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 Increasing requirements for scalability and elasticity of data storage for web 

applications has made Not Structured Query Language NoSQL databases 

more invaluable to web developers. One of such NoSQL Database solutions 

is Redis. A budding alternative to Redis database is the SSDB database, 

which is also a key-value store but is disk-based. The aim of this research 

work is to benchmark both databases (Redis and SSDB) using the Yahoo 

Cloud Serving Benchmark (YCSB). YCSB is a platform that has been used 

to compare and benchmark similar NoSQL database systems. Both databases 

were given variable workloads to identify the throughput of all given 

operations. The results obtained shows that SSDB gives a better throughput 

for majority of operations to Redis’s performance. 
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1. INTRODUCTION 

There is an increasing proliferation of Not Structured Query Language (NoSQL) databases. 

Amongst their key advantages is the promise of faster and efficient performance than the legacy Relational 

Database Management Systems (RDBMS) [1]. NoSQL databases are also tailor fitted to the fast growing 

world of cloud computing, allowing for massive scaling “on demand” (elasticity) and simplified application 

development [2]. However, there are words of caution to the bandwagon of adoption in big data and web 

application development noting that not all NoSQL databases are created alike where performance is 

concerned [3]. [4] asserts that since NoSQL solutions are not mature and are progressing at different speeds, 

database administrators have to choose carefully between NoSQL and relational databases according to their 

specific needs in terms of consistency, performances, security, scalability, costs and other  

non-functional criteria.  

With the substantial number of open-source and readily available NoSQL systems, web applications 

developer also experience the headache of selecting amongst such NoSQL alternatives. This then suggests a 

Benchmarking among peers with scenarios produced in web application activity used to determine the best fit 

for various scenarios. Benchmarking in this respect refers to a performance evaluation of NoSQL solutions 

proposed or in use. The demand therefore is that sample interactions mimicking similar behaviour or actions 

as case may be in such web applications be used in a probabilistic or deterministic fashion to benchmark the 

performance of selected NoSQL database. Only in such ways can its selection be deemed reasonably suitable 

to be faster and more suited to a particular set of user interaction than a peer. 

NoSQL databases can be classed into four categories namely: Key-value stores, Document stores, 

Wide column stores, Graph Databases [4], [5]. A key-value store can be viewed as a collection of registers, 
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each identified by a key [6]. A common use case for these systems is as a layer in the data-retrieval 

hierarchy: a cache for expensive-to-obtain values, indexed by unique keys [7]. [5] Assert that key-value 

stores are generally good solutions if these have a simple application with only one kind of object, and only 

need to look up objects based on one attribute. Examples include Redis, Dynamo, Memcached, Voldermort 

etc. Document stores also known as document-oriented databases store document-oriented data in the form of 

Binary Javascript Object Notation (BSON) [8] or Javascript Object Notation (JSON). These systems are 

appealing to Web 2.0 programmers since these are generally supported by JSON as their data model [9]. 

Unlike the key-value stores, these systems generally support secondary indexes and multiple types of 

documents (objects) per database and nested documents or lists [10]. These are not required to adhere to a 

standard schema, the flexibility of JSON allows the user to work with data without having to define a schema 

upfront [8], [9]. Examples of such database is MongoDB, CouchDB etc. 

Wide column stores also referred by some as extensible record stores seem to have been motivated 

by Google’s success with BigTable [10]. A column-store stores each attribute in a database table separately, 

such that successive values of that attribute are stored consecutively [11]. It can be argued that the equivalent 

of relational databases for Big Data, retaining the notion of tables, rows and columns [5]. Wide Column 

databases are based on a hybrid approach that relies on relational databases declarative characteristics and 

various key-value stores schema [4]. Examples of these includes HBase, Cassandra, and Accumulo etc. 

Graph Databases are suitable to store not only information about objects but also all relationships that exist 

among them [4]. In this regard, Graph databases employs Graph theory concepts like nodes and edges. Nodes 

are entities in the data domain representing a tuple or row in a database, or an XML element and edges are 

the relationship between two entities like a foreign key/primary key relationship [5], [12]. Examples include 

Neo4J, and OrientDB. However, the focus of this research work is on key value data stores. 
 

1.1. In-Memory and On Disk Key-Value Data stores 

Data stores can be classed as either In-Memory or On Disk data stores. When in-memory data stores 

run, data is entirely loaded into memory, so all its operations are run from memory [13]. Typically, such 

systems may require that data be stored periodically and asynchronously on disk but all working data is 

retrieved from memory. [10] Shows that in-memory data can be copied to disk for backup or system 

shutdown. The key advantages of in-memory data stores are low latency and improved throughput. In-

memory key-value storage also requires low overhead network communication between clients and servers 

[13], this contributes significantly to its high throughput. Redis and Memcached are typical examples of in-

Memory key-value Data stores [7], [14].  

