Northridge-01 Pacoima Dam (upper left) 6.69 0.67 
23 1063 Northridge-01 Rinaldi Receiving Sta 6.69 0.71 
24 1084 Northridge-01 Sylmar-Converter Sta 6.69 0.78 
25 1085 Northridge-01 Sylmar-Converter Sta East 6.69 1.00 
26 1086 Northridge-01 Sylmar-Olive View Med FF 6.69 0.96 
27 1602 Duzce, Turkey Bolu 7.14 0.96 
28 1605 Duzce, Turkey Duzce 7.14 0.89 
29 126 Gazli, USSR Karakyr 6.80 1.15 
30 165 Imperial Valley-06 Chihuahua 6.53 1.31 
31 727 Superstition Hills-02 Superstition Mtn Camera 6.54 1.02 
32 741 Loma Prieta BRAN 6.93 0.91 
33 864 Landers Joshua Tree 7.28 1.21 
34 959 Northridge-01 Canoga Park-Topanga Can 6.69 1.39 
35 960 Northridge-01 Canyon Country-W Lost Cany 6.69 0.99 
36 1004 Northridge-01 LA-Sepulveda VA Hospital 6.69 0.68 
37 1048 Northridge-01 Northridge-17645 Saticoy St 6.69 1.45 
38 1052 Northridge-01 Pacoima Kagel Canyon 6.69 1.19 
39 1080 Northridge-01 Simi Valley-Katherine Rd 6.69 0.90 
40 1111 Kobe, Japan Nishi-Akashi 6.90 1.02 
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Table F.3 Documentation of 40 GMs of  
P1a

TS  procedure for Bridge A with Type I abutment 

modeling. 

Record 

Number 

NGA Record 

Sequence Number 
Earthquake Name Station Magnitude 

Scaling 

Factor 

1 173 Imperial Valley-06 El Centro Array #10 6.53 4.42 
2 174 Imperial Valley-06 El Centro Array #11 6.53 2.50 
3 179 Imperial Valley-06 El Centro Array #4 6.53 1.94 
4 185 Imperial Valley-06 Holtville Post Office 6.53 2.72 
5 292 Irpinia, Italy-01 Sturno 6.90 2.41 
6 763 Loma Prieta Gilroy - Gavilan Coll. 6.93 3.30 
7 764 Loma Prieta Gilroy - Historic Bldg. 6.93 3.59 
8 765 Loma Prieta Gilroy Array #1 6.93 3.31 
9 170 Imperial Valley-06 EC County Center FF 6.53 1.94 
10 184 Imperial Valley-06 El Centro Differential Array 6.53 1.43 
11 766 Loma Prieta Gilroy Array #2 6.93 1.64 
12 767 Loma Prieta Gilroy Array #3 6.93 2.13 
13 802 Loma Prieta Saratoga-Aloha Ave 6.93 2.28 
14 803 Loma Prieta Saratoga-W Valley Coll. 6.93 1.75 
15 825 Cape Mendocino Cape Mendocino 7.01 1.75 
16 828 Cape Mendocino Petrolia 7.01 0.61 
17 983 Northridge-01 Jensen Filter Plant Generator 6.69 0.89 
18 1013 Northridge-01 LA Dam 6.69 1.42 
19 1044 Northridge-01 Newhall-Fire Sta 6.69 0.74 
20 1045 Northridge-01 Newhall-W Pico Canyon Rd. 6.69 1.62 
21 1050 Northridge-01 Pacoima Dam (downstr) 6.69 1.99 
22 1051 Northridge-01 Pacoima Dam (upper left) 6.69 0.67 
23 1063 Northridge-01 Rinaldi Receiving Sta 6.69 0.71 
24 1084 Northridge-01 Sylmar-Converter Sta 6.69 0.78 
25 1085 Northridge-01 Sylmar-Converter Sta East 6.69 1.00 
26 1086 Northridge-01 Sylmar-Olive View Med FF 6.69 0.96 
27 1602 Duzce, Turkey Bolu 7.14 0.96 
28 1605 Duzce, Turkey Duzce 7.14 0.89 
29 126 Gazli, USSR Karakyr 6.80 1.15 
30 165 Imperial Valley-06 Chihuahua 6.53 1.31 
31 727 Superstition Hills-02 Superstition Mtn Camera 6.54 1.02 
32 741 Loma Prieta BRAN 6.93 0.91 
33 864 Landers Joshua Tree 7.28 1.21 
34 959 Northridge-01 Canoga Park-Topanga Can 6.69 1.39 
35 960 Northridge-01 Canyon Country-W Lost Cany 6.69 0.99 
36 1004 Northridge-01 LA-Sepulveda VA Hospital 6.69 0.68 
37 1048 Northridge-01 Northridge-17645 Saticoy St 6.69 1.45 
38 1052 Northridge-01 Pacoima Kagel Canyon 6.69 1.19 
39 1080 Northridge-01 Simi Valley-Katherine Rd 6.69 0.90 
40 1111 Kobe, Japan Nishi-Akashi 6.90 1.02 
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Table F.4 Documentation of 40 GMs of  
1a

TS  procedure for Bridge A with Type II abutment 

modeling. 

