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Abstract:  

Gang scheduling provides both space-slicing and time-slicing of computer resources
for parallel programs. Each thread of execution from a parallel job is concurrently
scheduled on an independent processor in order to achieve an optimal level of
program performance. Time-slicing of parallel jobs provides for better overall
system responsiveness and utilization than otherwise possible. Lawrence Livermore
National Laboratory has deployed three generations of its gang scheduler on a
variety of computing platforms. Results indicate the potential benefits of this
technology to parallel processing are no less significant than time-sharing was in the
1960's. 
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Introduction

Interest in parallel computers has been propelled by both the economics of commodity
priced microprocessors and a growth rate in computational requirements exceeding
processor speed increases. The symmetric multiprocessor (SMP) and massively parallel
processor (MPP) architectures have proven quite popular, yet both suffer significant



shortcomings when applied to large scale problems in multiprogrammed environments.
The problems must first be recast in a form supporting a high level of parallelism. Then to
achieve the inherent parallelism and performance, it is necessary to concurrently schedule
CPU resources to all threads and processes associated with each program. System
throughput is frequently used as a metric of success; however, ease of use, good
interactivity, and "fair" distribution of resources are of substantial importance to customers
in a multiprogrammed environment. Efficiently harnessing the power of a multitude
processors while satisfying customer requirements is a difficult proposition for schedulers. 

Most MPP computers provide concurrent scheduling through space-slicing schemes. A
program is allocated a collection of processors and retains those processors until
completion of the program. Scheduling is critical, yet each decision has an unknown impact
upon the future: should a job be scheduled at the risk of blocking larger jobs later or
should processors be left idle in anticipation of future arrivals? The lack of a time-slicing
mechanism precludes good interactivity at high levels of utilization. Gang scheduling solves
this dilemma by combining concurrent resource scheduling, space-slicing, and time-slicing.
The impact of each scheduling decision is limited to a time-slice rather than the job's entire
lifetime. Empirical evidence from gang scheduling on a Cray T3D installed at Lawrence
Livermore National Laboratory (LLNL) demonstrates this additional flexibility can
improve overall system utilization and responsiveness. 

Most SMP computers provide both space-sharing and time-slicing, but schedule each
process independently. While good parallelism may be achieved this way on a lightly
loaded system, that is a luxury rarely available. The purpose of gang scheduling in this
environment is to improve the throughput of parallel jobs by concurrent scheduling,
without degrading either overall system throughput or responsiveness. Moreover, this
scheme can be extended to scheduling of parallel jobs across a cluster of computers in
order to address larger problems. Gang scheduling of DEC Alpha computers at LLNL is
explored in both stand-alone and cluster environments, and shown to fulfill these
expectations. 

Overview of Gang Scheduling

The term "gang scheduling" refers to all of a program's threads of execution being
grouped into a gang and concurrently scheduled on distinct processors. Furthermore,
time-slicing is supported through the concurrent preemption and later rescheduling of the
gang [4]. These threads of execution are not necessarily POSIX threads, but components of
a program which can execute simultaneously. The threads may span multiple computers
and/or UNIX processes. Communications between threads may be performed through
shared memory, message passing, and/or other means. 

Concurrent scheduling of a job's threads has been shown to improve the efficiency of both
the individual parallel jobs and the system [3, 13]. The job's perspective is similar to that of
a dedicated machine during the time-slices of its execution. Some reduction in I/O



bandwidth may be experienced due to interference from other jobs, but CPU and memory
resources should be dedicated. Job efficiency improvements results from a reduction in
communications latency, promoting fine-grained parallelism. System efficiency can be
improved by reductions in context switching, virtual memory paging, and cache refreshing.

