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Abstract

A new ideal mechanical one-port network element named the inerter was recently

introduced, and shown to be realisable, with the property that the applied force is propor-

tional to the relative acceleration across the element. This paper makes a comparative

study of several simple passive suspension struts, each containing at most one damper

and inerter as a preliminary investigation into the potential performance advantages of the

element. Improved performance for several different measures in a quarter-car model is

demonstrated here in comparison with a conventional passive suspension strut. A study

of a full-car model is also undertaken where performance improvements are also shown

in comparison to conventional passive suspension struts. A prototype inerter has been

built and tested. Experimental results are presented which demonstrate a characteris-

tic phase advance property which cannot be achieved with conventional passive struts

consisting of springs and dampers only.

Running head: Benefits in Suspensions using Inerters

1 Introduction

In [1] an alternative to the traditional electrical-mechanical analogies was proposed in the

context of synthesis of passive mechanical networks. Specifically, a new two-terminal element

called the inerter was introduced, as a substitute for the mass element, with the property

that the force across the element is proportional to the relative acceleration between the

terminals. It was argued in [1] that such an element is necessary for the synthesis of the

full class of physically realisable passive mechanical impedances. Indeed, the traditional

suspension strut employing springs and dampers only and avoiding the mass element has

dynamic characteristics which are greatly limited in comparison. The consequence is that,

1This works was published in: Vehicle System Dynamics, 2004, vol. 42, no. 4, pp. 235–257. The published

version contains several small errors (especially in the labelling of Figure 7) which are corrected here. This

work was supported in part by the EPSRC.
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potentially, there is scope to improve the vehicle dynamics of a passively suspended vehicle by

using suspension struts employing inerters as well as springs and dampers. It is the purpose of

the present paper to give more detailed consideration to these possible performance benefits

using some standard performance measures for quarter-car and full-car vehicle models. In

addition, some experimental test results on a prototype inerter will be reported.

2 Background on the inerter

The force-current analogy between mechanical and electrical networks has the following

correspondences:

force ↔ current

velocity ↔ voltage

mechanical ground ↔ electrical ground

spring ↔ inductor

damper ↔ resistor.

Additionally the mass element has always been taken as the analogue of the capacitor, even

though it has been appreciated [2, p. 111], [3, p. 10-5] that the mass is strictly analogous

only to a capacitor with one terminal connected to ground. This is due to the fact that

Newton’s Second Law refers the acceleration of the mass to a fixed point in an inertial

frame, i.e. mechanical ground. The restrictive nature of the mass element in networks has

the disadvantage that electrical circuits with ungrounded capacitors do not have a direct

spring-mass-damper analogue. This imposes a restriction on the class of passive mechanical

impedances which can be physically realised. A further problem is that the suspension strut

needs to have small mass compared to that of the vehicle body and wheel hub, which itself

imposes further restrictions on the class of mechanical impedances which may be practically

realised using the classical spring-mass-damper analogue.

To remedy the situation a network element called the inerter was introduced in [1] with

the following definition. The (ideal) inerter is a two-terminal mechanical device with the

property that the equal and opposite force F applied at the terminals is proportional to the

relative acceleration between the nodes, i.e. F = b(v̇2− v̇1)where v1, v2 are the velocities of

the two terminals and b is a constant of proportionality called the inertance which has units

of kilograms. The stored energy in the inerter is equal to 1
2 b(v2 − v1)

2.

A variety of different physical realisations of an inerter are possible (see [4]). A simple

approach is to take a plunger sliding in a cylinder which drives a flywheel through a rack,
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Figure 1: Schematic of a mechanical model of an inerter.
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Figure 2: Circuit symbols and correspondences with defining equations and admittance Y (s).

3



pinion and gears (see Fig. 1). Such a realisation may be viewed as approximating its math-

ematical ideal in the same way that real springs, dampers, capacitors etc. approximate their

mathematical ideals.

