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Abstract-The performance of gradient search adaptive fil- 
ters, such as the least mean squares (LMS) algorithm, may de- 
grade badly when the filter is subjected to input signals which 
are corrupted by impulsive interference. The median LMS 
(MLMS) adaptive filter is designed to alleviate this problem 
by protecting the filter coefficients from the impact of the im- 
pulses. MLMS is a modification of LMS, obtained by applying 
a median operation to the raw gradient estimates of the mean 
squared error performance surface. An analysis of the MLMS 
algorithm is provided for the class of independent and identi- 
cally distributed inputs. For these inputs we establish exponen- 
tial convergence of the MLMS algorithm. The rate of conver- 
gence is shown to depend on order statistics of the input, but 
unlike that for LMS shows little dependence on characteristics 
of the impulsive interference. The steady state performance of 
the LMS and MLMS is also examined. The average deviation 
of the parameter estimates from their optimal values caused by 
the arrival of an impulse is assessed. This analysis indicates a 
significantly improved performance for MLMS compared to 
LMS. Analytic predictions for both convergence and steady 
state behavior are supported by simulations. 

I. INTRODUCTION 

DAPTIVE signal processing, and particularly adap- A tive filtering,, provides a powerful approach to many 
signal processing problems [ 11. The capacity of adaptive 
algorithms to operate when limited zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa priori information 
is available makes them ideally matched to many practical 
applications. The most widely used adaptive filter is the 
least mean squares (LMS) algorithm [2]. Although this 
algorithm suffers from slow and generally nonuniform 
convergence, it is famous for its simplicity both in con- 
cept and implementation. Less well known is that the 
LMS, and other gradient based adaptive algorithms, de- 
grade badly when the filter is subjected to input signals 
which are corrupted by impulsive interference. Sparse im- 
pulses arise frequently in a variety of practical situations, 
including speech, image, and biomedical processing, and 
communications applications. Possible treatments for such 
problems include preprocessing using simple thresholding 
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and interpolation schemes, and also more sophisticated 
nonlinear transformations of the data including median 
and other order statistic (OS) filters (see, for example, 
[3]-[5]). In particular, the use of the median has become 
common in the treatment of impulsive data as in [6]-[8]. 
Median filters have been found to have the capacity to 
remove sparse impulses from data, while still preserving 
sharp edges. One approach which incorporates the ro- 
bustness of the median operation into an adaptive frame- 
work is provided by the idea of a median LMS (MLMS) 
algorithm [9]. This algorithm is similar in structure to the 
LMS but is designed to protect the filter coefficients from 
the impact of impulsive interferences by applying a me- 
dian filtering operation to the raw gradient estimates. The 
filter output at each iteration, however, remains a linear 
combination of past inputs, as in the LMS algorithm. 

Simulations produced using various forms of impulsive 
noise have demonstrated the clear, and in many cases de- 
cisive, advantages of this algorithm compared to LMS or 
other linear gradient estimators [9]. This initial work has 
been simulation based, however, and only the most ru- 
dimentary attempts have been made to provide an analyt- 
ical framework for the performance of the algorithm. This 
paper is the first attempt to provide such an organized 
analysis for the median LMS adaptive filter. 

The analysis of median and other OS filters is generally 
difficult due to the nonlinear nature of the ordering trans- 
form (see, for example, [lo]-[12]). The incorporation of 
this nonlinear function into the LMS update, which is it- 
self a nonlinear recursive combination of data vectors, 
compounds the difficulties. This necessarily restricts con- 
sideration to relatively simple cases. Additionally, a num- 
ber of simplifying assumptions are required to render the 
analysis tractable. Nevertheless, the results provided, 
while generally approximate, are supported by simula- 
tions, and do represent a significant step towards the 
quantification of the MLMS algorithm. 

The paper is organized as follows: In Section I1 we de- 
fine the MLMS algorithm, together with models for im- 
pulsive and nonimpulsive signals, and we give a simple 
example illustrating the potential of the MLMS algo- 
rithm. Of primary concern is the performance of the me- 
dian LMS algorithm as compared to that of the LMS. In '  
particular, we compare the performance of the LMS and 
MLMS algorithms when nonimpulsive inputs are cor- 
rupted by sparse impulsive interference. Of equal impor- 
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tance, however, is the question of how the algorithms 
compare when no impulses occur. In Section I11 we ex- 
amine these issues. We deal almost exclusively with sto- 
chastic signals. In particular, we restrict attention to the 
relatively simple case of zero-mean, independent identi- 
cally distributed (i.i.d.) inputs. We find that the MLMS 
algorithm, like the LMS, converges exponentially for the 
class of i.i.d. inputs. We also demonstrate that, unlike the 
LMS, the MLMS exhibits "smooth" convergence when 
the inputs are corrupted by impulsive noise. In particular, 
we show that the convergence of the MLMS is essentially 
determined by the properties of the input data, rather than 
the impulse sequence. This is a major advantage of the 
MLMS algorithm over LMS. In Section IV we examine 
the performance of the MLMS algorithm in steady state. 
In particular, we analyze the effects of a single impulse 
on the LMS and MLMS algorithms. We use a combina- 
tion of analysis and simulations to show that the cost for 
MLMS (in terms of deviation from the optimal filter coef- 
ficients) is significantly less than for LMS. Finally, in 
Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV we examine the behavior of the algorithm when 
the signal itself is impulsive or contains an impulsive 
component. We find that, as expected, the algorithm is 
generally less suited to such data, tending to ignore the 
impulsive component, and that in a few pathological cases 
the MLMS algorithm actually becomes unstable. 