Record 

Number 

NGA Record 

Sequence Number 
Earthquake Name Station Magnitude 

Scaling 

Factor 

1 139 Tabas, Iran Dayhook 7.35 2.02 
2 768 Loma Prieta Gilroy Array #4 6.93 1.75 
3 829 Cape Mendocino Rio Dell Overpass-FF 7.01 1.10 
4 189 Imperial Valley-06 SAHOP Casa Flores 6.53 2.01 
5 495 Nahanni, Canada Site 1 6.76 1.63 
6 725 Superstition Hills-02 Poe Road (temp) 6.54 1.90 
7 949 Northridge-01 Arleta-Nordhoff Fire Sta 6.69 1.61 
8 1082 Northridge-01 Sun Valley-Roscoe Blvd 6.69 1.48 
9 170 Imperial Valley-06 EC County Center FF 6.53 1.70 
10 184 Imperial Valley-06 El Centro Differential Array 6.53 1.47 
11 766 Loma Prieta Gilroy Array #2 6.93 1.84 
12 767 Loma Prieta Gilroy Array #3 6.93 1.73 
13 802 Loma Prieta Saratoga-Aloha Ave 6.93 1.93 
14 803 Loma Prieta Saratoga-W Valley Coll. 6.93 1.96 
15 825 Cape Mendocino Cape Mendocino 7.01 1.55 
16 828 Cape Mendocino Petrolia 7.01 0.64 
17 983 Northridge-01 Jensen Filter Plant Generator 6.69 1.11 
18 1013 Northridge-01 LA Dam 6.69 1.58 
19 1044 Northridge-01 Newhall-Fire Sta 6.69 0.66 
20 1045 Northridge-01 Newhall-W Pico Canyon Rd. 6.69 1.58 
21 1050 Northridge-01 Pacoima Dam (downstr) 6.69 1.56 
22 1051 Northridge-01 Pacoima Dam (upper left) 6.69 0.57 
23 1063 Northridge-01 Rinaldi Receiving Sta 6.69 0.78 
24 1084 Northridge-01 Sylmar-Converter Sta 6.69 0.69 
25 1085 Northridge-01 Sylmar-Converter Sta East 6.69 1.09 
26 1086 Northridge-01 Sylmar-Olive View Med FF 6.69 0.80 
27 1602 Duzce, Turkey Bolu 7.14 0.79 
28 1605 Duzce, Turkey Duzce 7.14 1.12 
29 126 Gazli, USSR Karakyr 6.80 0.98 
30 165 Imperial Valley-06 Chihuahua 6.53 1.42 
31 727 Superstition Hills-02 Superstition Mtn Camera 6.54 1.00 
32 741 Loma Prieta BRAN 6.93 0.86 
33 864 Landers Joshua Tree 7.28 1.77 
34 959 Northridge-01 Canoga Park-Topanga Can 6.69 0.85 
35 960 Northridge-01 Canyon Country-W Lost Cany 6.69 0.88 
36 1004 Northridge-01 LA-Sepulveda VA Hospital 6.69 0.74 
37 1048 Northridge-01 Northridge-17645 Saticoy St 6.69 1.26 
38 1052 Northridge-01 Pacoima Kagel Canyon 6.69 1.13 
39 1080 Northridge-01 Simi Valley-Katherine Rd 6.69 0.72 
40 1111 Kobe, Japan Nishi-Akashi 6.90 1.31 
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Table F.5 Documentation of 40 GMs of  
P1a

TS  procedure for Bridge A with Type II abutment 

modeling. 

Record 

Number 

NGA Record 

Sequence Number 
Earthquake Name Station Magnitude 

Scaling 

Factor 

1 173 Imperial Valley-06 El Centro Array #10 6.53 3.51 
2 174 Imperial Valley-06 El Centro Array #11 6.53 2.07 
3 179 Imperial Valley-06 El Centro Array #4 6.53 2.04 
4 185 Imperial Valley-06 Holtville Post Office 6.53 2.90 
5 292 Irpinia, Italy-01 Sturno 6.90 2.25 
6 763 Loma Prieta Gilroy-Gavilan Coll. 6.93 2.53 
7 764 Loma Prieta Gilroy-Historic Bldg. 6.93 2.56 
8 765 Loma Prieta Gilroy Array #1 6.93 2.41 
9 170 Imperial Valley-06 EC County Center FF 6.53 1.70 
10 184 Imperial Valley-06 El Centro Differential Array 6.53 1.47 
11 766 Loma Prieta Gilroy Array #2 6.93 1.84 
12 767 Loma Prieta Gilroy Array #3 6.93 1.73 
13 802 Loma Prieta Saratoga-Aloha Ave 6.93 1.93 
14 803 Loma Prieta Saratoga-W Valley Coll. 6.93 1.96 
15 825 Cape Mendocino Cape Mendocino 7.01 1.55 
16 828 Cape Mendocino Petrolia 7.01 0.64 
17 983 Northridge-01 Jensen Filter Plant Generator 6.69 1.11 
18 1013 Northridge-01 LA Dam 6.69 1.58 
19 1044 Northridge-01 Newhall-Fire Sta 6.69 0.66 
20 1045 Northridge-01 Newhall-W Pico Canyon Rd. 6.69 1.58 
21 1050 Northridge-01 Pacoima Dam (downstr) 6.69 1.56 
22 1051 Northridge-01 Pacoima Dam (upper left) 6.69 0.57 
23 1063 Northridge-01 Rinaldi Receiving Sta 6.69 0.78 
24 1084 Northridge-01 Sylmar-Converter Sta 6.69 0.69 
25 1085 Northridge-01 Sylmar-Converter Sta East 6.69 1.09 
26 1086 Northridge-01 Sylmar-Olive View Med FF 6.69 0.80 
27 1602 Duzce, Turkey Bolu 7.14 0.79 
28 1605 Duzce, Turkey Duzce 7.14 1.12 
29 126 Gazli, USSR Karakyr 6.80 0.98 
30 165 Imperial Valley-06 Chihuahua 6.53 1.42 
31 727 Superstition Hills-02 Superstition Mtn Camera 6.54 1.00 
32 741 Loma Prieta BRAN 6.93 0.86 
33 864 Landers Joshua Tree 7.28 1.10 
34 959 Northridge-01 Canoga Park-Topanga Can 6.69 0.85 
35 960 Northridge-01 Canyon Country-W Lost Cany 6.69 0.88 
36 1004 Northridge-01 LA-Sepulveda VA Hospital 6.69 0.74 
37 1048 Northridge-01 Northridge-17645 Saticoy St 6.69 1.26 
38 1052 Northridge-01 Pacoima Kagel Canyon 6.69 1.13 
39 1080 Northridge-01 Simi Valley-Katherine Rd 6.69 0.72 
40 1111 Kobe, Japan Nishi-Akashi 6.90 1.31 
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Table F.6 Documentation of 40 GMs of CMS procedure for Bridge A with Type I abutment 
modeling. 

