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Performance Bounds for Adaptive Estimation

RICHARD M. HAWKES AND JOHN B. MOORE, MEMBER, IEEE

Abstract –The performance of adaptive state estimators for linear
dynamic systems is investigated. The adaptive state estimates are
formed under the assumption that the unknown system parameter be-
longs to a finite set and is thus readily implementable. It is shown that,
for the true parameter value in a prescribed region in the parameter
space, the corresponding a posten”on probabifit y (or weighting coeffi-
cient in the adaptive estimator) converges exponentially in the vth
mean (u > 1) and almost surely to unity. The anafysis is based on the
asymptotic per sample formula for the Kullback information function,
which is derived in this paper. The significance of the analysis for ap-
plications is afao examined.
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1. INTRODUCTION

TTENTION IS centered in this paper on the performance

A
analysis of a class of on-line near-optimal nonlinear esti-
mators. These are employed for state and parameter

estimation of discrete-time linear Gaussian dynamic signal
models with unknown structure and parameter values.

In order to apply lin,ear quadratic Gaussian optimization

theory [ 1] in a given application, knowledge of the signal
model structure and its parameters is required. Frequently the
determination of the signal model is carried out off line, but it
is clearly preferable in some circumstances to use on-line
techniques if these can be devised. In fact, for signal models
with parameters belonging to a finite parameter set optimal
mean-square-error sense state estimators can be implemented
on line. In [2] such adaptive estimators are shown to be de-
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composable into two parts: a linear nonadaptive part, consist-
ing of a bank of Kalman filters, and a nonlinear part that in-

corporates the adaptive nature of the estimator. There exists a

large class of physical problems for which the above formula-

tion is suitable.
The purpose of this paper can be summarized under the fol-

lowing four points.

1) We survey several existing performance bounds for pa-
rameter estimation which are relevant to adaptive estimation.

2) For the class of nonlinear estimator under discussion
here, performance bounds are developed for the case when the

true parameter value turns out to lie outside the assumed
finite set. This work is also reported in [3 ]-[ 7 ]. Besides
being of some theoretical interest, the analysis of the adaptive
estimators yields valuable insights into the application of such
estimators operating under suboptimal conditions.

3) The question of the behavior and tightness of the bounds
is addressed, comparisons are made with earlier work, and the
computational requirements are discussed.

4) Several applications for the performance analysis of this
paper are also suggested.

The organization of the paper is as follows. In Section II,

early work on the performance analysis of parameter estima-
tors is surveyed and its relationship with the results of this

paper are discussed. Section 111 introduces the concept of
adaptive estimation. In Section IV, there is discussion of
performance bounds and techniques used to develop these.
The information function is introduced in Section V and de-
cision regions are defined in Section VI. Section VII contains

the main results of the paper. Computational aspects and
tightness of the bounds are addressed in Section VIII. Various

aPPhcations are considered in Section IX and Section X is the
concluding discussion.

II. EARLY WORK ON PERFORMANCE ANALYSIS

OF PARAMETER ESTIMATORS

Since there is a high computational burden to obtain per-
formance results for nonlinear estimators, it is desirable to de-
velop an analysis of such estimators by deriving performance
bounds. Such bounds can then be used to examine the con-
vergence properties of an estimator. This is the approach
taken in this paper. In this section, we survey the work of
others on the performance analysis of parameter estimators
relevant to the performance analysis of adaptive estimators.

Quite a lot of work has been done on the asymptotic proper-

ties of maximum likelihood estimators. An excellent discus-

sion of these properties, which summarizes the pioneering
work of Fisher, Wald, and others, can be found in [8]. Much
of the early work applies only to the case of independently
and identically distributed data. Clearly, where dynamic
models are of interest such analysis is inadequate. Recently
Caines and Rissanen [9] and also Astrom and Bohlin [ 10] have
investigated the asymptotic properties of maximum likelihood
estimators of the parameters of an autoregressive moving-
average process. However, due to the difficulties encountered
in implementing suitable practical algorithms [ 11 ], the signifi-

cance of the theoretical properties of maximum likelihood
estimators such as consistency and asymptotic efficiency for
practice is open to question.