11. PRELIMINARIES 

A .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAInput Signal Dejinitions 
Consider the adaptive filtering system shown in Fig. 1, 

where the input signal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx,, and the desired signal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd,, are 
corrupted by impulsive interferences 5;, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv,,, respec- 
tively. The measured input signal (regressor) is an ( L  x 
1) vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx; with 

x; = x, + 5, (2. la) 

where x i  = [x, x, - * x, - L  + 1] is the modeled com- 
ponent of the input and C L  = E{,[,- e e e 5;, - L +  I] is the 
impulsive component. The measured desired signal d; is 

d; = d,, + qn. (2.lb) 

We assume that the signals x,, d, are completely modeled 
by the relation 

d, = f *'x, (2.2) 

where f * is the (L  X 1) vector of optimal least-squares 
coefficients obtained from 

f * = R - ' g  (2.3) 

with R = E { x , x i }  and g = E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{x ,d , } .  Here, we have im- 
plicitly assumed x,, d, are jointly stationary and that R is 
positive definite. We also assume that the impulsive in- 
terferences 5;, and 7, are zero-mean i.i.d., that they are 
drawn from symmetric densities, and that they are mu- 
tually uncorrelated and are uncorrelated with both x, and 
d,. The input x, is assumed to be i.i.d. with variance a:. 
As a working definition we will assume that the non-im-, 

dC=dn+9, 

Yn - z:=Zn+(" 

I 

cm 

Fig. 1. Adaptive filtering with impulse corrupted signals. 

pulsive component has samples drawn from a density with 
tails no heavier than Gaussian. 

We shall be concerned with three cases: 

Case I 7, = 5;, = 0 for all n. 

Case I1 3;, = 0 for all n. 

Case I11 7, = 0 for all n. 

Case I corresponds to the so-called homogeneous prob- 
lem [13] in which 

d; = f *fx;. (2.4) 

Cases I1 and I11 are inhomogeneous cases with the root of 
inhomogeneity residing in d; and xr, respectively. 

The impulsive signal, whether present in x, or in d,, 
will be assumed to have the form 

i, = anAn (2.5) 

where a, is i.i.d. with 

p(a,  = 1) = c; p(a,  = 0) = 1 - c (2.6) 

where c is the arrival probability. The distribution of the 
amplitude A,, is arbitrary subject to the constraint that var 
{ A , }  >> E { x i } .  Various models could be employed; for 
example, the amplitude A, has been modeled as unipolar 
or bipolar lognormal [8]. To simplify the analysis we shall 
assume that the amplitudes are independent of the arrival 
times and are zero mean with a symmetric density. Note 
that this implies that a, and A, are mutually uncorrelated. 
The variance of in is then 

var { in}  = c var {A , }  = a: .  

Note that the occurrence of impulses are Bernoulli trials 
with 

p (C, N )  = p ( j  impulses in the last N trials) 

As such the arrival density can be considered as a bino- 
mial approximation to a Poisson process [14]. We note 
that this is a common model of impulsive behavior (see, 
for example, [SI). 
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Note that the definitions in the paragraphs above rep- 
resent an artificial delineation of signals into impulsive 
and non-impulsive. In practice, signals and noise may oc- 
cur with a continuous spread of distributions from uni- 
form through Gaussian, with increasingly heavy tails, to 
double exponential and beyond. The models used here are 
an idealization intended to facilitate the analysis. It is not 
suggested that the MLMS will only perform well with data 
drawn from this particular model. In fact, simulations re- 
ported in [15], [I61 have demonstrated that the MLMS 
performs well with various forms of impulsive noise. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B. The Median LMS Algorithm 

algorithm as characterized by the update equation 
Our concern is the relative performance of the LMS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

fi,+ I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= f n  + Cce,,x:: (2.8) 

and the MLMS algorithm which is defined by the modi- 
fied update 

f n  + I = f, + P med { e n X Y } N .  (2.9) 

For both (2.8) and (2.9), e,, is the difference between the 
desired signal and filter output 

Y n  = f i x : :  (2.10) 

with 

e,, = d: - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy,. 

In (2.9), the notation med { } N  acting on a vector se- 
quence 5, is defined as a vector yn with elements 

y,(i) = med [ s , ( i ) ,  s,t - l ( i ) ,  * * * ., s n - ~ + l ( i ) l .  

Here, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs, ( i )  is the ith component of the vector s, for sam- 
ple index n ,  and for convenience N is restricted to odd 
values. The median is defined by 

Y n ( i )  = s ( M , ( ~ )  

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso) ( i )  is the jth algebraically ordered element of 
{Sn(i>, s , - i ( i ) ,  * * , s , - ~ +  ( i ) }  and where M = (N  + 
1)/2. The incorporation of the median into the LMS up- 
date generates a computational overhead for the algo- 

C. A Simple Example 

We illustrate the potential of the MLMS algorithm by 
considering the effects of impulsive interference in a sim- 
ple adaptive filtering problem. Consider x,  = d, where x, 
is an i.i.d. Gaussian input. We examine Cases I1 and I11 
with the impulsive interference defined by (2.5) with var 
{A , }  = 100: and the arrival probability c equal to 0.02. 
Fig. 2 shows the coefficient error zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf, (0) for a sample run 
from Case zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11. The result for LMS is shown in Fig. 2(a) 
with the corresponding result for MLMS in Fig. 2(b). Fig. 
3 shows a similar example for Case 111. The parameters 
chosen for all these trials were a, = 0.1, filter length L 
= 10, adaptation constant ,U = 0.1, and median window 
length N = 3 .  As can be seen from the figures, for the 
MLMS in both I1 and 111 the parameter converges 
smoothly towards its optimal value f* (0) = I ,  and the 
convergence appears to be exponential. By contrast, the 
LMS parameter trajectory is not smooth, being perturbed 
by the impulsive noise. In Case 11, the parameter con- 
verges in the mean but is subjected to random fluctuations 
caused by the impulses. In Case 111, the trajectory fails 
entirely to approach the optimal solution-it shows a bias 
in addition to the random fluctuations. This is, of course, 
an idealized example. Practical problems cannot be ex- 
pected to set out the distinctions between these algorithms 
so starkly. Even so, the potential for improved perfor- 
mance over the LMS is clear. 

. 