The advantages of gang scheduling are similar to those of time-sharing in uniprocessor
systems. The ability to preempt jobs permits the scheduler to more efficiently utilize the
system in several ways: 

Long running jobs and those with high resource requirements can be executed
without monopolizing resources 
Interactive and other high priority jobs can be provided with near real-time
response, even jobs with high resource requirements during periods of high system
utilization 
Jobs with high processor requirements can be initiated in a timely fashion, without
waiting for processors to be made available in a piecemeal fashion as other jobs
terminate 
Low priority jobs can be executed, provided with otherwise unused resources, and
preempted when higher priority jobs become available 
High system utilization can be sustained under a wide range of workloads 

Job preemption does incur some additional overhead. The CPU resources sacrificed for
context switching is slight and explored later in the paper. The increase in storage
requirements is possibly substantial. All running or preempted jobs must have their storage
requirements satisfied simultaneously. Preempted jobs must also vacate memory for other
jobs, with the memory contents written to disk. The acquisition of additional disks in order
to increase utilization of CPU and memory resources is likely to be cost-effective, but this
need must be considered. 

Other Approaches to Parallel Scheduling

Most MPP computers use the variable partitioning paradigm. In variable partitioning, the
job specifies its processor count requirement at submission time. Processors allocated to a
job are retained until its termination. The inability to preempt a job can prevent the timely
allocation of resources to interactive or other high priority jobs. A shortage of jobs with
small processor counts can result in the incomplete allocation of processors. Conversely,
the execution a job with high processor requirements can be delayed by fragmentation,
which necessitates the accumulation of processors in a piecemeal fashion as multiple jobs
with smaller processor counts terminate. Variable partitioning can result in poor resource
utilization due to resource fragmentation [10, 18], processors left idle in anticipation of
high priority job arrival [12], or processors left idle in order to accommodate jobs with
substantial resource requirements. 

Another option is dynamic partitioning, in which the operating system determines the



number of processors to be allocated to each job. While dynamic partitioning does possess
the allure of high utilization and interactivity [11, 15, 16], it can make program
development significantly more difficult. The program is required to operate efficiently
without knowledge of processor count until execution time. The variable processor count
also causes execution time variability, which may be unacceptable for workloads containing
very long running jobs or even moderate size jobs with high priority. 

MPP Scheduling

The variable partition paradigm prevalent on MPP architectures and its lack of job
preemption makes responsiveness particularly difficult to provide. In order to ensure
responsive service, some MPP computers divide resources into "pools" reserved for
interactive jobs, batch jobs, or available to any job type. These pools can also be used to
reserve portions of the computer for specific customers on some systems. Since jobs can
not normally span multiple pools, partitioning the computer in this fashion reduces the
maximum problem size which can be addressed while fragmentation reduces scheduling
flexibility and system utilization. The optimal configuration places all resources into a
single pool available to any job type, assuming that support for resource allocation and
interactivity can be provided by other means. 

SMP Scheduling

Space-sharing and time-sharing are the norm on SMP computers, providing both good
interactivity and utilization. Most SMP computers schedule each process independent,
which works well for a workload consisting of many independent processes. However, the
solution of large problems is dependent upon the use of parallel jobs, which suffer
significant inefficiencies without the benefit of concurrent scheduling [3, 13]. 

Parallel job development efforts at the National Energy Research Supercomputer Center
(NERSC) illustrates difficulties in parallel job scheduling [2]. In order to encourage
parallel job development, NERSC provided dedicated time to parallel jobs on a Cray C90
computer. Several of the parallel jobs running in dedicated mode were able to achieve a
parallel performance (CPU time/wall time) over 15.5 on this 16 CPU machine and
approach 10 GFlops per second of the 16 GFlops per second peak speed. While all batch
jobs were suspended during the dedicated period, interactive jobs were initially permitted
to execute concurrently with the parallel job. Several instances were observed of a single
compute-bound interactive program reducing the parallel job's throughput and system
utilization by almost 50 percent. Suspension of interactive jobs was found to be necessary in
order to achieve reasonable parallel job performance. 

The benefits of SMP computers can be scaled for larger problems by clustering. Efficient
execution of parallel jobs in this environment requires coordination of scheduling across
the entire cluster. If communications between the threads consisted exclusively of message
passing, it is possible to base scheduling upon this message traffic and achieve a high level
of parallelism [13, 14]. The LLNL workload makes extensive use of shared memory for



communications, preventing us from pursuing this strategy. 

LLNL Workload Characterization

LLNL customers have long relied upon interactive supercomputing for program
development and rapid throughput of jobs with short to moderate execution times. While
some of this work can be performed on smaller computers, most customers use the target
platform for reasons of problem size, hardware compatibility, and software compatibility.
LLNL began its transition to parallel computing with the acquisition of a BBN TC2000 in
1989. Additional parallel computers at LLNL have included the Cray C90, Cray T3D,
Meiko CS-2, and IBM SP2. Many of our problems are of substantial size and have been
well parallelized. 