Record 

Number 

NGA Record 

Sequence Number 
Earthquake Name Station Magnitude 

Scaling 

Factor 

1 1111 Kobe, Japan Nishi-Akashi 6.90 1.02 
2 1350 Chi-Chi, Taiwan ILA067 7.62 2.94 
3 1425 Chi-Chi, Taiwan TAP032 7.62 2.16 
4 739 Loma Prieta Anderson Dam (Downstream) 6.93 2.01 
5 1317 Chi-Chi, Taiwan ILA013 7.62 2.06 
6 757 Loma Prieta Dumbarton Bridge West End  6.93 2.60 
7 776 Loma Prieta Hollister-South & Pine 6.93 1.58 
8 829 Cape Mendocino Rio Dell Overpass-FF 7.01 1.53 
9 721 Superstition Hills-02 El Centro Imp. Co. Cent 6.54 2.45 
10 900 Landers Yermo Fire Station 7.28 2.58 
11 881 Landers Morongo Valley 7.28 2.20 
12 169 Imperial Valley-06 Delta 6.53 1.72 
13 1084 Northridge-01 Sylmar-Converter Sta 6.69 0.78 
14 1508 Chi-Chi, Taiwan TCU072 7.62 0.78 
15 778 Loma Prieta Hollister Diff. Array 6.93 1.35 
16 527 N. Palm Springs Morongo Valley 6.06 1.94 
17 1490 Chi-Chi, Taiwan TCU050 7.62 2.73 
18 1521 Chi-Chi, Taiwan TCU089 7.62 2.31 
19 1155 Kocaeli, Turkey Bursa Tofas 7.51 2.92 
20 1202 Chi-Chi, Taiwan CHY035 7.62 1.53 
21 1504 Chi-Chi, Taiwan TCU067 7.62 1.25 
22 1529 Chi-Chi, Taiwan TCU102 7.62 1.51 
23 1234 Chi-Chi, Taiwan CHY086 7.62 2.49 
24 1187 Chi-Chi, Taiwan CHY015 7.62 2.71 
25 1198 Chi-Chi, Taiwan CHY029 7.62 1.40 
26 1506 Chi-Chi, Taiwan TCU070 7.62 1.55 
27 1493 Chi-Chi, Taiwan TCU053 7.62 2.33 
28 343 Coalinga-01 Parkfield-Fault Zone 4 6.36 2.94 
29 1227 Chi-Chi, Taiwan CHY074 7.62 2.64 
30 171 Imperial Valley-06 EC Meloland Overpass FF 6.53 1.49 
31 983 Northridge-01 Jensen Filter Plant Generator 6.69 0.90 
32 729 Superstition Hills-02 Wildlife Liquef. Array 6.54 2.70 
33 808 Loma Prieta Treasure Island 6.93 2.40 
34 1550 Chi-Chi, Taiwan TCU136 7.62 2.68 
35 1203 Chi-Chi, Taiwan CHY036 7.62 1.22 
36 1045 Northridge-01 Newhall-W Pico Canyon Rd. 6.69 1.64 
37 170 Imperial Valley-06 EC County Center FF 6.53 1.95 
38 1500 Chi-Chi, Taiwan TCU061 7.62 2.83 
39 159 Imperial Valley-06 Agrarias 6.53 2.29 
40 1456 Chi-Chi, Taiwan TAP095 7.62 2.24 
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Table F.7 Documentation of 40 GMs of CMS procedure for Bridge A with Type II abutment 
modeling. 

Record 

Number 

NGA Record 

Sequence Number 
Earthquake Name Station Magnitude 

Scaling 

Factor 

1 337 Coalinga-01 Parkfield-Fault Zone 12 6.36 2.88 
2 1087 Northridge-01 Tarzana-Cedar Hill A 6.69 0.43 
3 1184 Chi-Chi, Taiwan CHY010 7.62 2.52 
4 1317 Chi-Chi, Taiwan ILA013 7.62 1.76 
5 1221 Chi-Chi, Taiwan CHY065 7.62 2.40 
6 1234 Chi-Chi, Taiwan CHY086 7.62 2.50 
7 864 Landers Joshua Tree 7.28 1.82 
8 721 Superstition Hills-02 El Centro Imp. Co. Cent 6.54 2.26 
9 808 Loma Prieta Treasure Island 6.93 2.24 
10 776 Loma Prieta Hollister-South & Pine 6.93 1.65 
11 1787 Hector Mine Hector 7.13 2.21 
12 778 Loma Prieta Hollister Diff. Array 6.93 1.51 
13 184 Imperial Valley-06 El Centro Differential Array 6.53 1.50 
14 1227 Chi-Chi, Taiwan CHY074 7.62 2.21 
15 1456 Chi-Chi, Taiwan TAP095 7.62 2.48 
16 342 Coalinga-01 Parkfield-Fault Zone 3 6.36 2.50 
17 1515 Chi-Chi, Taiwan TCU082 7.62 2.02 
18 1509 Chi-Chi, Taiwan TCU074 7.62 0.90 
19 1160 Kocaeli, Turkey Fatih 7.51 1.96 
20 316 Westmorland Parachute Test Site 5.90 2.33 
21 1493 Chi-Chi, Taiwan TCU053 7.62 2.50 
22 779 Loma Prieta LGPC 6.93 0.73 
23 1063 Northridge-01 Rinaldi Receiving Sta 6.69 0.79 
24 1519 Chi-Chi, Taiwan TCU087 7.62 2.88 
25 1158 Kocaeli, Turkey Duzce 7.51 1.51 
26 1491 Chi-Chi, Taiwan TCU051 7.62 2.73 
27 1506 Chi-Chi, Taiwan TCU070 7.62 1.14 
28 1187 Chi-Chi, Taiwan CHY015 7.62 2.77 
29 1536 Chi-Chi, Taiwan TCU110 7.62 2.18 
30 1198 Chi-Chi, Taiwan CHY029 7.62 1.38 
31 1202 Chi-Chi, Taiwan CHY035 7.62 1.16 
32 1504 Chi-Chi, Taiwan TCU067 7.62 1.31 
33 169 Imperial Valley-06 Delta 6.53 1.69 
34 1770 Hector Mine Big Bear Lake-Fire Station 7.13 2.68 
35 1508 Chi-Chi, Taiwan TCU072 7.62 0.99 
36 183 Imperial Valley-06 El Centro Array #8 6.53 1.42 
37 527 N. Palm Springs Morongo Valley 6.06 2.30 
38 1484 Chi-Chi, Taiwan TCU042 7.62 2.27 
39 170 Imperial Valley-06 EC County Center FF 6.53 1.74 
40 1541 Chi-Chi, Taiwan TCU116 7.62 2.65 
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Table F.8 Documentation of 40 GMs of US procedure for Bridge A. 