111. CONVERGENCE ANALYSIS 
A critical aspect of any adaptive algorithm in its con- 

vergence properties. Indeed, the fact that the LMS algo- 
rithm converges under modest excitation conditions [ 181 
is perhaps its most important feature. Of concern, then, 
is the effect on the attractive convergence properties of 
LMS caused by the introduction of the median operation 
in MLMS. In this section, we analyze the mean conver- 
gence of MLMS and compare our results with those for 
LMS. We consider Cases 1-111 of Section 11, first review- 
ing the previously developed analysis for LMS and then 
presenting our new results for MLMS. Convergence rate 
information for both algorithms in all three cases is sum- 
marized in Table I. 

rithm. However, efficient algorithms facilitate the median 
calculation in 0 ( N )  operations per coefficient with a com- 
parable storage requirement [ 171. Typically, performance 
considerations motivate the choice of N < L and overall 
computation is O(NL)  which is comparable to LMS. 

Just as with LMS, MLMS adjusts the coefficients of a 
filter with a linear structure. The coefficients f * of (2.3) 

= f, - f*, applicable for both LMS and MLMS. For 
LMS Taking expectations, we have 

A .  Analysis for LMS 

Case I: The analysis in this case derives from standard 
results on the convergence of LMS. For Case I we have 
d; = d, ,  x r  = x,. In terms of the parameter errors U,, 

using (2.4), (2. lo), and (2.1 l ) ,  the LMS update may be 
written 

remain optimal. We define a vector of filter errors as U ,  vn+ 1 = (1 - pxnX9un.  (3.1) 

(2.11) 

In obtaining (3.2), we have made the assumption that x, 
and U ,  are independent. This assumption is widely used 

and for MLMS 

u , + ~  = U ,  + p med {enx : }N .  (2.12) 
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andf,(O) = 0. (a) LMS, (b) MLMS. 



WILLIAMSON zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcl U / . :  CHARACTERISTICS OF MEDIAN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALMS ADAPTIVE FILTER zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA61 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

TABLE I 

( I  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- p y ' ) E { z ~ , ~ ( i ) }  for LMS A N D  MLMS 
COMPARISON OF CONVERGENCE RATES y ' I N  E { U, ,  + I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(i)} 

example given in Section I1 displayed such bias (see also 
Fig. 3). 

Case LMS MLMS 

and has been shown to give excellent agreement with sim- 
ulation results, even with highly correlated inputs [ 191. 
Equation (3.2) exactly describes the evolution of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE { U , }  

when the update algorithm follows the true gradient of the 
theoretical error surface, which is known to correspond 
well with the actual LMS behavior when p is small [20]. 

With zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx, an i.i.d. sequence as assumed in Section 11, we 
have 

E{x ,xL}  = a;z. (3.3) 

The parameter estimates are (in the mean) decoupled. The 
mean parameter errors evolve according to 

E { U , + I ( i ) }  = ( 1  - w 2 > E { v , , ( i ) )  (3.4) 

where the convergence rate constant y 2  = a:. Of course, 
we must select p to satisfy o < p < 2/02 for conver- 
gence in the mean. 

Case ZI: We now treat the case where the signals are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
d:: = f * ' x , ,  + v,,, x:: = x,,. For LMS, (2.11) may be 
written 

v,,+ I = [ I  - P X , , X ~ - U ,  + pxnvn. (3.5) 

Taking expectations we arrive again at (3.2) by the as- 
sumptions on the statistics of the signals involved. Hence, 
in the mean, LMS behaves for Case I1 just as it does for 
Case I, although one must expect the variance of U ,  ( i)  to 
be larger due to the presence of 7, in (3.5). 

Case ZZZ: For this case the input signals are d: = d,, 
x:: = x,, + 3;,. From (2.11) the parameter error equation 
becomes 

U ,  + I = U ,  + CC (x,t + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL) [ x : t f *  - (x,i + GJLiI. 
Hence, taking expectations we obtain 

E{%+l l  = [ I  - P ( ~ { x , i x : J  

+ E {L 5 fi >>I E fun 1 - PE {L 5 fi> f *. (3.6) 

This equation decouples to give for the ith component 

E { u ~ + I ( ~ ) }  = [1 - ~ ( 0 2  + ~ : > I E { u , ( ~ ) )  

- puZf*(i). (3.7) 

The parameter error v,,(i) thus converges in the mean to 
2 

E { u , , ( i ) }  -+ -Lf*( i )  
a; + a: 

at an exponential rate determined by (1 - p(a2 + a:)). 
Thus, E { zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf, (i)} does not converge to f *  (i) as defined by 
(2.2) and the result is biased. It will be recalled that the 

B .  Analysis for MLMS 
Case I: We begin by taking expectations in the MLMS 

parameter error equation (2.12), where for case I df = 

d,,, x; = x,. We have 

E{un+I} = E{un) + ~ E { m e d  {enXn>N> (3.9) 

which is given component-wise by 

E { U n + l ( i ) }  = E { U n ( i ) )  + pE{med {enxn-,}Nl 

(3.10) 

or 

E { u , + ~ ( ~ ) )  = E{v , ( i ) )  - pE{med { Z } } .  (3.11) 

* ' , zN} , '  whose elements are Z in  (3.11) is the set {zl ,  
given by 

Z, = - ( e n - , + i x , l - , - j + i ) ;  j = 1, * * 2 N .  

The nonlinearity of the median operation in (3.11) com- 
plicates the analysis for MLMS considerably. We make 
further progress via two assumptions: ' 

Assumption 1: The parameters f, ( i)  are sufficiently 
slowly varying as to be considered constant over the me- 
dian window length N .  

This is a common assumption in adaptive filtering and 
control, having parallels in the averaging and time-scale 
decomposition analysis which has been applied in an 
adaptive control setting [22], [23]. The assumption is 
made reliable by constraining p in the update equation 
(2.9) to be small. 

Assumption 2: If U is a random variable with 

E{med { u } ~ }  = K 

and if U is a zero-mean random variable with a symmetric 
density, then 

E{med { U  + u } ~ }  = K .  