The LLNL Cray T3D workload is typical of that on our other parallel computers. The
model at LLNL has 256 processors, each with 64 megabytes of DRAM. All processors are
configured into a single pool available to any job. The LLNL Cray T3D is configured to
permit interactive execution of jobs up to 64 processors and 2 hours execution time.
Interactive jobs account for 67 percent of all jobs executed and consume 13 percent of all
CPU resources delivered. The interactive workload typically ranges from 64 to 256
processors (25 to 100 percent of the computer's processors) during working hours and
drops to a negligible level in the late night hours. Peak interactive workloads reach 320
processors for a 25 percent oversubscription rate. Timely execution of interactive jobs is
dependent upon the preemption of batch jobs and, in extreme cases, time-sharing
processors among interactive jobs. 

Large jobs account for a high percentage of resources utilized on the Cray T3D as shown
in Table 1. Memory requirements are quite variable, but most jobs use between 42 and 56
megabytes per processor. Due to Cray T3D hardware constraints, a contiguous block of
processors with a specific shape must be made available to execute a job [1], making
fragmentation a particularly onerous problem. Gang scheduling permits us to preempt jobs
as needed to execute large jobs in a timely fashion with minimal overhead. 

Job Size (CPU Count): 2 4 8 16 32 64 128 256

CPU Utilization (%): 0.0 0.0 0.3 0.7 16.9 37.2 38.3 6.6

Table 1: CPU Utilization by Job Size on Cray T3D at LLNL 

Most programs use either PVM (Parallel Virtual Machine) or MPI (Message Passing
Interface) libraries for communications between the threads. Although the Cray T3D has a
distributed memory architecture, it will support a shared memory programming model
permitting a job to read and write memory local of another processor assigned to that job.
This shared memory programming model has considerably lower overhead than message



passing and is widely used. A small number of programs utilize a combination of both
paradigms: shared memory within the Cray T3D and message passing to communicate with
threads or serial program components executing on a Cray YMP front-end. This multiple
paradigm model is expected to be common on our DEC Alpha cluster and IBM SP2
containing SMP nodes. 

LLNL Gang Scheduler Design Strategy

The LLNL customers expect rapid response, even on a heavily utilized multiprogrammed
computer; however the need for rapid response is not uniform across the entire workload.
In order to provide interactivity where required and minimize the overhead of context
switching, we divide our workload into six different classes. Each job class has significantly
different scheduling characteristics as described below: 

Express jobs have been deemed by management to be mission critical and are given
rapid response and optimal throughput. 
Interactive jobs require rapid response time and very good throughput during
extended working hours. The jobs' response time and throughput can be reduced at
other hours for the sake of improved system utilization and throughput of
production jobs. 
Debug jobs require rapid response time during extended working hours. The jobs'
response time can be reduced at other hours for the sake of improved system
utilization. Debug jobs can not be preempted on the Cray T3D. 
Production jobs do not require rapid response time, but should receive very good
throughput at night and on weekends. 
Benchmark jobs do not require rapid response time, but can not be preempted. 
Standby jobs have low priority and are suitable for absorbing otherwise idle
compute resources. 

The default classes are production for batch jobs, debug for totalview debugger initiated
jobs, and interactive for other jobs directly initiated from a user terminal. Jobs can be
placed in the express class only by the system administrator. Benchmark and standby classes
can be specified by the user at job initiation time. 

Each job class has a number of scheduling parameters, including relative priority and
processor limit. There are also several system-wide scheduling parameters such as
aggregate processor limit for all gang scheduled jobs. The scheduling parameters can be
altered in real-time, which permits periodic reconfiguration. LLNL emphasizes interactity
during extended work hours (7:30 AM to 10:00 PM) and throughput at other times. The
gang scheduler daemon itself can also be updated at any time. Upon receipt of the
appropriate signal and completion of any critical tasks, the daemon writes its state to a file
and initiates a new daemon program. 