Record 

Number 

NGA Record 

Sequence Number 
Earthquake Name Station Magnitude 

Scaling 

Factor 

1 1518 Chi-Chi, Taiwan TCU085 7.62 2.00 
2 1515 Chi-Chi, Taiwan TCU082 7.62 2.60 
3 1491 Chi-Chi, Taiwan TCU051 7.62 2.80 
4 1537 Chi-Chi, Taiwan TCU111 7.62 3.00 
5 1502 Chi-Chi, Taiwan TCU064 7.62 3.00 
6 1529 Chi-Chi, Taiwan TCU102 7.62 3.00 
7 187 Imperial Valley-06 Parachute Test Site 6.53 1.80 
8 1494 Chi-Chi, Taiwan TCU054 7.62 3.00 
9 1476 Chi-Chi, Taiwan TCU029 7.62 3.00 
10 180 Imperial Valley-06 El Centro Array #5 6.53 2.00 
11 1496 Chi-Chi, Taiwan TCU056 7.62 3.00 
12 1492 Chi-Chi, Taiwan TCU052 7.62 1.70 
13 1086 Northridge-01 Sylmar-Olive View Med FF 6.69 2.90 
14 1148 Kocaeli, Turkey Arcelik 7.51 3.00 
15 1508 Chi-Chi, Taiwan TCU072 7.62 2.10 
16 1493 Chi-Chi, Taiwan TCU053 7.62 2.80 
17 1489 Chi-Chi, Taiwan TCU049 7.62 2.60 
18 169 Imperial Valley-06 Delta 6.53 3.00 
19 1488 Chi-Chi, Taiwan TCU048 7.62 3.00 
20 729 Superstition Hills-02 Wildlife Liquef. Array 6.54 3.00 
21 1504 Chi-Chi, Taiwan TCU067 7.62 2.80 
22 721 Superstition Hills-02 El Centro Imp. Co. Cent 6.54 2.00 
23 1490 Chi-Chi, Taiwan TCU050 7.62 2.90 
24 1787 Hector Mine Hector 7.13 2.90 
25 728 Superstition Hills-02 Westmorland Fire Sta 6.54 2.90 
26 172 Imperial Valley-06 El Centro Array #1 6.53 2.80 
27 285 Irpinia, Italy-01 Bagnoli Irpinio 6.90 3.00 
28 900 Landers Yermo Fire Station 7.28 3.00 
29 1505 Chi-Chi, Taiwan TCU068 7.62 1.30 
30 1472 Chi-Chi, Taiwan TCU017 7.62 3.00 
31 1526 Chi-Chi, Taiwan TCU098 7.62 2.60 
32 1546 Chi-Chi, Taiwan TCU122 7.62 2.00 
33 1527 Chi-Chi, Taiwan TCU100 7.62 3.00 
34 182 Imperial Valley-06 El Centro Array #7 6.53 2.40 
35 832 Landers Amboy 7.28 3.00 
36 1528 Chi-Chi, Taiwan TCU101 7.62 2.40 
37 179 Imperial Valley-06 El Centro Array #4 6.53 1.70 
38 1202 Chi-Chi, Taiwan CHY035 7.62 2.90 
39 1231 Chi-Chi, Taiwan CHY080 7.62 1.00 
40 1521 Chi-Chi, Taiwan TCU089 7.62 2.00 
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Table F.9 Documentation of 40 GMs of  
1a

TS  procedure for Bridge B. 

Record 

Number 

NGA Record 

Sequence Number 
Earthquake Name Station Magnitude 

Scaling 

Factor 

1 1084 Northridge-01 Sylmar-Converter Sta 6.69 0.53 
2 1063 Northridge-01 Rinaldi Receiving Sta 6.69 0.73 
3 1085 Northridge-01 Sylmar-Converter Sta East 6.69 0.86 
4 1044 Northridge-01 Newhall-Fire Sta 6.69 0.89 
5 983 Northridge-01 Jensen Filter Plant Generator 6.69 1.07 
6 1602 Duzce, Turkey Bolu 7.14 1.11 
7 1051 Northridge-01 Pacoima Dam (upper left) 6.69 1.11 
8 1045 Northridge-01 Newhall-W Pico Canyon Rd. 6.69 1.20 
9 803 Loma Prieta Saratoga-W Valley Coll. 6.93 1.26 
10 1086 Northridge-01 Sylmar-Olive View Med FF 6.69 1.28 
11 828 Cape Mendocino Petrolia 7.01 1.28 
12 1013 Northridge-01 LA Dam 6.69 1.35 
13 179 Imperial Valley-06 El Centro Array #4 6.53 1.60 
14 1605 Duzce, Turkey Duzce 7.14 1.78 
15 825 Cape Mendocino Cape Mendocino 7.01 1.80 
16 766 Loma Prieta Gilroy Array #2 6.93 2.04 
17 802 Loma Prieta Saratoga-Aloha Ave 6.93 2.12 
18 764 Loma Prieta Gilroy-Historic Bldg. 6.93 2.16 
19 184 Imperial Valley-06 El Centro Differential Array 6.53 2.23 
20 170 Imperial Valley-06 EC County Center FF 6.53 2.25 
21 185 Imperial Valley-06 Holtville Post Office 6.53 2.46 
22 292 Irpinia, Italy-01 Sturno 6.90 2.51 
23 1004 Northridge-01 LA-Sepulveda VA Hospital 6.69 1.11 
24 126 Gazli, USSR Karakyr 6.80 1.41 
25 864 Landers Joshua Tree 7.28 1.46 
26 1080 Northridge-01 Simi Valley-Katherine Rd 6.69 1.47 
27 1048 Northridge-01 Northridge-17645 Saticoy St 6.69 1.58 
28 1787 Hector Mine Hector 7.13 1.74 
29 1082 Northridge-01 Sun Valley-Roscoe Blvd 6.69 1.74 
30 829 Cape Mendocino Rio Dell Overpass-FF 7.01 1.80 
31 741 Loma Prieta BRAN 6.93 1.87 
32 727 Superstition Hills-02 Superstition Mtn Camera 6.54 1.91 
33 960 Northridge-01 Canyon Country-W Lost Cany 6.69 2.09 
34 728 Superstition Hills-02 Westmorland Fire Sta 6.54 2.27 
35 1052 Northridge-01 Pacoima Kagel Canyon 6.69 2.31 
36 725 Superstition Hills-02 Poe Road (temp) 6.54 2.36 
37 768 Loma Prieta Gilroy Array #4 6.93 2.37 
38 949 Northridge-01 Arleta-Nordhoff Fire Sta 6.69 2.47 
39 1042 Northridge-01 N Hollywood-Coldwater Can 6.69 2.47 
40 495 Nahanni, Canada Site 1 6.76 2.59 
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Table F.10 Documentation of 40 GMs of  
P1a