The survey paper of Seidman [ 12] on the performance limi-
tations and error calculations for parameter estimation is also

worth mentioning here. Although a class of signal models dif-
ferent from the one considered in this paper is discussed in
[12 ], many properties of estimators carry over to different

classes of signal models. In itself, [ 12] is a good comparative
study and it also provides a standard against which new bound-
ing techniques can be judged.

In [ 13], linear update model reference estimators are studied

for application to dynamic signal models with system func-
tions which are uniformly Lipschitz in the state and the con-

trol. Upper bounds on the mean-square error of such
estimators are obtained where the tightness of the bounds is
dependent upon the tightness of the cone bounds on the signal
model nonlinearities. Bound optimal filters can be designed
which become optimal linear filters as the cone bounds col-

lapse. In fact, the theory appears to be of use only in the case
of signal models which are almost linear.

Along different lines, probability-of-error bounds for large
classes of multihypotheses detection problems are given by
Lainiotis [15], [ 16] and Lainiotis and Park [14]. We also note

that Tse [17] is currently investigating bounds for identifica-
tion error.

Having discussed an assortment of estimation techniques and
associated performance analyses, which could conceivably be
used to estimate unknown parameters of linear dynamic signal
models, we turn our attention now to some work which forms

the starting point for the analysis of this paper.
In [ 18], the performance of Bayes’ conditional-mean pa-

rameter estimators is studied on a finite parameter set. Such

estimates exhibit a mean-square error that diminishes exponen-
tially (to zero) with the number of observations, the observa-
tions being assumed independently and identically distributed.
Two situations are discussed: the true parameter included in

the parameter set and the true parameter not included in the
parameter set. In the latter case, the existence of an informa-
tion function must be invoked to demonstrate the exponential
convergence rate (though the error in this case does not tend

to zero).
In this paper, analogous results to those in [18] are presented

for the case of linear dynamic stochastic signal models to

which the independently and identically distributed data as-
sumption of [ 18] does not apply. These new results are em-
ployed to analyze the performance of adaptive estimators.

Adaptive-estimator performance has also been investigated
by Lainiotis et al. [2], [ 19]. Specifically, Lainiotis [2] ob-

tained the exact expression for the mean-square error of
continuous adaptive state estimators in a partitioned realiza-
tion form that requires a minimum of additional computations
and is convenient for on-line implementation. This exact
error-covariance expression is the only exact and explicit one
obtained in adaptive estimation to date. Similarly, Lainiotis
and Sims [ 19] have obtained the analogous exact expression
for the state-error-covariance matrix of the discrete-data
adaptive estimator. However, evaluating these expressions is
tantamount to simulating the system under study. Also,
Magill [20] and Hilbom and Lainiotis [21 a], [21 b] discuss

sufficient conditions for the convergence of the adaptive
weighting coefficients. These various results do not overlap
with the results given herein.

The important features of the analysis of this paper are the
handling of nonindependently and identically distributed data,
drawing the distinction between the true parameter being
included and excluded in the finite parameter set, and demon-

strating the exponentially fast convergence rates.

III. ADAPTIVE ESTIMATION

The concept of adaptive estimation has been considered by
many authors [41 ]. In particular, it has been considered by
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Fralick [42] for the case of the unsupervised estimation of

time-invariant parameters under the assumption of indepen-
dent measurements. Magill [20] extended these results to
dependent measurements generated by state-variable models.
However, unlike Fralick [42], Magill’s results were restricted

to the case of measurement certainty, scalar observations, and
discrete unknown parameters. Moreover, Magill’s results were

not in a recursive form. Subsequently, Lainiotis and Sims
[ 19], [ 21 ] extended Magill’s results to vector measurements
and arbitrary continuous or discrete parameters. More impor-

tantly they obtained the optimal adaptive estimator in a recur-
sive form and also derived the exact error-covariance expres-
sion. Further, Lainiotis [ 2a], [2b] and Lainiotis and Park
[2c] extended the results of Fralick and Magill to the un-
supervised estimation of unknown arbitrary parameters for
dependent measurements given by state-variable models. The
more difficult corresponding continuous-data adaptive-estima-
tion problem was first considered by Lainiotis [2], [2d ], [2e ],
who essentially obtained the continuous equivalent of all of

the above results. It is finally noted that the work of Lo [22],
Cameron [23 ], as well as of Lainiotis and Park [43], and the
more general results of Hilborn and Lainiotis [ 2 la] are also

related.

