
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 8, No. 6, December 2018, pp. 5333~5341

ISSN: 2088-8708, DOI: 10.11591/ijece.v8i6.pp533-5431 5333

Journal homepage: http://iaescore.com/journals/index.php/IJECE

Performance Benchmarking of Key-Value Store NoSQL

Databases

Omoruyi Osemwegie, Kennedy Okokpujie, Nsikan Nkordeh, Charles Ndujiuba, Samuel John,

Uzairue Stanley
Department of Electrical and Information Engineering, Covenant University, Nigeria

Article Info ABSTRACT

Article history:

Received Sep 6, 2017

Revised May 3, 2018

Accepted Jun 11, 2018

 Increasing requirements for scalability and elasticity of data storage for web

applications has made Not Structured Query Language NoSQL databases

more invaluable to web developers. One of such NoSQL Database solutions

is Redis. A budding alternative to Redis database is the SSDB database,

which is also a key-value store but is disk-based. The aim of this research

work is to benchmark both databases (Redis and SSDB) using the Yahoo

Cloud Serving Benchmark (YCSB). YCSB is a platform that has been used

to compare and benchmark similar NoSQL database systems. Both databases

were given variable workloads to identify the throughput of all given

operations. The results obtained shows that SSDB gives a better throughput

for majority of operations to Redis’s performance.

Keyword:

NoSQL

Redis

SSDB database

Yahoo Cloud Serving

Benchmark (YCSB) Copyright © 2018 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Kennedy Okokpujie,

Department of Electrical and Information Engineering,

Covenant University,

KM 10 Idiroko Road, Ota, Ogun State, Nigeria.

Email: okokpujiekennedy@covenantuniverrsity.edu.ng

1. INTRODUCTION

There is an increasing proliferation of Not Structured Query Language (NoSQL) databases.

Amongst their key advantages is the promise of faster and efficient performance than the legacy Relational

Database Management Systems (RDBMS) [1]. NoSQL databases are also tailor fitted to the fast growing

world of cloud computing, allowing for massive scaling “on demand” (elasticity) and simplified application

development [2]. However, there are words of caution to the bandwagon of adoption in big data and web

application development noting that not all NoSQL databases are created alike where performance is

concerned [3]. [4] asserts that since NoSQL solutions are not mature and are progressing at different speeds,

database administrators have to choose carefully between NoSQL and relational databases according to their

specific needs in terms of consistency, performances, security, scalability, costs and other

non-functional criteria.

With the substantial number of open-source and readily available NoSQL systems, web applications

developer also experience the headache of selecting amongst such NoSQL alternatives. This then suggests a

Benchmarking among peers with scenarios produced in web application activity used to determine the best fit

for various scenarios. Benchmarking in this respect refers to a performance evaluation of NoSQL solutions

proposed or in use. The demand therefore is that sample interactions mimicking similar behaviour or actions

as case may be in such web applications be used in a probabilistic or deterministic fashion to benchmark the

performance of selected NoSQL database. Only in such ways can its selection be deemed reasonably suitable

to be faster and more suited to a particular set of user interaction than a peer.

NoSQL databases can be classed into four categories namely: Key-value stores, Document stores,

Wide column stores, Graph Databases [4], [5]. A key-value store can be viewed as a collection of registers,

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 8, No. 6, December 2018 : 5333 - 5341

5334

each identified by a key [6]. A common use case for these systems is as a layer in the data-retrieval

hierarchy: a cache for expensive-to-obtain values, indexed by unique keys [7]. [5] Assert that key-value

stores are generally good solutions if these have a simple application with only one kind of object, and only

need to look up objects based on one attribute. Examples include Redis, Dynamo, Memcached, Voldermort

etc. Document stores also known as document-oriented databases store document-oriented data in the form of

Binary Javascript Object Notation (BSON) [8] or Javascript Object Notation (JSON). These systems are

appealing to Web 2.0 programmers since these are generally supported by JSON as their data model [9].

Unlike the key-value stores, these systems generally support secondary indexes and multiple types of

documents (objects) per database and nested documents or lists [10]. These are not required to adhere to a

standard schema, the flexibility of JSON allows the user to work with data without having to define a schema

upfront [8], [9]. Examples of such database is MongoDB, CouchDB etc.

Wide column stores also referred by some as extensible record stores seem to have been motivated

by Google’s success with BigTable [10]. A column-store stores each attribute in a database table separately,

such that successive values of that attribute are stored consecutively [11]. It can be argued that the equivalent

of relational databases for Big Data, retaining the notion of tables, rows and columns [5]. Wide Column

databases are based on a hybrid approach that relies on relational databases declarative characteristics and

various key-value stores schema [4]. Examples of these includes HBase, Cassandra, and Accumulo etc.

