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Performance Bounds of Multihop Wireless Communications with
Blind Relays over Generalized Fading Channels
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Abstract— In this letter, efficient performance bounds for
multihop wireless communications systems with non-regenerative
blind relays over non-identical Nakagami-n (Rice), Nakagami-
m and Nakagami-q (Hoyt) generalized fading channels, are
presented. More specifically, the end-to-end signal-to-noise ratio
(SNR) is formulated and upper bounded by using the well-
known inequality between harmonic and geometric mean of
positive random variables. This bound is used to study important
system’s performance metrics: i) The moments of the end-to-end
SNR which are obtained in closed-forms, and ii) The outage
probability and the average error probability for coherent and
non-coherent modulations, which are accurately approximated
using the moments-based approach. Furthermore, new analytical
formulae are derived for the gain of previously proposed semi-
blind relays in generalized fading environments. These kind of
relays are used in numerical examples and computer simulations
to verify the accuracy and to show the tightness of the proposed
bounds.

Index Terms— Average SNR, average symbol error proba-
bility, moments, multihop communications, Nakagami-q fading,
Nakagami-m fading, outage probability, Rice fading.

I. INTRODUCTION

THE continuously rising demand for high data rate in cur-
rent and future wireless networks has recently emerged

multihop communications as a viable option for providing
broader and more efficient coverage both in traditional (e.g.
bent pipe satellites) and modern (e.g. ad-hoc, WLAN) com-
munications networks. In contrast to conventional wireless
networks, several intermediate terminals operates as relays
between source and the destination in multihop systems.
Recently, the concept of collaborative/cooperative diversity
was proposed, to exploit the advantages of spatial diversity
without the need of physical antenna arrays [1]–[7].

Looking through the up-to-date open technical literature,
Hasna and Alouini studied the outage and the error per-
formance of multihop systems with regenerative and non-
regenerative relays over Rayleigh [1] and Nakagami-m [2],
[3] fading channels. The same authors, studied in [4] the per-
formance of dual-hop systems equipped with non-regenerative
blind relays (i.e. relays with fixed gain) and a specific fixed
gain relay, called semi-blind, was proposed. Two other works
related to the performance analysis of multihop transmissions
with CSI-relays are included in [5] and [6]. Anghel and Kaveh
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in [5] presented an exact average symbol error rate analysis
for a cooperative network in a Rayleigh fading environment,
while Boyer et al. in [6] presented an analysis for the physical
layer of the multihop wireless communications channels. In
the same work, was also introduced the concept of multihop
diversity where each terminal receives signals form all the
previous terminals along a single primary route. More recently,
Laneman et al. developed and analyzed low-complexity co-
operative diversity protocols that combat fading induced by
multipath propagation in wireless networks [7]. In the same
paper, were also developed performance characterizations in
terms of outage events and associated outage probabilities,
which measure robustness of the transmissions to fading in
high SNRs. However, to the best of the author’s knowledge
there is no published work concerning the performance of
multihop transmissions with blind relays over generalized
fading channels, despite the fact that these kind of relays
offer simplicity and ease of deployment, although they don’t
perform as well as the CSI-assisted relays [4].

The main contribution of this letter is the derivation of
efficient bounds for the performance of multihop wireless
communications systems with blind relays over independent
but not necessarily identically distributed (i.d) Nakagami-
n (Rice), Nakagami-m and Nakagami-q (Hoyt) generalized
fading channels. A simple upper-bound is proposed for the
end-to-end SNR by using the well-known inequality between
harmonic and geometric mean of positive random variables
(RVs). This bound is used to study important system’s per-
formance measures such as the moments of the end-to-end
SNR which are expressed in closed-form as well as the
outage and the average error probability for coherent (e.g.
BPSK) and non-coherent (e.g. DPSK) modulation schemes,
which are accurately approximated using the moments-based
approach [8]. Furthermore, new analytical expressions are
derived for the gain of previously proposed semi-blind relays
in generalized fading environments. The analytical results
are used in numerical and computer simulations examples to
verify the accuracy of the presented mathematical analysis and
to show the tightness of the proposed bounds.