A table of the circuit symbols of the six basic electrical and mechanical elements, with the

inerter replacing the mass, is shown in Fig. 2. The symbol chosen for the inerter represents

a flywheel. The impedance of a mechanical element, in the force-current analogy, is defined

by Z(s) = v̂(s)/F̂(s) (whereˆdenotes Laplace transform, v is the relative velocity across the

element and F is the force) and the admittance is given by Y (s) = 1/Z(s).

The inerter mechanical element, and the use of the force-current analogy, allows a classi-

cal theorem on synthesis of electrical one-ports in terms of resistors, capacitors and inductors

to be translated over directly into the mechanical context. Although we will not exploit this

result directly in the present paper it is nevertheless useful to cite it. A network is defined to

be passive if it cannot supply energy to the environment. If a one-port mechanical network

has an impedance Z(s) which is real-rational then it is passive if and only if Z(s) is analytic

and Z(s) + Z(s)∗ ≥ 0 in Re(s) > 0 where ∗ denotes complex conjugation. A classical

theorem of electrical circuit synthesis, due to Brune, Bott and Duffin now translates directly

over to the following result. See [1] for further details and references as well as a discussion

of why this class of impedances is significantly wider than can be obtained using springs and

dampers only.

Theorem 1. Consider any real-rational function Z(s) which is positive real. There exists

a one-port mechanical network whose impedance equals Z(s) which consists of a finite

interconnection of springs, dampers and inerters.

3 Suspension struts

We now introduce a few simple networks as candidates for a suspension strut each of which

contains at most one damper and one inerter. While this does not exploit the full class of

impedances/admittances of Theorem 1, it nevertheless provides a number of new possibilities

to investigate which are relatively simple to realise in practice.

Fig. 3(a) shows the conventional parallel spring-damper arrangement. In Fig. 3(b) there is

a relaxation spring kb in series with the damper. Figs. 3(c), 3(d) show a parallel spring-damper

augmented by an inerter in parallel or in series with the damper. When the spring stiffness k is

fixed it often proves relatively straightforward to optimise over the two remaining parameters

b and c in these configurations.
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The series arrangement of Fig. 3(d) has a potential disadvantage in that the node between

the damper and inerter has an absolute location which is indeterminate in the steady-state.

This could give rise to drift of the damper and/or inerter to the limit of travel in the course of

operation. To remedy this the arrangement of Fig. 3(e) is proposed with a pair of springs of

stiffness k1, which we call centring springs, which may be preloaded against each other. Fig.

3(f) is similar but allows for unequal springs k1 and k2. Figs. 3(h), 3(g) differ from Figs. 3(f),

3(e) by having an additional relaxation spring kb.

The mechanical admittance Y (s) for two of these layouts (layout S3 and S7) is now given

for illustration:

Y3(s) = k
s
+ c + bs and Y7(s) = k

s
+ 1

s
kb
+ s

cs+k1
+ s

bs2+k1

.

4 The quarter-car model

An elementary model to consider the theory of suspension systems is the quarter-car of Figure

4 consisting of the sprung mass ms , the unsprung mass mu and a tyre with spring stiffness

kt . The suspension strut provides an equal and opposite force on the sprung and unsprung

masses and is assumed here to be a passive mechanical admittance Y (s) which has negligible

mass. The equations of motion in the Laplace transformed domain are:

mss2 ẑs = F̂s − sY (s)(ẑs − ẑu), (1)

mus2 ẑu = sY (s)(ẑs − ẑu)+ kt(ẑr − ẑu). (2)
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In this paper we will fix the parameters of the quarter-car model as follows: m s = 250 kg,

mu = 35 kg, kt = 150 kN/m.

4.1 Performance measures

There are a number of practical design requirements for a suspension system such as passenger

comfort, handling, tyre normal loads, limits on suspension travel etc. which require careful

optimisation. In the simplified quarter-car model these can be translated approximately into

specifications on the disturbance responses from Fs and zr to zs and zu . We now introduce

several basic measures.

