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Abstract

A message independence property and some new performance upper bounds are derived in this work for erasure,
list and decision-feedback schemes with linear block codestransmitted over memoryless symmetric channels. Similar
to the classical work of Forney, this work is focused on the derivation of some Gallager-type bounds on the achievable
tradeoffs for these coding schemes, where the main novelty is the suitability of the bounds for both random and
structured linear block codes (or code ensembles). The bounds are applicable to finite-length codes and to the
asymptotic case of infinite block length, and they are applied to low-density parity-check code ensembles.

Index Terms

Automatic repeat request (ARQ), erasures, error exponents, decision feedback, linear codes, list decoding, low-
density parity-check (LDPC) codes.

I. INTRODUCTION

Exponential error bounds were derived and studied by Forney[15], referring to the following two situations:

1) A decoder is allowed not to make a decision on a received signal, or rejecting all estimates; this output is
called anerasure. When a decision is made, the event where the decoder decision is incorrect is called an
undetected error.

2) A decoder is allowed to make more than one estimate of the received signal. The output of this decoder
forms a list of codewords, and the event where the transmitted message is not on the list is called alist error
event.

Throughout this paper, decoding rules for these two situations are calledgeneralized decoding rules since they
apply to the general setting where the decoder does not necessarily need to make a single decision about the
codeword which was sent. As explained in [15], erasure and list options may be useful when the transmitted
data contains some redundancy, when a feedback channel is available, or when several stages of coding (e.g.,
concatenation) are used. The size of the decoded list in [15]is allowed to vary according to the received signal.
This decoding rule differs from [14] and [36] where the size of the list is predetermined and fixed.

By allowing a decoder to increase the probability of erasures in the first case, the undetected error probability
can be reduced. In the second case, by increasing the decoderlist, the list error probability can be reduced. The
optimum decoding rules with respect to these tradeoffs wereprovided in [15] and they were analyzed via the
derivation of exponential bounds for random codes. Some sub-optimal decoding rules are analyzed in [20] and
[21] for random codes via a similar bounding technique, and the random coding error exponents under optimal and
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sub-optimal decoding rules are compared. It is noted that the considered decoding rules are studied with respect to
a given code, and finding the optimal codes for these scenarios remains an open problem.

Much of the current literature on the performance analysis of codes is focused on maximum-likelihood (ML)
decoding (see, e.g., [26] and references therein). Lower bounds on the error exponents for fully-random block
codes under generalized decoding rules are derived in [2], [15], [25], and [33]. Achievable error exponents are
provided in [30] and [31] for random codes with constant composition under some suboptimal decoding rules. An
upper bound on the error exponent under fixed-size list-decoding is provided in [28]. The error performance under
fixed-size list-decoding is studied for specific codes in [1], [4] and [24] where the communication is assumed to
take place over an AWGN channel. Additional (suboptimal) decoding rules with erasures are analyzed in [10] and
[11].

The analysis of error probabilities under generalized decoding rules with erasures, enables the study of coded
communications with a noiseless decision feedback. Specifically, it is assumed that decoding erasures are followed
by a repeat request over a noiseless and immediate feedback channel. Such schemes are often referred to as hybrid
automatic repeat request (ARQ) systems. Unlike channel capacity for discrete memoryless channels, which is not
affected by feedback (see for example [7, p. 216]), a significant improvement is demonstrated in [15] for the
achievable error exponents. In this respect, the reader is also referred to [19] where the error exponents of hybrid
ARQ schemes with limited retransmissions are studied. The effect of feedback was also considered in [6], and it
was shown to significantly reduce the block error probability for discrete memoryless channels.

In this paper, upper bounds on the error probabilities undergeneralized decoding rules are provided for linear
block codes over memoryless symmetric channels. Both optimal and suboptimal decoding rules are considered.
When variable-size list-decoding is considered, upper bounds on the expected size of the decoded list and the
associated error probability under list decoding are jointly derived. In addition, upper bounds on the list error
probability are introduced for linear block codes when the size of the list is fixed. The bounds derived in this
work are applicable to the performance analysis of specific codes, and code ensembles, via their (average) distance
spectra. The bounds are suitable for finite block lengths andalso for the asymptotic case of an infinite block length.
The provided results are exemplified for two coding schemes:Fully-random linear block codes, and regular, binary
and non-binary, low-density parity-check (LDPC) code ensembles with finite block lengths. An application to coded
hybrid-ARQ schemes is also exemplified.

This paper is structured as follows: The definitions of channel symmetry, generalized decoding rules, and some
of their basic properties, are provided in Section II. New upper bounds under the generalized decoding rules in [15]
are derived in Section III. Error performance of suboptimaldecoding rules are provided in Sections IV and V.
Some technical details are relegated to the appendices.

II. CHANNEL SYMMETRY, GENERALIZED DECODING, AND MESSAGEINDEPENDENCE

In this section we introduce some definitions, examples, andstatements related to channel symmetry, Forney’s
generalized decoding rule [15], and sub-optimal versions ([2] and [15]), as well as list decoding rules ([14] and
[36]). A message independence property is stated for these decoding rules, which is used for the simplification of
the analysis.

Let X = {x0, x1, . . . , xq−1} be a given alphabet with a cardinalityq. We assume an addition operation (+) over
the alphabetX for which {X ,+} forms an Abelian group. Letx0 = 0 be the additive identity of this group. In
addition, letY be a given discrete (or continuous) alphabet. We assume a memoryless channel, and denote the
channel transition probability (or probability density, respectively) function byp(y|x), wherex ∈ X andy ∈ Y.

Definition 1 (Channel symmetry). A memoryless channel which is characterized by a transitionprobability p, an
input-alphabetX and a discrete output alphabetY is symmetric if there exists a functionT : Y × X → Y which
satisfies the following properties:

1) For everyx ∈ X , the functionT (·, x) : Y → Y is bijective.
2) For everyx1, x2 ∈ X andy ∈ Y, the following equality holds:

p(y|x1) = p(T (y, x2 − x1)|x2). (1)
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Remark 1. For channels whose output alphabet is continuous, an additional requirement on the mappingT is that
its Jacobian is equal to 1.1 In this case, the condition in (1) implies that

∫

p(y|x1) dy =

∫

p(T (y, x2 − x1)|x2) dy.

Example 1 (Memoryless binary-input output symmetric channels).Consider a memoryless binary-input output-
symmetric (MBIOS) channel. Setting

T (y, x) =

{

y x = 0
−y x = 1

then Definition 1 coincides with the standard definition of MBIOS channels.

Let C = {xm}qk

m=1 be a linear block code whose generator matrix is ak × n full-rank matrix with entries over
X . The decoding rules studied in this paper are specified in terms of decision regionsΛm, 1 ≤ m ≤ qk, which are
all subsets ofYn. The conditional error probability of them-th message is given by

Pe|m =
∑

y∈Λc
m

p(y|xm) (2)

whereΛm forms the decision region for them-th codeword, and the superscript ‘c’ stands for the complementary
set. The decision region of them-th codeword under ML decoding gets the form

Λm =
{

y : p(y|xm) > p(y|xm′), ∀ m′ 6= m
}

(3)

where ties are resolved randomly with equal probability. Assuming equal a-priori probabilities for the transmitted
messages, the ML decoding rule minimizes the error probability given in (2). A well-known result for binary linear
block codes operating over MBIOS channels is that their error probability under ML decoding is independent of
the transmitted codeword. This enables a great simplification in the analysis by assuming that the all-zero codeword
is transmitted. This result is generalized in [22] for non-binary linear block codes whose transmission takes place
over memoryless symmetric channels with discrete input alphabet.

When generalized decoding rules are considered, the decision regionsΛm are not necessarily disjoint nor they
include all the possible received vectors. The former case corresponds to decoding rules with a possiblyvariable
list-size, and the latter case corresponds to decoding witherasures. A list is produced by the decoder where the
received vector may possibly belong to more than one decision region. An erasure event is declared by the decoder
when the received vector does not belong to any decision region. These concepts were first introduced in [15].
When generalized decoding rules are allowed, the conditional block error probabilityPe|m in (2) stands for the
probability of either an undetected error or an erasure. When the decision regions are disjoint, the conditional
undetected error probability is given by

Pue|m =
∑

m′ 6=m

∑

y∈Λm′

p(y|xm). (4)

In addition, letPx|m denote the conditional probability of an erasure event given thatxm is transmitted. Then

Px|m = Pe|m − Pue|m.

In the case where list decoding is considered, the decision regions are not disjoint, andPue|m as given in (4) is
no longer a probability. However the RHS of (4) equals the conditional expectation of the number of incorrect
codewords in the list (the same notation,Pue|m, is used in both cases to simplify the statement of the following
results). The optimum decoding rule with respect to the tradeoff between the error and the undetected error event
is derived in [15].

1It is possible to use a generalized definition for both discrete and continuous output alphabets using the notion of unitary functions, as
done for example in [35, Section III-A].



4 TO APPEAR IN THE IEEE TRANSACTIONS ON INFORMATION THEORY, AUGUST 2010.

Definition 2 (Forney’s generalized decoding).Consider a block code over an alphabetX , and let{xm} denote
its codebook. The generalized decoding rule is defined by thefollowing decision regions:

Λm =

{

y ∈ Yn :
Pr(y,xm)

∑

m′ 6=m Pr(y,xm′)
≥ enT

}

(5)

wherem is the index of the codeword,T ∈ R is a parameter,Pr(y,xm) denotes the joint probability thatxm is
the transmitted codeword andy is the received vector, and the summation is over all codewords except forxm.

Remark 2. The decision region in (5) can be expressed equivalently in the form

Λm =

{

y ∈ Yn : Pr(xm|y) ≥ enT

1 + enT

}

. (6)

Note that forT = 0, this decision region includes all the vectorsy ∈ Yn for which Pr(xm|y) ≥ 1
2 . The a-posteriori

probability ofxm, given thaty ∈ Λm is received, is therefore larger than the a-posteriori probability for any other
codeword. Hence, if a codeword is selected according to the decoder with the decision regions in (6) withT = 0,
then the same decision is made by a MAP decoder (as no other codeword can get an a-posteriori probability larger
than 1

2 ). This implies that the undetected error exponent for the decoder in (6) withT = 0 cannot be smaller than
the error exponent of an ML decoder with equally-likely codewords. Interestingly, as will be shown later, we get
the same lower bound on the error exponents for both decoders. Moreover, it is shown that forT = 0 the bounds
for the undetected error event and erasures coincides.

Remark 3. The threshold parameterT in (5) controls the tradeoff between erasures and undetected errors (or
average list size and decoding error). SettingT > 0 guarantees that the decision regionsΛm are disjoint.

Proposition 1 (Forney’s generalized decoding [15]).Assume that the decoding of a block code is carried according
to the generalized decoding rule in Definition 2. Then, thereis no other decoding rule that simultaneously gives
a lower error probability and a lower undetected error probability (or an average number of incorrect codewords
when list decoding is considered).

Remark 4 (On optimal generalized decoding of convolutional codes). Optimal generalized decoding of convo-
lutional codes, whose transmission takes place over memoryless channels, is provided in [23]. This algorithm is
based on the decision regions in (5). Specifically, the algorithm is based on a modification of the standard Viterbi
algorithm, where the denominator in (5) is evaluated recursively. The optimality of the algorithm in [23] is based
on the optimality in Proposition 1.