The remainder of this letter is organized as follows. The
multihop system under consideration is presented in the next
section where a formula for the end-to-end SNR is derived
and an upper-bound is proposed. In Section III, the moments
of the end-to-end SNR are expressed in closed-form while
in Section IV the end-to-end error and outage performance
are studied. Finally, some concluding remarks are offered in
Section V.
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II. SYSTEM AND CHANNEL MODEL

An N -hop wireless communications system is considered,
operating over independent but not necessarily i.d. fading
channels. The source terminal S communicates with the
destination terminal D through the N − 1 nodes-terminals,
T1, T2, ..., TN−1, which act as intermediate relays from one
hop to the next.

A. End-to-End SNR

Assuming that terminal S is transmitting a signal s(t) with
an average power normalized to unity. Then, the end-to-end
SNR at the output of terminal D can be written as [3, eq. (12)]

γend =

N∏
i=1

α2
iG

2
i−1

N∑
i=1

N0,i

(
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nG

2
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where αi is the fading amplitude of the i-th hop, Gi is the
gain of the ith relay with G0=1 and N0,i is the single-sided
power spectral density of the additive white Gaussian noise
(AWGN) at the input of ith relay. When blind relays are used,
they introduce fixed gain, Gi, given by

G2
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, i = 1, . . . , N − 1 (2)

where Ci is a constant. Therefore, using (1) and (2), γend can
be written as
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where
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(4)

and γj = α2
j/N0,j is the instantaneous SNR of the jth hop. It

can be easily recognized that γend is related to the harmonic
mean, Hβn

N , of β1, β2, · · · , βN with

γend =
1
N

Hβn

N (5)

where by definition
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B. An Upper Bound for the End-to-End SNR

Unfortunately, due to the form of (3), it is difficult -
if not impossible - to derive closed-form expressions for
several performance metrics of the multihop system under
consideration. In order to overcome this problem, γend is
bounded using the well-known inequality between harmonic
and geometric mean of positive RVs [9, Sec. 3.1]

Hxi

N ≤ Gxi

N (7)

where

Gxi

N
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(
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i=1

xi

) 1
N

(8)

being the geometric mean of xis. The equality in (7) holds
only for x1 = x2 = · · · = xN . Note, that the related inequality
between arithmetic and geometric mean has been also used in
[10] to determine a lower bound for the outage probability
in cellular radio systems. Using (3), (5) and (7) and after
manipulations an upper-bound for the end-to-end SNR, γb,
is obtained as

γend ≤ γb = ZN

N∏
i=1

γ
N+1−i

N
i (9)

where ZN is a constant given by

ZN =
1
N

N∏
i=1

C
− N−i

N

i . (10)

The form of γb in (9) has the advantage of mathematical
tractability over that in (3), while, as it will be shown in the
next sections, it is a tight upper-bound for γend, which can be
efficiently used to study the end-to-end system’s performance.

C. Semi-Blind Relays

A subcategory of blind relays, which have previously pro-
posed in [4] are the so-called semi-blind relays which consume
the same average power with the corresponding CSI-assisted
relays, i.e.

G2
i,sb = E

〈
1

α2
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〉
=
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0
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with fαi (αi) being the probability density function (PDF)
of the fading amplitude αi and E 〈·〉 denotes expectation. In
[4], a formula for the gain of semi-blind relays was given
when Rayleigh fading is assumed. Next, I present analytical
expressions of this gain for generalized fading channels.

1) Nakagami-n (Rice) fading: Assuming that the multihop
system operates in a Rice fading environment, then αi follows
a PDF given by [11]

fαi (αi) =
2 (Ki + 1)αi

Ωi
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[
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(
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(Ki + 1)α2
i
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)]
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where Ki is the Rice factor at the ith hop which ranges from 0
to ∞, I0 (·) is the zeroth-order modified Bessel function of the
first kind and Ωi is the signal’s mean power, i.e. Ωi = E

〈
α2

i

〉
.

