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Performance Bounds for Coded Free-Space Optical Communications
Through Atmospheric Turbulence Channels

Xiaoming Zhu and Joseph M. Kahn, Fellow, IEEE

Abstract—Error-control codes can help to mitigate atmospheric
turbulence-induced signal fading in free-space optical communi-
cation links using intensity modulation/direct detection (IM/DD).
Error performance bound analysis can yield simple analytical
upper bounds or approximations to the bit-error probability. In
this letter, we first derive an upper bound on the pairwise code-
word-error probability for transmission through channels with
correlated turbulence-induced fading, which involves complicated
multidimensional integration. To simplify the computations, we
derive an approximate upper bound under the assumption of
weak turbulence. The accuracy of this approximation under
weak turbulence is verified by numerical simulation. Its invalidity
when applied to strong turbulence is also shown. This simple
approximate upper bound to the pairwise codeword-error prob-
ability is then applied to derive an upper bound to the bit-error
probability for block codes, convolutional codes, and turbo codes
for free-space optical communication through weak atmospheric
turbulence channels. We also discuss the choice of interleaver
length in block codes and turbo codes based on numerical evalua-
tion of our performance bounds.

Index Terms—Atmospheric turbulence, error-control coding,
free-space optical communication, interleaver length, pairwise
error probability (PEP), performance-bound analysis.

I. INTRODUCTION

FREE-SPACE optical links using intensity modulation and
direct detection (IM/DD) are useful in a variety of applica-

tions. However, atmospheric turbulence can greatly degrade the
performance of free-space optical links, particularly over ranges
of the order of 1 km or longer. Error-control coding can be ap-
plied to improve the error performance on such channels [1].

The theoretical error performance of coded systems over
time-varying channels has been under research for many years
[2]–[4]. In most wireless communication systems, the channel
is not memoryless. The error performance of such continuous
fading channels with memory often requires lengthy computer
simulations. Performance-bound analysis has been widely
adopted to study the error performance of communication
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systems. In this approach, we find an expression for the
pairwise codeword-error probability and upper bound the
codeword-error probability by

(1)

where is the set of all codewords and is the proba-
bility that codeword is transmitted. The pairwise error prob-
ability (PEP) is the probability that when codeword

is transmitted, the decoder favors selection of an incorrect
codeword over . With the knowledge of the weight enu-
merating function (WEF), we can further simplify the calcula-
tion of (1) and extend it to accurately estimate the error bound
of constituent codes where the number of codewords is infi-
nite, such as convolutional codes and turbo codes [5], [6]. Many
error bounds have been introduced for radio-frequency chan-
nels, which often can be well-modeled as Rayleigh or Rician
fading channels [3], [4].

In this letter, we will derive an error performance bound for
coded on–off keying (OOK) free-space optical communication
through atmospheric turbulence channels, where the fading
is described by a joint log-normal distribution. The letter
is organized as follows. In Section II, we review the joint
log-normal distribution for turbulence-induced fading in OOK
systems. In Section III, we derive the PEP assuming perfect
knowledge of the channel state information. We also present
simulations to verify the error bounds and define the limits of
their applicability. In Section IV, we apply the PEP upper bound
to study the error performance through weak atmospheric tur-
bulence channels of various coding schemes including block
coding, convolutional coding, and turbo coding. In Section V,
we present simulation results of the approximate bit-error
probability upper bound for some practical coding schemes,
making use of the error performance analysis of Section IV. We
also discuss the use of interleaving which, in conjunction with
error-control codes, can help to mitigate correlated channel
fading. We present our conclusions in Section VI.

II. SYSTEM MODEL

In this letter, we consider IM/DD links using OOK. In most
practical systems, the receiver signal-to-noise ratio (SNR) is
limited by shot noise caused by ambient light which is much
stronger than the desired signal and/or by thermal noise in the
electronics following the photodetector [7]. In this case, the
noise can usually be modeled to high accuracy as additive,
white Gaussian noise (AWGN) that is statistically independent
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of the desired signal. Let the bit interval be, and assume
that the receiver integrates the received photocurrent for an
interval during each bit interval. We further assume
that , where denotes the coherence time for
atmospheric turbulence. Therefore, the light intensity can be
viewed constant during each exposure interval. At the end of
the integration interval, the resulting electrical signal can be
expressed as

(2)

where is the received signal light intensity andis the am-
bient light intensity. The optical-to-electrical conversion effi-
ciency is given by

(3)

where is the quantum efficiency of the photodetector,is the
electron charge, is the signal wavelength, is Plank’s con-
stant, and is the speed of light. The additive noise is white
and Gaussian, and has zero mean and variance, indepen-
dent of whether the received bit is off or on. In this letter, we as-
sume that the receiver has knowledge of the ambient light bias

, and we denote the electrical signal to be after
subtraction of the ambient light bias.