This assumption is strictly true if U ,  U are independent and 
if the density of U is also symmetric. In other cases it 
represents an approximation whose accuracy depends on 
the properties of the joint density of U and U .  In the fol- 
lowing we use a combination of analysis, discussion, and 
simulation to substantiate the use of this assumption. 

For Case I, e,x, may be w6tten 

e,x, = - x , x ~ u , .  

Hence using Assumption 1, 

'The quantity z, depends on the time index n and the component i, but 
to simplify the notation this dependence is not explicitly noted. 
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Fig. 4. Median of the distribution for the gradient when the inputs are distributed as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN ( 0 ,  1). 

We refer to x : - , - ~ +  I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu,,(i) in (3.12) as the “diagonai 
term” associated with zJ, and to the remainder as the sum 
of “off-diagonal terms. ” (This terminology stems from 
the positions of x, - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkx, - I  products in a correlation matrix 

can be shown to have the form 

PZJ 
exp ~ 

1 - p 2  
for x,.) Substituting (3 .12)  into (3.11) and applying As- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf (2,) = 
sumption 2 gives 1 - P  

E { U n + I ( i ) }  = E{%7(i)3 

- PE{med { x : - ! - J + I u n ( i ) } N } ’  

Finally, Assumption 1 yields 

E{Un+lG)1 = [1 - P f i h l J q U , l ( O } .  (3.13) 

Here denotes the expected value of the rth order statis- 
tic of x: from a sample of N.2 ,@ may be explicitly eval- 
uated [21] as 

. [1 - F ( Y ) l N - X Y )  dY (3.14) 

where F (  y )  and f ( y )  are the distribution and density, re- 
spectively, for the transformed variable y = xf. 

We may obtain further insight into Assumption 2 and 
its relation to the relative magnitudes of the parameter er- 
ror components by considering an explicit example of the 
density of the elements of 2. In particular, ifx,, is an i.i.d. 
sequence with standardized Gaussian distribution, then 
using standard results for nonlinear combinations of 
Gaussian variables [24] the density of z, as given by (3.12) 

j =  1 ,  , N  (3.15) 

where p = v,(i) and where 

KO (U) = jOm exp [ - t ]  dt (3.16) 

is the modified Bessel function of the second type of order 
zero. In (3 .15)  it has been assumed that 

L -  I 

c u:( i )  = 1 .  
i = O  

(3.17) 

(This assumption simplifies the form of the constants in 
(3 .15)  but is not crucial to the result.) The median of the 
distribution of z, (that is the value of z ,  for which F ( z )  = 

0.5) may be obtained by numerical integration of (3 .15) .  

Evaluation of this result as a function of the ratio of the 
diagonal to off-diagonal elements is given in Fig. 4 ,  which 
shows the median value as v,(i) varies from 0 to 1 (sub- 
ject to the constraint (3 .17)) .  For comparison, the median 
value obtained from Assumption 2 ,  that is by setting all 
the off-diagonal terms in (3 .12)  to zero, is also plotted. It 
is apparent that the approximation gives reasonable agree- 
ment at all ratios. It should be kept in mind, however, 

the sample moment as N + CO. Therefore, Fig. 4 may 

’A more complete notation reflecting the dependency on N is p ; ,  as in 
[21], but except where confusion might arise we will use the simpler no- that the median Of the distribution represents a limit for 
tation 6;. 
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have only limited relevance when N is small. Practical 
experience suggests that Assumption 2 certainly holds 
when zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAun zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(i) is the dominant component of the parameter 
error, that is, for the ith component when Jvn( i>l  >> 
I U,, ( j )  1 for ( j # i ). One consequence of this is that if any 
one coefficient converges more slowly than the others, its 
behavior will increasingly be governed by Assumption 2. 

A series of simulations has been conducted to examine 
the performance of the MLMS algorithm compared to that 
predicted by equations (3.13). The performance of the 
MLMS was evaluated by calculating log,, (vi, uf,) for 1000 
iterations. Each trial result was obtained by averaging 
(ui,uff) over an “ensemble” of 100 runs. Fig. 5 shows a 
family of plots obtained using iid data, uniformly distrib- 
uted over [ - 1, 11, for x,. Each trial corresponds to a dif- 
ferent optimal filter vectorf *, though all were subject to 
a unit norm constraint. The trials shown in Fig. 5 were 
obtained using p = 0.01, L = 5, N = 3 and for reference 
curves corresponding to convergence constants y equal 
to /3 2, /3 - I ,  and /3 + I are also plotted. We note that in 
all cases the results are reasonably close to the conver- 
gence predicted by (3.13). The behavior illustrated in 
these examples is typical of that observed in many similar 
trials. 

Case U: We have 

where zJ is defined by (3.12). Since the term xn - I  qn is 
zero mean and symmetric, it may be neglected under As- 
sumption 2. Then we have 

~ { u f i + I ( i ) }  = 11 - ~ b i ~ ~ { u n ( i ) } *  (3.19) 

Therefore, in the analysis of convergence in the mean, the 
addition of q, to d, has no effect, and in the mean we have 
the same behavior here in Case I1 as we had in Case I. 
This has been verified by simulations which, for the same 
parameters, produced results which are in very close 
agreement with those for Case I. As was illustrated by the 
example given in Section 11, MLMS does enjoy a signif- 
icant advantage over LMS in Case 11. This is manifested 
as reduced variability for the filter coefficients about the 
expected trajectory. This subject is explored further in 
Section IV. 

Case ZZZ: When impulses occur in the measured data 
x:, the analysis becomes more intricate. Hence in what 
follows, we will rely more heavily on Assumption 2. To 
being, we substitute (2. la)  and (2.2) into (2.12), and tak- 
ing expectations we have 

~ ~ 

r L -  1 
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For the ith element the update is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-qurl+1(O} zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE b , ( i ) }  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

i = 0,1, - . .  , L - 1. (3.21) 

The probability of Y impulses in any zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN values is defined 
byp (CrN)  in (2.7). For (sparse, we assume thatp(C2 ,,,), 
P(C,.), * * , p ( C N N )  may be neglected. That is, we 
assume that a maximum of one impulse occurs in any N 
samples. The analysis of the MLMS update then reduces 
to consideration of the occurrence of 0 or 1 impulses. 