We now consider in turn, a signal model, an optimal adaptive-
estimation scheme, a finite-dimensional estimator, and a dis-
cussion on the adaptive-estimation performance.

A. Signal Model

Consider the scalar stationary Gaussian stochastic measure-
ment process y(k) with innovations representation (IR)
[24] -[27]

X(k + 1) = @~x(k) +L~ w(k) (3.1)

y(k) = H,4x(k) + w(k). (3.2)

Here, x(k) is the state n-vector with stochastic initial condition

x(o) =N[o, Z,’l]. The random input sequence w(k) -

fVIO, dA 1, d,4 >0 is assumed to be white and independent of
x(0). The system matrices ~., L., H., and d. are functions of
the unknown parameter A taken to be a sampIe value of the
random vector a distributed on 61a C Rp with probability
density pa(A). We assume that P=(A) = O in the complement

of &?a denoted by ~a. The initial state covariance matrix ZA
is the solution of

(3.3)

which can be expressed as

Denoting the sequence of measurements up to the lcth dis-
crete time instant by the vector Y: = [Y(1), Y(2), “ “ ,Y(k)],

the probability density of Yk given a = A is

p(Ykl A)= N[0,7’A (k)] (3.5)

where the output covariance matrix of the system is Toeplitz,
viz.,

‘A(k)=E-l):!-21??l ‘3’)

The entries of T,4 (k) are given by

03.

t,4 ($)= ~ ~ UA(j)U/f(/)dA 6($+1-/’) (3.7)
j=o /=0

where

U,4(0) = 1

U/j ($) = HA @j-l LA , S= 1,2,...

{

1, $=(J
6(s) =

o, otherwise.

(3.8)

The pulse transfer function of the system (3. I ), (3.2) is
introduced:

u~ (z) = ~ z“ruA(~)

=l+HAIzI-@A]-l LA

(3.9)

(3.10)

The spectral density of the observed stochastic process y(k) is
given by [28]

fA (~)= ~ ~A(S)eisu (3.11)
S=-m

= UA(e-iw)uA(eio)dA. (3.12)

We denote the least upper bound and greatest lower bound of

~A (”) on [O, 2~1 as MA and mA , respectively.
Certain subsets of the vector space R~ are considered in the

following definitions.
Definition 3.1: 6?$C Rp is the set of all A E Rp for which

the system (3. 1), (3.2) is asymptotically stable and minimum
phase (i.e., the zeros and poles of UA (z) lie within the unit
circle).

For A E R,, tA (k) is absolutely summable over k [29, ch. 4]

and, hence, fA (”) is bounded and Riemann-integrable in
[0, 2rr] [301. Also, for A •6?~,m,4 >0.

Denoting Z] = dA and Markov parameters Z~ = ffA @J~-lLA ,

S =1,2,”””, we define a set ZA = {Z! , Z~ , “ . “ , Z~}, where
n is the signal-model dimension.

Definition 3.2: An identifiable parameter set ~i C Rp has

the property that ZA, = ZA2 if and only if A ~ = AZ for all
A1, A2E6?i.

The theorems in later sections require the assumption
AErRacfRinlR,.

B. Optimal A daptive Estimation

The optimal mean-square state estimate $k+llk of x(k + 1)
is given by [2], [31]

.Qk+,,k= J$/c+llk,,4P(A [ Yk) dA (3.13)

where

$k+,lk,A=@Af’?~&l,A+LklA ~klA

2110, A = O

uklA ‘~(~) - HA fklk-l,A

LklA = [~klA + LA dA ] d~\A

dk,A ‘HA~k,k_l,AH; +dA

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)



‘I Io,A ‘~A

P( Yk
p(/tl Y~)=

J
p(yk

A) Pa(A)

~)Pa(A)dA

“(yk’A)=[(2n)ksf!’’s’Al-’2exp%u%AdJoJo

(3.19)

(3.20)

(3.21)

(3.22)

● (3.23)

Since the IR and Kalman filter are inverse systems, and by
virtue of our asymptotic stability and minimum phase assump-

tions, as k - ‘, ~k+llk,A - (), I.k~A bI’A , and d~lA ~ ~~A
Usually adaptive estimators in the form given above cannot

he readily implemented and we are led to consider suboptirnal
estimators as in the next subsection.