After using the infinite series representation for the I0 (·) [9,
eq. (9.6.10)] in (12) and changing the order of summation
and integration (since the summand is Riemann integrable and
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converges uniformly on [0,∞)), the gain, Gi,sb, can be written
as
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where, γi = Ωi/N0,i, is the average SNR of the ith hop.
Therefore, using [12, eq. (3.353/5) and (8.352/3)] in (13)
resulting to
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with Γ(x, y) being the incomplete Gamma function defined in
[12, eq. (8.350/2)].

2) Nakagami-q (Hoyt) fading: Nakagami-q (Hoyt) dis-
tribution is normally observed on satellite links subject to
strong ionospheric scintillation and ranges from one-sided
Gaussian to Rayleigh distribution [11]. When αi follows Hoyt
distribution, its PDF is given by [11]
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where 0 ≤ qi ≤ 1 is the Hoyt fading parameter. Following the
same procedure as above, the gain in (11) can be expressed
as
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which yields using [12, eq. (3.353/5) and (8.352/3)] to
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)2
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Note, that the infinite series in (14) and (17) converge
rapidly and about ten terms are necessary for an accuracy
at the third significant digit.

Fig. 1. The semi-blind relay constant Ci versus γ for several values of
fading severity parameters K , q and m.

3) Nakagami-m fading: For the case of Nakagami-m fad-
ing channels the PDF of the fading amplitude αi is given by
[11]

fαi (αi) =
2αmi

i

Γ (mi)Ωmi

i

α2mi−1
i exp

(
− mi

Ωi
α2

i

)
(18)

with mi being a parameter describing the fading severity of
the ith hop. Hence, the gain of the semi-blind relays can be
derived in closed-form just averaging (11) over (18) and using
[12, eq. (3.353/5) and (8.352/3)] resulting in

G2
i,sb =

eλiλmi

i Γ (1 −mi, λi)
N0,i

(19)

where λi = mi/γi. It is easily verified that for m = 1, (19)
reduces to [4, eq. (14)].

In Fig. 1, the semi-blind parameter Ci is plotted as a
function of the hop’s average SNR, assuming for simplification
identical hops (γ1 = γ2 = ... = γN = γ), with the same
fading parameters K , q and m.

III. MOMENTS OF THE END-TO-END SNR

The first and the second order moments of the end-to-end
SNR are statistical parameters which can be efficiently used
to evaluate important performance measures, such as average
output SNR and variance. The higher order moments (higher
than the second one) are also useful in signal processing
algorithms for signal detection, classification, and estimation
and they play a fundamental role in understanding the perfor-
mance of wideband communications systems in the presence
of fading [13].

Due to the fact that both γend and γb are functions of the
same positive and statistically independent RVs, γ1, . . . , γN ,
it is easily to prove that

γend ≤ γb ⇒ E
〈
γk

end

〉 ≤ E
〈
γk

b

〉
. (20)
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Fig. 2. Normalized average SNR versus the number of hops N in Rician
fading with K=3 dB (γi = γ).

Due to the independency of γ1, γ2, . . . , γN , the kth moment
of γend can be bounded as
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A. Nakagami-n (Rice) Fading

When αi follows Rice distribution, the moments E
〈
γk

i

〉
are

given by [11, eq. (2.18)]
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with 1F1 (·, ·; ·) is the Kummer confluent hypergeometric
function [9, eq. (13.1.10)]. Using (21) and (22) the moments
of γb can be expressed in closed-form as
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In Fig. 2, an upper-bound for the average end-to-end SNR,
normalized to the average SNR of the first hop, is plotted
versus the number of hops, when Rician fading is considered.
Monte-Carlo simulations were also performed and their results
are depicted in the same figure showing the accuracy and the
tightness of the proposed upper-bound. Moreover, as it was
expected, the normalized average end-to-end SNR decreases
with the increase of the number of hops. In this figure, it is
assumed for simplicity that γi = γ and Ki = K . Note, that
(23) can be efficiently applied also for non-identical hops.