The following proposition generalizes the message independence property for the case of generalized decoding:

Proposition 2 (Message independence property for optimal generalized decoding). Let C be a linear block
code whose transmission takes place over a memoryless and symmetric channel. Then, the block error probability
and the undetected error probability, under the generalized decoding rule in Definition 2, are independent of the
transmitted codeword.

Proof: See Appendix A.

Remark 5. In the case where list decoding is considered (i.e., the decision regions are not disjoint), then Proposi-
tion 2 holds when we refer to the conditional expectation of the number of incorrect messages in the list produced
by the generalized decoding rule, instead of the undetectederror probability.

The following suboptimal decoding rule is suggested in [15]for the case of decoding with erasures:

Definition 3 (Likelihood Ratio (LR) Decoding). Consider a block code over the alphabetX , and let{xm} denote
its codebook. The LR decoding rule is defined by the followingdecision regions:

ΛLR
m =

{

y ∈ Yn :
Pr(y,xm)

Pr(y,xm2
)
≥ enT

}

(7)

wherem is a codeword index,T > 0 is a parameter,Pr(y,xm) denotes the joint probability thatxm is the
transmitted codeword andy is the received vector, andm2 = m2(y) denotes the second most probable codeword
for each received vectory.
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Remark 6. It is observed in [15] that the LR decoding rule may be a good approximation to the optimal regions in
(5), since the second most likely codeword is usually much more probable than the rest of the codewords (excluding
the most probable codeword). It is also noted in [15] that this suboptimal decoding rule is of practical utility.

Example 2 (Suboptimal generalized decoding).Consider the transmission of a binary linear block code overa
BSC. Given a received vectory ∈ {0, 1}n, the decoded codeword isx if and only if

dH(x′,y) − dH(x,y) > 2τn (8)

for all codewordsx′ 6= x, wheredH(x,y) denoted the Hamming distance betweenx, and y, and τ ≥ 0 is an
arbitrary parameter. Otherwise, an erasure is declared. Itis easily verified that this rule is a particular case of (7).
The error exponents for this setting are studied in [2].

The following proposition obtains a message independence property for the suboptimal decoding rule in Defini-
tion 3:

Proposition 3 (Message independence property for (suboptimal) LR decoding). Let C be a linear block code
whose transmission takes place over a memoryless and symmetric channel. Then, the block error probability and
the undetected error probability, under the suboptimal decoding rule in (7), are independent of the transmitted
codeword.

Proof: See Appendix B.

The following definition considers list decoding with a fixedsize. Such a decoding rule is based on a fixed size
of the list (instead of a variable list size which characterizes the decoding rule in Definition 2 withT < 0).

Definition 4 (Fixed-size list-decoding).Consider a block code over an alphabetX , and let {xm} denote its
codebook. Given a fixed list sizeL, the list-decoder is a mapping from the set of all possible received vectorsYn

to the set of all possible lists ofL codewords. This mapping produces the list whose likelihoods are the highest
among all other codewords. That is, given a received vectory, a codewordxm is in the list if p(y|xm) > p(y|xm′ )
for all m′ 6= m except for at mostL− 1 other possible codewords.

Assuming that the codewordxm is transmitted, a block error event is occurred by the fixed-size list-decoding rule
in Definition 4, if the list produced by the decoder does not include the transmitted codewordxm. The following
proposition is analogous to the message independence property in Propositions 2 and 3:

Proposition 4 (Message independence property for fixed-size list-decoding). Let C be a linear block code whose
transmission takes place over a memoryless and symmetric channel. Then, the block error probability, under the
fixed-size list-decoding is independent of the transmittedcodeword.

Proof: See Appendix C.

III. U PPERBOUNDS UNDER OPTIMAL GENERALIZED DECODING

The transmission of block codes (not necessarily linear) isfirst considered. In addition, throughout the paper, all
codewords are assumed to have a uniform a-priori probability.

Proposition 5. Consider the transmission of a codeC with a block lengthn andM codewords, and letp(y|x)
designate the transition probability of the channel wherex ∈ C is the transmitted codeword andy ∈ Yn is the
received vector. Then, the conditional block error probability (Pe|m) and the average undetected error probability
(Pue) under the generalized decoding rule in (5) satisfy

Pe|m ≤ ensTDB(m,Gm
n , s, ρ) (9)

Pue ≤ en(s−1)T 1

M

M
∑

m=1

DB(m,Gm
n , s, ρ) (10)
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where0 ≤ s ≤ ρ ≤ 1 are real-valued parameters,Gm
n is an arbitrary non-negative function overYn which possibly

depends on the codewordxm, 1 ≤ m ≤M , and

DB(m,Gm
n , s, ρ) ,

(

∑

y

Gm
n (y)p(y|xm)

)1−ρ





∑

m′ 6=m

∑

y

p(y|xm)Gm
n (y)1−

1

ρ

(

p(y|xm′)

p(y|xm)

) s

ρ





ρ

. (11)

Proof: See Appendix D.

Remark 7. Bounds (9) and (10) in Proposition 5 may be considered as a generalization of the DS2 bound ([9],
[27], [26]). In fact, settingT = 0 in (9) reproduces the DS2 bound under ML decoding. Note however that for
T = 0, the decision regions in (5) do not coincide with those underML decoding (e.g., in the former case there
are erasures).

The following corollary is a particularization of Proposition 5 for fully random block codes whose transmission
takes place over memoryless channels. The corollary reproduces the exponential upper bounds as in [15, Th. 2].

Corollary 1 (Random coding error exponents under optimum generalized decoding). Consider the transmission
of block codes over a memoryless communication channel witha transition probability lawp. Then, under the
notation in Proposition 5, there exists a block code which simultaneously satisfies

Pe ≤ e−nE1(R,T ) (12)

Pue ≤ e−nE2(R,T ) (13)

whereR = lnM/n is the code rate (in nats per channel use),

E1(R,T ) , max
0≤s≤ρ≤1, qX

(

E0(s, ρ, qX) − ρR− sT
)

(14)

E2(R,T ) , E1(R,T ) + T

E0(s, ρ, qX) , − ln
∑

y∈Y

{(

∑

x∈X

qX(x)p(y|x)1−s

)(

∑

x∈X

qX(x)p(y|x)
s

ρ

)ρ}

(15)

andqX is a probability distribution overX .

Proof: See Appendix E.

The bounds in Corollary 1 are derived in [15] without relyingon tilting measures. The current derivation relies
on the DS2 bound which makes use of tilting measures and Jensen’s inequality. It is noted in [15] that setting
T = 0 in Corollary 1, provides the random coding error exponent ofGallager [17]. Hence, as is mentioned in
[15], the random coding error exponent is attainable not only under ML decoding, but also under the generalized
decoding rule in (5) withT = 0. The following proposition is a particularization of Proposition 5 for linear block
codes.

Proposition 6. Consider an(n, k) linear block codeC whose transmission takes place over a memoryless symmetric
channel. Assume that the channel input and output alphabetsareX andY, respectively, and letp be the transition
probability of the channel. Then, the block error probability Pe and the undetected error probabilityPue under the
generalized decoding rule in (5), satisfy

Pe ≤ ensTD(g, s, ρ) (16)

Pue ≤ e−n(1−s)TD(g, s, ρ) (17)

whereg : Y → R is an arbitrary non-negative real-valued function,0 ≤ s ≤ ρ ≤ 1 are arbitrary parameters, and

D(g, s, ρ) ,





∑

y∈Y

g(y)p(y|0)





n(1−ρ)



∑

m′ 6=0

n
∏

i=1

∑

y∈Y

g(y)1−
1

ρ p(y|0)
(

p(y|xm′,i)

p(y|0)

) s

ρ





ρ

. (18)
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Proof: See Appendix F.

Remark 8. When the decision regions are not disjoint (i.e., a list decoder is considered),Pue in (17) does not
denote a probability but the expected number of incorrect codewords in the decoded list. The block error probability
Pe in (16) refers, in this case, to the list decoding error probability.

Remark 9. The parameterss andρ in Proposition 6 may be chosen separately for the bounds in (16) and (17).
However, the optimized choice of the two parameters is identical in both bounds (since they only differ in the
multiplicative terme−nT ).

The mathematical structure of the bound provided in the following corollary is similar to the Shulman-Feder
bound (SFB) in [29]. Because of this reason, this bound may beconsidered as a generalization of the SFB for the
generalized decoding rule in (5). To simplify the notation,the corollary is provided for the case of a binary linear
block code whose transmission takes place over an MBIOS channel (the generalization of the bounds to non-binary
linear block codes is performed similarly to the approach inthe proof of [22, Theorem 2]).

Corollary 2. Consider an(n, k) binary linear block codeC whose transmission takes place over an MBIOS channel
with a transition probability lawp. Then, the block error probabilityPe and the undetected error probabilityPue

under the generalized decoding rule in (5) satisfy

Pe ≤ e
−n
(

E(ρ,R,C)− ρT

1+ρ

)

(19)

Pue ≤ e
−n
(

E(ρ,R,C)+ T

1+ρ

)

(20)

where0 ≤ ρ ≤ 1 is an arbitrary real-valued parameter,R ,
(

k
n

)

· ln 2 is the code rate (in nats per channel use),

E (ρ,R, C) , E0(ρ) − ρ

(

R+
ln(α(C))

n

)

(21)

E0 (ρ) , − ln

(

∑

y

(

1

2
p(y|0)

1

1+ρ +
1

2
p(y|1)

1

1+ρ

)1+ρ
)

(22)

α(C) , max
1≤i≤n

|Ci|
2−(n−k)

(n
i

) (23)

and |Ci| denotes the number of codewords whose Hamming weight isi.

Proof: Settings = ρ
1+ρ , and

g(y) =

(

1

2
p(y|0)

1

1+ρ +
1

2
p(y|1)

1

1+ρ

)ρ

p(y|0)−
ρ

1+ρ (24)

in the bounds of Proposition 6, the proof follows in the same way as in [26, Ch. 4.4.1].

Remark 10. In the case where the performance of an ensemble of linear block codes is of interest, repeating the
derivation of Corollary 2 leads to the same upper bounds as in(19) and (20), where the cardinality|Ci| in (23)
is replaced with its statistical expectation over the considered ensemble, and the codebooks of this ensemble are
chosen uniformly at random.

Example 3 (Error exponents of fully random binary linear block codes). Consider the transmission of fully
random binary linear(n, k) block codes over a memoryless symmetric channel. For this particular case, the term
α(C) in (23) equals 1. As a result, it follows from Corollary 2 thatthe exponent of the block error probability
(including erasures and undetected errors), denoted byEe, satisfies

Ee ≥ max
0≤ρ≤1

(

E0(ρ) − ρR− ρT

1 + ρ

)

(25)

whereE0(ρ) is defined in (22),R is the code rate (in nats per channel use), andT is the parameter of the generalized
decoding rule in Definition 2. SettingT = 0 in (25) reproduces the (non-expurgated) random coding error exponent
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of Gallager [17]. This observation was first made by Forney for the ensemble of fully random block codes [15].
The undetected error exponent, denoted byEue, satisfies

Eue ≥ T + max
0≤ρ≤1

(

E0(ρ) − ρR− ρT

1 + ρ

)

.