C. Finite Dimensional Estimators

The adaptive state estimator designed under the assumption
of a finite parameter set is now described. The situation

where the true value of the parameter may not belong to this

finite set will he included in the performance analysis to
follow.

We introduce a finite set (?= {Al ,A2, . “. ,AN} C 6?= and

assign a set of “a priori probabifities” pr, r = 1, 2, “ “ “ ,N, for
the finite set on an ad hoc basis in proportion to the values

p&tr),r=l ,2,””” , N. Without loss of generality, we im-

pose the restriction pa(Ar) # O, A, E d.
The adaptive state estimate on (i is defined as

‘k+llk = f 2k+llk,Arp(’4rl ‘k) (3.24)
/.=l

where the a posteriori probabilities are

P(yk [Az)P1 =
p(A~\yk)= ~

P(y/c\A/)Pa(A/)
N

(3.25)

~ P(ykl Ar)Pr ~ p(yk!Ar)pa(A.)
~=1 ~=1

Notice that the normalizing constant for the assigned P, is not

required in calculating p(Al I Yk). The quantities $?k+~,k,Ar and

p( yk lAr) can be calculated recursively via equations (3. 14)-
(3.21 )and (3.23) with A =Ar.

Thus the finite-dimensional adaptive estimator on d con-

sists of a bank of N Kalman filters plus certain nonlinear
operations on the data processed by the Kalman filters,

D. Adaptive Estirnator.Perfo rmance

In our performance analysis to follow, the convergence be-
havior of the finite set of a posterior probabilities p(Ar [ Yk),
r=l,z,... , N, is examired. These are the weighting coeffi-

cients in the adaptive estimate given by (3.24) and their be-
havior determines the behavior of the adaptive estimator.

The main result to be presented here is that the weighting
coefficients will converge almost surely [32 ] to unity for the

coefficient corresponding to the signal model (defined in the
sequel) nearest the true signal model and to zero for the

others. Thus the adaptive state estimate converges to the state
estimate produced by the Kalman filter that best matches
the true signal model according to a criterion to be introduced.
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IV. PERFORMANCE BOLJNDS

In this section, some useful bounding techniques are dis-

cussed and the reader is introduced to the problem of analyz-
ing the bounds so obtained in order to determine the con-
vergence properties of the adaptive-estimation algorithm. The

set &/a is assumed, in this section, to be the finite set
{A,, A2, , AN} w’ith a priori probabilities pa(Ar),
r= ],’,... , N’. We further assume that 6’ = 6?U and A~= N’

so that the finite dimensional estimator on H of Section 111is
optimal for this case. The analysis of this simpler case forms
a useful background for the more general theory to follow.

The key quantity which we seek to bound is the expectation

‘Y~la {P(Ar/ y/c) lAj}, Ar, Aj~ C. (4.1)

Before explaining the importance of this quantity, the ap-
parent paradox of taking the expectation of the probability of

one sample value of a random variable conciitioned on tinother
sample value is resolved. Referring to Section III, the a pow

teriori probabilities p(~r I yk) are seen to be functions only of
the received data yk and other deterministic quantities. Thus
the expectation is taken, given that the data comes from the
true model with Parameter value Aj.

The following lemma gives a condition for almost sure con-
vergence of a sequence of random variables X’m to zero.

Lemma 4.1: If there exists an n such that for m > t7

E{l Xml’’} <pm, 0< p < 1 and v >0, then {Xm} converges

almost surely to zero.
Proof: See [3]. The proof follows from the Markov in-

equality [32 ] and the Borel–Cantelli lemma [32]. The discus-
sion of [32, sec. 6, ch. 1 ] is helpful here and specifically
proposition 6.4 should be noted. Q.E.D.

The following inequality is easily verified for 1 Z 1:

EYkIa {l P(Ar[ yk)l’lAj} ~~YkIU {P(/frlyk)btj}. (4.’)

In light of Lemma 4.1 and inequality (4.2), the importance

of bounding the expectation of (4.1) should be obvious. To
make use of Lemma 4.1, however, the bound must display an

exponential convergence rate to zero.
It should also be noted that if the bound for the expectation

of (4. 1) converges to zero then p(Ar \ Yk) also converges to
zero in vth mean (v > 1) [32] in view of (4.2).