For an OOK free-space optical communication system, we
assume a -bit sequence transmitted.
Define the index subset of on-state symbol

. We also have the index subset of
off-state symbols .
Ignoring intersymbol interference (ISI), the receiver would
only receive signal light through turbulence when on-state is
transmitted. Theth on-state symbol intensity can be expressed
as

(4)

where is the so-called log-amplitude of the optical signal
and can be modeled as a Gaussian random variable with the
ensemble average and covariance . is the signal
light intensity without turbulence. The joint probability den-
sity function (PDF) of a log-amplitude sequence

is jointly Gaussian [1]

(5)

where is the covariance matrix of the on-state bit sequence,
as shown in (6) at the bottom of the page. As explained in [1],

is the normalized log-amplitude covariance function and
the coherence time is

(7)

where is the coherence length of turbulence-induced fading
and is the wind velocity perpendicular to the light propaga-
tion direction. Here we assume to be constant and ignore its
fluctuations.

The joint distribution of the signal intensity of on-state sym-
bols is, therefore, joint log-normal [1]

(8)

III. PAIRWISE CODEWORD-ERRORPROBABILITY BOUND

In this analysis, we assume the turbulence-induced fading to
be piecewise-constant during each bit interval and known to the
receiver, i.e., receiver has perfect state information (SI) about
the channel. The receiver utilizes maximum-likelihood (ML)
soft decoding.

Consider two -bit codewords, and
. Define the symmetric difference of their

on-state symbol index subsets, i.e., the set consists of all those
points that belong to one or the other of the two sets but not to
both

(9)

and define its complement set

(10)

The energy over the symmetric difference set of two code-
words can be defined as

(11)

Due to the linearity of the code, the PEP betweenand
can be denoted by the PEP between a codeword whose index

(6)
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subset of on-state bits is the same as the symmetric difference
set and the all-zero codeword

(12)

Since , an upper bound on the PEP
is

(13)

Defining the average SNR , we can express (13)
as

(14)

Under the assumption of weak turbulence , we can
approximate the upper bound (14) as

(15)

(16)

where is the th eigenvalue of the covariance matrix and
is the sum of the elements in the corresponding eigenvector.
To verify the accuracy of the approximate upper bound (16),

we calculate the PEP of two codewords whose difference set
is versus the average SNR, choosing

. The approximate upper bounds for log-amplitude
variances 0.05, 0.15, and 0.25 are indicated by the solid
lines in Fig. 1. The pairwise codeword-error probability calcu-
lated using (12) is indicated by the dashed lines in Fig. 1 for
comparison. We can see that the upper bound (16) is accurate
under the assumption of small in weak turbulence region.

To demonstrate the limits of applicability of (16), we also
consider larger values of in Fig. 2. In Fig. 2, we see when

increases from 0.25 to 0.65, which should obviously result in

Fig. 1. Pairwise codeword-error probability versus average SNR using exact
integration (dashed lines) and using approximate upper bounds (solid lines) for
various log-amplitude variances(� = 0:05; 0:15;0:25).

Fig. 2. Pairwise codeword-error probability versus average SNR using exact
integration (dashed lines) and using approximate upper bounds (solid lines) for
larger values of the log-amplitude variances(� = 0:05;0:25;0:65).

higher error probability, the approximate PEP computed using
(16) decreases instead. This is because terms of higher order
in the log-amplitude, which we ignored in deriving (15), are
no longer negligible when is large, even though the weak
turbulence approximation made in (4) is still valid. Therefore,
(16) is no longer valid for large .

Since most free-space optical communication systems will
operate only when turbulence is weak, the approximate upper
bound (16) should be widely applicable to estimate the PEP for
long block codes and constituent codes, such as convolutional
codes and turbo codes, which can be useful in optimizing the
design of codes for free-space optical turbulence channels.

IV. ERROR-PROBABILITY BOUNDS FOR

VARIOUS CODING SCHEMES

Using the approximate pairwise codeword-error upper bound
that we have derived, we can compute upper bounds on the error
probability for various coding schemes. In this section, we still
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consider linear codes, and assume that all codewords are se-
lected with equal probability. We derive upper bounds on the
bit-error probability of block codes, convolutional codes, and
turbo codes.

A. Block Codes

For a binary linear (, ) block code with a set of codewords
, where denotes the all-zero codeword,

the average block-error probability with ML decoding is

(17)

and the average bit-error probability upper bound is

(18)

where is the Hamming weight of the information sequence
corresponding to codeword .