Sockets are utilized for user communications, most of which occur at job initiation. Sockets



are also used for job state change requests and scheduling parameter changes, which are
rare. Job and processor state information is written periodically to a data file, which is
globally readable. This file is read by the "gangster" application, which is the users'
window into gang scheduling status. 

We have delegated the issue of "fair" resource distribution to other systems, including the
Centralized User Bank (CUB) [8] and Distributed Production Control System (DPCS) [17].
These systems provide resource allocation and accounting capabilities to manage the entire
computing environment with a single tool. Both systems exercise coarse grained control by
the scheduling of batch jobs and fine grained control by adjusting nice values of both
interactive and batch processes. Our gang scheduler is designed to recognize changes in
nice value and schedule accordingly. Jobs of classes which can be preempted will
automatically be changed to standby class when at high nice value and returned to their
requested class upon reduction in nice value. This mechanism has proven to function very
well in managing resource distribution while minimizing interdependence of the systems. 

Significant differences exist in the three LLNL gang scheduler implementations. These
differences were largely the result of architectural differences, but some were based upon
experiences with previous implementations. Each implementation is described below with
results. 

BBN TC2000

In order to pioneer parallel computing at LLNL, a BBN TC2000 with 126 processors was
acquired in 1989. The TC2000 has a shared memory architecture and originally supported
space-sharing only. 

The gang scheduler for the TC2000 reserves all resources at system startup and controls all
resource scheduling from that time [6, 7]. User programs require no code changes to
communicate with the gang scheduler. However, the program must load with a modified
version of the mandatory parallel program initiation library. Rather than securing
resources directly from the operating system, this library secures resources from the gang
scheduler daemon. The program may also increase or decrease its processor count during
execution by explicitly notifying the gang scheduler daemon. Otherwise, a job must
continue execution on the specific processors originally assigned to it. Time-sharing is
performed by the use of sleep and wake signals, issued concurrently to all threads of a job.
This mechanism can provide for very rapid context switches, on the order of milliseconds.
This implementation did have "fair share" mechanism with the objective of providing each
user with access to comparable resources. The gang scheduler would determine resource
allocation to be made for each ten second time-slice with the objective of insuring
interactivity, equitable distribution of resources, and high utilization. 

While the gang scheduler implemented for the TC2000 was able to provide good
responsiveness and throughput, some shortcomings should be noted. Despite the shared



memory architecture to the TC2000, it was not possible to relocate threads in order to
better balance the continuously changing workload. The scheduler could react to workload
changes only at time-slice boundaries, which limited responsiveness. The user based fair
share mechanism was abandoned in later implementations due to the availability of an
independent and more comprehensive resource allocation system. 

Cray T3D

The Cray T3D is a massively parallel computer incorporating DEC alpha 21064
microprocessors capable of 150 MFLOPS peak performance. Each processor has its own
local memory. The system is configured into nodes, consisting of two processors with their
local memory and a network interconnect. The nodes are connected by a bidirectional
three-dimensional torus communications network. There are also four synchronization
circuits (barrier wires) connected to all processors with a tree shaped interconnect [1]. 

Without getting into great detail, the T3D severely constrains processor and barrier wire
assignments. Jobs must be allocated a processor count which is a power of two, with a
minimum of two processors (one node). A job can be built to run with any valid processor
count, but its processor count can not change after execution begins. The processors
allocated to a job must have a specific shape with specific dimensions for a given problem
size. For example, an allocation of 32 processors must be made with a contiguous block of
eight processors in the X direction, two processors in the Y direction, and two processors
in the Z direction. Furthermore, the possible locations of the processor assignments are
restricted. These very specific shapes and locations for processor assignment are the result
of the barrier wire structure. Jobs must be allocated one of the four barrier wires when
initiated. The barrier wire assignment to a job can not change if the job is relocated and,
under some circumstances, two jobs sharing a single barrier wire may not be located
adjacent to each other. 