When no impulse occurs the behavior of the algorithm 
is identical to that for case I. When an impulse does occur 
the effect on the algorithm depends on the precise location 
of the impulse within the update “window.” Let us ex- 
amine the effects that an impulse of amplitude A arriving 
at no has on the succeeding iterations of the update for 

1. We divide this into two regions: For k < i, the only 
impulsive terms which occur in the median window are 
linear in A and in the filter coefficients. Recall from Sec- 
tion I1 that the amplitude of A is zero mean and has a 
symmetric density. Hence, using Assumption 1 to factor 
out E { u n ( i ) } ,  and Assumption 2 so that for k < i all 
impulsive terms in the update may be neglected, we have 

coefficient i at n = no + k for k = 0, 1, . . , N + L -  

E{%+l(i)} = E { % ( i ) }  - P q m e d  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ . L } N } E { % ( ~ ) }  

which is identical to case I. 
, i + N - 1 by employing 

Assumption 2 to remove all of the terms from (3.21) which 
are symmetric we obtain 

F o r k  = i, i + 1, 

E{%+lG)} = E { u n ( i ) }  - P.E{med {%(0x;-, 

’ * * 3 U t , ( i ) x ; - k  + f , ( i ) A 2 .  * * * , 

U ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw x ;  - I  - N + I I N  3 .  (3.22) 

Hence there is a single termfn(i)A2 present in the median 
window, which cannot be simply neglected using the 
symmetry assumption. Examining (3.22) we see that con- 
vergence depends on the relative magnitudes and signs of 
u , ( i ) x i - k  and f n ( i ) A 2 .  These depend on the initial con- 
ditions and on the form o f f  *, and may be expected to 
vary during adaptation. In spite of these difficulties we 
may bound the impact of the impulsive term f z  ( i ) A 2  on 
the update. Consider two extreme cases: 

a) l f ( i>A21 << l % ( i ) ~ i - k l .  

b) I fn( i )A21 >> I ~ n ( ~ ) X i - 1  I. 

Here the impulsive term has little impact on the update 
and convergence reduces to that of Case I as in (3.13). 

Suppose that v,(i) > 0 (a similar argument to that 
which follows can be constructed for vt7(i) < 0). Then 
the sequence { y , }  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{q ( i ) x ; - l }  is nonnegative. If 
f 7 ( i ) A 2  is negative, the addition of this negative term to 
one of the members of the sequence y l  can only change 
the median value selection if the element corrupted is Y ( ~ , ,  
with r 1 M ,  and if y(r )  + f n ( i ) A 2  < y(m. In this case the 
median of the ith update corresponds to - I )  rather than 
the usual y(m for impulse free convergence. If f 7  (i)A2 is 
positive, the argument works in reverse-the addition of 
this positive term to one of the members of the sequence 
y l  only changes the median value selection if the element 
corrupted is y(,,, with r < M ,  and if-y(,, + f ,  ( i ) A 2  > zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA) ’(W. 

In this case the median of the ith update contains diagonal 
term y(,,,+ rather than Y ( ~ .  Note that in either case the 
change from y(m to y(,,,- or y(,,,+ I )  can only affect the 
magnitude of the update (3.22), not its sign. Thus the im- 
pulse influences only the rate of convergence. Given the 
two extremes indicated in a) and b), we see that overall, 
convergence for this case is govemed by (3.4) with 

0L-j  I y 2  < /3;+,. (3.23) 

These results are illustrated in Fig. 6, which shows a 
typical example with Var { A }  = loa:, and the impulse 
arrival probability equal to 0.02. The data and filter pa- 
rameters employed in this trial were identical to those for 
the trial of Fig. 5 .  For ease of comparison the correspond- 
ing result from Case I is superimposed. In both cases, the 
trial commences from f o  = 0. As convergence progresses 
(and the impulsive term grows in significance) the Case 
I11 convergence slows slightly, but remains at all times 
within the bound (3.23). We can conclude that the per- 
formance of the MLMS algorithm in the presence of these 
sparse impulses is dependent on the distribution of the 
input data, not that of the impulses, and that in most cases 
(3.13) remains the best available predictor for MLMS 

convergence. Finally, we note that this analysis suggests 
that MLMS enjoys unbiased convergence to f *. In prac- 
tice some bias is likely as a consequence of the terms ne- 
glected in the analysis. Simulation results suggest that any 
such bias is generally small and certainly much less than 
in the comparable result for LMS. 

IV. STEADY STATE PARAMETER ERROR ANALYSIS 

Our motivation for introducing the median operation 
into the LMS updates is the mitigation of deleterious ef- 
fects arising from impulsive noise in the adaptive filter. It 
is thus useful to quantify the improvement in this regard 
of MLMS over LMS. Here, as our measure of perfor- 
mance, we focus on the effect of a single impulse arrival 
on the parameter errors, when the adaptive filter is oper- 
ating in steady state with zero parameter error. Thus, we 
assume that vo = 0, and we consider the arrival of a single 
impulse at n = 0, either in qo or lo. We then quantify the 
effects of that impulse in terms of the value of 
E {v$vT}, where Tdenotes the time at which the impulse 
no longer impinges directly on the algorithm updates. We 
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assume that the impulse, whether present in d,, or in x,, 
has amplitude A .  

A.  Analysis for Impulse in d," (70 = A )  

For LMS, the arrival of an impulse in qo directly affects 
the parameter estimate updates only at time n = 0. There- 
fore T = 1, and one may calculate 

E{v',vT) = p2A2(Lg:). (4.1) 

In MLMS, an occurrence of the single impulse in eo 
will be completely ignored by the median operation in the 
parameter updates, as e,, = 0, and hence px,,e,, = 0, for 
n # 0. Therefore, 

E{v',vT) = 0. (4.2) 

In this simple situation, the performance advantages of 
MLMS over LMS are clear. MLMS simply does not react 
when a single interference impulse arrives in the desired 
signal d,. Consequently, the parameter estimates are un- 
perturbed from their optimal values. For the LMS algo- 
rithm, however, the parameters are moved from their op- 
timal values by a distance ( E { v f y ~ ~ } ) I / ~  proportional to 
the impulse amplitude. 