We first consider road disturbances zr . Following [5] a time-varying displacement z(t)

is derived from traversing a rigid road profile at velocity V . Further, let z(t) have the form

z′(x) where x is the distance in the direction of motion. Thus z(t) = z ′(V t). Moreover the

corresponding spectral densities are related by

Sz( f ) = 1
V

Sz′(n)

where f is frequency in cycles/second, n is the wavenumber in cycles/metre and f = nV .

Now consider an output variable y(t) which is related to z(t) by the transfer function H(s).

Then the expectation of y2(t) is given by:

E
[
y2(t)

] =
∫ ∞

−∞
|H( j2π f )|2 Sz( f ) d f

= 1
2π

∫ ∞

−∞
|H( jω)|2 1

V
Sz′(n(ω)) dω.

Here we will use the following spectrum [5]

Sz′(n) = κ|n|−2 (m3/cycle)

where κ is a road roughness parameter. We take V = 25 ms−1 and κ = 5×10−7 m3cycle−1.

The r.m.s. body vertical acceleration parameter J1 (ride comfort) is defined by

J1 =
(

1
2πV

∫ ∞

−∞

∣∣∣Tẑr→ˆ̈zs
( jω)

∣∣∣
2 κ

n(ω)2
dω
)1/2

= 2π(V κ)1/2
∥∥sTẑr→ẑs

∥∥
2 (3)

where Tx̂→ ŷ denotes the transfer function from x̂ to ŷ and‖ f ( jω)‖2 = ( 1
2π

∫∞
−∞ | f ( jω)|2 dω)1/2

is the standardH 2-norm. Similarly the r.m.s. dynamic tyre load parameter J3 is defined by

J3 = 2π(V κ)1/2
∥∥∥∥

1
s

Tẑr→kt (ẑu−ẑr )

∥∥∥∥
2
.
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Another factor to be considered is the ability of the suspension to withstand loads on the

sprung mass, e.g. those induced by braking, accelerating and cornering. Following [6] we

make use of the following measure for this purpose:

J5 =
∥∥∥TF̂s→ẑs

∥∥∥∞

where ‖.‖∞ represents the H∞-norm, which is the supremum of the modulus over all fre-

quency. Note that this norm equals the maximal power transfer for square integrable signals,

so it is a measure of dynamic load carrying.

4.2 Optimisation of individual performance measures

Although suspension design will usually involve a trade-off between various performance

measures it is useful to consider first how much improvement can be obtained in individual

performance measures for various different struts.

Our approach is to fix the static stiffness of the suspension strut and then optimise over

the remaining parameters. This will be done for a range of static stiffness settings from

k = 10 kN/m to k = 120 kN/m. This covers a range from softly sprung passenger cars

through sports cars and heavy goods vehicles up to racing cars. It should be noted that the

static stiffness in S1 to S4 of Fig. 3 is equal to k but not for the other four struts. For example,

for layout S8 the static stiffness is equal to: k + (k−1
b + k−1

1 + k−1
2 )−1.

4.2.1 Optimisation of J1 (ride quality)

The results of optimisation are shown in Figs. 5, 6. It was found that the relaxation spring kb

did not prove helpful to reduce J1. This left five of the eight struts in Fig. 3 to be considered.

Optimisation for layouts S1, S3, and S4 appears to be convex in the free parameters. Both

the parallel (S3) and series (S4) arrangements gave improvements over the conventional strut

(S1) for the full range of static stiffness with S4 giving the biggest improvement for stiff

suspensions. It should be noted that the parallel arrangement gives lower values of inertance

than the series arrangement. For example, at the midrange value of k = 60 kN/m we have

b = 31.27 kg and b = 333.3 kg respectively.

For layouts S5 and S6 the optimisation problem appears no longer to be convex in the

parameters. The Nelder-Mead simplex method was used for various starting points. Solutions

were found which gave a clear improvement on the series arrangement S4 particularly for

softer suspensions. For the arrangement S6 the improvement was at least 10% across the

8
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Figure 5: The optimisation of J1 on: layout S1 (bold), layout S3 (dashed), layout S4 (dot-

dashed), layout S5 (dotted) and layout S6 (solid).
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whole stiffness range. For much of the range k1 and k2 were about 1/3 and 1/12 of the static

stiffness respectively.