The following lemma introduces a useful bound for the ex-
pectation of (4.1).

Lemma 4,2: For the a posterior probabilities p(A, I Yk ),
r=l ,2,... , N, of the finite dimensional estimator on 8 of

Section 111,r # j, the following bound applies:

(4.3)

~k = 2k/2 [ TA (k) n/4 / TA .(k) 11/4 [ ~Ar(k) + ~Aj(k) 1-1/2 (4.4)
rJ r 1

(4.5)

Proof: See [3] and [5]. The bounding technique is analo-

gous to that used in [ 18]. Q.E.D.

Remark: In a temporary digression, observe that the proba-

bifity-of-error bounds of [14] can be related to the bound of
Lemma 4.2. Consider the decision scheme for deciding which
is the true parameter value out of the set (i by choosing that
member of 8 corresponding to the maximum a posterior

probability y. The probability of error (i.e., of making a decision

that the true parameter value is Ar when in fact it is Aj) can be
bounded above, using the Markov inequality [32], by the

quantity I~Crj of Lemma 4.2 [3]. This bound is in agreement
with the work of Lainiotis [ 14].
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The exponential convergence rate required by Lemma 4.1 for

the bound of Lemma 4.2 remains to be established. To do

this the bound must be analyzed and two possible techniques
are available here.

The first method is reported in [ 3 ] and [ 5 ] and involves

taking an LDU factorization of the output covar-iance matrix

of the system TAr(k). Bounds are obtained that require knowl-

edge of only a finite part of the system memory to be calcu-

lated. These so-called finite memory bounds are useful in
establishing that the bound of Lemma 4.2 displays an expo-
nential convergence rate to zero. The identifiability of 6?a
(definition 3.2) is necessary and sufficient for exponential

convergence.
A second method, which is used in later sections, is to invoke

some theorems relating to the asymptotic behavior of the
eigenvalue distribution of Toeplitz matrices [30], [33], [34].
The main result is now stated.

Lemma 4,3: (Grcnander and Szego [33],) For the (k X k)

Toeplitz output Covariance matrix TA (k), A ~ 6?a, of equation
(3.5) with eigenvalues ~k,~, s = O, 1, “ “ , k - 1, and for any
function /;(x) continuous on [mA, ~~ 1where mA and MA are

the bounds on the output spectral density, as defined in
Section 111,

k-1

J

277

lim k-’ ~ F(TkJ = (2rr)-’ F[~A(@)] do. (4.6)
k-+m S=o o

Using several results which are given in [30] and follow
from Lemma 4.3, the required exponential convergence rate

can again be established.
The significance of Lemma 4.3 is that it allows a transfer be-

tween the time domain and the frequency domain to illumi-
nate the asymptotic behavior of the bound of Lemma 4.2.

In [3], the two approaches to analyzing the bound of
Lemma 4.2 are reconciled, but more work could be done on

this aspect.
In the remainder of the paper, we dispense with the some-

what restrictive assumption that 6?a be a finite set and investi-
gate the behavior of the finite-dimensional adaptive state esti-

mators of Section 111in a more interesting environment.

V. THE INFORMATION FUNCTION

Consider the binary decision problem of choosing between
hypotheses Hf and H, on the basis of data yk, where H~: yk is

from the statistical population with probability density

p(yk lA~), Hr is defined likewise, and As, A, G 61a. The infor-
mation function ~k(A~, Ar) is conceived [35, ch. 1 ] as a

measure for the discrimination in favor of H$ against HY given
yk under H$.

Definition 5.1: The information function is defined for

A$, ArE&?aby

{

P(yk 1’4s)

1}~k(#t~)/tr)=J?Yklalrr~(yklAr)As (5.1)

As we are concerned with zero-mean multivariate normal
populations, we have [35, ch. 9]

Jk(A$, Ar) = ~ {ln [ I TA$k)l I TA~(k) l-l 1

+ tr [TA,y(k) 7’~\(k)l - k]. (5.2)

The asymptotic per sample information function ~(.A~, Ar),

for As, A, E &, is defined by

~(A~,Ar)= Iim k-l.Jk(A~, Ar). (5.3)
k-~

1147

Theorem 5,1: The asymptotic per sample information func-

tion ~(A~, A.) can be expressed as

{J
Zn

~(A,, /4,) = ; (2rr)-1
o

J
‘ln

+ (2rr-’
o

or as the alternate expression

where @ denotes integration around the unit circle.
Proof: The proof is given in [3] and follows from the

asymptotic behavior of the eigenvalue distribution of Toeplitz
matrices as discussed in [ 30] , [33] , and [ 34] Q.E.D.