B. Analysis for Impulse in x:: ((0 = A )  
When the impulse arrives in the measured data xr, the 

effects of the impulse on the parameter estimate are more 
intricate, as the impulse remains in the data vector x," over 
L time steps. We have xy = x,, + e,, where 

[O . - - OcoO * * 01'; n = 0, 1, - , L - 1  

0; otherwise (4.3) 
5, = [ 
with CO appearing in the (n + 1)th position in (4.3). 

In LMS, the effect of the impulse disappears only after 
L time steps, at which point the impulse leaves the mea- 
sured data vector x,". The parameter error of interest is 
thus vT = 2rL. We obtain an expression for vT by first 
substituting for x y in (2.11). Beginning with no = 0 and 
using repeated substitution finally yields 

I L - 2  L - I  

L 
1 

L -  I 

= - P ( X r  + eX: f*  + 0 ( P 2 > .  (4.4) 
r = O  

The norm squared of 2rT is then 

L - l  L - l  

UfYYT = c c p 2 ( f * y c /  
/ = 0  i = O  

Evaluating the expectation of (4.5) with respect to the data 
x,, keeping in mind that 5, here is deterministic (with lo 
= A )  , and neglecting 0 ( p 3 ) ,  yields 

E{vfYvT} = p2A2(La: + A2)Ilf*JI2. (4.6) 

With the MLMS algorithm, the computation of 
E {v',vT) is more difficult due to the nonlinearity of the 
median operation in the update law (2.12). As in Case I11 
in Section I11 we may substitute (2.la) and (2.2) into 



. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4.8) 

In the expression for 5, in (4.8), we will neglect the 
contribution of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x, + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( , l ) f ~ , l ,  since it is typically small in 
comparison with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( L f *  for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn E (0, . * * , L - l }  given 
that A is large and U,, is small. 

For the first (N  - 1)/2 updates, med { 5 n } N  = 0 in 
(4.7), as 5;, = 0 forn < 0. At zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAII = L + (N  - 1)/2, fewer 
than half of 5,, kn - I ,  * , k,, - + , have impulsive com- 
ponents present, so that we expect the original impulse lo 
will no longer directly affect the coefficient updates. In 
other words, for MLMS T is given by T = L + ( N  - 
1)/2,  with nonzero updates of U,! occurring over the L 
times n = ( N  - 1)/2,  - * , L + ( N  - 3)/2. We will 
denote the first update index by L, = ( N  - 1)/2 and the 
last by L2 = L + ( N  - 3)/2. We are thus interested in 
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operation have the form 

'$1 ( j )  = xJ (i> [ ( j f  *I' (4.12) 

Let us replace zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtJ in (4.10) component-wise with ( , ( i )  from 
(4.12). This yields 

L2 Lz 

J = L I  k = L i  
E { u > u ~ }  = p 2 L  C C E{med { x J ( i ) & J f * } N  (4.7) 

* med zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{XX ( i  1 r : f *I N 1. (4.13) 

UT = U L 2 +  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 

Let xJ = med { ~ , ( i ) ( ; f * } ~ .  E { x J x L }  in (4.13) evaluates 
to 0 when j ,  k are such that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx,, xL are independent. In 
particular, for those values o f j ,  k for which the median 
windows do not overlap, we have such independence. One 
may show that the number o f j ,  k pairs, j ,  k E [L,, L2], for 
which there is overlap is ( N  - 1)(L - N )  + NL. An 
upper bound for this expression is 2NL. Since E { x, xL} I 
E { x; } , we may then bound E { U  >uT} in (4.13) as 

E { U  >vT} I 2p NL2 E { med {xJ (i ) ( j f  *}$ } . (4.14) 

Also, noting that 

~ c j f * l  5 A [max ~ f * ( m > l  M 
tf, 1 

E { med {xj (i 1 ( j f  *I; 1 
I E{med { M  sgn ( { j f * ) x , ( i ) } ; }  

= P med ( 5 L I ) N  + cc "I ( 5 L I  + I I N  = M2E(med {x,(i)};} (4.15) 

where the second line of (4.15) follows because xJ ( i )  has 
a symmetric density. Hence, combining (4.14) and (4.15), 
and using 

+ c1 med { S L J N .  (4.9) 

Taking the expectation of the norm squared of uT, we then 
have 

+ . . .  

(4.10) 

For L, I n I L2, the component updates of uJ1( i )  will 
be chosen from among the components of 5 1 7  j LI - N 
+ 1, . 9 , Lz. We will assume, in a worst case analysis, 
that only updates containing nonzero (/ will be chosen. 
This further restricts the possible choices of update time 

E { u > u ~ }  I 2p2NL2A2 Ilf*112E{med { x n } ; }  

(4.16) 

From (4.6) and (4.16), comparing root mean square 
values we have 

LMS: ( E { U f T U T } ) I / 2  PA 11 f * l l  + A2] ' / 2  

index t o j  = 0, 1, ,-L - I .  Hence, since the uJI ( i )  
are small, each component of med {5,,}N will be chosen MLMS: ( E ( U > U T } ) ' / ~  I pA I l f * I l  
from components of - [2NL2 E { med {x,, } $ }] ' / 2  

j = 0, 1, . * * , L - 1. (4.11) 

The median value of the ith component will not be (, ( i ) ,  
when the ith component of iJ is nonzero. For those values 
of tJ (i), the multiplication of the impulse components in 
both xJ" and eJ results in a term with a factor A 2 ,  where A 
is the impulse amplitude. As we have assumed A is large, 
this particular tJ (i) is an extreme value within the median 
operator's window and will not be the median value. 
Hence, the components of (4.10) selected by the median 