Prior to the installation of a gang scheduler on our Cray T3D, we were forced to make
several significant sacrifices in order to satisfy our customers' need for interactivity [5, 9].
The execution time of batch jobs was restricted to insure "reasonable" responsiveness to
jobs with large processor requirements and interactive jobs, although one may argue that
delays on the order of hours may not be reasonable. Most batch jobs were limited to four
hours. One batch queue permitted execution times up to 19 hours, but this queue was
enabled during only brief periods on weekends and holidays. Since jobs could not be
preempted, our batch workload was dramatically reduced at 4:00 AM. As batch jobs
completed, their released resources might remain unused by any interactive job for many
hours. At times of heavy interactive use, the initiation of an interactive job had to wait for
other jobs to terminate and release resources. The processor allocation restrictions also
made for severe fragmentation problems. While interactivity was generally good, the
processor utilization rate of 33 percent was considered unacceptable. 

The Cray T3D gang scheduler implementation has a several significant differences from



that of the BBN TC2000. Since the initiation of all parallel jobs on the T3D is conducted by
a single application program, we placed a wrapper around this to communicate with the
gang scheduler daemon. No changes to the user application or scripts were required. The
fixed time-slice period was replaced with an event driven scheduler with the ability to react
instantly to changes in workload. The allocation of specific processors and barrier wires
can dramatically effect performance on the T3D, so substantial effort was placed in
developing software to optimize these selections. Processor selection criterion includes
best-fit packing, placement of jobs with similar scheduling characteristics in close
proximity, and minimizing contention of the barrier wire circuits. 

Context switching logic also required substantial modification. The BBN TC2000 supported
memory paging, while the Cray T3D lacks support for paging. Cray T3D job preemption
results in the entire memory image of the preempted job being written to disk before the
processors can be reassigned, which requires about one second per preempted processor. In
the case of a 64 processor jobs being context switched, about one minute is required to
store the preempted job's context and another minute to load the state of another job of
similar size. The T3D gang scheduler calculates a value for each job including its processor
count, job type, location (disk or memory) to make job preemption and initiation decisions.
Additional information associated with each job class and used in this calculation include:
maximum wait time, processor limit, and do-not-disturb time multiplier. The minimum
time-slice for a job is the product of the job's processor count and its class' do-not-disturb
time multiplier. While the minimum time-slice mechanism does reduce responsiveness, it
prevents the costly thrashing of jobs between memory and disk and is critical for
maintaining a high utilization level. 

The Cray T3D gang scheduler has been in operation since March 1996. We were able to
dramatically modify the batch environment to fully subscribe the machine during the day
and oversubscribe it at night by as much as 100 percent. The normal mode of operation in
the daytime is for interactive class jobs to preempt production class jobs shortly after
initiation. The interactive jobs then usually continue execution until completion without
preemption. At night, the processors are oversubscribed temporarily and only for the
express purpose of executing larger jobs (128 or 256 processor). This strategy results in
only about eight percent of all jobs ever being preempted. 

The batch queue for long running jobs has been substantially reconfigured: its time limit
has been increased from 19 to 40 hours, its maximum processor allocation (for all running
jobs in the queue) increased from 64 to 128 processors, and is enabled at all times. System
utilization increased substantially and weekly CPU utilization rates over 96 percent have
been sustained. Figure 1 shows monthly CPU utilization for a period of 15 months. Three
different schedulers were utilized over this period. UNICOS MAX is the native Cray T3D
operating system from Cray Research. DJM or Distributed Job Manager is a parallel job
scheduler originally developed by the Minnesota Supercomputer Center and substantially
modified by Cray Research. The LLNL developed gang scheduler is also shown. The CPU
utilization reported is that during which a CPU is actually assigned to a program which is



memory resident. CPU utilization is reduced by three things: 

1. Context switch time, a CPU is unavailable while a program's image is being
transferred between disk and memory 

2. Sets of processors on which no job can fit, a packing problem 
3. Insufficient work, particularly on weekends 

Figure 1: Cray T3D CPU Utilization 

Benchmarks run against both UNICOS MAX and an early prototype of the LLNL gang
scheduler showed a 21 percent improvement in interactive job throughput with no



reduction in aggregate throughput. The cost of moving jobs' state between memory and
disk to provide responsiveness was fully compensated for by more efficient packing of the
processor torus. The current implementation has additional performance enhancements and
should show an aggregate throughput improvement of a few percent.