This asymptotic per sample formula for Kullback’s informa-
tion measure does not appear to be in the literature. An
asymptotic expression is given in [ 36] but is much more com-
plicated than (5.4) and (5 .5). The properties of the integral
in (5.5) are discussed at length in [ 11 ] and the efficient

machine calculation of such integrals is discussed in [28] . For
low-order cases, hand calculations are possible using Cauchy ’s
residue theorem.

In [ 35, p. 26] , Fisher’s information measure is related to
Kullback’s information measure. In [3] , we relate the asymp-
totic per sample formulas (5 .4), (5.5) to the asymptotic per
sample formula for Fisher’s information measure ~A, which is
discussed in recent literature concerning the frequency-domain
synthesis of optimal inputs for system identification [37] .

The following lemma is related to [ 11, theorem 1 ] and [ 35,

theorem 3.1 ].
Lemma 5.1: For parameters Al, AZ C @LaC @i n ~~, if

AI #A2 then J(Al, A2)>0, and J(Al, A2)=Oif and only if
A, = A j or, equivalently, 2A, = 2A,.

Proof: See [3]

Remarks.

1) An important point about the information function,
which is implied by the relationships in [35Lp. 28] , is that,
for sufficiently small AA, 7(A, A + AA) ‘J(A + AA, A) =

~AA’~AAA. For & C &i n i$l~, we have ~A > 0. For

,4,,,42 GRP, /(A1 - AZ) ’C(,A1 -A2), C> O,enjoys the usual

metric properties of topology. Thus ~) can be regarded
having the properties of a metric locally (but not globally).

2) Functionsrelated to the information function, viz., the

divergence and Bhattacharyya distance, have been used in de-
tection, pattern recognition, and signal design as “distance”
measures between probability distributions [38 ], [ 15] This
type of function is discussed in [18] to investigate the con-
vergence of Bayes’ estimates for independently and identically
distributed samples and in ~17] to develop bounds on identifi-
cation error.

VI. DF:CISION REGIONS IN THE PARAMETER SPACE 6?.

The following definition introduces an obviously desirable
restriction on the finite estimator set (?.

Assumption (Al): With Ar, A~G(?, ~(A,, Ar)>O, forr#s.

With the aid of the information function, it is possible to de-
fine the member of @ nearest A for each A E 6?a. Also de-
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Cision regions Rj can be defined as consisting of all points

A C d such that Aj is the member of @ nearest to A for
j=l,2, .””, N.

Definition 6.1: Ai G (? is nearest to A E & if and only if
~(A, Aj)<?(A, Ar), r=l,2, . . .. N.r#j.

Definition 6.2: The decision region Rj C & is the set of all

points A ● I& for which Aj ~ 8 is nearest to A.

Of course, the decision regions have boundaries, and it is
clear that the nearest Aj ~ “ to A E ~a is not unique when A
is on the boundary of more than one decision region.

VII. PERFORMANCE BOUNDS II

In this section, the performance of finite dimensional adaptive
estimators are investigated for the case where the true parame-
ter lies outside the finite set ~. The results in Section IV are a

special case of those in this section.
The following lemma is a necessary preliminary.

Lemma 7.1: For A G [0, 1 ] and either

a) Jf~* - m~~.> 0 orr b) A < -Jf~l [lf~~ - m;:.] ‘1

T;(k) = T; = 7“1 - hT~; + AT~;> () (7.1)

for all k where T is the (k X k) output covariance matrix of

(3.5) and m and Jf are the bounds on the output spectral
density as defined in Section III.