4.2.2 Optimisation of J3 (tyre loads)

The results of optimisation are shown in Fig. 7. Here it was found that the relaxation spring

kb helped to reduce J3 for lower values of static stiffness. Indeed, the conventional strut S2

is a noticeable improvement on S1 for softer suspensions. Again optimisation for layouts S1,

S2, S3, and S4 appears to be convex in the free parameters. The results show an improvement

in J3 with parallel (S3) and series (S4) arrangements if the static stiffness is large enough,

with the series arrangement again giving the biggest improvement.

For layouts S5 and S6 the optimisation problem appears no longer to be convex in the

parameters. The Nelder-Mead simplex method was again used for various starting points.

As before the use of centring springs in layouts S5 and S6 gave further improvements over

the ordinary series arrangements S4. The use of a relaxation spring kb in S7 was needed to

extend the benefits to softer suspensions.

4.2.3 Optimisation of J5 (dynamic load carrying)

In Fig. 8 the optimisation of J5 is illustrated for S1, S3 and S4 only. There is a theoretical

minimum for J5 equal to the d.c. gain of the transfer function TF̂s→ẑs
, which is equal to

(k−1
0 + k−1

t ) where k0 is equal to the static stiffness of the suspension. This can be achieved

using layout S1 for k less than about 68 kN/m. The upper and lower bounds for c to achieve

this are shown in Fig. 8(c). Using layout S3 the theoretical minimum for J5 can be achieved for

k up to about 100 kN/m. The upper and lower bounds for c and b to achieve this are shown in

Figs. 8(c) and 8(d). Using layout S4 the theoretical minimum for J5 is not achievable beyond

k ≈ 68 kN/m. In contrast to J1 and J3 it appears to be the parallel arrangement (S3) which

is more effective than the series one (S4) to reduce J5.

4.3 Multi-objective optimisation

In suspension design it is usually necessary to consider several performance objectives. It is

interesting to ask if the inerter can give improvements to more than one objective simultane-

ously. In this section we will consider J1 and J5 together.

Our approach is to work with a combined performance index as follows:

J := αJ1/J1,0 + (1− α)J5/J5,0,

10
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for 0 ≤ α ≤ 1, with J1,0 = 1.76 and J5,0 = 2.3333 × 10−5 which are the optimal values

for suspension layout S1. The optimisation results for a static stiffness of k = 60 kN/m are

illustrated in Fig. 9. Firstly, it is noted that for each layout the optimisation appears to be

Pareto optimal, i.e. it is not possible to improve them together in a given layout, as shown

in Fig. 9. Secondly, the use of inerters (layouts S3, S4) gives the possibility of improving J1

and J5 together in comparison to layout S1.

5 The full-car model

We now consider the full-car model as shown in Fig. 10. The following parameters taken from

[7] will be used: ms = 1600 kg, Iθ = 1000 kg m2, Iφ = 450 kg m2, t f = 0.75 m, tr =
0.75 m, l f = 1.15 m, lr = 1.35 m, m f = 50 kg, mr = 50 kg, kt f = 250 kN/m, ktr =
250 kN/m.
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5.1 Road disturbances

Our general approach to obtain a full-car stochastic performance measure is based on a method

of Heath [8]. This section briefly describes our approach to obtain a simple approximation

to this measure which can be evaluated in matlab.