The lower bounds on the two error exponents are shown in Fig. 1for the case of transmission over a binary-input
AWGN channel withEs/N0 = −2.8 dB (this ratio refers to the capacity limit for a rate of one-half bits per channel
use). The bounds are sketched as a function of the code rate (in nats per channel use). The lower bounds on the
error exponents for the case of decoding with erasures (T ≥ 0) are provided in Fig. 1(a) forT = 0, 0.025, 0.05, 0.1
and 0.15. For the case of decoding with a variable list-size (T < 0), the lower bounds on the error exponents are
provided in Fig. 1(b) forT = 0,−0.05, and−0.1. In addition, lower bounds on the exponentEN , −(lnN)/n,
whereN is the expected number of incorrect codewords in the decodedlist, are also provided for this case. Note
that the exponentEN is negative above some rate. Only the region for which the exponentEN is non-negative is
presented; the negative part ofEN , for which an upper bound on the size of the decoded list growsexponentially
with the block length, is removed.

Definition 5 (Composition of a vector).Let c be a vector whose components are symbols in an alphabetX of size
q. Let us assume without loss of generality thatX = {0, . . . , q − 1}. The composition ofc, denoted byt = t(c),
is a vectort = (t0, t1, . . . , tq−1) wheretx (for x ∈ X ) denotes the number of symbols inc that are equal tox.

Definition 6 (Complete composition spectrum).Let C be a linear block code of lengthn over an alphabetX . The
complete composition spectrum is the sequence{|Ct|} where|Ct| is the number of codewords whose composition
is t, andt ranges over the setH of all possible compositions overX n.

Corollary 3. Consider an ensembleE of (n, k) linear block codes whose transmission takes place over a memoryless
symmetric channel. LetP (l) denote the probability that a vector whose Hamming weight isl, forms a codeword
in a randomly selected codebook fromE . Assume that the average composition spectrum over all the codesC,
uniformly selected at random fromE satisfies

E

[

|Ct|
]

= P (n− t0)

(

n

t

)

. (26)

Then, under the notation in Proposition 6, the block error probability Pe and the undetected error probabilityPue,
satisfy

Pe ≤ e
nρT

1+ρ ·Ds(ρ, C) (27)

Pue ≤ e−
nT

1+ρ ·Ds(ρ, C) (28)

where0 ≤ ρ ≤ 1, and

Ds(ρ, C) , A(ρ)n(1−ρ)





∑

1≤l≤n

P (l)

(

n

l

)

B(ρ)n−lC(ρ)l





ρ

(29)

A(ρ) ,
∑

y∈Y

(

1

q

∑

x∈X

p(y|x)
1

1+ρ

)1+ρ

(30)

B(ρ) ,
∑

y∈Y

(

1

q

∑

x∈X

p(y|x)
1

1+ρ

)ρ−1(

1

q

∑

x∈X

p(y|x)
2

1+ρ

)

(31)

C(ρ) , qA(ρ) −B(ρ). (32)

Proof: Settings = ρ
1+ρ and choosing the tilting measureg in (24), the proof follows from Proposition 6 in

the same way as in [22, Theorem 3].
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(a) Generalized decoding with erasures
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(b) Generalized decoding with a variable-size list

Fig. 1: Lower bounds on the error exponents and list-size exponentsfor the ensemble of fully-random binary linear block codes whose
transmission takes place over a binary-input AWGN channel with Es/N0 = −2.8 dB. The lower bounds in Corollary 2 are sketched in
plots (a) and (b), for the generalized decoding rule in (5) with erasures (i.e.,T ≥ 0) and with a variable list-size (i.e.,T < 0), respectively.

Remark 11. For an ensemble ofbinary linear block codes, the condition in (26) is not mandatory. Repeating the
derivation results in the same bounds as in Corollary 3 wherethe termP (l)

(n
l

)

in (29) is replaced with the expected
complete composition spectrum of the ensemble.

Remark 12. The bounds in Corollary 3 are tighter than those in Corollary2. Hence, for a finite block length, the
bounds in Corollary 3 are more attractive even though they lack the appealing exponential structure of the bounds
in Corollary 2.

Remark 13. As a particular case of Remark 7, settingT = 0 in (27) reproduces the upper bound on the decoding
error probability of non-binary linear block codes under MLdecoding in [22, Theorem 3].

The following comments concerns the numerical results shown in the examples throughout paper:
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1) Expurgation of codebooks: The examples presented in this paper consider the performance of some expurgated
ensembles of regular LDPC codes under generalized decodingrules. Specifically, an expurgation of the
codebooks whose minimum Hamming distance is not larger thana specific valueDn is assumed. As a result,
the expected complete composition spectrumE [|Ct| |dmin > Dn] of a codebook which is chosen uniformly
at random from the expurgated ensemble, satisfies the following upper bound:

E
[

|Ct| |dmin > Dn

]

≤ E
[

|Ct|
]

1 − εn
(33)

whereE
[

|Ct|
]

is the expected composition spectrum of the original (non-expurgated) ensemble, and
∑

t: n−t0≤Dn

E
[

|Ct|
]

≤ εn. (34)

The fraction of the removed codebooks is upper bounded byεn. In the following examples, the value of
εn is negligible. For the (6,12) regular binary ensemble with block lengths ofn = 504 and 2004 bits,
εn = 3.6002 · 10−5, and5.5058 · 10−8, for Dn = 40 and 160 bits, respectively. For the (8,16) regular octal
alphabet ensemble with a block length ofn = 1008 symbols andDn = 80 symbols,εn is around10−14.

2) Performance over the AWGN channel: For the AWGN channel, the results in this paper are providedas
function of the signal-to-noise ratioEs

N0
whereEs is the energy per transmitted coded symbols, andN0

2 is
the two-sided power spectral density of the additive white noise. This comment concerns both binary and
non-binary codes.

Example 4 (Error performance of binary regular LDPC code ensembles under generalized decoding with
erasures). Consider an expurgation of the binary and regular (6,12) LDPC code ensemble of Gallager [16] with
a block length ofn = 2004 bits. In this expurgated ensemble, all the codebooks whose minimum distance is
not larger thanDn = 160 are removed. Upper bounds on the block error probability andthe undetected error
probability, under Forney’s generalized decoding with erasures, are studied based on Corollary 3. The composition
spectrum is upper bounded via (33) and (34), where the composition spectrum of the original (non-expurgated)
regular LDPC code ensemble is evaluated using the method provided in [5], [32]). The bounds are provided for
several non-negative values ofT in Fig. 2, assuming that the transmission takes place over a binary-input AWGN
channel. Note that ifT = 0, the resulting bounds on the block error probability and theundetected error probability
coincide, and they also provide an upper bound on the ML decoding error probability. The results indicate that by
allowing an error probability that may be slightly higher than the upper bound on the error probability under ML
decoding, significant improvement is guaranteed for the undetected error probability.

Example 5 (Error performance of binary regular LDPC code ensembles under generalized decoding with
a variable-size list). The performance of the same expurgated ensemble as in Example 4 is studied here under
Forney’s generalized decoding with a variable list-size. Upper bounds on the block error probability and the expected
number of incorrect codewords in the list, are evaluated based on the bounds in Corollary 3 for several non-positive
values ofT . These bounds are provided in Fig. 3, assuming a transmission over a binary-input AWGN channels.
It is evident that only a slight improvement in the error performance is possible by using the generalized decoding
rule.

Consider an expurgation of Gallager’s ensemble of (8,16) regular LDPC codes [16] with an octal alphabet, and a
block length of 1008 symbols. Consider the case where the expurgated ensemble excludes all the codebooks whose
minimum distance is not larger thanDn = 80. The upper bounds on the error probabilities,

Example 6(Hybrid-ARQ schemes over AWGN channels with non-binary LDPCcodes).Coded communication
systems with one-bit noiseless feedback are considered where a generalized decoding rule with erasures is applied
at the receiver. Each decoding erasure is communicated via the feedback to the transmitter, which then retransmits
its message. It is assumed that each transmitted block is decoded separately. Such a hybrid-ARQ system is described
and studied in [15], where the error exponents for random coding are provided. For the case where deadlines are
assumed, the error exponents for random coding are providedin [19]. For the sake of completeness, the specific
details regarding the numerical results presented in this examples are surveyed in Appendix G. In this example,
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Fig. 2: Upper bounds on the block error and undetected block error probabilities under the generalized decoding rule in (5) witherasures
(T ≥ 0). The transmission is assumed to take place over a binary-input AWGN channel. An expurgation of the binary and regular (6,12)
LDPC code ensemble of Gallager is considered, where the block length is 2004 bits, and the parameterDn which refers to the expurgation
is set to 160 (see Example 4).
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Fig. 3: Upper bounds on the block error probability and expected size of incorrect codewords in the decoded list, under the generalized
decoding rule in (5) with variable-size list (T ≤ 0). The transmission is assumed to take place over a binary-input AWGN channel. An
expurgation of the binary and regular (6,12) LDPC code ensemble of Gallager is considered, where the block length is 2004bits, and the
parameterDn which refers to the expurgation is set to 160 (see Example 4).

the performance of hybrid-ARQ scheme based on octal-alphabet LDPC code ensemble is studied assuming that the
transmission takes place over the AWGN channel with 8-PSK modulation. Gallager’s ensemble of (8,16) regular
LDPC codes [16] with an octal alphabet, and a block length of 1008 symbols is assumed. In addition, is it assumed
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that the expurgated ensemble excludes all the codebooks whose minimum distance is not larger thanDn = 80.
Lower bounds on the expected rate and upper bounds on the decoding error probability are shown in Figs. 4(a)
and 4(b), respectively. Schemes with and without deadlinesare considered. The results show that the lower bounds
on the expected rates drop considerably, belowEs/N0 = 3.6 dB. However, above this SNR, the introduction of a
single-bit, noiseless and immediate feedback allows to achieve remarkable improvements in the error performance.
Take for example the case whereEs/N0 = 3.62 dB where the upper bound on the error probability under ML
decoding without feedback (see the curve forT = 0 andQ = 1) is around10−2. For the same channel, if no
deadlines are assumed, the upper bounds on the error probability are around2 · 10−6. When deadlines ofQ = 2
and 4 total retransmissions (including the first transmission) are assumed, the upper bounds on the error probability
for the same channel are6·10−4 and3·10−6, respectively. For all considered schemes, the expected rate deteriorates
at this point by no more than 4%.

IV. U PPERBOUNDS UNDER SUBOPTIMAL DECODING WITH ERASURES

In this section, upper bounds on decoding error probabilities are derived for the suboptimal decoding rule in (7).

Proposition 7. Consider the transmission of a block codeC of block lengthn andM codewords, and letp(y|x)
designate the transition probability of the channel wherex ∈ C is the transmitted codeword andy ∈ Yn is the
received vector. Then, the conditional block error probability Pe|m, and the conditional undetected error probability
Pue|m, under the suboptimal decoding rule in (7) satisfy

Pe|m ≤ ensTDB(m,Gm
n , s, ρ), 0 ≤ s ≤ ρ ≤ 1 (35)

Pue|m ≤ e−nsTDB(m,Gm
n , s, ρ), 0 ≤ s ≤ ρ ≤ 1 (36)

whereDB(m,Gm
n , s, ρ) is defined in (11), andGm

n is an arbitrary non-negative function overYn which possibly
depends on the codewordxm, 1 ≤ m ≤M .

Proof: See Appendix H.

Remark 14. The upper bound on the block error probability in (35) coincides with the upper bound on the total
error probability provided in (9) under the optimal generalized decoding rule. On the other hand, the upper bounds
on the undetected error probabilities under the optimal andsuboptimal decoding rules in (10) and (36), respectively,
are different.