B. Nakagami-q (Hoyt) Fading

For Nakagami-q (Hoyt) fading channels, E
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γk
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〉
can be

written using [11, eq. (2.13)] as
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where 2F1 (·, ·; ·, ·) is the Gauss Hypergeometric function [9,
eq. (15.1.1)]. Using (21) and (24), E
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closed-form as
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C. Nakagami-m Fading

For Nakagami-m fading channels, E
〈
γk
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〉
can be written

using [11, eq. (2.23)] as
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Using (21) and (26), E
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〉
can be derived in closed-form as
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and for the Rayleigh fading channels (mi = 1), (27) reduces
to

E
〈
γk

b

〉
= Zk

N

N∏
i=1

[
γ

k(N−i+1)
N

i Γ
(

1 +
k (N − i+ 1)

N

)]
.

(28)

IV. PERFORMANCE ASSESSMENT

A. Average Error Rates

Using the formulated in (9) upper-bound for the end-to-end
SNR and the results of Section III, efficient lower bounds can
be derived for the average symbol error probability (ASEP)
of several digital modulation schemes by using the moments-
based approach, presented in [8]. According to this method,
when the moments of the SNR exist and are expressed in
closed-form, the moment generating function (MGF) of γb,
Mγb

(s), can be accurately approximated by using the Padé
approximants theory. This, in sequel, allows the evaluation
of the average error rates for a wide variety of modulation
schemes using the well-known MGF-based approach [11].

Fig. 3 depicts the error performance of BPSK for a multihop
system operating in Nakagami-m fading when i.d. and non-
i.d. mean SNRs per hop are assumed. The accuracy and the
tightness of the proposed bound are evident, especially at low
SNRs (< 10 dB). Furthermore, it is observed that the bound is
more tight, for the i.d. case, due to the nature of the harmonic-
geometric mean inequality. Curves for DPSK in Rician fading
are also plotted in Fig. 4 while corresponding curves from
simulations are plotted only for N = 4, to avoid entanglement.
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Fig. 3. Error performance for BPSK in Nakagami-m fading (mi = m = 3,
i.d.: γi = γ, non-i.d.: γi = γ/i).

Fig. 4. Error performance for DPSK in Rician fading (Ki = K, γi = γ).

B. Outage Probability

If γth is a certain specified threshold ratio, then for non-
regenerative multihop transmissions the outage probability
is defined as the probability that the instantaneous SNR at
terminal D falls below γth. When we use the upper bound γb

instead of γend, then the outage probability is lower bounded,
i.e.

Pout ≥ Fγb
(γth) (29)

where Fγb
(γth) is the cumulative distribution function of γb.

If the moments-based approach [8], is used to determine

Fig. 5. Outage probability in Rician fading (Ki = K, γi = γ).

Fγb
(γth) from Mγb

(s), then

Fγb
(γth) =

Φ∑
i=1

qi
pi
e−pi γth (30)

where pis are the poles of the Padé approximants to Mγb
(s),

which must have negative real part and qis are the residues.
In Fig. 5, the outage probability of the multihop system

operating in a Rician fading environment is plotted versus the
inverse normalized threshold γ/γth, for several values of N
and K . Also here is assumed - without loss of generality -
that γi = γ and Ki = K .

V. CONCLUSION

The end-to-end SNR for multihop wireless communications
systems with non-regenerative blind relays was formulated and
upper bounded by using the well-known inequality between
harmonic and geometric mean of positive RVs. Simple closed-
form expressions were given for the moments of the end-to-
end SNR, in Nakagami-n (Rice), Nakagami-m and Nakagami-
q (Hoyt) generalized fading channels. The outage probabil-
ity and the average error probability for coherent and non-
coherent modulation schemes were studied using the moment-
based approach. Furthermore, new formulae were given for the
gain of previously proposed semi-blind relays in generalized
fading environments. Numerical and computer simulations
were shown the accuracy and the tightness of the proposed
bounds, especially at low SNRs. Finally, it was shown that the
mean SNR per hop unbalancing affects positively the tightness
of the proposed bounds.
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