Consider a full-car model moving at a speed of V with road inputs zri = xi , for i =
1, . . . , 4 and with c = 2t f = 2tr and L = l f + lr . Suppose we select a set of outputs

determined by ŷ = P(s)x̂ , where x̂ = (x̂1, x̂2, x̂3, x̂4)
t . If the vehicle is running in a straight

line, that is, the road inputs to the rear wheels are regarded as time delays of the inputs to the

front wheels, then (
x̂3

x̂4

)
= e−sT

(
x̂1

x̂2

)
,

where T = L/V . Hence the system outputs satisfy

ŷ(s) = P(s)

(
I

e−sT I

)
û =: H(s)û, (4)

where û = (x̂1, x̂2)
t . If x is WSS (Wide Sense Stationary), then the power spectral density

functions Suu( jω) and Syy( jω) are related by [9, Sec. 10-3]

Syy( jω) = H( jω)Suu( jω)H∗( jω). (5)

By definition the autocorrelation of the (front) road surface is given by:

Ruu(τ ) = E(u(t + τ )u(t)t)

= E

(
x1(t + τ )x1(t) x1(t + τ )x2(t)

x2(t + τ )x1(t) x2(t + τ )x2(t)

)
(6)

If we suppose the road surface is isotropic, then E(x1(t + τ )x1(t)) = E(x2(t + τ )x2(t)) and

E(x1(t + τ )x2(t)) = E(x2(t + τ )x1(t)). Let RD(τ ) = E(x1(t + τ )x1(t)) and RX (τ ) =
E(x1(t + τ )x2(t)). An auto-spectrum SD and a cross-spectrum SX are defined as the Fourier

transforms of the correlations RD(τ ) and RX (τ ) respectively. Then the power spectral density

of the road inputs becomes

Suu( jω) =
∫

Ruu(τ )e− jωτdτ

=
(

SD SX

SX SD

)
. (7)

The relation between SD and SX is given by a normalised, real cross-spectrum g( jω) in [8, 5]

as

g( jω) = SX ( jω)
SD( jω)

.
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Next suppose we can find a spectral factorisation of the following matrix:
[

1 g

g 1

]
= M M∗. (8)

Then the power spectrum of the road inputs becomes

Suu = W M M∗W ∗, (9)

where

W = W ∗ =
[ √

SD 0

0
√

SD

]
.

From (5) and (4) we then obtain

Syy = H Suu H∗ = HW M M∗W ∗H∗.

Then we define the performance measure of interest as

yrms =
(

1
2π

∫
trace(Syy)dω

)1/2

=
(

1
2π

∫
trace([HW M][HW M]∗)dω

)1/2

=
∥∥∥∥∥P

(
I

e−sT I

)
W M

∥∥∥∥∥
2

. (10)

As in Section 4 we consider a time-varying displacement x(t) derived from traversing a

rigid road profile at velocity V . Further, let x(t) have the form x ′(z)where z is the distance in

the direction of motion. Thus x(t) = x ′(V t). Moreover the corresponding spectral densities

are related by [5]

Sx( f ) = 1
V

Sx ′(n),

where f = nV . A similar relationship holds for the cross-spectrum. Here we will use the

following spectrum

Sx ′ = κ

n2 , (m3/cycle)

where κ is a road roughness parameter. We take κ = 5×107m3cycle−1. We therefore obtain

SD( jω) = κV (2π)2

ω2 . (11)

In [8] the following expression is obtained for the normalised cross-spectrum (in terms of

displacement)
2|πcn|
0(1)

K1(|2πcn|)
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where K1 is the modified Bessel function of the second kind of order 1, and 0 is the gamma

function. We therefore see that

g( jω) = |cω|
0(1)V

K1(|cω/V |)
= λωK1(λω) =: gλ( jω) (12)

where λ = c/V . We note that g( jω) is a real function of ω and is irrational.

To calculate the performance measure numerically the time-delay e−sT was approximated

as follows:

e−sT ' 5n
1(2n/T − s)

5n
1(2n/T + s)

,

with n = 6. In addition the following approximation was used in the matrix W in (10):

1
s
' τ

τ s + 1
,

where τ = 102. This makes little difference in the calculation value of yrms because, in cases

of interest, P(s) has zeros at the origin. To deal with g( jω) a particular value λ = 0.05

was selected and
√

g0.05( jω) was evaluated frequency by frequency. The command fitmag

in Matlab was used to give an approximation: g0.05( jω) ' hh∗ =: ḡ( jω) which allows the

approximation gλ( jω) ' ḡ( j λ
0.05ω) to be used. A spectral factorisation was then calculated