Proof: See [3] The proof follows from the fact that the
eigenvafues of output covariance TA lie between mA and

l!’fA [30]. Q.E.D.
The subset of A ● [0, 1] for which T;> O is denoted H’.
Lemma 7.2: For the a posteriori probabilities p (Ar ]Yk),

r=l,2, . . . , N, of the finite dimensional estimator on @ of

Section 111the following bound applies for ~ E H’ and A G Rj,
r#j:

‘Ykla {P(Arl Yk)lA } ~~r~(k)c~ (7.2)

z;(k) = [ TAr] ‘*/2 I TAjlk/21 TA ]‘1/2 I T;[-1/2 (7.3)

c; = ~l(Ar)/~}(Aj) (7.4)

Proof: See [3 ] . The bounding technique is analogous to
that used in [ 18]. Q.E.D.

Theorem 7.1: An asymptotic expression for the bound of

Lemma 7.2 as the number of data points increase is given by

~j ~ lim [I;(k)] l/k
k+.

‘exp[-:(2n)-’I=

h fAr (U) dti + + (27T1-1

“J

2n 277

h fAj (U) dm - ~ (27T)-1
J

1; fA (u) da
o 0

(7.5)

Proofl See [3]. The proof exploits the asymptotic be-

havior of the eigenvalue distribution of Toeplitz matrices as
discussed in [30], [33], and [34]. Q.E.D.

Theorem 7.2: For A C Rj, where 7(A, A,)> 7(A, Aj), r # I,

and some nonzero k G ~’, ~rj < 1. Thus p(Ar I Yk), r #j, con-
verges almost surely to zero.
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Proof See [3] . The argument used to show that ~}< 1 is
similar to one used in [ 18] . The fact that ~~ < 1 implies, by
the definition of limit, that there exists a Q such that, for
allq>Q,

z)(q)< [P)lq

where p~. < 1. Using Lemma 4.1 gives the desired result.

Q.E.D.

Remarks

1) When the true parameter value A lies on a decision
boundary, the analysis techniques of this paper cannot com-
pletely resolve the convergence question. This question is dis-
cussed further in Section VIII. The ambiguity problem occurs

only on decision boundaries, which are a set of measure zero
in @a. On such boundaries more than one member of A can
be regarded as nearest the true parameter value in the sense of

definition 6.1. In this case, it can be shown that all other

a posterior probabilities of 8 converge almost surely to zero.

2) If a decision scheme such as that outlined in the remark

following Lemma 4.2 is considered for the case where A lies
outside d, then probability-of-error bounds can be obtained
from Lemma 7.2 using the Markov inequality [32].

3) Solving for the k that minimizes ~~ subject to the con-
straints of Lemma 7.1 appears too difficult without the aid of

a computer.

4) It may be possible to weaken the conditions of Lemma 7.1

so the matrix T; is positive definite.
5) It can be seen that calculating integrals of the form

“1

27r

1= (27r)-’ in { fl (co) + f2(ti)} da
o

= (2~i)-’
$

in IU1(z-l)U1(z)dl +U2(z-1)U2(z)d2] Z
z

(7.6)

is required to evaluate the asymptotic formulas for the bounds
of this paper. To evaluate 1, the first step is to perform a
spectral factorization of U1 (Z-l) U, (z) d] + U2 (Z-l) U2 (z) d2,

using standard techniques such as polynomial zero solving
algorithms [39] , to yield

I = (2rri)-]
$[ 1~n~P(z-l) P(z) dz

(7.7)
q(z-l) q(z) ;

where p(z) and q(z) are monic polynomials with zeros inside

the unit circle. Then the integral can be evaluated as

l=lng. (7.8)

Alternatively, numerical methods could be used for the cal-
culation of such integrals [40] .

VIII. COMPUTATIONAL ASPECTS AND TIGHTNESS

OF THE BOUNDS

Bounds are given in Section VII which have several uses in
parameter estimation and adaptive estimation for dynamic

systems. Methods of analyzing and calculating the bounds are
also discussed in Sections VII and IV. However, to carry out
a complete analysis of the bounds for all possible true parame-
ter values A would, in most practical problems, be an enormous
task since integration of the bounds over the parameter space
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would be necessary in order to obtain a single performance
index. Fortunately, this colossal task is not really necessary.

Once several simple examples are studied, it is easier to ap-
preciate the fact that the behavior of the adaptive estimator

can be understood from knowledge of the Kullback informa-
tion measure and that design studies can be done using this in-
formation function. Working with the Kullback information

measure, given in Section V, is much simpler than working
with the bounds themselves.