The following corollary is a particularization of Proposition 7 for the ensemble of fully random block codes of
lengthn and rateR whose transmission takes place over memoryless channels:

Corollary 4. Consider the transmission of block codes over a memoryless communication channel. Then, there
exists a block code satisfying

Pe ≤ e−nE1(R,T )

Pue ≤ e−nE∗

2 (R,T )

whereR , ln M
n is the code rate (in nats per channel use),E1(R,T ) is defined in (14),

E∗
2(R,T ) , max

0≤s≤ρ≤1, qX

(

E0(s, ρ, qX) − ρR+ sT
)

E0 is as defined in (15), andqX is an arbitrary probability distribution overX .

Proof: The proof follows the same arguments as the proof of Corollary 1.

The following bound is provided for the case of binary linearblock codes whose transmission takes place over
an MBIOS channel (the generalization of the bound to non-binary linear block codes, as provided in [22], is direct):
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(b) Upper bounds on the error probability

Fig. 4: Performance bounds of hybrid-ARQ schemes based on an expurgated, octal-alphabet and regular (8,16) LDPC code ensemblewith
a block length ofn = 1008 symbols. The transmission is assumed to take place over an AWGN channel with 8-PSK modulation. In plot (a),
lower bounds on the expected rates for memoryless hybrid-ARQ schemes with and without deadlines (see (77), and (75), respectively) are
shown forT = 0.01 (and possible deadlines ofQ = 2 and 4 transmissions). In plot (b) upper bounds on the error probability are provided
for the considered schemes.

Corollary 5. Consider an(n, k) binary linear block codeC whose transmission takes place over an MBIOS channel
with a transition probability lawp. Then the block error probabilityPe, and the undetected error probabilityPue,
under the generalized decoding rule in (7) satisfy

Pe ≤ e
−n
(

E(ρ,R,C)− ρT

1+ρ

)

, 0 ≤ ρ ≤ 1 (37)

Pue ≤ e
−n
(

E(ρ,R,C)+ ρT

1+ρ

)

, 0 ≤ ρ ≤ 1 (38)

whereR is the code rate (in nats per channel use), andE (ρ,R, C) is defined in (21).
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Proof: The proof follows from Proposition 7, and its derivation is similar to the way where Corollary 2 is
derived from Proposition 6.

Remark 15. As in Corollary 2, the bounds of Corollary 5 resemble to the SFB, and they may therefore be considered
as a generalization of the SFB for the case at hand.

Remark 16. For all rates below some (finite) rate thresholds, the boundsin Corollary 5 on the decoding error for
linear block codes under the suboptimal LR rule in Definition3, coincide with those under the optimal decoding
rule in Definition 2. To see this, observe first that the upper bounds in (19) and (37) are identical. It is left to
consider the upper bounds in (20) and (38) on the undetected error probability. Note first thatE0(ρ) − ρR (E0 is
defined in (22)) is a concave function of0 ≤ ρ ≤ 1, and it is optimized for rates belowE′

0(1) at ρ = 1 (see, e.g.,
[34, p. 135]). Moreover, ρ

1+ρ is a monotonic increasing function of0 ≤ ρ ≤ 1. This implies that if T
4 < E′

0(1),

then at all rates belowE′
0(1) −

ln(α(C))
n − T

4 , the error exponents of the upper bounds in (20) and (38) are both
maximized atρ = 1, and they therefore coincide. A similar observation is provided in [21, p. 82] for the ensemble
of fully random block codes. Specifically, it is observed in [21] that up to some rate threshold, the upper bounds
under the suboptimal LR decoding rule for the ensemble of fully-random block codes coincide exponentially with
those provided by Forney in [15].

Example 7 (Error exponents of fully random binary linear block codes). Fully random binary and linear(n, k)
block codes are considered where, as mentioned in Example 3,α(C) = 1 (see (23)). For the particular case of
transmission over a BSC, the error exponents for the considered ensemble are studied in [2] and [3]. The lower
bounds on the block error exponents and the undetected errorexponents from [2] and [3] are compared in Fig. 5(a),
and 5(b), respectively, to the bounds provided in Corollary5. The bounds are derived for a BSC with a crossover
probability ofp = 0.07 and a decoding parameterτ = 0.03 (see (8) where these are the same parameters studied in
[2, Fig. 1]). The error exponent provided by Gallager for thecase of ML decoding is also provided for comparison,
in addition to the undetected error exponent under the optimal generalized decoding rule. Apart from low rates,
where the bounds in [2] and [3] outperform those provided in Corollary 5, the latter bounds on the error exponents
lie in between the two previously reported bounds from [2] and [3] (see Fig. 5). Moreover, in the rate region beyond
the critical rate, where the bound in [2] outperform the bound in [3], the derived bounds perform in close proximity
to the tightest known bound. The superiority of the undetected error exponent under the optimal decoding rule is
clearly pronounced. As observed in Remark 16, it is evident that for low to moderate code rates, the bounds under
optimal and suboptimal generalized decoding rules coincide. However, as the coding rates approach the channel
capacity, the lower bounds on the undetected block error exponents under the suboptimal generalized-decoding, are
considerably loosened in comparison to the lower bound under the optimal generalized decoding.

Corollary 6. Under the assumptions and notation in Corollary 3, the blockerror probabilityPe and the undetected
error probabilityPue under the suboptimal decoding rule in (7), satisfy

Pe ≤ e
nρT

1+ρ ·Ds(ρ, C), 0 ≤ ρ ≤ 1 (39)

Pue ≤ e−
nρT

1+ρ ·Ds(ρ, C), 0 ≤ ρ ≤ 1 (40)

whereDs(ρ, C) is defined in (29).

Proof: Setting s = ρ
1+ρ , Gm

n (y) =
∏n

i=1 g(yi) where g is as defined in (24), the proof follows from
Proposition 7 in the same way as the proof in [22, Theorem 3].

Consider the particular case of binary linear block codes whose transmission takes place over the binary-input
AWGN channel with BPSK modulation. The bound of Divsalar (see [9] and [26, Sec. 3.2.4]) provides a closed-
form expression for an upper bound on the block error probability under ML decoding. The following proposition
provides a similar bound under the LR decoding rule in Definition 3:

Proposition 8. Consider the transmission of a binary linear block code overthe AWGN channel with BPSK
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Fig. 5: Lower bounds on the block error exponents of fully-random binary linear block codes whose transmission takes place overa BSC
with a crossover probability ofp = 0.07, under the suboptimal decoding rule in (8) withτ = 0.03. The lower bounds on the undetected
block error exponents in [2, Theorem 2], [3] (see also [2, Theorem 1]), and Corollary 5 (see (38)) are provided in plot (a),together with
Gallager’s random-coding error exponent under ML decoding[17], and the lower bound on the undetected error exponent inCorollary 2
(see (20)) under the optimal generalized decoding rule. Thelower bounds on the error exponents in [2, Theorem 2], [3], and Corollary 5
(see (37)) are provided in plot (b) (the lower bound of Gallager for the random-coding error exponent under ML decoding isalso provided
for comparison).

modulation, then the error and undetected error probabilities under the LR decoding in (7) satisfy

Pe ≤
n
∑

d=dmin

min







exp

(

−nEe

(

d

n
,
Es

N0

))

, |Cd|Q





√

2Esd

N0
− nT

2
√

2dEs
N0











(41)

Pue ≤
n
∑

d=dmin

min







exp

(

−nEue

(

d

n
,
Es

N0

))

, |Cd|Q





√

2Esd

N0
+

nT

2
√

2dEs
N0











(42)
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wheredmin is the minimum Hamming distance of the code,n is the block length of the code,|Ci| is the number of
codewords whose Hamming weight equalsi, T is the decoding parameter in (7),Es is the energy per transmitted
(coded) symbol,N0

2 is the two-sided power spectral density of the white Gaussian noise, and

Ee

(

δ,
Es

N0

)

, ED

(

δ,
Es

N0

)

− Tξ

2
,

Eue

(

δ,
Es

N0

)

, ED

(

δ,
Es

N0

)

+
Tξ

2

ED

(

δ,
Es

N0

)

, −rn(δ) +
1

2
ln
(

β + (1 − β)e2rn(δ)
)

+
βδ

1 − (1 − β)δ

Es

N0

β ,

√

√

√

√

Es

N0

2(1 − δ)

δ(1 − e−2rn(δ))
+

(

1 − δ

δ

)2
(

(

1 +
Es

N0

)2

− 1

)

− 1 − δ

δ

(

1 +
Es

N0

)

rn(δ) ,
ln |Cd|
n

, δ ,
d

n

ξ ,
β

β + (1 − β)(1 − δ)
.

Proof: See Appendix I.

Example 8 (Error performance of expurgated binary and regular LDPC code ensembles under suboptimal
generalized decoding with erasures).Consider an expurgation of the binary and regular LDPC code ensembles in
Example 4 (with block lengths of 504 and 2004 bits). The upperbound in (40), on the undetected error probability
under the generalized decoding rule with erasures in (7), isprovided in Fig. 6 assuming that the transmission
takes place over a binary-input AWGN channel. The upper bounds under the optimal generalized decoding rule are
also provided for a comparison, in addition to the upper bound under the generalized decoding rule withT = 0
(which coincides with the upper bound on the error probability under ML decoding). It is evident that the resulting
bounds under the suboptimal generalized decoding rule are loosened in comparison to the bounds under the optimal
generalized decoding rule. This result is expected from theprevious example where the undetected error exponents
are studied for fully-random linear block codes. In Fig 7, the upper bounds on the undetected error probability in
Corollary 6 are compared with those provided in Proposition8. The provided bounds are for the binary regular
and expurgated LDPC code ensembles in Example 4 (with block lengths of 504 and 2004 bits), and for a similar
ensemble with a block length of 10008 bits andDn = 800. The parameterT in (7) is chosen, for this comparison,
to be 0.0198, 0.0050, and9.992 · 10−4, respective to the considered block lengths. It is evident that the simple
bound in (42) is loosened in comparison to the bound in (40), but only by a relatively small difference.

V. UPPER BOUNDS UNDER FIXED-SIZE LIST DECODING

In this section, upper bounds on the block error probabilityare derived for the fixed-size list decoding (see
Definition 4). As mentioned in Section II, the block error event in this case corresponds to the possibility that the
decoded list does not include the transmitted codeword.

Proposition 9. Consider the transmission of a block codeC with M codewords of lengthn, and letp(y|x) designate
the transition probability of the channel wherex ∈ C is the transmitted codeword andy ∈ Yn is the received vector.
Consider the case where a fixed-size list decoder is used where the size of the list is denoted byL. Then, the
conditional block error probabilityPe|m, given that them-th message is transmitted satisfies

Pe|m ≤
(

∑

y

Gm
n (y)p(y|xm)

)1−ρ





1

L

∑

m′ 6=m

∑

y

p(y|xm)Gm
N (y)1−

1

ρ

(

p(y|xm′)

p(y|xm)

) s

ρ





ρ

. (43)



E. HOF ET AL.: PERFORMANCE BOUNDS FOR ERASURE, LIST AND FEEDBACK SCHEMESWITH LINEAR BLOCK CODES 17

−2.6 −2.4 −2.2 −2 −1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Es/N0 [dB]

u
n
d
et

ec
te

d
er

ro
r

p
ro

b
a
b
il
it

y

 

 

n = 504 T = 0
n = 2004 T = 0
opt., n = 504 T = 0.015
opt., n = 2004 T = 0.004
sub., n = 504 T = 0.015
sub., n = 2004 T = 0.004

Fig. 6: Upper bounds on the undetected error probabilities of some expurgated ensembles of binary and regular (6,12) LDPC codesunder
the optimal and sub-optimal generalized decoding rules in (5) and (7), respectively. The upper bound in Corollary 6 is evaluated assuming
that the transmission takes place over a binary-input AWGN channel. The upper bounds in Corollary 3, studied in Examples4 and 5, are
also provided for comparison.
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Fig. 7: A comparison between the upper bounds in (40) and (42), on theundetected error probability under the LR generalized decoding
rule in (7). The comparison is provided for binary expurgated and regular (6,12) LDPC code ensembles of Gallager with block lengths of
504, 2004 and 10008 bits whose transmissions take place overbinary-input AWGN channels with BPSK modulation.

where0 ≤ s ≤ ρ ≤ 1 are real-valued parameters, andGm
n is an arbitrary non-negative function overYn which

possibly depends on the codewordxm, for 1 ≤ m ≤M .