In both LMS and MLMS, the impulse amval in x,, moves 
the parameter estimates f, from their optimal values f *. 
A comparison between the cost incurred hinges on the rel- 
ative sizes of the final factors in the expressions in (4.17): 
2NL2E{med {xfl}$} for MLMS versus  lo^; + A2)  for 
LMS. However, it is difficult to draw general conclusions 
about their relative sizes as they depend on several differ- 
ent variables. The critical difference in the formulas is 
that the cost for LMS is approximately quadratic in A ,  
while the bound on the cost for MLMS in linear in A .  For 
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sufficiently large impulses, LMS thus reacts more strongly 
to the arrival of a single impulse than does MLMS. There- 
fore, using MLMS reduces the performance cost associ- 
ated with the impulsive interference. In practice we find 
that the actual MLMS cost is much lower than the given 
bound, and that even for small impulses, MLMS outper- 
forms LMS. This is not surprising in view of the deriva- 
tion of (4.17). We recall that the term zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANL2 is obtained by 
assuming the worst possible combination of dependencies 
between successive med { } N  operations. Equally, by us- 
ing max,, I f * (m) I we have assumed the highest possible 
cost for NILMS. In practice these two factors combine to 
make the bound (4.17) for MLMS extremely conserva- 
tive. These assertions have been confirmed by simula- 
tions. For example, Fig. 7 shows a comparison of 
( E { u ; u ~ } ) ’ / ~ ,  for the two methods, as the amplitude of 
the impulse is increased. The trial used uniformly distrib- 
uted [ - 1, 11 input data and filter parameters of L = 5 ,  p 
= 0.01 and, for the MLMS N = 3. Each point in the 
curves of Fig. 7 was obtained by averaging over an en- 
semble of 1000 trials. The result shows the linear de- 
pendence on A for the MLMS and quadratic dependence 
on A for LMS as predicted by (4.17). The LMS curve is 
comparable with that suggested by (4.17), whereas the 
MLMS is well below the predicted limit. The perfor- 
mance advantages of MLMS are very clear. Again, this 
behavior is typical of that observed in similar trials. 

v. BEHAVIOR WITH IMPULSIVE DATA 

We have shown that MLMS is effective in removing 
impulsive components of the coefficient updates. What 
happens if the data sequence itself is impulsive, or if it 
possesses a significant impulsive component? Our intui- 
tion says that in some sense, MLMS will tend to ignore 

the impulsive components in the data. If that data is pre- 
dominantly impulsive, then misbehaviors in the MLMS 
algorithm may possibly arise. 

A. Impulsive Data Sequences 

Consider the homogeneous problem (Case I of Section 
II), in which the data sequence is given by x, = in, with 
i, described by (2.5) and (2.6). In this situation, the se- 
quence x, is mostly zero, save for sparsely occurring im- 
pulses. The update term in the MLMS algorithms is 

P med {x, erth = 0 (5.1) 

unless more than M = ( N  + 1)/2 impulses have occurred 
during the median window. Since we are implicitly as- 
suming that the probability of impulse occurrence (c  in 
(2.6)) is small, having M or more impulses in an N-length 
window is quite unlikely. Alternatively, we have the pa- 
rameter errors propagating according to (3.13). In this 
case, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0; equals zero for impulsive x, provided the prob- 
abilities p (C, ,), p (C,.,), e * e , p ( CN,,) defined by (2.7) 
are negligible. Effectively, the MLMS update is always 
zero under these circumstances. 

Therefore, we see that MLMS does not react to an im- 
pulsive data sequence. This observation is in keeping with 
the intuition that MLMS suppresses the effects of im- 
pulses. Hence, one must exercise caution in the use of 
MLMS in environments where the data sequence x, has 
an impulsive character. 

B. Partially Impulsive Data Sequences 

Once more consider the homogeneous problem (Case 
I), but now suppose that the data sequence x, is given by 

x, = x: + i, (5.2) 
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with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx,“ a nonimpulsive i.i.d. random sequence, and with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i,, described by (2 .5)  and (2 .6) .  The model (5 .2)  for x,, 
recognizes an impulsive component in an otherwise non- 
impulsive data sequence. 

The parameter error equation here is derived as in Sec- 
tion 111-B, resulting in 

E{u,l+l(ol zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
= [ I  - @{med { X ; - , 3 N 3 l E { u I , ( i ) j .  (5 .3)  

Equation (5 .3)  differs from (3.13) only in the nature of 
x,~. The presence of impulses in x,, is reflected by expand- 
ing the expected median as 

E{med {x;-lINI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
N 

= J = o  C ~ { m e d  { ~ ~ - , I N I c ~ N I P ( c ~ N ) .  (5 .4)  

The expected value of the median, conditioned on CO ,,,, 
is determined as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

E {med {. 2 - I } N  I CO N I 
= E{med { ( x , “ - , ) ~ } ~ }  = P i .  (5.5) 

Here f i :  denotes the expected value of the ith ordered 
value of { ( x ,?~ }~ .  

f o r j  > 0, the occurrence of 
the impulses has the potential to change the median value. 
For instance, consider a ranking (x’”):~) of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( x ; ) ~ ,  and as- 
sume that the impulse amplitude is larger than the ampli- 
tude of any of the samples x,”- ,. If event CI has occurred 
(one impulse arrived), but the impulse appears at a time 
such that the ranking k of the corresponding normal com- 
ponent (x,”)~ satisfies k > M, then the median value is 
unchanged from the value which would occur were no 
impulse present. If k 5 M ,  then the median value is now 
shifted to what would have been the (M + 1)th order sta- 
tistic of (x,”)~. With each possible position for the impulse 
arrival having equal probability, we have 

When conditioning on C, 

N - 1  

N + l  

N - 1  N + l  
-- - P L  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 P i +  I .  (5.7) 

2N 

For C, with j 1 2,  similar considerations need to be 
made to calculate E { med { x i  - } N  1 C, N }  . However, when 
the impulse arrival probability c is small, p(C’ ,,,) f o r j  1 

2 will also be small. Hence, we neglect in the computa- 

tion of (5 .4)  terms corresponding t o j  2 2 .  We then have 

N + l  
P L + y  P i +  , ] .  