Graph Databases are suitable to store not only information about objects but also all relationships that exist

among them [4]. In this regard, Graph databases employs Graph theory concepts like nodes and edges. Nodes

are entities in the data domain representing a tuple or row in a database, or an XML element and edges are

the relationship between two entities like a foreign key/primary key relationship [5], [12]. Examples include

Neo4J, and OrientDB. However, the focus of this research work is on key value data stores.

1.1. In-Memory and On Disk Key-Value Data stores

Data stores can be classed as either In-Memory or On Disk data stores. When in-memory data stores

run, data is entirely loaded into memory, so all its operations are run from memory [13]. Typically, such

systems may require that data be stored periodically and asynchronously on disk but all working data is

retrieved from memory. [10] Shows that in-memory data can be copied to disk for backup or system

shutdown. The key advantages of in-memory data stores are low latency and improved throughput. In-

memory key-value storage also requires low overhead network communication between clients and servers

[13], this contributes significantly to its high throughput. Redis and Memcached are typical examples of in-

Memory key-value Data stores [7], [14].

Another Category of key-value data stores are Disk-based key-value data stores. Typically, disk-

based data stores can be Distributed storage systems [15], or Single node platforms, storages that hold data in

hard disk with frequently accessed data in memory, or data stores that can store data in RAM, but it also

permits plugging in a storage engine [10]. The advantage of on disk capabilities includes reducing cost per

byte of storage and increasing storage capacity. Indeed, on disk data stores can serve as alternative to in

memory types when exhaustion of memory space is anticipated or expected [15]. Also, these are referred to

as persistent key-value stores which include data stores such as BerkeleyDB, Voldemort and Riak [16].

1.2. Redis

Redis is an open source (BSD licensed), in-memory data structure store, used as database, cache and

message broker [14]. The data model is key-value, although many different kinds of data types are supported:

Strings, Lists, Sets, Sorted Sets, Hashes, HyperLogLogs, and Bitmaps [17]. Redis has built-in replication, it

can be replicated using the master-slave model and a master can have multiple slaves [14], [3]. Redis

provides access to mutable data structures via a set of commands, which are sent using a server-client model

with TCP sockets and a simple protocol [17]. Redis can be used as a Least recently used (LRU) cache, using

an approximate LRU algorithm to evict old data as a new one is added [14]. It also offers scripting capability

using Lua, a powerful, light-weight scripting language written in C and embedded in Redis [18]. Redis

supports automatic failover if a master is not working as expected using a feature called Redis Sentinel, this

starts a failover process where a slave is promoted to master, additional slaves are also reconfigured to use

the new master [14]. Sharding is executed via Redis cluster a platform where data is automatically sharded

across multiple Redis nodes [14].

1.3. SSDB

SSDB is a fast NoSQL database for storing big list of billions of elements; it supports data structures

including Key-Value pair, List, Map or Hash and Sorted Set [19]. SSDB is written in C/C++ with Google

LevelDB as its storage engine [20]. Conceived by its author as an alternative to Redis [19, 20], it supports

Redis network protocol and open-sourced Redis clients [21]. SSDB other features include Replication

Int J Elec & Comp Eng ISSN: 2088-8708

Performance Benchmarking of Key-Value Store NoSQL Databases (Omoruyi Osemwegie)

5335

(Master-Slave and Master-Master configuration), Time to Live key expiration (can serve as a persistent cache

service) [21] and easy to use client APIs for Development and Deployment.

2. RESEARCH METHOD

2.1. Benchmarking Tool and System Specification
Benchmarking of NoSQL Databases with any standard benchmark tools is done using two

approaches namely: trace and vector-based load (database operations) generation [22], [23]. Trace based

benchmark systems use actual application workload generated from specific applications overtime. Whilst

Vector based benchmark systems creates application behaviours using vectors and applying the vectors using

known statistical distribution models, mimicking actual application request and response in hardware or

virtual platform. Benchmark tools can be classified as either inbuilt or custom. An example of the former is

redis-benchmark. Custom benchmark tools include Yahoo! Cloud System Benchmark (YCSB) [24],

BigBench [25] and GraySort [26]. The objective of this benchmarking process is to compare the performance

of Redis and SSDB NoSQL databases using single node instances. The results would validate the claims of

SSDB’s suitability as an alternative to Redis as the authors have suggested [19]. The tool of choice is YCSB,

YCSB’s plugin-based architecture and ease of extensibility using scripts [27] makes it a splendid choice. [4]

details YCSB’s use in measuring the performance of four NoSQL systems including Redis. [2] Describes two

YCSB benchmark tiers namely: Performance and Scaling. The focus for this study is to Benchmark SSDB’s

performance in comparison to Redis for a range of Workloads. These workloads imitate a variety of web

application request behaviours like heavy read and write scenarios. The workloads considered includes:

Workload A (Heavy Updating)

In this workload 50% of the operations are reads and 50% are writes .