It is straightforward to apply (16) in (17) and (18) to obtain
performance bounds for block codes.

B. Convolutional Codes

Consider a rate linear convolutional code, where
is the all-zero codeword and is the set of nonzero
codewords whose initial state is the all-zero state, which first
remerge with the all-zero state at their final state. With ML de-
coding, the average bit-error probability can be upper bounded
by

(19)

To estimate (19), we have to reorder the pairwise error elements
by sorting the codewords according to their Hamming weights.
Define to be the Hamming distance between two
codewords. Let be the subset of codewords with Hamming
weight : , where is the
number of codewords in . Equation (19) can be expressed as

(20)

where is the free distance of the code, which is the min-
imum Hamming weight of any codeword except. From [2],
at high SNR, we can simplify the sum in (20) by ignoring neg-
ligible terms with large Hamming weights. Our simulations re-
sults in Section V also show such an approximation is quite ac-
curate at high SNR. We can approximate the average bit-error
probability by

(21)

Applying (16) to (21), we obtain the approximate bit-error prob-
ability

(22)

We can also apply (16) to (20) to find an upper bound to the
bit-error probability

(23)

In (22) and (23), is the th eigenvalue of the covariance ma-
trix and is the sum of the elements in the corresponding
eigenvector.

To simplify (23), we can define the fading-induced degrada-
tion factors

(24)

and

(25)

Note that (24) and (25) are functions of average SNR. The
upper bound (23) can then be more simply expressed using

(26)

where is the sum of all for which codeword has
Hamming weight . Note that can be obtained using the
transfer function of the code [5], [6]. The upper bound (26) can
also be applied to long block codes, for which (18) would in-
volve a prohibitive amount of computation.

C. Turbo Codes

Turbo codes offer excellent performance in a variety of ap-
plications, including optical communications, and have aroused
significant recent interest in the coding community. Turbo codes
are parallel concatenated convolutional codes (PCCC) in which
the encoder is formed by two or more constituent systematic
recursive convolutional encoders joined through an interleaver
[5], [6], [8], [9]. The information sequence is divided into blocks
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of length equal to the interleaver length. The input to the first
encoder is the original information bit sequence, and the inputs
to the other encoders are interleaved versions of the informa-
tion block. The encoded sequence consists of the information
sequence and the parity check bits from all encoders. Many de-
coding schemes and error-performance analyzes for turbo codes
have been documented in the literature. An abstract uniform in-
terleaver approach has been widely used to derive the average
of the upper bounds obtainable for the whole class of determin-
istic interleavers [8].

We start with the definition of the input-redundancy weight
enumerating function (IRWEF) for systematic convolutional
code

(27)

where and denote the initial and final states of the codewords.
denotes the number of codewords generated by an input

information word having Hamming weight and having parity
check bits of weight , so that the overall Hamming weight of
the systematic codeword is . We can also define the con-
ditional WEF

(28)

Making use of the properties of a uniform interleaver [8], we
obtain the average conditional WEF of all possible turbo codes
with respect to the whole class of interleavers

(29)

where and are the conditional WEFs of
two encoders, respectively, and is the interleaver length.
It has been shown when is sufficiently large, we can
accurately approximate the error performance with the paths
which diverge from the off-states of both constituent encoders
and remerge into off-states after steps, which have WEF

. A tight bound for the
pairwise codeword-error in correlated turbulence-induced
fading channel requires knowledge of the positions of differing
symbols, as we discussed above. For simplicity, we can loosen
the bound by making the pessimistic assumption that all

differing symbols are adjacent [8]. Therefore, the
average bit-error probability is upper bounded as

(30)

where is the pairwise codeword-error bound of the
all-zero codeword and the codeword withadjacent on-state
bits. Let us define

(31)

Fig. 3. The simulated bit-error probability (lines with circles) and the
approximate upper bound (lines without circles) for (7, 4) Hamming codes
versus average SNR. The log-amplitude variance� = 0:2 and the ratio of the
adjacent codeword bit intervalT to the coherence time of turbulence-induced
fading(T=� ) is chosen to be 0.001, 0.4, and 1, respectively. We also show the
simulation results where a block interleaver is used withKT=� = 1000.

which allows us to express (30) as

(32)

We can simplify (32) by ignoring the negligible higher
order terms with larger Hamming weights as discussed in
Section IV-B.

V. RESULTS

In this section, we will use the approximate error probability
upper bounds derived above to numerically evaluate the perfor-
mance of some practical codes.