Several examples have been worked in [3] , [4], and [ 5 ] to
illustrate the tightness of the bounds and the role of the in-
formation measure. In [ 5], simulation results are given for an
example involving second-order dynamic models. The results
in [4] are for a different class of signal model and allow a
comparison of our techniques with earlier work summarized
in [ 12] The simplicity of the model in [4] also facilitates
understanding of the theory. In [3] , the asymptotic per

sample information measure is plotted for several simple dy-
namic linear models, one of which displays multiple minima in

the information measure. The information measure for the

pulse frequency modulation example considered in [4] also
has multiple minima.

The experimental work cited above suggests that the bounds
presented here are quite tight in cases of practical interest.

When the true parameter valt’e is on the boundary between

two decision regions, the finite dimensional estimator cannot
decide between the two members of the finite set concerned.
We stress that this ambiguity problem is a limitation of the
estimator itself and not of the bounds.

1X. APPLICATIONS

The implications of the preceding analysis results for applica-

tions are discussed under two subheadings.

A. Approximating High-Order Systems by Low-Order Systems

In order that construction of the adaptive state estimator of
Section III be feasible, it is necessary to assume that the un-
known parameter vector of the system considered comes from
a finite set of a priori values. Fortunately, many practical
problems may be represented or adequately approximated by
such a model. For example, in a control problem such as in

antiaircraft systems, it may be necessary to estimate certain
states of the target such as position and velocity from a data
record. In forming such estimates, the dynamic behavior of

the target could be taken into account. The finite set of
a pn’ori parameter values could represent different targets per-
forming different maneuvers. There may be two approxima-
tions which have entered the model at this stage. The true
targets may be very high-order systems which have been ap-
proximated by low-order systems. Also, not all the known
targets may have been included in the finite set of possibilities
used to design the adaptive estimator. The advantage with the
analysis of this paper is that the nature and implications for
the learning system of such approximations can be precisely
investigated. In our analysis, it is assumed for convenience

that all signal models are of the same dimension n. However,
nonminimal representations are permissible and thus systems

of all orders up to n are effectively included. As discussed in

the previous section, it can be seen in light of the analysis of
this paper that for the purposes of investigating a particular
adaptive-estimator design the Kullback information measure,
defined in Section V, should be used. It is much e~sier to
work with than the bounds themselves, and yet it defines the

various decision regions and gives a guide to the convergence
rate expected.

B. Two-Step Parameter Estimation

It is proposed in [3] that parameter estimation for a wide
range of stochastic signal models can be achieved using de-
cision methods in a first stage to yield an approximate estimate

and estimation techniques in a second stage to refine this esti-
mate. The decision method involves examining the finite set

of a posterior probabilities, introduced in Section III, in order
to decide in which of several possible regions of the parameter
space the true parameter lies. In the second stage, estimation
techniques such as gradient search methods could be used.

One motivation for suggesting this two-step scheme is the
link between the ideas of the maximum likelihood (ML)
method for identification and the decision me~hod suggested
above. In the ML approach [ 11 ] , an estimate Awl is obtained

by minimizing a certain function ~(Aml). In the limit, as the

number of data points increase, ~(~mz), given a = A, converges
almost surely to our function J(Aml, A ) under the given as-
sumptions of this paper [ 11 ] As pointed out in [ 11 ] , if the

likelihood function is to be maximized using an algorithm
based on gradients there is always the possibility that the
algorithm may converge to a local extremum. In [3], [6],

decision methods for parameter estimation that are aimed at
overcoming this difficulty are proposed. The details of the
two-step scheme are not given here. In a somewhat different
context, the two-step idea is investigated for pulse frequency
modulation systems in [3]

X. DISCUSSION

For discrete-time linear dynamic stochastic systems, an

adaptive state estimate can be calculated by an appropriately
weighted summation of conditional estimates, which are
formed by a bank of Kalman filters.’ The weighting coefficients

are determined by relatively simple nonlinear operations on
the observed data.

In this paper, the performance of such adaptive estimators is
studied to provide some insight into the design of these esti-
mators. The Kullback information measure is a useful tool for
such design considerations.

Areas which have not been covered in this paper are the case

of time-varying systems and the vector-measurements case. In

the time-varying case, the finite memory bounds of [3] and
[5] are useful. The extension to vector measurements is
straightforward.
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