( 5 . 8 )  

The above shows that for the data sequence x,, of (5 .2 ) ,  

MLMS behaves as 

E{u,z+l( i )}  = [1 - py21E{u,1( i ) } .  (5.9) 

with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy2 given by the right-hand side of (5.8). 
Notice, however, that y 2  in (5.9) is determined by a 

linear combination of statistics associated with the non- 
impulsive component X ;  of the data sequence. Hence, in 
its convergence characteristics, MLMS is largely ignor- 
ing the impulsive component of the data, and as long as 
P i  or Pk+ I is nonzero, the error system (5.9) indicates 
that MLMS still converges in the mean. 

It is enlightening to compare the convergence of MLMS 

under these conditions with the convergence of LMS. For 
LMS, the analysis of Case I in Section 111-A applies di- 
rectly, with (3 .4)  governing the evolution of the parame- 
ter estimates. The LMS convergence rate is determined 
by yiMs = a,’ = a$ + a:. When a: >> a;,,, with a:,, 

having the same order of magnitude as and P%+ I, 
yhLMS given by (5.8) will be much smaller than yLMS. 
Therefore, if we choose p in each algorithm in order to 
equalize the convergence rates (i.e., we set py2  equal to 
the same constant for each algorithm), pLMS will be much 
smaller than pMLMS.  Though the overall convergence rate 
is the same, MLMS displays much smoother parameter 
convergence under these conditions. LMS will converge 
very slowly when no impulses are present, because the 
step size p must be chosen small enough to reflect the 
impulse power. When an impulse arrives, the parameter 
estimates will “jump,” since the update at these moments 
is much larger. On the other hand, MLMS displays 
smooth convergence, since the updates as well as the step 
size parameter p are dependent only upon the nonimpul- 
sive data component. This difference in the convergence 
character is reflected in the parameter estimate trajectories 
shown in Fig. 8. These simulations were conducted using 
the framework of the example in Section 11-C, in the ho- 
mogeneous case where x, is distributed as i.i.d. standard- 
ized Gaussian variables. The step sizes chosen for this 
trial were pLMS = 0.05, /LMLMS = 0 . 4 .  Once again the 
behavior observed in this trial is typical. 

C. Misbehavior in a Deterministic Example 

The analysis of Section V-A implies that at worst, 
MLMS will fail to update when the data sequence has an 
impulsive character. However, it is possible for more se- 
rious misbehaviors to arise, as is demonstrated in the fol- 
lowing deterministic example. Let L = 3 (three parame- 
ters), N = 3 (median window length of three), and 
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1.36 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I n  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0) 

0.68 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 

0 

-0.68 

-1.36 I I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI I I I I I I . 

U ,  as 

and the parameter estimates diverge. 

3; n m o d 3  = 0 

- 1; otherwise. 
U ,  = (1 + p),[1 1 11' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(5'  lo) 

One can view the data sequence of (5.10) as a DC signal 
with a regular arrival of an impulse. 

If the initial parameter error is u0 = [ 1, 1, l]', then the 
data and error products x, e,, at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIZ = 0, - 1, -2 are given 
by 

(5.11) 

Though for more random data we expect MLMS to 
"ignore" the impulsive data, we see here that explicit 
behavior of MLMS can be much more complicated. In 
some sense, MLMS removes the effect of the impulse in 
the data vector x,, but the impulse presence in the error 
term e, still influences the update direction. However, the 
type of behavior evidenced in this example is atypical of 
MLMS, and to a large extent is a consequence of the rep- 
etition of a particularly unfortunate pattern in the data. It 
is worth noting that this cannot be considered as a coun- 
terexample to the developments of Section 111 because the 
signal considered violates all of the assumptions used in 
that analysis. 

VI. CONCLUSIONS 

We have addressed in this paper two important facets 

mean, and 2) a cost comparison with LMS. Our analysis 
demonstrates first that with nonimpulsive, zero mean, 
i.i.d. inputs, MLMS converges exponentially in the mean. 
This exponential convergence occurs regardless of the 

VI  = [;] + p m e d [ [  -$[ -!],[ -!]] presence of impulsive interference, either in the mea- 
sured data or in the measured desired signal. Further- 
more, unlike for LMS, the convergence rate for MLMS 

depends predominantly upon statistics of the actual data, 
with little if any dependence on the character of the im- 
pulsive noise. 

(assuming that u - 2  Therefore? the param- of MLMS algorithm behavior: 1) convergence in the 
eter errors update at IZ = 1 to 

(5.12) 
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To attain a cost comparison between LMS and MLMS, 
we have assessed the average deviation of the parameter 
estimates from their optimal values caused by the arrival 
of a single noise impulse, either in the desired signal or 
in the data. In both cases, MLMS displays a significant 
performance improvement over LMS. Our work therefore 
provides heretofore unavailable analytic support for the 
previously observed benefits of using the MLMS algo- 
rithm for adaptive filters operating in impulsive environ- 
ments. 

The convergence analysis demonstrates that when ex- 
cited by nonimpulsive i.i.d. data, the introduction of the 
median operation into LMS to create MLMS does not se- 
verely alter the attractive convergence properties of LMS. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
As noted in Section V, however, impulsive data se- 
quences may cause possible misbehaviors in MLMS con- 
vergence. Further work is needed to understand the roots 
of these misbehaviors, and then to characterize the class 
of input signals for which one has satisfactory conver- 
gence of the MLMS algorithm. For instance, theoretical 
support is currently lacking for the exponential conver- 
gence of MLMS when the assumption of independence of 
successive data points is relaxed. Nonetheless, this work 
lays the foundation for understanding MLMS conver- 
gence behavior by providing analytic results for MLMS 
behavior with i.i.d. inputs. 
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