M0.05 =
[

M̄11 M̄12

M̄12 M̄11

]
=
[

A B

C I

]
, (13)

where

M̄11 = (s + 75.30± 116.35 j)(s + 53.96± 42.74 j)(s + 23.05)(s + 7.05)
(s + 75.29± 116.36 j)(s + 54.03± 43.26 j)(s + 28.43)(s + 8.00)

,

M̄12 = 14.3836(s + 75.88± 117.70)(s + 63.80± 39.97 j)(s + 9.26)
(s + 75.29± 116.36 j)(s + 54.03± 43.26 j)(s + 28.43)(s + 8.00)

.

Then, the approximation for any speed V and wheel track c was taken to be:

M '
[

αA
√
αB√

αC I

]
, (14)

where α = V
20c .
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5.2 Optimisation of full-car performance measures

In this section, we shall compare the performance improvement of the full-car model with

inerters in the suspension struts. Our approach is to optimise J1 and J3 (defined below) over

choices of the front and rear dampers c f and cr for the conventional suspension (layout S1),

or over choices of the front and rear inerters and dampers b f , br , c f and cr for layout S3 at

each corner, and including centring springs k1 f and k1r for layout S5. We will take a fixed

static stiffness for each suspension strut equal to 100 kN/m. We will assume the vehicle has

a forward velocity V = 25 m/sec (90 km/h).

5.2.1 The optimisation of J1 (ride quality)

We will compute the r.m.s. body acceleration parameter J1 = yrms where P = Tû→ ŷ with

u = [zr1, zr2, zr3, zr4]′ and y = [z̈s, z̈θ , z̈φ]′. From (10) we can calculate and compare the

performance of the full-car model with various layouts. The results are illustrated in Table 1.

It is noted that for layout S1 the optimisation of J1 over c f and cr appears to be convex, as

shown in Fig. 11. But the optimisations for layouts S3, S5 do not necessarily find a global

optimum. Similar to the quarter-car case we observe an improvement in both parallel and

series arrangements.

layout Optimal J1 Parameter settings

Conventional (layout S1) 2.7358 c f = 2.98, cr = 3.70

Parallel inerter 2.5122 b f = 31.07, br = 44.23

(layout S3) (8.17% improvement) c f = 2.32, cr = 3.16

Series inerter with centring springs 2.4823 b f = 332.82, br = 374.03

(layout S5) (9.26% improvement) c f = 3.24, cr = 3.94

k1 f = 7.85, k1r = 14.10

Table 1: Performance index J1 with various layouts at each wheel station, percentage im-

provement and parameter settings (k’s are in kN/m, c’s are in kNs/m, b’s are in kg).

5.2.2 The optimisation of J3 (tyre loads)

We now compute the r.m.s. dynamic tyre load parameter J3 = yrms from (10) where P =
Tû→ ŷ with u = [zr1, zr2, zr3, zr4]′ and y = [kt f (zu1−zr1), kt f (zu2−zr2), ktr (zu3−zr3), ktr (zu4−
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Figure 11: The optimisation of J1 over c f and cr for layout S1.

zr4)]′. The results are illustrated in Table 2. Again it is noted that for layout S1 the optimisa-

tion of J3 over c f and cr appears to be convex. But the optimisations for layouts S3, S5 do

not necessarily find a global optimum. Similar to the quarter-car case at some values of static

stiffness an improvement is obtained with the series arrangement but not with the parallel.

layout Optimal J3 Parameter settings

Conventional (layout S1) 1.6288 c f = 3.82, cr = 3.85

Parallel inerter 1.6288 b f = 0, br = 0

(layout S3) (0 % improvement) c f = 3.82, cr = 3.85

Series inerter with centring springs 1.5224 b f = 710.74, br = 418.42

(layout S5) (6.53% improvement) c f = 3.16, cr = 3.71

k1 f = 35.01, k1r = 25.10

Table 2: Performance index J3 (×10−3) with various layouts at each wheel station, percentage

improvement and parameter settings (k’s are in kN/m, c’s are in kNs/m, b’s are in kg).
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6 Experimental Results