Proof: See Appendix J.

The following corollary is a particularization of Proposition 9 for the ensemble of fully-random block codes,
with fixed block length and rate, whose transmission takes place over a memoryless channel:

Corollary 7. Consider the transmission of a block codeC over a memoryless communication channel. Then, under
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the notation in Proposition 9, there exists a block code whose block error probabilityPe under fixed-size list
decoding satisfies

Pe ≤ e−nEr(R− 1

n
lnL) (44)

whereR , ln M
n is the code rate (in nats per channel use),

Er(R) , max
0≤ρ≤1, qX

(

E0(ρ, qX) − ρR
)

(45)

E0(ρ, qX) , − ln





∑

y∈Y

(

∑

x∈X

qX(x)p(y|x)
1

1+ρ

)1+ρ




andqX is a probability distribution over the input alphabetX .

Proof: Fix a probability distributionqX overX , and consider the ensemble of random block codes where each
codeword is chosen independently according toqX(x) =

∏n
i=1 qX(xi). First, we apply the bound in (43) for a

specific realization of a codebook, withs = ρ
1+ρ and

Gm
n (y) ,

(

∑

x

qX(x)

(

p(y|x)

p(y|xm)

) s

ρ

)ρ

.

The proof follows by a random coding argument, and by choosing the optimal probability distributionqX .

Remark 17 (On comparison of the error exponent in Corollary 7 with previously known results). The upper
bound in Corollary 7 is compared to three previously known results:

1) The sphere-packing bound:The sphere-packing lower bound in [28, eq. 1.6] provides an exponential lower
bound on the error probability for fixed-size list-decodingof block codes. The bound in Corollary 7 and the
sphere-packing bound exponentially coincide for all ratesabove the critical rate (where the maximization of
the random coding error exponent is achieved for0 ≤ ρ ≤ 1).

2) Asymptotic upper bound: Consider the case where the size of the decoded list grows exponentially with the
blocklength, and denote the exponential growth rate of the decoded list byl (i.e., L = enl for somel > 0).
The following asymptotic upper bound is provided in [8, p. 196, ex. 27] for the case at hand:

lim sup
n→∞

1

n
lnPe ≤ −Er(R− l). (46)

It is easily verified that the bound in Corollary 7 asymptotically coincides with the bound in (46).
3) A variation on the Gallager bound: The following exponential upper bound on the error probability is

provided in [18, p. 538, ex. 5.20] for given block length and list size (the same assumptions and notation as
in Corollary 7 are considered):

Pe ≤ e−nEr(R,L)

where
Er(R,L) , max

0≤ρ≤L, qX

(

E0(ρ, qX) − ρR
)

. (47)

The error exponents in (44) and (47) differ in the following aspects:

a) For a fixed list-sizeL, the error exponent in (44) depends on the block lengthn while the error exponent
in (47) does not.

b) The maximization ofρ in (44) is carried over the interval[0, 1] while in (47) it is [0, L].
c) The bound in (44) includes an explicit rate reduction term, which depends on the list size.
d) The derivation of the bound in (44) is based on a particularization of the DS2 bound in Proposition 9

for fully-random block codes. On the other hand, the derivation of the bound in (47) is based on a
modification of the random coding bound [17] for the case at hand.

The two bounds in (44) and (47) are compared in Figure 8. Transmission of fully-random block codes over
a BSC with a crossover ofp = 0.11 are considered, where equiprobableqX(x) = 1

2 , x ∈ X , is assumed.
The error exponentEr(R,L) in (47) is plotted for a list size ofL = 16 codewords. In addition, the exponent
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Fig. 8: A comparison between the upper bounds in Corollary 7 and [18,p. 538, ex. 5.20]. Transmission of a fully-random binary block
codes (with independent equiprobable selection of coded bits) over a BSC with a cross over probability ofp = 0.11 is assumed. The
exponent termEr(R,L) in(47) is plotted for a list size ofL = 16 codewords. The exponentEr(R− 1

n
ln L) in (44) is plotted for the same

list-size and blocklengths of 128, 256 and 1024 bits.

Er(R− 1
n lnL) is provided for the same list size and block lengths of 128, 256 and 1024 bits. It is observed

that for low rates the bound in (47) outperforms the bound in (44). For moderate rates, the bound in (44)
outperforms the bound in (47). The gap between the plotted exponents is negligible as the block length
increases (even for a moderate block length of 1024 bits).

The following bound is provided for the case of binary linearblock codes whose transmission takes place over
an MBIOS channel:

Corollary 8. Consider an(n, k) binary linear block codeC whose transmission takes place over an MBIOS channel.
Then, the block error probabilityPe under fixed-size list-decoding, satisfies

Pe ≤ e
−nEr

(

R+ 1

n
ln
(

α(C

L

))

(48)

where

Er(R) , max
0≤ρ≤1

(

E0(ρ) − ρR
)

andR is the code rate (in nats per channel use),L is the list size, andE0(ρ) andα(C) are defined in (22) and (23),
respectively.

Proof: According to Proposition 4, it is necessary to analyze only the conditional error event assuming that
the all-zero codeword is transmitted. SettingG0

n(y) =
∏n

i=1 g(yi) in (43), it follows that

Pe ≤





∑

y∈Y

g(y)p(y|0)





n(1−ρ)





1

L

n
∑

i=1

|Ci|
(

∑

y∈Y

g(y)1−
1

ρ p(y|0)
)n−i(

∑

y∈Y

g(y)1−
1

ρ p(y|1)λp(y|0)1−λ

)i




ρ

(49)

where|Ci| denotes the number of codewords whose Hamming distance isi, 1 ≤ i ≤ n. The proof follows from (49)
by settingλ = 1

1+ρ whereg is as defined in (24) (see similar derivation in [26, Section 4.4.1]).
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Remark 18. For the particular case of fully-random linear block codes,the bound in (48) coincides with the bound
in Corollary 7 for fully-random block codes.

Remark 19. The bound in Corollary 8 resembles to the SFB [29], and therefore may be considered as a general-
ization of the SFB for the case at hand.

Remark 20. The bound in (49) can be generalized to non-binary linear block codes using a similar derivation
as in [22]. Note, however, that in [22], non-binary codes arestudied under ML decoding and not list-decoding.
Nevertheless, the similarity of the bound in (43) to the upper bounds derived in [22] allows to use the same
arguments for the case at hand (see Appendix J).

Corollary 9. Under the assumptions and notation in Corollary 3, the blockerror probability probabilityPe under
fixed-size list-decoding whereL denotes the size of the list, satisfies

Pe ≤ A(ρ)n(1−ρ)





1

L

∑

1≤l≤n

P (l)

(

n

l

)

B(ρ)n−lC(ρ)l





ρ

(50)

whereA(ρ), B(ρ), andC(ρ) are defined in (30)–(32).

Proof: Setting s = ρ
1+ρ and Gm

n (y) =
∏n

i=1 g(yi) where g is defined in (24), the proof follows from
Proposition 9 in the same way as the proof in [22, Theorem 3].

Remark 21. In the derivation of the bound in (48), a sum is upper bounded by a product of the maximal summand
with the number of summands. This operation is avoided in thederivation of the bound in (50). Hence, the bound
in Corollary 9 is tighter than the one in Corollary 8.

Remark 22. For the particular case of binary linear block codes, the symmetry condition in (26) is not mandatory
and the bound in Corollary 9 follows by replacing the termP (l)

(n
l

)

with the distance spectrum of the considered
code (ensemble).

Example 9 (Error performance of an expurgated ensemble of regular LDPCcodes under fixed-size list
decoding). Consider the expurgation of Gallager’s ensemble of binary and regular (6,12) LDPC codes with a block
length of 2004 bits (see Example 4). Upper bounds on the blockerror probability under fixed-size list-decoding are
shown in Fig. 9 assuming that the transmission takes place over a binary-input AWGN channel. The upper bound
in Corollary 9 is evaluated for list sizes ofL = 1, 16, and 128 codewords. Note that the upper bound forL = 1
corresponds to ML decoding. The bounds on the error probability show some marginal improvement by increasing
the considered list size fromL = 1 to 128. Similar conclusions can be observed for non-binary ensembles.

VI. SUMMARY AND CONCLUSIONS

This paper considers performance bounds for several generalized decoding rules over memoryless symmetric
channels. Three types of generalized decoding rules are considered:

1) The optimal generalized decoding rule in [15] with erasures and variable list sizes.
2) The suboptimal likelihood-ratio (LR) decoding rule witherasures (see [2] and [15]).
3) A fixed-size list decoding rule (see [14] and [36]) where the decoder outputs a list which includes theL most

probable codewords (where the value ofL is set a-priori).

The independence of the error performance on the transmitted codeword is proved in Propositions 2-4 for the
considered decoding rules.

Upper bounds on the decoding error probability are provided. These bounds are suitable for the analysis of
structured and random codes (or code ensembles) over memoryless symmetric channels. Both binary and non-binary
code ensembles are studied in this paper under generalized decoding rules. When binary codes are considered, the
bounds are based on the distance spectra of the codes, and when non-binary ensembles are studied, the complete
composition spectra are required under the symmetry assumption in (26). For the case of LR decoding of binary
linear block codes, a derivation of a closed-form expression is provided via a similar derivation to [9] which applies
to ML decoding.
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Fig. 9: Upper bounds on the error probability for an expurgation of Gallager’s ensemble of binary and regular (6,12) LDPC codes with a
block length of 2004 bits (see Example 4). A list decoder is assumed where the size of the list is set toL. The upper bound in Corollary 9
is provided for some values ofL, where the transmission takes place over a binary-input AWGN channel.

Several particular cases of the provided bounds are studied. The random coding error exponents in [15] are
reproduced. In addition, error exponents under the suboptimal LR decoding rule with erasures are also derived.
These error exponents are derived by applying the new boundsto fully random block codes. Next, a derivation of
the error exponents of fully random linear block codes underoptimal and suboptimal (LR) generalized decoding
is provided. The resulting error exponents under the suboptimal LR decoding rule are compared with a recent
improvement in [2], where the ensemble of binary fully random linear block codes over binary symmetric channels
(BSC) is studied. This comparison shows good match with the provided error exponents with the results in [2].
In addition, it is shown that the error exponents for the fully random linear block codes under the suboptimal LR
decoding rule, coincide for low rates with the corresponding error exponents under the optimal decoding rule. This
is similar to an observation in [21], where the ensemble of fully random block codes is considered. A lower bound
on the error exponent under fixed-size list-decoding is alsostudied as an application. This bound is compared to the
sphere-packing lower bound on the error probability [28], and two additional upper bounds on the error probability,
provided in [8] and [18].