We first study a Hamming (7, 4) code. In Fig. 3, we plot the
approximate bit-error probability upper bound (lines without
circles) versus average SNR with log-amplitude variance

. takes on the values 0.001, 0.4, and 1, respec-
tively. We also present the bit-error probability estimated using
Monte–Carlo simulation (lines with circles) for comparison.
Fig. 3 shows that when increases, the average bit-error
probability for (7, 4) Hamming codes will decrease. Therefore,
we can implement interleaving to compensate for the coding
gain penalty due to the memory of channel. Consider the normal
block interleaver of degree [2], where the codewords are
interleaved so that the adjacent bits of coded bit sequence are
transmitted at intervals of . Fig. 3 shows that interleaving
will improve the bit-error performance when is large.
However, when , further increase of the interleaver
depth will not significantly improve the bit-error performance.
As shown in Fig. 3, when increases from 1 to 1000, the
corresponding average upper bounds to the bit-error probability
are very close. Therefore, it is not necessary to further increase
the interleaver depth when .

For convolutional codes, we consider the example of a
rate-1/3 code, whose encoder diagram is shown in Fig. 4. We
choose the log-amplitude variance . takes on
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Fig. 4. Rate 1/3 convolutional encoder with three-stage shift registers.

Fig. 5. Average bit-error probability for a three-stage, rate-1/3 convolutional
code versus average SNR with log-amplitude variance� = 0:2 and for
T=� = 0.001 and 1. The estimates are provided by (22) (lines with squares),
(23) (lines with triangles) and (26) (lines with crosses), respectively. The
simulated average bit-error probability (lines with circles) is also shown for
comparison.

the values 0.001 and 1, respectively. In Fig. 5, the approximate
bit-error probability versus average SNR, computed using (22)
(lines with squares), (23) (lines with triangles) and (26) (lines
with crosses), respectively. The simulated bit-error probability
is also shown (lines with circles) in Fig. 5 for comparison. We
see that (26) yields a very accurate estimate of the approximate
upper bound (23). Also, when the SNR is high, the higher
Hamming weight terms in (23) are negligible, and the approx-
imate bit-error probability (22) merges with the approximate
upper bound (23). Interleaving can help to improve the system
performance for convolutional codes as well. Similar to the
block-coding case, the interleaver depthis sufficient when it
satisfies .

Finally, we present simulations for a rate-1/3 turbo-coded
system whose encoder structure is shown in Fig. 6. The ap-
proximate bit-error probability upper bound is calculated using
(32) with log-amplitude variance and .
The interleaver length of the uniform interleaver takes on the
values 100, 1000, and 10000, respectively. In Fig. 7, we plot
the approximate bit-error probability upper bound (lines without
circles) and the simulated bit-error probability (lines with cir-
cles) versus the average SNR for comparison. Comparing the
simulation results shown in Fig. 7 to those of the rate-1/3 con-
volutional code in Fig. 5, we see turbo coding can achieve better
bit-error probability performance through atmospheric turbu-
lence-induced fading channels if the interleaver length is suf-

Fig. 6. Encoder structure of a rate-1/3 turbo code with uniform interleaver of
lengthK.

Fig. 7. The simulated bit-error probability (lines with circles) and the
approximate upper bound (lines without circles) of a rate-1/3 turbo code versus
average SNR with log-amplitude variance� = 0:2 andT=� = 0:001. A
uniform interleaver with different interleaver depths(K = 100; 1000;1000)
is considered.

ficiently long. In Fig. 7, we see that the error-probability per-
formance of turbo codes continues to improve with increasing
interleaver length even when , especially at low av-
erage SNR [8]. This favors the use of longer interleavers with
turbo codes. However, system complexity and delays in coding
and decoding will limit the length of interleavers in practical
systems using turbo codes.

VI. CONCLUSIONS

Error-control codes can help to mitigate turbulence-induced
signal fading in wireless optical communication through at-
mosphere turbulence. To study the efficiency of various coding
schemes, performance bound analysis has been used for its
simplicity.

In this letter, we first derived an upper bound on the pair-
wise codeword-error probability for correlated atmospheric
turbulence channels. To avoid complicated multidimensional
integration, we have also derived an approximation for this
upper bound under the assumption of weak turbulence. The
accuracy and the limits of applicability of this approximation
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have been demonstrated using numerical simulations. We then
applied this approximate upper bound to derive the error per-
formance bounds and their approximations for various coding
schemes through atmospheric turbulence channels, including
block coding, convolutional coding, and turbo coding. The
analytical upper bounds were then applied to compare the
performance of a few specific example codes. The effect of
varying the interleaver depth was studied through numerical
evaluation of the performance bounds.
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