TS  procedure for Bridge B. 

Record 

Number 

NGA Record 

Sequence Number 
Earthquake Name Station Magnitude 

Scaling 

Factor 

1 1084 Northridge-01 Sylmar-Converter Sta 6.69 0.53 
2 1063 Northridge-01 Rinaldi Receiving Sta 6.69 0.73 
3 1085 Northridge-01 Sylmar-Converter Sta East 6.69 0.86 
4 1044 Northridge-01 Newhall-Fire Sta 6.69 0.89 
5 983 Northridge-01 Jensen Filter Plant Generator 6.69 1.07 
6 1602 Duzce, Turkey Bolu 7.14 1.11 
7 1051 Northridge-01 Pacoima Dam (upper left) 6.69 1.11 
8 1045 Northridge-01 Newhall-W Pico Canyon Rd. 6.69 1.20 
9 803 Loma Prieta Saratoga-W Valley Coll. 6.93 1.26 
10 1086 Northridge-01 Sylmar-Olive View Med FF 6.69 1.28 
11 828 Cape Mendocino Petrolia 7.01 1.28 
12 1013 Northridge-01 LA Dam 6.69 1.35 
13 179 Imperial Valley-06 El Centro Array #4 6.53 1.60 
14 1605 Duzce, Turkey Duzce 7.14 1.78 
15 825 Cape Mendocino Cape Mendocino 7.01 1.80 
16 766 Loma Prieta Gilroy Array #2 6.93 2.04 
17 802 Loma Prieta Saratoga-Aloha Ave 6.93 2.12 
18 764 Loma Prieta Gilroy-Historic Bldg. 6.93 2.16 
19 184 Imperial Valley-06 El Centro Differential Array 6.53 2.23 
20 170 Imperial Valley-06 EC County Center FF 6.53 2.25 
21 185 Imperial Valley-06 Holtville Post Office 6.53 2.46 
22 292 Irpinia, Italy-01 Sturno 6.90 2.51 
23 1004 Northridge-01 LA-Sepulveda VA Hospital 6.69 1.11 
24 126 Gazli, USSR Karakyr 6.80 1.41 
25 864 Landers Joshua Tree 7.28 1.46 
26 1080 Northridge-01 Simi Valley-Katherine Rd 6.69 1.47 
27 1048 Northridge-01 Northridge-17645 Saticoy St 6.69 1.58 
28 1787 Hector Mine Hector 7.13 1.74 
29 1082 Northridge-01 Sun Valley-Roscoe Blvd 6.69 1.74 
30 829 Cape Mendocino Rio Dell Overpass-FF 7.01 1.80 
31 741 Loma Prieta BRAN 6.93 1.87 
32 727 Superstition Hills-02 Superstition Mtn Camera 6.54 1.91 
33 960 Northridge-01 Canyon Country-W Lost Cany 6.69 2.09 
34 728 Superstition Hills-02 Westmorland Fire Sta 6.54 2.27 
35 173 Imperial Valley-06 El Centro Array #10 6.53 2.94 
36 767 Loma Prieta Gilroy Array #3 6.93 2.96 
37 1050 Northridge-01 Pacoima Dam (downstr) 6.69 3.06 
38 174 Imperial Valley-06 El Centro Array #11 6.53 3.08 
39 161 Imperial Valley-06 Brawley Airport 6.53 3.35 
40 765 Loma Prieta Gilroy Array #1 6.93 4.87 
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Table F.11 Documentation of 40 GMs of CMS procedure for Bridge B. 

Record 

Number 

NGA Record 

Sequence Number 
Earthquake Name Station Magnitude 

Scaling 

Factor 

1 959 Northridge-01 Canoga Park-Topanga Can 6.69 2.61 
2 1457 Chi-Chi, Taiwan TAP097 7.62 2.57 
3 729 Superstition Hills-02 Wildlife Liquef. Array 6.54 2.70 
4 1410 Chi-Chi, Taiwan TAP003 7.62 2.23 
5 1045 Northridge-01 Newhall-W Pico Canyon Rd. 6.69 1.20 
6 776 Loma Prieta Hollister-South & Pine 6.93 1.29 
7 1454 Chi-Chi, Taiwan TAP090 7.62 2.87 
8 1198 Chi-Chi, Taiwan CHY029 7.62 2.17 
9 1555 Chi-Chi, Taiwan TCU147 7.62 2.91 
10 285 Irpinia, Italy-01 Bagnoli Irpinio 6.90 2.91 
11 1425 Chi-Chi, Taiwan TAP032 7.62 2.82 
12 1334 Chi-Chi, Taiwan ILA044 7.62 2.91 
13 182 Imperial Valley-06 El Centro Array #7 6.53 1.31 
14 723 Superstition Hills-02 Parachute Test Site 6.54 1.11 
15 1418 Chi-Chi, Taiwan TAP014 7.62 2.87 
16 771 Loma Prieta Golden Gate Bridge 6.93 2.41 
17 1515 Chi-Chi, Taiwan TCU082 7.62 2.51 
18 1530 Chi-Chi, Taiwan TCU103 7.62 2.93 
19 1286 Chi-Chi, Taiwan HWA037 7.62 2.84 
20 1541 Chi-Chi, Taiwan TCU116 7.62 2.10 
21 1494 Chi-Chi, Taiwan TCU054 7.62 2.52 
22 1504 Chi-Chi, Taiwan TCU067 7.62 1.10 
23 1264 Chi-Chi, Taiwan HWA013 7.62 2.51 
24 1529 Chi-Chi, Taiwan TCU102 7.62 1.29 
25 1503 Chi-Chi, Taiwan TCU065 7.62 0.70 
26 1537 Chi-Chi, Taiwan TCU111 7.62 2.97 
27 1547 Chi-Chi, Taiwan TCU123 7.62 1.97 
28 1492 Chi-Chi, Taiwan TCU052 7.62 0.75 
29 1536 Chi-Chi, Taiwan TCU110 7.62 1.90 
30 1147 Kocaeli, Turkey Ambarli 7.51 1.82 
31 527 N. Palm Springs Morongo Valley 6.06 2.09 
32 900 Landers Yermo Fire Station 7.28 2.23 
33 1550 Chi-Chi, Taiwan TCU136 7.62 1.94 
34 864 Landers Joshua Tree 7.28 1.46 
35 1456 Chi-Chi, Taiwan TAP095 7.62 2.86 
36 721 Superstition Hills-02 El Centro Imp. Co. Cent 6.54 2.38 
37 2461 Chi-Chi, Taiwan-03 CHY028 6.20 2.77 
38 1551 Chi-Chi, Taiwan TCU138 7.62 2.34 
39 1534 Chi-Chi, Taiwan TCU107 7.62 2.45 
40 1265 Chi-Chi, Taiwan HWA014 7.62 2.98 
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Table F.12 Documentation of 40 GMs of US procedure for Bridge B. 