Workload B (Heavy Read)

In this workload 95% of the operations are reads and the rest 5% are writes.

Workload C (Only Read)

Workload with 100% read operations.

Workload D (Read Latest)

Workload with 95% read Operations and 5% insert operations. Workload inserts new records and the most

recently inserted records are the most popular.

Workload E

Workload with 95% Short ranges Scan Operations and 5% insert operations. Workload queries short ranges

of records, instead of individual records.

Workload F

Workload where the client will read a record, modify it, and write back the changes. Table 1 shows the

details system configuration and specification for the benchmarking process.manuscript.

Table 1: Detailing System configuration and Specification
Processor Intel Pentium CPU B960

Clock Speed 2.20GHz

Number of Cores 2

Number of Threads 2

Host Instruction Set 64 bit

Host Operating System Windows

Host Memory 4096MB

Virtual Operating System CentOS 6.3

Virtual Memory 756MB

Virtual Instruction Set 32 bit

Kernel Linux 2.6.32-279.el6.i686

Java Java SE Runtime 1.8.0_45

YCSB Version 0.1.4

Redis Version 3.2.0

SSDB Version 1.9.3

Virtual Machine Oracle VirtualBox

3. RESULTS AND ANALYSIS

3.1. Workload A (Heavy Updating)

The results of the Heavy Update operations are shown in Figures 1, Figure 2 and Figure 3. In this

result, SSDB outperforms Redis as the number of threads increases and its throughput diverges significantly

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 8, No. 6, December 2018 : 5333 - 5341

5336

with an increase in the number of threads. This suggests that an increase in software threads will increase the

performance of SSDB as shown in the Figures 1-3

Figure 1. Comparison of Redis and SSDB with 1000

Records

Figure 2. Comparison of Redis and SSDB with 5000

Records

Figure 3. Comparison of Redis and SSDB with 10000 Records and 1000 Operations

3.2. Workload B (Heavy Read)

The result of the Heavy Read workload as shown in Figure 4, Figure 5 and Figure 6 has similarity

with the heavy update operations. SSDB outperforms Redis for Heavy Read operations as shown in Figure 1,

Figure 2 and Figure 3. However this advantage of performance seems to be lost as the amount of records

approaches 10,000. Redis clearly seems to recover any lost grounds at this level.

Figure 4. Comparison of Redis and SSDB with 1000

Records and 1000 Operations

Figure 5. Comparison of Redis and SSDB with 5000

Records and 1000 Operations

Int J Elec & Comp Eng ISSN: 2088-8708

Performance Benchmarking of Key-Value Store NoSQL Databases (Omoruyi Osemwegie)

5337

Figure 6. Comparison of Redis and USSDB with 10000 Records and 1000 Operations

3.3. Workload C (Only Read)

The result of the throughput for SSDB as shown in Figures 7, Figure 8 and Figure 9 diverges

significantly against that of Redis as the number of threads deployed increases.

Figure 7. Comparison of Redis and SSDB with 1000

Records and 1000 Operations

Figure 8. comparison of Redis and SSDB with

5000 Records and 1000 Operations

Figure 9. Comparison of Redis and SSDB with 10000 Records and 1000 Operations

3.4. Workload D (Read Latest)

The Figure 10, Figure 11 and Figure 12 shows, how the result of SSDB throughput surpasses that of

Redis. This also shows a significant boost of the throughput as the number of threads increases to 8.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 8, No. 6, December 2018 : 5333 - 5341

5338

Figure 10. Comparison of Redis and SSDB with

1000 Records and 1000 Operations

Figure 11. Comparison of Redis and SSDB with

5000 Records and 1000 Operations

Figure 12. Comparison of Redis and USSDB with 10000 Records and 1000 Operations

3.5. Workload E

The Figure 13, Figure 14 and Figure 15 shows, how the Redis clearly outperforms SSDB in terms of

throughput. This indicates that the SSDB is unsuitable for SCAN operations.