Applications of the bounds for the performance analysis of structured code ensembles are further exemplified for
some expurgated ensembles of (binary and non-binary) regular low-density parity-check (LDPC) codes. The error
performance under some generalized decoding rules for these LDPC code ensembles is studied assuming that the
transmission takes place over memoryless symmetric channels. The application of the provided bounds for the study
of hybrid automatic-repeat request (ARQ) schemes is also demonstrated. The possibility of further investigating
and optimizing the trade-offs between undetected error anderasures is suggested for further study in the context
of linear block codes, based on the derived bounds.

APPENDIX A
PROOF OFPROPOSITION2

The following proof holds for memoryless symmetric channels with discrete-output alphabets, and the general-
ization to continuous-output alphabets is direct. We statefirst the following technical lemma:

Lemma 1. let x1, x2, x3 be arbitrary symbols inX , and letp be a transition probability law of a memoryless
symmetric channel. Then,

p
(

T
(

T (y, x1), x2

)

|x3

)

= p
(

T (y, x1 + x2)|x3

)

whereT is a mapping which satisfies the properties in Definition 1.
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Proof: the reader is referred to [22, Appendix A].
Assuming that all the codewords are sent with equal probability, the decision regions in (5) satisfy

Λm
(a)
=

{

y :
p(y|xm)

∑

m′ 6=m p(y|xm′)
≥ enT

}

(b)
=

{

y :

∏n
i=1 p(yi|xm,i)

∑

m′ 6=m

∏n
i=1 p(yi|xm′,i)

≥ enT

}

(c)
=

{

y :

∏n
i=1 p(T (yi,−xm,i)|0)

∑

m′ 6=m

∏n
i=1 p(T (yi,−xm′,i)|0)

≥ enT

}

(51)

where (a) follows from (5) and the equal a-priori message probability assumption, (b) holds since the channel is
memoryless, and (c) follows from the symmetry of the channel(see (1)). Letz = (z1, . . . , zn) be defined as

zi , T (yi,−xm,i), 1 ≤ i ≤ n (52)

wherem is the index of the transmitted codeword. From Lemma 1, it follows thaty ∈ Λm if and only if z ∈ Λ̃m

where

Λ̃m ,

{

z ∈ Yn :

∏n
i=1 p(zi|0)

∑

m′ 6=m

∏n
i=1 p(T (zi, xm,i − xm′,i)|0)

≥ enT

}

, 1 ≤ m ≤ qk.

Using the linearity of the code, it follows that

Λ̃m =

{

z ∈ Yn :

∏n
i=1 p(zi|0)

∑

l 6=0

∏n
i=1 p(T (zi, xl,i)|0)

≥ enT

}

.

Since the set̃Λm is independent of the indexm, then

Λ̃m = Λ̃1 for all 1 ≤ m ≤ qk. (53)

As a result, the conditional block error probability of them-th message in (2) satisfies

Pe|m =
∑

z∈Λ̃c
m

p(z|0)

(a)
=
∑

z∈Λ̃c
1

p(z|0)

where (a) follows from (53). This concludes the proof of the message independence property for the block error
event.

We continue in proving the message independence property for the undetected error event (or the expected
number of incorrect codewords when list decoding is considered). Assuming a memoryless symmetric channel, it
follows from (1) and (4) that

Pue|m =
∑

m′ 6=m

∑

y∈Λm′

p(y|xm)

=
∑

m′ 6=m

∑

y∈Λm′

n
∏

i=1

p
(

T (yi,−xm,i)|0
)

(54)

where from (51)

Λm′ =

{

y :

∏n
i=1 p(T (yi,−xm′,i)|0)

∑

m′′ 6=m′

∏n
i=1 p(T (yi,−xm′′,i)|0)

≥ enT

}

.

Let z be a vector defined as in (52), then from Lemma 1

p
(

T (yi,−xm′,i)|0
)

= p
(

T (zi, xm,i − xm′,i|0
)

, i = 1, . . . , n.
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Hence, given thatxm is the transmitted codeword, theny ∈ Λm′ for somem′ 6= m if and only if z ∈ Γm,m′ where

Γm,m′ ,

{

z ∈ Yn :

∏n
i=1 p(T (zi, xm,i − xm′,i)|0)

∑

m′′ 6=m′

∏n
i=1 p(T (zi, xm,i − xm′′,i)|0)

≥ enT

}

. (55)

From (52), the conditional undetected error probability in(54) is rewritten in the form

Pue|m =
∑

m′ 6=m

∑

z∈Γm,m′

p(z|0). (56)

Using the linearity of the code, thenxm,i−xm′′,i =
(

xm,i−xm′,i

)

+
(

xm′,i−xm′′,i

)

= xl1,i +xl2,i for some indices
l1 andl2 which correspond to non-zero codewords. Letx , xl1 and x̃ = xl2 , then the conditional undetected error
probability in (56) is expressed equivalently in the form

Pue|m =
∑

x∈C
x 6=0

∑

z∈Γ(x)

p(z|0)

where, based on (55),

Γ(x) ,







z ∈ Yn :

∏n
i=1 p(T (zi, xi)|0)

∑

x̃∈C
x̃ 6=0

∏n
i=1 p(T (zi, xi + x̃i)|0)

≥ enT







.

This proves the independence property for the undetected error event, and it concludes the proof of Proposition 2.

APPENDIX B
PROOF OFPROPOSITION3

Similarly to Appendix A, also the following proof considersmemoryless symmetric channels with discrete-output
alphabets, where the generalization to continuous output alphabets is direct. Letp be the transition probability
function of the considered channel,C be an(n, k) linear block code over an alphabet whose cardinality isq, andT
be a mapping as specified in Definition 1. It is assumed that allthe codewords ofC are sent with equal probability.
For an arbitrary setΛ ⊆ Yn and a codewordxm ∈ C, let

Zm(Λ) ,

{

z ∈ Yn :
(

T (z1, xm,1),T (z2, xm,2), . . . ,T (zn, xm,n)
)

∈ Λ
}

. (57)

In addition, we use the notationΛLR(xm) for the decision regionΛLR
m in (7) of the codewordxm. Note that for the

concerned decoding rule withT > 0, the decision regions are disjoint. The following technical lemma is introduced:

Lemma 2. Let Zm be the mapping defined in (57), andΛLR
m be the decision region in (7). Then,

Zm

(

ΛLR
m′

)

= ΛLR(xm′ − xm), ∀ m,m′ ∈ {1, . . . , qk}. (58)

Proof: Let us choosez ∈ Zm

(

ΛLR
m′

)

, and lety = (y1, . . . , yn) be defined via the equality

yi = T (zi, xm,i), i = 1, . . . , n. (59)

From (7) and (57)
p(y|xm′)

p(y|xm′

2
)
≥ enT

wherexm′ andxm′

2
are the most probable codewords, in a descending order, fory as a received vector. Using the

symmetry of the channel, it follows from (1) that

p(y|xm′) = p(z|xm′ − xm).

As a result,xm′−xm is the most probable codeword ifz is the received vector (otherwise, if there exists a codeword
x 6= xm′ − xm which is more probable, then there exists a more probable codeword fory which is different from
xm′). The same argument shows thatxm′

2
− xm is the second most probable codeword forz, and

p(z|xm′ − xm)

p(z|xm′

2
− xm)

≥ enT .
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This verifies thatz ∈ ΛLR(xm′ − xm) which shows thatZm

(

ΛLR
m′

)

⊆ ΛLR(xm′ − xm). To show the opposite
inclusion, which then yields that these two sets are equal, let z ∈ ΛLR(xm′ − xm). This implies that the codeword
xm′ − xm is the most probable codeword ifz is the received vector, and

p(z|xm′ − xm)

p(z|xm′′

2
)

≥ enT

wherexm′′

2
is the second most probable codeword forz. Again, using the symmetry of the channel, for a vector

y as in (59), it follows thatxm′ is the most probable codeword fory, xm′′

2
+ xm is the second most probable

codeword fory, and
p(y|xm′ )

p(y|xm′′

2
+ xm)

≥ enT .

As a result,z ∈ Zm

(

ΛLR
m′

)

, which yields thatΛLR(xm′ − xm) ⊆ Zm

(

ΛLR
m′

)

. This concludes the proof of (58).

From (59), the conditional block error probability satisfies

Pe|m =
∑

y 6∈ΛLR
m

p(y|xm)

(a)
=

∑

z6∈Zm(ΛLR
m )

p(z|0)

(b)
=

∑

z6∈ΛLR(0)

p(z|0)

where (a) follows from (1) and (59), and (b) follows from (58). This proves the message independence property for
the conditional block error probability. Using the same arguments, the message independence property is established
for the conditional undetected error probability:

Pue|m =
∑

m′ 6=m

∑

y∈ΛLR
m′

p(y|xm)

=
∑

m′ 6=m

∑

z∈Zm(ΛLR
m′)

p(z|0)

=
∑

m′ 6=m

∑

z∈ΛLR(xm′−xm)

p(z|0)

=
∑

x ∈ C

x 6= 0

∑

z∈ΛLR(x)

p(z|0)

where the second equality follows from (59) and since the mapping T is bijective, the third equality follows from
(58), and the last equality follows from the linearity of thecode.

APPENDIX C
PROOF OFPROPOSITION4

Considering ties as error events2, the conditional block error probability for a list of sizeL satisfies

Pe|m =
∑

y∈ΛL
m

p(y|xm) (60)

where
ΛL

m ,
{

y ∈ Yn : ∃{mi}L
i=1 s.t.mi 6= m, p(y|xmi

) ≥ p(y|xm) ∀ 1 ≤ i ≤ L
}

(61)

is the complementary of the decision region ofxm ∈ C under list decoding of fixed-sizeL (here{mi}L
i=1 is a

sequence of distinct integers), i.e., ify ∈ ΛL
m then the codewordxm is not included in the list for a received vector

2Such a pessimistic assumption is reasonable, see also a similar assumption in [34, p. 59].
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y. Using the change of variables in (59), it follows from (60) that for linear block codes whose transmission takes
place over memoryless symmetric channels

Pe|m =
∑

z∈Zm(ΛL
m)

p(z|0)

whereZm

(

ΛL
m

)

is as defined in (57). The following lemma concludes the proofof Proposition 4:

Lemma 3. Let Zm be a mapping defined in (57), andΛL
m be the decoding region ofxm ∈ C under list decoding

with a fixed sizeL. Then,

Zm

(

ΛL
m

)

= ΛL
1

for all 1 ≤ m ≤ qk, whereΛL
1 is the complementary of the decision region of the all-zero codewordx1 = 0 under

list decoding of sizeL.

Proof: Let us choosez ∈ Z
(

ΛL
m

)

. From (57), there existsy ∈ ΛL
m where

yi = T (zi, xm,i), i = 1, . . . , n (62)

andT is a specified in Definition 1. From (61), there exists a list ofL distinct codewords,{xmi
}L

i=1, for which

p(y|xmi
) > p(y|xm), i = 1, . . . , L. (63)

Using the symmetry of the channel, it follows that

p(z|xmi
− xm) ≥ p(z|0). (64)

This assures thatz ∈ ΛL
1 , which shows thatZm

(

ΛL
m

)

⊆ ΛL
1 .