Record 

Number 

NGA Record 

Sequence Number 
Earthquake Name Station Magnitude 

Scaling 

Factor 

1 2492 Chi-Chi, Taiwan-03 CHY076 6.20 2.90 
2 1534 Chi-Chi, Taiwan TCU107 7.62 3.00 
3 1498 Chi-Chi, Taiwan TCU059 7.62 3.00 
4 1537 Chi-Chi, Taiwan TCU111 7.62 3.00 
5 1506 Chi-Chi, Taiwan TCU070 7.62 3.00 
6 1515 Chi-Chi, Taiwan TCU082 7.62 3.00 
7 1538 Chi-Chi, Taiwan TCU112 7.62 3.00 
8 1491 Chi-Chi, Taiwan TCU051 7.62 2.10 
9 1492 Chi-Chi, Taiwan TCU052 7.62 3.00 
10 1475 Chi-Chi, Taiwan TCU026 7.62 3.00 
11 1504 Chi-Chi, Taiwan TCU067 7.62 2.60 
12 1496 Chi-Chi, Taiwan TCU056 7.62 3.00 
13 1489 Chi-Chi, Taiwan TCU049 7.62 1.80 
14 1529 Chi-Chi, Taiwan TCU102 7.62 3.00 
15 721 Superstition Hills-02 El Centro Imp. Co. Cent 6.54 2.90 
16 1490 Chi-Chi, Taiwan TCU050 7.62 3.00 
17 1546 Chi-Chi, Taiwan TCU122 7.62 2.10 
18 729 Superstition Hills-02 Wildlife Liquef. Array 6.54 2.70 
19 1494 Chi-Chi, Taiwan TCU054 7.62 2.70 
20 1527 Chi-Chi, Taiwan TCU100 7.62 3.00 
21 832 Landers Amboy 7.28 2.90 
22 1158 Kocaeli, Turkey Duzce 7.51 3.00 
23 1202 Chi-Chi, Taiwan CHY035 7.62 2.30 
24 1508 Chi-Chi, Taiwan TCU072 7.62 1.40 
25 1501 Chi-Chi, Taiwan TCU063 7.62 2.80 
26 1493 Chi-Chi, Taiwan TCU053 7.62 2.70 
27 1482 Chi-Chi, Taiwan TCU039 7.62 2.60 
28 1505 Chi-Chi, Taiwan TCU068 7.62 1.20 
29 169 Imperial Valley-06 Delta 6.53 1.40 
30 1528 Chi-Chi, Taiwan TCU101 7.62 3.00 
31 1176 Kocaeli, Turkey Yarimca 7.51 3.00 
32 1148 Kocaeli, Turkey Arcelik 7.51 2.40 
33 1084 Northridge-01 Sylmar-Converter Sta 6.69 2.20 
34 179 Imperial Valley-06 El Centro Array #4 6.53 2.10 
35 1555 Chi-Chi, Taiwan TCU147 7.62 2.90 
36 285 Irpinia, Italy-01 Bagnoli Irpinio 6.90 2.20 
37 1436 Chi-Chi, Taiwan TAP052 7.62 3.00 
38 811 Loma Prieta WAHO 6.93 2.00 
39 1536 Chi-Chi, Taiwan TCU110 7.62 2.70 
40 1488 Chi-Chi, Taiwan TCU048 7.62 2.80 
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Table F.13 Documentation of 40 GMs of  
1a

TS  procedure for Bridge C. 