Another Category of key-value data stores are Disk-based key-value data stores. Typically, disk-

based data stores can be Distributed storage systems [15], or Single node platforms, storages that hold data in 

hard disk with frequently accessed data in memory, or data stores that can store data in RAM, but it also 

permits plugging in a storage engine [10]. The advantage of on disk capabilities includes reducing cost per 

byte of storage and increasing storage capacity. Indeed, on disk data stores can serve as alternative to in 

memory types when exhaustion of memory space is anticipated or expected [15]. Also, these are referred to 

as persistent key-value stores which include data stores such as BerkeleyDB, Voldemort and Riak [16]. 
 

1.2. Redis 

Redis is an open source (BSD licensed), in-memory data structure store, used as database, cache and 

message broker [14]. The data model is key-value, although many different kinds of data types are supported: 

Strings, Lists, Sets, Sorted Sets, Hashes, HyperLogLogs, and Bitmaps [17]. Redis has built-in replication, it 

can be replicated using the master-slave model and a master can have multiple slaves [14], [3]. Redis 

provides access to mutable data structures via a set of commands, which are sent using a server-client model 

with TCP sockets and a simple protocol [17]. Redis can be used as a Least recently used (LRU) cache, using 

an approximate LRU algorithm to evict old data as a new one is added [14]. It also offers scripting capability 

using Lua, a powerful, light-weight scripting language written in C and embedded in Redis [18]. Redis 

supports automatic failover if a master is not working as expected using a feature called Redis Sentinel, this 

starts a failover process where a slave is promoted to master, additional slaves are also reconfigured to use 

the new master [14]. Sharding is executed via Redis cluster a platform where data is automatically sharded 

across multiple Redis nodes [14]. 
 

1.3. SSDB 

SSDB is a fast NoSQL database for storing big list of billions of elements; it supports data structures 

including Key-Value pair, List, Map or Hash and Sorted Set [19]. SSDB is written in C/C++ with Google 

LevelDB as its storage engine [20]. Conceived by its author as an alternative to Redis [19, 20], it supports 

Redis network protocol and open-sourced Redis clients [21]. SSDB other features include Replication 
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(Master-Slave and Master-Master configuration), Time to Live key expiration (can serve as a persistent cache 

service) [21] and easy to use client APIs for Development and Deployment. 

 

 

2. RESEARCH METHOD 

2.1.  Benchmarking Tool and System Specification 
Benchmarking of NoSQL Databases with any standard benchmark tools is done using two 

approaches namely: trace and vector-based load (database operations) generation [22], [23]. Trace based 

benchmark systems use actual application workload generated from specific applications overtime. Whilst 

Vector based benchmark systems creates application behaviours using vectors and applying the vectors using 

known statistical distribution models, mimicking actual application request and response in hardware or 

virtual platform. Benchmark tools can be classified as either inbuilt or custom. An example of the former is 

redis-benchmark. Custom benchmark tools include Yahoo! Cloud System Benchmark (YCSB) [24], 

BigBench [25] and GraySort [26]. The objective of this benchmarking process is to compare the performance 

of Redis and SSDB NoSQL databases using single node instances. The results would validate the claims of 

SSDB’s suitability as an alternative to Redis as the authors have suggested [19]. The tool of choice is YCSB, 

YCSB’s plugin-based architecture and ease of extensibility using scripts [27] makes it a splendid choice. [4] 

details YCSB’s use in measuring the performance of four NoSQL systems including Redis. [2] Describes two 

YCSB benchmark tiers namely: Performance and Scaling. The focus for this study is to Benchmark SSDB’s 

performance in comparison to Redis for a range of Workloads. These workloads imitate a variety of web 

application request behaviours like heavy read and write scenarios. The workloads considered includes: 
 

Workload A (Heavy Updating) 

In this workload 50% of the operations are reads and 50% are writes .  

Workload B (Heavy Read) 

In this workload 95% of the operations are reads and the rest 5% are writes.  

Workload C (Only Read) 

Workload with 100% read operations.  

Workload D (Read Latest) 

Workload with 95% read Operations and 5% insert operations. Workload inserts new records and the most 

recently inserted records are the most popular. 

Workload E 

Workload with 95% Short ranges Scan Operations and 5% insert operations. Workload queries short ranges 

of records, instead of individual records.  

Workload F 
 

Workload where the client will read a record, modify it, and write back the changes. Table 1 shows the 

details system configuration and specification for the benchmarking process.manuscript.  