Next, in order to show the opposite inclusion, letz ∈ ΛL
1 . Then, there exists a list ofL non-zero codewords

{xmi
}L

i=1, mi 6= 1, satisfying

p(z|xmi
) ≥ p(z|0)

and therefore from the symmetry of the mappingT and the equality in (62), we get

p(y|xmi
+ xm) ≥ p(y|xm)

It assures thatz ∈ Zm

(

ΛL
m

)

which implies thatΛL
1 ⊆ Zm

(

ΛL
m

)

. This two inclusions complete the proof of the
lemma.

APPENDIX D
PROOF OFPROPOSITION5

Let Λm be the generalized decision region as defined in (5). Fory /∈ Λm, it follows that

1 = enT e−nT ≤ enT





∑

m′ 6=m

p(y|xm′ )

p(y|xm)



 . (65)

Let s andρ satisfy0 ≤ s ≤ ρ ≤ 1, and recall the following inequality (see [34, p.197]):

∑

i

ai ≤
(

∑

i

aλ
i

) 1

λ

(66)

which holds ifai ≥ 0 and0 < λ ≤ 1. Setting

ai =
p(y|xi)

p(y|xm)
, λ =

s

ρ
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it follows from (2), (65) and (66) that the conditional errorprobability of them-th message satisfies

Pe|m ≤ enTs
∑

y∈Λc
m

p(y|xm)





∑

m′ 6=m

p(y|xm′)

p(y|xm)





s

(67)

≤ enTs
∑

y∈Λc
m

p(y|xm)





∑

m′ 6=m

(

p(y|xm′)

p(y|xm)

)
s

ρ





ρ

.

Let ψm
n (y) designate an arbitrary probability tilting measure (whichmay depend on the transmitted codeword),

then it follows that

Pe|m ≤ enTs
∑

y

ψm
n (y)ψm

n (y)−1p(y|xm)





∑

m′ 6=m

(

p(y|xm′)

p(y|xm)

) s

ρ





ρ

≤ enTs
∑

y

ψm
n (y)



ψm
n (y)−

1

ρ p(y|xm)
1

ρ

∑

m′ 6=m

(

p(y|xm′ )

p(y|xm)

) s

ρ





ρ

.

Next, invoking Jensen’s inequality gives

Pe|m ≤ enTs





∑

y

ψm
n (y)1−

1

ρ p(y|xm)
1

ρ

∑

m′ 6=m

(

p(y|xm′)

p(y|xm)

) s

ρ





ρ

.

This concludes the proof of (9) by setting

ψm
n (y) =

Gm
n (y)p(y|xm)

∑

yG
m
n (y)p(y|xm)

(68)

whereGm
n (y) is an arbitrary non-negative function.

An undetected error event occurs if the received vector is included in the decision region of a codeword which
differs from the transmitted codeword. Consequently, the average undetected error event satisfies

Pue =
1

M

M
∑

m=1

∑

y∈Λm

∑

m′ 6=m

p(y|xm′ ). (69)

Note that in the case where list decoding is considered (i.e., the decision regions are not disjoint), the LHS of (69)
is no longer a probability. However, for the latter case thisexpression equals the expected number of incorrect
codewords in the decoded list. It follows from (69) that for0 ≤ s ≤ 1, the undetected error probability satisfies

Pue =
1

M

M
∑

m=1

∑

y∈Λm

p(y|xm)

(

∑

m′ 6=m p(y|xm′ )

p(y|xm)

)s(∑

m′ 6=m p(y|xm′)

p(y|xm)

)1−s

≤ enT (s−1) 1

M

M
∑

m=1

∑

y

p(y|xm)





∑

m′ 6=m

p(y|xm′)

p(y|xm)





s

(70)

where the last inequality holds since fory ∈ Λm and0 ≤ s ≤ 1

(

p(y|xm)
∑

m′ 6=m p(y|xm′)

)1−s

≥ enT (1−s).

The rest of the proof follows in a similar way to the derivation of (9) when comparing the bound in (67) with (70).
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APPENDIX E
PROOF OFCOROLLARY 1

Consider the ensemble of fully random block codes of lengthn symbols where theM = enR codewords of a
codebook are chosen independently at random according to the probability distributionqX on X n.

Let D{xi}M
i=1

(m,Gm
n , s, ρ) denote the functionalDB(m,Gm

n , s, ρ) in (11) where the dependence on a specific
codebook{xi}M

i=1 is expressed explicitly. Given a fixed codewordxm for them-th message, the expectation over
the otherM − 1 codewords on the right-hand side of (9) gives that for0 ≤ s ≤ ρ ≤ 1

∑

{xi}M
i=1\{xm}





∏

i6=m

qX(xi)



D{xi}M
i=1

(m,Gm
n , s, ρ)

(a)

≤
(

∑

y

Gm
n (y)p(y|xm)

)1−ρ





∑

m′ 6=m

∑

xm′

qX(xm′)
∑

y

p(y|xm)Gm
N (y)1−

1

ρ

(

p(y|xm′)

p(y|xm)

) s

ρ





ρ

= (M − 1)ρ

(

∑

y

Gm
n (y)p(y|xm)

)1−ρ

(

∑

x′

qX(x′)
∑

y

p(y|xm)Gm
N (y)1−

1

ρ

(

p(y|x′)

p(y|xm)

) s

ρ

)ρ

(71)

where (a) follows from (11) and by invoking Jensen’s inequality. Next, by substituting the non-negative function

Gm
n (y) ,

(

∑

x

qX(x)

(

p(y|x)

p(y|xm)

)
s

ρ

)ρ

in (71), one obtains that for0 ≤ s ≤ ρ ≤ 1 andm = 1, . . . ,M

∑

{xi}M
i=1\{xm}





∏

i6=m

qX(xi)



D{xi}M
i=1

(m,Gm
n , s, ρ)

≤ (M − 1)ρ
∑

y

p(y|xm)

(

∑

x′

qX(x′)

(

p(y|x′)

p(y|xm)

)
s

ρ

)ρ

.

By averagingD{xi}M
i=1

(m,Gm
n , s, ρ) over theM codewords, we get that for every indexm (1 ≤ m ≤M )

∑

{xi}M
i=1

(

M
∏

i=1

qX(xi)

)

D{xi}M
i=1

(m,Gm
n , s, ρ)

=
∑

xm

qX(xm)
∑

{xi}M
i=1\{xm}





∏

i6=m

qX(xi)



 D{xi}M
i=1

(m,Gm
n , s, ρ)

≤ (M − 1)ρ
∑

y

∑

xm

qX(xm)p(y|xm)

(

∑

x′

qX(x′)

(

p(y|x′)

p(y|xm)

)
s

ρ

)ρ

= (M − 1)ρ
∑

y

{(

∑

x

qX(x) p(y|x)1−s

)(

∑

x′

qX(x′)p(y|x′)
s

ρ

)ρ}

. (72)

Since the right-hand side of (72) does not depend on the indexm, then this bound also applies to the expectation
of the quantity 1

M

∑M
m=1D{xi}M

i=1
(m,Gm

n , s, ρ). Therefore, there exists a block code for which the value of this
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quantity is not larger than the average over the considered ensemble, i.e.,

1

M

M
∑

m=1

D{xi}M
i=1

(m,Gm
n , s, ρ)

≤ (M − 1)ρ
∑

y

{(

∑

x

qX(x) p(y|x)1−s

)(

∑

x′

qX(x′)p(y|x′)
s

ρ

)ρ}

. (73)

From (9), (10) and (73), it follows that the above block code satisfies simultaneously

Pe =
1

M

M
∑

m=1

Pe|m

≤ ensT · 1

M

M
∑

m=1

D{xi}M
i=1

(m,Gm
n , s, ρ)

≤ ensT (M − 1)ρ
∑

y

{(

∑

x

qX(x) p(y|x)1−s

)(

∑

x′

qX(x′)p(y|x′)
s

ρ

)ρ}

< en(sT+ρR)
∑

y

{(

∑

x

qX(x) p(y|x)1−s

)(

∑

x′

qX(x′)p(y|x′)
s

ρ

)ρ}

= e−n
(

E0(s,ρ,qX)−ρR−sT
)

and

Pue < en
(

(s−1)T+ρR
)

∑

y

{(

∑

x

qX(x) p(y|x)1−s

)(

∑

x′

qX(x′)p(y|x′)
s

ρ

)ρ}

= e−n
(

E0(s,ρ,qX)−ρR−(s−1)T
)

where the last two equalities follow from (15), and since theinput distribution and the channel are assumed to be
memoryless, i.e.,

p(y|x) =

n
∏

i=1

p(yi|xi), qX(x) =

n
∏

i=1

qX(xi).

The proof of Corollary 1 is completed by optimizing the bounds over the parametersρ ands (where0 ≤ s ≤ ρ ≤ 1)
and the input distributionqX . This gives the exponentsE1 andE2 in (14) for the upper bounds onPe andPue,
respectively.

APPENDIX F
PROOF OFPROPOSITION6

The bounds in Proposition 6 are derived from Proposition 5 asfollows: setting

p(y|x) =

n
∏

i=1

p(yi|xi)

and

Gm
n (y) =

n
∏

i=1

g(yi)

in (11), and relying on the useful rule for interchanging sumand product signs
∑

y

∏n
i=1 f(yi) =

∏n
i=1

∑

yi
f(yi),

one gets from (9) the RHS of (16) as an upper bound onPe|0. Since the considered block code is linear and the
communication channel is memoryless and symmetric, the bound in (16) follows from the message independence
property in Proposition 2. The derivation of the bound in (17) relies on (10) where it is first proved that for a
linear block code whose transmission takes place over a memoryless symmetric channel, the resulting expression
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for DB(m,Gm
n , s, ρ) is independent ofm. To this end, letT be a mapping as defined in Definition 1, then for all

1 ≤ i ≤ n

∑

m′ 6=m

∑

y∈Y

g(y)1−
1

ρ p(y|xm,i)

(

p(y|xm′,i)

p(y|xm,i)

)
s

ρ

=
∑

m′ 6=m

∑

y∈Y

g(y)1−
1

ρ p(T (y,−xm,i)|0)
(

p(T (y,−xm,i)|xm′,i − xm,i)

p(T (y,−xm,i)|0)

) s

ρ

=
∑

l 6=0

∑

z∈Y

g(y)1−
1

ρ p(z|0)
(

p(z|xl,i)

p(z|0)

)
s

ρ

.

As a result, it follows that for a memoryless and symmetric channel

1

M

M
∑

m=1

DB(m,Gm
n , s, ρ) = D(g, s, ρ) (74)

whereD(g, s, ρ) is introduced in (18). The proof of the upper bound onPue as given in (17) is completed by
substituting (74) in (17).

APPENDIX G
ERROR AND RATE PERFORMANCE OFHYBRID-ARQ SCHEMES BASED ON GENERALIZED DECODING WITH

ERASURES

The following discussion is provided in [15] and [19], and itis surveyed here for the sake of completeness.
Since Forney’s generalized decoding rule (5) with a positive value ofT is used in the context of erasures, the

resulting decision regions at the receiver are disjoint, and the erasure probabilityPx for a single block transmission
is given by

Px = Pe − Pue

wherePe andPue are, respectively, the (total) block error probability andundetected error probability for a single
block transmission. The erasure probability is studied viaan upper bound on the error probabilityPe. Assuming
a noiseless and immediate feedback, for the case where no deadlines are considered, the expected rate of the
considered system equals

(1 − Px)R (75)

whereR is the rate of the codebook used (in units of bits per channel use) for a single block transmission. The
error probability of this scheme is given by

Pue

1 − Px
. (76)

Note that the replacement ofPx in (75) and (76) with an upper bound onPe, provides a lower bound on the
expected rate and an upper bound on the error probability.