A variety of different embodiments of an inerter are possible (see [4]). A prototype of rack

and pinion design has been built and tested at Cambridge University Engineering Department

(see Fig. 12). There are two gearing stages with combined ratio of 19.54:1. The flywheel has

a mass of 0.225 kg and the total inertance of the device is approximately 726 kg. A clutch

safety mechanism is integrated into the flywheel to prevent loads in excess of 1.5 kN being

delivered to the piston. The device has a stroke of about 80 mm.

The inerter was tested in a series arrangement with centring springs as shown in Fig. 13

using the Cambridge University mechanics laboratory Schenck hydraulic ram. A series of

single sinewave excitations was applied at a set of discrete frequencies from 0.05 to 20 Hz.

Three signals were measured: the total force in the strut, the total displacement, and the

relative displacement across the inerter. Gains and phase shifts for the different signal paths

were calculated frequency by frequency [10].

The ideal linear model of the strut is shown in Fig. 14. The admittance Y of the strut is

given by the following expression:

Y = (bs2 + k)(cs + k1)

s(bs2 + cs + k + k1)
. (15)

It is noted that there is a zero at the frequency ω = √k/b. As in Fig. 14 let Dc and Db

represent the displacements of the damper and inerter respectively, and let the total strut

displacement be D = Db + Dc. Then the following transfer functions can be derived:

D̂c(s) = bs2 + k
bs2 + cs + k1 + k

D̂(s), (16)

D̂b(s) = cs + k1

bs2 + cs + k1 + k
D̂(s). (17)

Ideal frequency responses were calculated for each of the transfer functions in (15),

(16) and (17) with the following parameters, which were estimated by measurements on the

individual physical components: k = 5.632 kN/m, k1 = 9.132 kN/m, c = 4.8 kNs/m, b =
726 kg. In addition, stiction nonlinearities were incorporated into the model in parallel with the

inerter and damper by adding a force 20 sign(Ḋb) to the inerter force, and a force 30 sign(Ḋc)

to the damper force, corresponding to physically measured stiction forces. Sinewave tests on

a nonlinear simulation model were carried out at the same set of frequencies as the practical

experiments. The resulting time response data was analysed in a similar way to produce a

corresponding set of frequency responses for comparison. The Bode plots corresponding to

each of the transfer functions in (15), (16) and (17), for (i) ideal linear, (ii) nonlinear simulation
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Figure 12: Prototype inerter

Figure 13: Inerter in series with damper with centring springs
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Figure 14: Mechanical network circuit diagram for inerter-damper series connection with

centring springs.

and (iii) experimental results, are shown in Figs. (15), (16), (17). It was felt that the agreement

between simulation and experiment was relatively good—in particular the phase advance was

clearly in evidence in the admittance Y —and optimisation of parameters to get a closer fit

between simulation and experiment was not attempted.

7 Conclusions

This paper represents a preliminary optimisation study of the possible benefits of the inerter in

vehicle suspension systems. For some relatively simple struts it was shown that improvements

could be obtained in a quarter-car vehicle model across a wide range of static suspensions

stiffnesses. Improvements of about 10 % or greater were shown for measures of ride, tyre

normal load and handling. For certain combinations of these measures, good simultaneous

improvement was obtained. Improvements were also shown for a full-car model. A prototype

inerter was built and tested in a series arrangement with centring springs and shown to exhibit

the expected phase advance property.
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Figure 15: Bode plot of the admittance Y (s): linear model (dash-dotted), nonlinear simulation

with friction (dashed), experimental data (solid).
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Figure 16: Bode plot of transfer-function D̂c(s)/D̂(s): linear model (dash-dotted),nonlinear

simulation with friction (dashed), experimental data (solid).
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Figure 17: Bode plot of transfer-function D̂b(s)/D̂(s): linear model (dash-dotted),nonlinear

simulation with friction (dashed), experimental data (solid).
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