Figure 13. Comparison of Redis and SSDB with

1000 Records and 1000 Operations

Figure 14. Comparison of Redis and SSDB with

5000 Records and 1000 Operations

Int J Elec & Comp Eng ISSN: 2088-8708

Performance Benchmarking of Key-Value Store NoSQL Databases (Omoruyi Osemwegie)

5339

Figure 15. Comparison of Redis and SSDB with 10000 Records and 1000 Operations

3.6. Workload F

In the Read-Modify-Write Workload as shown in Figure 16, Figure 17 and Figure 18, there are

shades of similarity to Workload D (Read Latest) see Figure 10 to Figure 12. SSDB paces Redis for outputs

from 1 2, and 4 threads respectively. However there is a divergence when thread length increases to 8.

Figure 16. Comparison of Redis and SSDB with

1000 Records and 1000 Operations

Figure 17. Comparison of Redis and SSDB

with 5000 Records and 1000 Operations

Figure 18. Comparison of Redis and SSDB with 10000 Records and 1000 Operations

For the series of experiments conducted, only single node instances of both databases were used.

The test carried out involved all six (6) generic workloads of YCSB (Workload A to Workload F). SSDB

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 8, No. 6, December 2018 : 5333 - 5341

5340

performs better than Redis’s throughput in heavy read operations by a significant margin. However, the

margin indicates a significant reduction with read-modify and write operations. This shows that developers

can consider adopting SSDB for elasticity in application scenarios where updates, heavy read & read-modify

and write operations are undertaken. While, SSDB’s claim to be a suitable alternative to Redis has been

shown to be valid for Five out of six workloads, it is not suited for short or small (<10,000) range scan

queries.

4. CONCLUSION

In conclusion, the phenomenoms that has led to the increased visibility of NoSQL is the rising need

for unstructured data and documents in Mobile computing and Social network websites [28]. Whilst cheaper

and faster memory units are not ruled out, the growing trend of Big Data and the Internet of Things is

decentralized database systems that improve fault tolerance in database systems. Performance concerns are

not only influenced by location alone but by data security issues also. Security concerns arise because of the

nature and characteristics of Big Data (the huge volume, velocity, variety and veracity of data) [29]. One of

such concerns is how to query encrypted database systems without degrading performance of applications

[30, 31]. Although this study has not addressed such security issues it is certain that this will feature in lots of

studies going forward.

ACKNOWLEDGEMENTS
We acknowledge the support of Covenant University in conducting this research and the cost of publication.

REFERENCES
[1] C.U. Kumarasinghe, K.L.D.U. Liyanage, W.A.T. Madushanka and R.A.C.L. Mendis. (2015, September).

Performance Comparison of NoSQL Databases in Pseudo Distributed Mode: Cassandra, MongoDB & Redis

[Online]. Available:

https://www.researchgate.net/profile/Tiroshan_Madushanka/publication/281629653_Performance_Comparison_of

_NoSQL_Databases_in_Pseudo_Distributed_Mode_Cassandra_MongoDB_Redis/links/55f113ba08aedecb68ffd29

4.pdf, Accessed: July. 1, 2016

[2] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears, “Benchmarking cloud serving systems with

ycsb”. In Proceedings of the 1st ACM symposium on Cloud computing (New York, NY, USA, 2010), SoCC ’10,

ACM, pp.143-154.

[3] Y. Abubakar, T. S. Adeyi, and I. G. Auta, "Performance Evaluation of NoSQL Systems using YCSB in a

Resource Austere Environment," International Journal of Applied Information Systems, vol. 7, pp. 23-27, Sep.

2014.

[4] [A. Oussous, F.Z. Benjelloun, A.A. Lahcen, S. Belfkih, "Comparison and Classification of NoSQL Databases for

Big Data," in Proc. of the 2015 International Conference on Big Data, Cloud and Applications, BDCA 2015, 25-26

May 2015, Tetuan, Morocco [Online]. Available: ResearchGate , https://www.researchgate.net. [Accessed: 24 June

2016].

[5] H. Khazaei, M. Fokaefs, S. Zareian, N. Beigi-Mohammadi, B. Ramprasad, M.Shtern, P. Gaikwad, and M. Litoiu.

“How do I choose the right NoSQL solution?A comprehensive theoretical and experimental survey.” In: Submitted

to Journal of Big Data and Information Analytics(BDIA)(2015).[Online].Available:

https://www.researchgate.net/profile/Hamzeh_Khazaei/publication/282679529_How_Do_I_Choose_The_Right_N

osql_Solution_A_Comprehensive_Theoretical_And_Experimental_Survey/links/5618781808ae044edbad2437.pdf.

Accessed:Jun. 29, 2016.