For the case where deadlines are considered, letQ (Q ≥ 1) be the maximal number of block retransmissions
(including the first transmitted block). Each transmitted block is decoded separately using Forney’s generalized
decoding rule with erasures. Such a scheme is termed memoryless in [19] (note that the ARQ scheme without
deadlines, studied in [15], is also memoryless in this sense). In cases whereQ consequent block transmissions
occur, then the generalized decoding rule is replaced for the last (Q-th) retransmitted block with an ML decoder.
As a result, the expected rate and error probability, denoted by R(Q) andPe(Q), respectively, satisfy

R(Q) =
R

∑Q−1
k=0 (Px)

k

=
R (1 − Px)

1 − (Px)
Q

(77)
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and

Pe(Q) =

Q−1
∑

k=1

(Px)
k−1 Pue + (Px)

Q−1 PML
e

=

(

1 − (Px)
Q−1

)

Pue

1 − Px
+ (Px)

Q−1 PML
e (78)

wherePML
e is the block error probability under ML decoding for the considered code (while referring to the

decoding of the last retransmitted block separately). Notethat in the limit whereQ→ ∞ (no deadlines), then (77)
and (78) tend asymptotically to (75) and (76), respectively. ReplacingPx in (77) and (78) with an upper bound
on the (total) error probabilityPe, results in a lower bound on the expected rate, and an upper bound on the error
probability, respectively.

APPENDIX H
PROOF OFPROPOSITION7

Proof of the upper bound on the conditional error probability in (35)

Let ΛLR
m designate the decision region in (7), then the conditional error probability is equal to

Pe|m =
∑

y 6∈ΛLR
m

p(y|xm).

For y 6∈ ΛLR
m , the decision rule in (7) implies that

p(y|xm)

p(y|xm2
)
< enT

wherexm2
is the second most probable codeword, and therefore

enT
∑

m′ 6=m

p(y|xm′)

p(y|xm)
> 1.

Let s ≥ 0, then fory 6∈ ΛLR
m

enTs

(

∑

m′ 6=m

p(y|xm′)

p(y|xm)

)s

> 1

and the conditional block error probability satisfies

Pe|m ≤ ensT
∑

y

p(y|xm)





∑

m′ 6=m

p(y|xm′)

p(y|xm)





s

. (79)

The bound in (35) follows from (79), using the arguments following (67).

Proof of the upper bound on the conditional undetected error probability in (36)

The conditional undetected error probability is given by

Pue|m =
∑

y∈L

p(y|xm)

where
L ,

{

y : ∃m′ 6= m, p(y|xm′) ≥ enT p(y|xm′

2
)
}

andxm′

2
is the second most probable codeword forp(y|x). Sincep(y|xm′

2
) ≥ p(y|xm), then

L ⊆
{

y : ∃m′ 6= m, p(y|xm′) ≥ enT p(y|xm)
}
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and therefore

y ∈ L ⇒ ∃m′ 6= m,
p(y|xm′ )

p(y|xm)
· e−nT ≥ 1

⇒ e−nT
∑

m′ 6=m

p(y|xm′)

p(y|xm)
≥ 1

⇒ ∀ s ≥ 0, e−nTs





∑

m′ 6=m

p(y|xm′)

p(y|xm)





s

≥ 1

As a result, the conditional undetected block error probability satisfies, for alls ≥ 0, the following upper bound:

Pue|m ≤ e−nsT
∑

y

p(y|xm)





∑

m′ 6=m

p(y|xm′)

p(y|xm)





s

.

The rest of the proof of (36) is, again, similar to the derivation following (67).

APPENDIX I
PROOF OFPROPOSITION8

The derivation of the bounds in Proposition 8 is primarily identical to the analysis in [9] and [26, Section 3.2.4],
for which the reader is referred for a complete treatment of the analysis under ML decoding. We assume a BPSK
modulation over AWGN channel with energyEs per transmitted coded symbol, and a white Gaussian noise with
two-sided power spectral density ofN0

2 . Hence, the received vectory satisfies

y = γx + n (80)

whereγ ,

√

2Es
N0

, x ∈ C ⊆ {−1,+1}n is the transmitted codeword (with BPSK modulation), andn is a normal
random vector with independent coordinates (all with zero mean and unit variance). Setting

Ee(d) ,

{

y ∈ Yn :
maxx∈Cd\{x0} p(y|x)

p(y|x0)
· enT ≥ 1

}

.

whereCd is the set of all codewords whose Hamming weight isd, andx0 is the all-zero codeword, it follows from
(7) and the union bound that the conditional decoding error probability is upper bounded by

Pe|0 ≤
n
∑

d=dmin

Pr (Ee(d)) (81)

wheredmin denotes the minimal Hamming distance ofC. Consider the following inequality on the probability of
an error event:

Pr(E) ≤ Pr(E,y ∈ R) + Pr(y 6∈ R) (82)

whereE denotes an error event,y ∈ Yn is the received vector, andR ⊆ Yn. From (81) and (82), it follows that

Pe|0 ≤
n
∑

d=dmin

(

Pr
(

Ee(d),y ∈ R
)

+ Pr
(

y 6∈ R
)

)

. (83)

Using the union bound, we have

Pr
(

Ee(d),y ∈ R
)

≤
∑

x∈Cd

Pr

(

p(y|x)

p(y|x0)
enT ≥ 1, y ∈ R

)

(a)
=
∑

x∈Cd

Pr

(

〈y,x〉 ≥ 〈y,x0〉 −
nT

γ
, y ∈ R

)

(84)
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where equality (a) follows from (80), and〈x,y〉 ,
∑n

i=1 xiyi denotes the scalar multiplication of the vectorsx

andy. Similarly to the derivation of bound in [9] (under ML decoding), we choose

R ,

{

y : ‖y − ηγx0‖2 ≤ nr2
}

(85)

whereη andr are arbitrary parameters which are subject to optimization. In addition, define

Z , 〈y,x〉 − 〈y,x0〉
W , ‖y − ηγx0‖2 − nr2

then it follows from (84) and (85), using the Chernoff bound that

Pr
(

Ee(d), y ∈ R
)

+ Pr
(

y 6∈ R
)

≤ e
tnT

γ |Cd|E
[

etZ+uW
]

+ E

[

esW
]

(86)

for all t ≥ 0, u ≤ 0, ands ≥ 0. Evaluating the expectations in (86) and settingt = γ
2 (1− 2uη), we have similarly

to [9] and [26, Section 3.2.4]:

Pr
(

Ee(d), y ∈ R
)

+ Pr
(

y 6∈ R
)

≤ e
nT (1−ruη)

2 |Cd| e−nur2

(f1 (γ, u, η))n−d (f2 (γ, u, η))d

+ e−nsr2

(f1 (γ, s, η))n (87)

where

f1 (γ, α, η) ,
e

(1−η)2γ2α

1−2α

√
1 − 2α

f2 (γ, α, η) ,
e−

γ2(1−2αη2)

2√
1 − 2α

, α <
1

2
.

Optimizing the termenr2

on the right-hand side of (87), gives

Pr
(

Ee(d),y ∈ R
)

+ Pr
(

y 6∈ R
)

≤ 2h2( s

s−u
)A− u

s−uB
s

s−u , 0 < s <
1

2
, u ≤ 0 (88)

where

A , (f1 (γ, s, η))n

B , e
nT (1−ruη)

2 |Cd| (f1 (γ, u, η))n−d (f2 (γ, u, η))d

andh2 designates the binary entropy function on base 2. Using the change of variables

ρ ,
s

s− u

β , ρ(1 − 2u)

ξ , ρ(1 − 2uη)

where0 ≤ ρ ≤ 1, 0 ≤ β ≤ 1, andξ ≥ 0, the bound in (88) transforms to

Pr
(

Ee(d), y ∈ R
)

+ Pr
(

y 6∈ R
)

≤ 2h2(ρ)e−nE(Es/N0,d/n,β,ρ,ξ)+ nTξ

2 (89)

where

E(c, δ, β, ρ, ξ) , −ρrn(δ) − ρ

2
ln

(

ρ

β

)

− 1 − ρ

2
ln

(

1 − ρ

1 − β

)

+ c

(

1 − (1 − δ)
ξ2

β
− (1 − ξ)2

1 − β

)

.

The parametersρ, β andξ are optimized in [9], [26] such that the error exponentE(c, δ, β, ρ, ξ) is maximized3 (note
that the bound forT = 0 coincides with the bound which refers to ML decoding), setting the optimal parameters

3It is possible to obtain the optimizedρ and ξ when maximizing the entire exponentE(c, δ, β, ρ, ξ) + Tξ

2
. To this end,ξ needs to be

shifted by−T
2

and the optimalρ remains without change. The parameterβ is required to be numerically optimized over0 ≤ β ≤ 1.
Nevertheless, the resulting bound gives only a marginal gain over the bound which maximizesE(c, δ, β, ρ, ξ) without the addition ofTξ

2
.
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yields the first argument in (41). The second term inside the minimization on the right-hand side of (41) follows
from a union bound on the error probability

Pe ≤
n
∑

d=dmin

∑

x∈Cd

Pr

(

p(y|x)

p(y|x0)
enT ≥ 1

)

where for every codewordx ∈ Cd

Pr

(

p(y|x)

p(y|x0)
enT ≥ 1

)

= Q

(

γ
√
d− nT

2γ
√
d

)

.

The derivation of the upper bound on the undetected error probability follows some similar arguments, and is
therefore omitted.

APPENDIX J
PROOF OFPROPOSITION9

The main ingredient for proving the DS2 bound on the block error probability under ML decoding (and also the
well known random-coding bound) is that for a received vector y which is not included in the decision regionΛm

as given in (3), the following inequality holds:

1 ≤





∑

m′ 6=m

(

p(y|xm′)

p(y|xm)

)λ




ρ

, λ, ρ ≥ 0. (90)

When an error event under fixed-size (L) list decoding is considered, there existsL distinct codewords, all different
from the transmitted codeword, whose a-posterior probability is larger than the one of the transmitted codeword.
Hence, the sum on the right-hand side of (90) is divided byL. Specifically for a received vectory that results in
an error event, the following inequality is satisfied:

1 ≤





1

L

∑

m′ 6=m

(

p(y|xm′)

p(y|xm)

)λ




ρ

, λ, ρ ≥ 0 (91)

Following the derivation of the DS2 bound in [26, p. 96] wherethe right-hand side of (90) is replaced with (91)
leads to the derivation of the bound in Proposition 9. This derivation is repeated for the sake of completeness. For
an arbitrarily chosen probability measureψm

n (y) it follows that:

Pe|m ≤
∑

y

ψm
n (y)

(

ψm
n (y)

)−1
p(y|xm)





1

L

∑

m′ 6=m

(

p(y|xm′)

p(y|xm)

)λ




ρ

=
∑

y

ψm
n (y)





(

ψm
n (y)

)− 1

ρ

(

p(y|xm)
) 1

ρ
1

L

∑

m′ 6=m

(

p(y|xm′ )

p(y|xm)

)λ




ρ

≤





∑

m′ 6=m

∑

y

(

ψm
n (y)

)1− 1

ρ

(

p(y|xm)
) 1

ρ
1

L

(

p(y|xm′)

p(y|xm)

)λ




ρ

where the last inequality follows from Jensen’s inequality. Pluggingψm
n (y) as in (68) concludes the proof.
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