Record 

Number 

NGA Record 

Sequence Number 
Earthquake Name Station Magnitude 

Scaling 

Factor 

1 1084 Northridge-01 Sylmar-Converter Sta 6.69 0.70 
2 1063 Northridge-01 Rinaldi Receiving Sta 6.69 0.89 
3 1085 Northridge-01 Sylmar-Converter Sta East 6.69 0.94 
4 1045 Northridge-01 Newhall-W Pico Canyon Rd. 6.69 0.95 
5 1086 Northridge-01 Sylmar-Olive View Med FF 6.69 1.03 
6 1044 Northridge-01 Newhall-Fire Sta 6.69 1.13 
7 983 Northridge-01 Jensen Filter Plant Generator 6.69 1.16 
8 1605 Duzce, Turkey Duzce 7.14 1.53 
9 803 Loma Prieta Saratoga-W Valley Coll. 6.93 1.59 
10 1013 Northridge-01 LA Dam 6.69 1.60 
11 766 Loma Prieta Gilroy Array #2 6.93 1.65 
12 179 Imperial Valley-06 El Centro Array #4 6.53 1.73 
13 802 Loma Prieta Saratoga-Aloha Ave 6.93 1.82 
14 170 Imperial Valley-06 EC County Center FF 6.53 1.90 
15 825 Cape Mendocino Cape Mendocino 7.01 1.91 
16 184 Imperial Valley-06 El Centro Differential Array 6.53 1.94 
17 828 Cape Mendocino Petrolia 7.01 1.96 
18 1602 Duzce, Turkey Bolu 7.14 1.98 
19 292 Irpinia, Italy-01 Sturno 6.90 2.04 
20 1051 Northridge-01 Pacoima Dam (upper left) 6.69 2.09 
21 173 Imperial Valley-06 EC Meloland Overpass FF 6.53 2.13 
22 767 Loma Prieta Gilroy Array #3 6.93 2.55 
23 764 Loma Prieta Gilroy-Historic Bldg. 6.93 2.62 
24 174 Imperial Valley-06 El Centro Array #11 6.53 2.69 
25 161 Imperial Valley-06 Brawley Airport 6.53 3.02 
26 126 Gazli, USSR Karakyr 6.80 1.19 
27 1048 Northridge-01 Northridge-17645 Saticoy St 6.69 1.71 
28 1004 Northridge-01 LA-Sepulveda VA Hospital 6.69 1.90 
29 960 Northridge-01 Canyon Country-W Lost Cany 6.69 2.06 
30 768 Loma Prieta Gilroy Array #4 6.93 2.15 
31 1787 Hector Mine Hector 7.13 2.16 
32 959 Northridge-01 Canoga Park-Topanga Can 6.69 2.20 
33 864 Landers Joshua Tree 7.28 2.20 
34 1111 Kobe, Japan Nishi-Akashi 6.90 2.58 
35 1080 Northridge-01 Simi Valley-Katherine Rd 6.69 2.64 
36 285 Irpinia, Italy-01 Bagnoli Irpinio 6.90 2.68 
37 1052 Northridge-01 Pacoima Kagel Canyon 6.69 2.78 
38 728 Superstition Hills-02 Westmorland Fire Sta 6.54 2.87 
39 829 Cape Mendocino Rio Dell Overpass-FF 7.01 2.88 
40 1082 Northridge-01 Sun Valley-Roscoe Blvd 6.69 2.89 
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Table F.14 Documentation of 40 GMs of  
P1a

TS  procedure for Bridge C. 

Record 

Number 

NGA Record 

Sequence Number 
Earthquake Name Station Magnitude 

Scaling 

Factor 

1 1084 Northridge-01 Sylmar-Converter Sta 6.69 0.70 
2 1063 Northridge-01 Rinaldi Receiving Sta 6.69 0.89 
3 1085 Northridge-01 Sylmar-Converter Sta East 6.69 0.94 
4 1045 Northridge-01 Newhall-W Pico Canyon Rd. 6.69 0.95 
5 1086 Northridge-01 Sylmar-Olive View Med FF 6.69 1.03 
6 1044 Northridge-01 Newhall-Fire Sta 6.69 1.13 
7 983 Northridge-01 Jensen Filter Plant Generator 6.69 1.16 
8 1605 Duzce, Turkey Duzce 7.14 1.53 
9 803 Loma Prieta Saratoga-W Valley Coll. 6.93 1.59 
10 1013 Northridge-01 LA Dam 6.69 1.60 
11 766 Loma Prieta Gilroy Array #2 6.93 1.65 
12 179 Imperial Valley-06 El Centro Array #4 6.53 1.73 
13 802 Loma Prieta Saratoga-Aloha Ave 6.93 1.82 
14 170 Imperial Valley-06 EC County Center FF 6.53 1.90 
15 825 Cape Mendocino Cape Mendocino 7.01 1.91 
16 184 Imperial Valley-06 El Centro Differential Array 6.53 1.94 
17 828 Cape Mendocino Petrolia 7.01 1.96 
18 1602 Duzce, Turkey Bolu 7.14 1.98 
19 292 Irpinia, Italy-01 Sturno 6.90 2.04 
20 1051 Northridge-01 Pacoima Dam (upper left) 6.69 2.09 
21 173 Imperial Valley-06 EC Meloland Overpass FF 6.53 2.13 
22 767 Loma Prieta Gilroy Array #3 6.93 2.55 
23 764 Loma Prieta Gilroy-Historic Bldg. 6.93 2.62 
24 174 Imperial Valley-06 El Centro Array #11 6.53 2.69 
25 161 Imperial Valley-06 Brawley Airport 6.53 3.02 
26 126 Gazli, USSR Karakyr 6.80 1.19 
27 1048 Northridge-01 Northridge-17645 Saticoy St 6.69 1.71 
28 1004 Northridge-01 LA-Sepulveda VA Hospital 6.69 1.90 
29 960 Northridge-01 Canyon Country-W Lost Cany 6.69 2.06 
30 768 Loma Prieta Gilroy Array #4 6.93 2.15 
31 1787 Hector Mine Hector 7.13 2.16 
32 959 Northridge-01 Canoga Park-Topanga Can 6.69 2.20 
33 864 Landers Joshua Tree 7.28 2.20 
34 1111 Kobe, Japan Nishi-Akashi 6.90 2.58 
35 1080 Northridge-01 Simi Valley-Katherine Rd 6.69 2.64 
36 285 Irpinia, Italy-01 Bagnoli Irpinio 6.90 2.68 
37 1052 Northridge-01 Pacoima Kagel Canyon 6.69 2.78 
38 185 Imperial Valley-06 Holtville Post Office 6.53 2.72 
39 1050 Northridge-01 Pacoima Dam (downstr) 6.69 3.98 
40 765 Loma Prieta Gilroy Array #1 6.93 4.84 
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Table F.15 Documentation of 40 GMs of CMS procedure for Bridge C. 