Figure 2 shows a gangster display of typical Cray T3D daytime utilization. Note that only
12 of the 256 processors (six of 128 nodes) are not assigned to some job. A total of ten
interactive and debug class jobs are running and using 148 of the processors. Over half of
the batch workload is currently paged out for these interactive jobs. Left side of display
shows the contents of each node (two processors). Each letter indicates the job and a period
indicates an unused node. The right side of the display describes each job. The W field
shows the barrier wire used. The MM:SS field shows the total execution time accumulated.
The ST field shows the job's state: i=swapping in, N=new job, not yet assigned nodes or
barrier wire, o=swapping out, O=swapped out, R=running, W=awaiting commencement of
execution, assigned nodes and barrier wire. The gang scheduler state information is written
to disk at 15 second intervals. The gangster display is updated at the same rate.

            gangster - 13:25 - 42377                                           
   b  b  n  n  s  s  s  s  CLAS JOB-USER      PID  COMMAND  #PE BASE W ST MM:SS

  b  b  n  n  s  s  s  s   Int  d - skjellum 73843 sendmany   8 604  0 R 119:26
 b  b  n  n  s  s  s  s    Int  g - skjellum 76306 testall    2 716  0 R  92:02

b  b  n  n  s  s  s  s     Int  t - nordlund 77238 parcas    32 000  2 R  84:29
                           Int  e - nordlund 79224 parcas    32 200  0 R  40:21

   b  b  n  n  s  s  s  s  Int  b - germann  80421 therm-dv  32 020  3 R  18:15
  b  b  n  n  s  s  s  s   Int  w - eltgroth 80998 fivept     2 702  2 R   8:42
 b  b  n  n  s  s  s  s    Int  h - eltgroth 81227 pet_test   4 700  0 R   5:24

b  b  n  n  s  s  s  s     Int  f - pcovello 81324 nimrod     2 712  1 R   3:43
                           Int  o - pcovello 81494 nimrod     2 706  3 R   0:00

   t  t  e  e  a  a  .  h                                                      
  t  t  e  e  a  a  .  f   Dbug a - susan    81280 aaaa8123  32 400  1 R   4:28

 t  t  e  e  a  a  d  .                                                        
t  t  e  e  a  a  d  g     Prod s - mahdi    83818 ge        64 420  0 R1462:43
                           Prod j - tomas    78508 mdter200  32 400  1 O  49:42
   t  t  e  e  a  a  .  h  Prod u - eduardo  79879 new       64  -1 -1 N   0:00
  t  t  e  e  a  a  .  w   Prod m - delarub  79890 new       64  -1 -1 N   0:00

 t  t  e  e  a  a  d  .    Prod n - tomas    80331 mdterrep  32 220  0 R  19:39
t  t  e  e  a  a  d  o                                                         

Figure 2: Typical daytime gangster display on Cray T3D 

While the utilization rate is quite satisfactory, responsiveness is also of great importance.
Responsiveness can be quantified by slowdown, the ratio of total time spent in the system to
the run time. During the three week period of July 23 through August 12, 2659 interactive
jobs were executed using a total of 44.5 million CPU-seconds and 1328 batch jobs were



executed using a total of 289.5 million CPU-seconds. The slowdown of the aggregate
interactive workload was 18%, which is viewed quite favorably. Further investigation
shows a great deal of variation in slowdown. Most longer running interactive jobs enjoy
slowdowns of only a few percent. Interactive jobs executed during the daytime typically
begin execution within 30 seconds and are not preempted. Interactive jobs executed during
late night and early morning hours experienced slowdowns as high as 1371 (a one second
job delayed for about 23 minutes). However the computer is configured for high utilization
and batch job execution during these hours, so high slowdowns are not unexpected.

DEC Alpha

The Digital Unix 4.0D operating system includes a "class scheduler", which is essentially a
very fine grained fair share scheduler. The class scheduler permits processes, process
groups, or sessions to be grouped in a class. The class can then be allocated some share of
CPU resources. For example, the eight threads of a job could be placed into a single class
and allocated 80 percent of the CPU resources on a ten CPU computer. While the class
scheduler does not explicitly reserve eight CPUs for the eight threads of this parallel job,
the net effect is very close. The operating system also recognizes advantage in keeping a
process on a particular CPU to avoid refreshing its cache. We have found the class
scheduler can actually deliver over 99 percent of the CPU resources as desired for gang
scheduling with minimal thread migration between processors. Actual parallelism achieved
does vary with overall system load. For the job which fails to sustain its target number of
runable threads, the class scheduler will allocate the CPU resources to other jobs in order
to sustain high overall system utilization.