 

 

Table 1: Detailing System configuration and Specification 
Processor  Intel Pentium CPU B960 

Clock Speed 2.20GHz 

Number of Cores  2 

Number of Threads 2 

Host Instruction Set 64 bit 

Host Operating System Windows 

Host Memory  4096MB 

Virtual Operating System  CentOS 6.3 

Virtual Memory 756MB 

Virtual Instruction Set 32 bit 

Kernel Linux 2.6.32-279.el6.i686 

Java Java SE Runtime 1.8.0_45 

YCSB Version 0.1.4 

Redis Version 3.2.0 

SSDB Version 1.9.3 

Virtual Machine Oracle VirtualBox 

 

 

3. RESULTS AND ANALYSIS  

3.1. Workload A (Heavy Updating) 

The results of the Heavy Update operations are shown in Figures 1, Figure 2 and Figure 3.  In this 

result, SSDB outperforms Redis as the number of threads increases and its throughput diverges significantly 
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with an increase in the number of threads. This suggests that an increase in software threads will increase the 

performance of SSDB as shown in the Figures 1-3 

 

 

 

Figure 1. Comparison of Redis and SSDB with 1000 

Records 

 

 

Figure 2. Comparison of Redis and SSDB with 5000 

Records 

 

 

 
 

Figure 3. Comparison of Redis and SSDB with 10000 Records and 1000 Operations 

 

 

3.2. Workload B (Heavy Read) 

The result of the Heavy Read workload as shown in Figure 4, Figure 5 and Figure 6 has similarity 

with the heavy update operations. SSDB outperforms Redis for Heavy Read operations as shown in Figure 1, 

Figure 2 and Figure 3. However this advantage of performance seems to be lost as the amount of records 

approaches 10,000. Redis clearly seems to recover any lost grounds at this level. 

 

 

 
 

Figure 4. Comparison of Redis and SSDB with 1000 

Records and 1000 Operations 

 
 

Figure 5. Comparison of Redis and SSDB with 5000 

Records and 1000 Operations 
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Figure 6. Comparison of Redis and USSDB with 10000 Records and 1000 Operations 

 

 

3.3. Workload C (Only Read) 

The result of the throughput for SSDB as shown in Figures 7, Figure 8 and Figure 9 diverges 

significantly against that of Redis as the number of threads deployed increases. 

 

 

 

Figure 7. Comparison of Redis and SSDB with 1000 

Records and 1000 Operations 

 

Figure 8. comparison of Redis and SSDB with 

5000 Records and 1000 Operations 

 

 

 
 

Figure 9. Comparison of Redis and SSDB with 10000 Records and 1000 Operations 

 

 

3.4. Workload D (Read Latest) 

The Figure 10, Figure 11 and Figure 12 shows, how the result of SSDB throughput surpasses that of 

Redis. This also shows a significant boost of the throughput as the number of threads increases to 8. 
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Figure 10. Comparison of Redis and SSDB with 

1000 Records and 1000 Operations 

 

Figure 11. Comparison of Redis and SSDB with 

5000 Records and 1000 Operations 

 

 

 
 

Figure 12. Comparison of Redis and USSDB with 10000 Records and 1000 Operations 

 

 

3.5. Workload E 

The Figure 13, Figure 14 and Figure 15 shows, how the Redis clearly outperforms SSDB in terms of 

throughput. This indicates that the SSDB is unsuitable for SCAN operations. 

 

 

  
 

Figure 13. Comparison of Redis and SSDB with 

1000 Records and 1000 Operations 

 
 

Figure 14. Comparison of Redis and SSDB with 

5000 Records and 1000 Operations 
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Figure 15. Comparison of Redis and SSDB with 10000 Records and 1000 Operations 

 

 

3.6. Workload F 

In the Read-Modify-Write Workload as shown in Figure 16, Figure 17 and Figure 18, there are 

shades of similarity to Workload D (Read Latest) see Figure 10 to Figure 12. SSDB paces Redis for outputs 

from 1 2, and 4 threads respectively. However there is a divergence when thread length increases to 8. 

 

 

 

Figure 16. Comparison of Redis and SSDB with 

1000 Records and 1000 Operations 

 

Figure 17. Comparison of Redis and SSDB 

with 5000 Records and 1000 Operations 

 

 

 
 

Figure 18. Comparison of Redis and SSDB with 10000 Records and 1000 Operations 

 

 

For the series of experiments conducted, only single node instances of both databases were used. 

The test carried out involved all six (6) generic workloads of YCSB (Workload A to Workload F).  SSDB 
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performs better than Redis’s throughput in heavy read operations by a significant margin. However, the 

margin indicates a significant reduction with read-modify and write operations. This shows that developers 

can consider adopting SSDB for elasticity in application scenarios where updates, heavy read & read-modify 

and write operations are undertaken. While, SSDB’s claim to be a suitable alternative to Redis has been 

shown to be valid for Five out of six workloads, it is not suited for short or small (<10,000) range scan 

queries. 

 

 

4. CONCLUSION  

In conclusion, the phenomenoms that has led to the increased visibility of NoSQL is the rising need 

for unstructured data and documents in Mobile computing and Social network websites [28].  Whilst cheaper 

and faster memory units are not ruled out, the growing trend of Big Data and the Internet of Things is 

decentralized database systems that improve fault tolerance in database systems. Performance concerns are 

not only influenced by location alone but by data security issues also. Security concerns arise because of the 

nature and characteristics of Big Data (the huge volume, velocity, variety and veracity of data) [29]. One of 

such concerns is how to query encrypted database systems without degrading performance of applications 

[30, 31]. Although this study has not addressed such security issues it is certain that this will feature in lots of 

studies going forward. 
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