Record 

Number 

NGA Record 

Sequence Number 
Earthquake Name Station Magnitude 

Scaling 

Factor 

1 1537 Chi-Chi, Taiwan TCU111 7.62 2.55 
2 1547 Chi-Chi, Taiwan TCU123 7.62 1.58 
3 1147 Kocaeli, Turkey Ambarli 7.51 2.55 
4 1329 Chi-Chi, Taiwan ILA037 7.62 2.50 
5 1262 Chi-Chi, Taiwan HWA011 7.62 2.99 
6 1492 Chi-Chi, Taiwan TCU052 7.62 0.65 
7 1203 Chi-Chi, Taiwan CHY036 7.62 1.96 
8 1553 Chi-Chi, Taiwan TCU141 7.62 2.79 
9 1536 Chi-Chi, Taiwan TCU110 7.62 1.17 
10 1472 Chi-Chi, Taiwan TCU017 7.62 2.64 
11 316 Westmorland Parachute Test Site 5.90 2.72 
12 1182 Chi-Chi, Taiwan CHY006 7.62 1.80 
13 721 Superstition Hills-02 El Centro Imp. Co. Cent 6.54 2.23 
14 1317 Chi-Chi, Taiwan ILA013 7.62 2.75 
15 173 Imperial Valley-06 El Centro Array #10 6.53 2.13 
16 1187 Chi-Chi, Taiwan CHY015 7.62 2.72 
17 1503 Chi-Chi, Taiwan TCU065 7.62 0.80 
18 1166 Kocaeli, Turkey Iznik 7.51 2.28 
19 1264 Chi-Chi, Taiwan HWA013 7.62 2.71 
20 2509 Chi-Chi, Taiwan-03 CHY104 6.20 2.47 
21 285 Irpinia, Italy-01 Bagnoli Irpinio 6.90 2.68 
22 1504 Chi-Chi, Taiwan TCU067 7.62 1.01 
23 1534 Chi-Chi, Taiwan TCU107 7.62 2.13 
24 1509 Chi-Chi, Taiwan TCU074 7.62 0.90 
25 1084 Northridge-01 Sylmar-Converter Sta 6.69 0.70 
26 1494 Chi-Chi, Taiwan TCU054 7.62 2.13 
27 1419 Chi-Chi, Taiwan TAP017 7.62 2.76 
28 1529 Chi-Chi, Taiwan TCU102 7.62 1.34 
29 1515 Chi-Chi, Taiwan TCU082 7.62 2.20 
30 900 Landers Yermo Fire Station 7.28 2.13 
31 1045 Northridge-01 Newhall-W Pico Canyon Rd. 6.69 0.95 
32 1787 Hector Mine Hector 7.13 2.16 
33 1410 Chi-Chi, Taiwan TAP003 7.62 1.78 
34 1316 Chi-Chi, Taiwan ILA012 7.62 2.97 
35 808 Loma Prieta Treasure Island 6.93 2.43 
36 169 Imperial Valley-06 Delta 6.53 1.73 
37 289 Irpinia, Italy-01 Calitri 6.90 2.71 
38 1491 Chi-Chi, Taiwan TCU051 7.62 2.52 
39 3317 Chi-Chi, Taiwan-06 CHY101 6.30 2.78 
40 864 Landers Joshua Tree 7.28 2.20 
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Table F.16 Documentation of 40 GMs of US procedure for Bridge C. 

Record 

Number 

NGA Record 

Sequence Number 
Earthquake Name Station Magnitude 

Scaling 

Factor 

1 2115 Denali, Alaska TAPS Pump Station #11 7.90 1.80 
2 1436 Chi-Chi, Taiwan TAP052 7.62 2.60 
3 729 Superstition Hills-02 Wildlife Liquef. Array 6.54 1.40 
4 1489 Chi-Chi, Taiwan TCU049 7.62 1.50 
5 1505 Chi-Chi, Taiwan TCU068 7.62 1.00 
6 732 Loma Prieta APEEL 2-Redwood City 6.93 3.00 
7 1491 Chi-Chi, Taiwan TCU051 7.62 2.60 
8 1490 Chi-Chi, Taiwan TCU050 7.62 2.60 
9 285 Irpinia, Italy-01 Bagnoli Irpinio 6.90 2.80 
10 1787 Hector Mine Hector 7.13 2.70 
11 1494 Chi-Chi, Taiwan TCU054 7.62 2.40 
12 1492 Chi-Chi, Taiwan TCU052 7.62 2.30 
13 1504 Chi-Chi, Taiwan TCU067 7.62 2.60 
14 1527 Chi-Chi, Taiwan TCU100 7.62 3.00 
15 1526 Chi-Chi, Taiwan TCU098 7.62 2.80 
16 1488 Chi-Chi, Taiwan TCU048 7.62 3.00 
17 1048 Northridge-01 Northridge-17645 Saticoy St 6.69 2.80 
18 801 Loma Prieta San Jose-Santa Teresa Hills 6.93 3.00 
19 1475 Chi-Chi, Taiwan TCU026 7.62 3.00 
20 1478 Chi-Chi, Taiwan TCU033 7.62 2.80 
21 1496 Chi-Chi, Taiwan TCU056 7.62 2.80 
22 832 Landers Amboy 7.28 3.00 
23 1472 Chi-Chi, Taiwan TCU017 7.62 3.00 
24 1515 Chi-Chi, Taiwan TCU082 7.62 2.20 
25 1503 Chi-Chi, Taiwan TCU065 7.62 2.00 
26 169 Imperial Valley-06 Delta 6.53 1.90 
27 1546 Chi-Chi, Taiwan TCU122 7.62 3.00 
28 1482 Chi-Chi, Taiwan TCU039 7.62 2.90 
29 1529 Chi-Chi, Taiwan TCU102 7.62 3.00 
30 1045 Northridge-01 Newhall-W Pico Canyon Rd. 6.69 3.00 
31 1176 Kocaeli, Turkey Yarimca 7.51 3.00 
32 1508 Chi-Chi, Taiwan TCU072 7.62 2.50 
33 1493 Chi-Chi, Taiwan TCU053 7.62 3.00 
34 1476 Chi-Chi, Taiwan TCU029 7.62 2.80 
35 1528 Chi-Chi, Taiwan TCU101 7.62 1.90 
36 180 Imperial Valley-06 El Centro Array #5 6.53 2.00 
37 829 Cape Mendocino Rio Dell Overpass-FF 7.01 2.10 
38 1499 Chi-Chi, Taiwan TCU060 7.62 2.80 
39 179 Imperial Valley-06 El Centro Array #4 6.53 2.70 
40 139 Tabas, Iran Dayhook 7.35 1.80 

 

 

 