Since parallel jobs are not normally registered with the Digital UNIX operating system, the
gang scheduler relies upon explicit registration through the use of a library. While it is
highly desirable that user code modification for gang scheduler be avoided, that is
impossible to achieve at this time. Imbedding a few gang scheduler remote procedure calls
directly in MPI and PVM libraries would free many users from having to modify their
programs. Presently, the gang scheduled application must be modified with a few simple
library calls, including: 

Register job with gang scheduler: A global gang scheduler job ID is returned 
Register resource requirements: CPU, memory, and disk space requirements are
specified for the job on each computer to be gang scheduled 
Register the processes: Associate a specific process, process group, or session with
the gang scheduler job ID 

Since it is necessary to coordinate activities across multiple computers, the DEC Alpha
gang scheduler returned to the fixed time-slice model used on the BBN TC2000. In order
to manage these time-slices across multiple computers, the concept of "tickets" was
introduced. These tickets represent specific resource allocations at specific times and are
issued only for jobs spanning multiple computers. Jobs which execute only on a single



computer are not pre-issued tickets, but are managed by that computer's gang scheduler
daemon which makes scheduling decisions at the start of each time-slice. This design
permits each computer to operate as independently as possible, while permitting the gang
scheduling of jobs across the cluster as needed. The tickets are managed by the gang
scheduler daemon on each computer in the cluster and are associated with a job for its
lifetime. A job may be given additional tickets or have some revoked depending upon
changes in overall system load. The job is also permitted to alter its resource requirements
during execution. A change in the number of CPU required for a job may result in revoked
or additional tickets. 

The gangster display program was re-written in Tcl/Tk in order to provide a richer
environment. Detailed information on system and job status now includes a history of CPU,
real memory, and virtual memory use which is updated at time-slice boundaries. This
information can be helpful for system administrators and programmers tuning their
systems. For example, if a program's CPU allocation and CPU use are substantially
different, the desired level of parallelism is not being achieved and the matter should be
investigated. A dramatic change in real memory use for a program during its execution
may indicate substantial paging, which also warrants investigation. Figures 3 and 4 show
displays of system and program status. 



 

Figure 3: Gangster display of DEC machine status



 

Figure 4: Gangster display of DEC job status

In order to insure that good responsiveness is preserved for all jobs, this gang scheduler
permits processors to be reserved for non-gang scheduled jobs. This prevents gang
scheduled jobs from reserving all processors on a computer for the entire time-slice, which
could prevent logins or other interactions for a significant period. The gang scheduler
daemon also reacts to changes in the overall workload, insuring resources are fairly
distributed to all active jobs. 

Gangster also permits several system-wide operations to a gang scheduled job including:
suspend, resume, kill, and change job class. For example, the kill job operation will send
kill signals to all processes registered to a gang scheduled job on all computers running that
job. 

Conclusions

Gang scheduling has been shown to provide an attractive multiprogrammed environment
for multiprocessor systems in several ways: 

Parallel jobs can be provided with access to all required resources simultaneously,
providing the illusion of a dedicated environment 
Interactive and other high priority jobs can be provided with rapid response and
excellent throughput 
Jobs with large resource requirements can be initiated rapidly, without having to
wait for multiple jobs to terminate and release resources 
A high level of utilization can be maintained under a wide range of workloads 



Experience on the Cray T3D has been overwhelmingly positive. It can now sustain
processor utilization rates over 95 percent through the course of a week while providing
the aggregate interactive workload with a slowdown of less than 20 percent. Such
performance give this distributed memory MPP a range of performance spanning
large-scale parallel applications to general purpose interactive computing. 

Experience on the DEC Alpha environment has also been very favorable during our testing
period. A very rich and interactive environment is available on these fast SMPs, while true
supercomputing class problems can be addressed by harnessing the power of a cluster for
parallel jobs. Our plans call for bringing two 80 CPU DEC Alpha 8400 clusters under the
control of gang scheduling in the Fall of 1997. 
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