[6] E. Anderson, X. Li, M. A. Shah, J. Tucek, and J. J. Wylie, “What consistency does your key-value store actually

provide?” HotDep, vol. 10, pp. 1–16, 2010.

[7] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny. Workload analysis of a large-scale key-value store.

In Proceedings of the SIGMETRICS’12, June 2012.

[8] K. Ma, A. Abraham, “Toward lightweight transparent data middleware in support of document stores” in WICT

2013: Proceedings of the third World Congress on Information and Communication Technologies (2013)

[9] C. Chasseur, Y. Li, and J. M. Patel. Enabling JSON document stores in relational systems. In Proceedings of the

16th International Workshop on the Web and Databases (WebDB), pages 1-6, 2013.

[10] R. Cattell, “Scalable sql and nosql data stores,” ACM SIGMOD Record, vol. 39, no. 4, pp. 12–27, 2010.

[11] D.J. Abadi. Column stores for wide and sparse data. In CIDR, Asilomar, CA, USA, 2007.

[12] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, R. Desai, and H. Karambelkar, "Bidirectional expansion for

keyword search on graph databases," in Proc. of VLDB Conference, 2005, pp. 505-516.

[13] J. Han, E. Haihong, G. Le, and J. Du, "Survey on NoSQL database," In Pervasive Computing and Applications

(ICPCA), 2011 6th International Conference on, Oct. 2011, pp. 363-366.

[14] [Online].Available: http://redis.io Accessed: July. 1, 2016.

[15] Online].Available:http://www.ideawu.com/blog/post/category/ssdb, Accessed: July. 1, 2016

Int J Elec & Comp Eng ISSN: 2088-8708

Performance Benchmarking of Key-Value Store NoSQL Databases (Omoruyi Osemwegie)

5341

[16] Katarina Grolinger, Wilson A. Higashino, Abhinav Tiwari and Miriam A. M. Capretz, “Data management in cloud

environments: NoSQL and NewSQL data stores”, Journal of Cloud Computing: Advances, Systems and

Applications 2013, 2:22; http://www.journalofcloudcomputing.com/content/2/1/22

[17] [Online].Available:https://github.com/antirez/redis Accessed: July. 1, 2016.

[18] R. Ierusalimschy, L. H. de Figueiredo, W. Celes. Lua 5.1 Reference Manual. Lua.org, 2006.

[19] [Online].Available: https://ssdb.io Accessed: July. 2, 2016.

[20] [Online].Available:https://github.com/ideawu/ssdb Accessed: July. 2, 2016.

[21] [Online].Available:http://www.ideawu.com/blog/post/category/ssdb Accessed: July. 2, 2016.

[22] R. Sears, C. Van Ingen, and J. Gray, “To BLOB or not to BLOB: Large object storage in a database or a

filesystem?,” arXiv Prepr. cs/0701168, pp. 1–11, 2007.

[23] M. Seltzer, D. Krinsky, K. Smith, and X. Zhang, “The case for application-specific benchmarking,” in Hot Topics

in Operating Systems, 1999. Proceedings of the Seventh Workshop on, 1999, pp. 102–107.

[24] B. Cooper, YCSB: Yahoo! Cloud Serving Benchmark. 2017.

[25] T. Rabl et al., “BigBench Specification V0. 1,” in Specifying Big Data Benchmarks, Springer, 2014, pp. 164–201.

[26] “Sort Benchmark Home Page.” [Online]. Available: http://sortbenchmark.org./. [Accessed: 01-Jan-2018].

[27] H. Khazaei et al., “How do I choose the right nosql solution? a comprehensive theoretical and experimental

survey.”

[28] S.-H. Jung, J.-C. Kim, and C.-B. Sim, “Prediction Data Processing Scheme using an Artificial Neural Network and

Data Clustering for Big Data,” International Journal of Electrical and Computer Engineering (IJECE)., vol. 6, no.

1, p. 330, 2016.

[29] S. A. Thanekar, K. Subrahmanyam, and A. B. Bagwan, “Big data and MapReduce challenges, opportunities and

trends,” International Journal of Electrical and Computer Engineering (IJECE)., vol. 6, no. 6, pp. 2911–2919,

2016.

[30] Y. D. Jang and J. H. Kim, “A comparison of the query execution algorithms in secure database system,”

International Journal of Electrical and Computer Engineering (IJECE), vol. 6, no. 1, pp. 337–343, 2016.

[31] Chinonso, Okereke, Osemwegie Omoruyi, Kennedy Okokpujie, and Samuel John. "Development of an Encrypting

System for an Image Viewer based on Hill Cipher Algorithm", Covenant Journal Of Engineering Technology 1,

no. 2 (2017).

