
JURNAL INFOTEL
Informatics - Telecommunication - Electronics

Website: http://ejournal.st3telkom.ac.id/index.php/infotel
ISSN: 2085-3688; e-ISSN: 2460-0997

Performance comparison of cache replacement algorithms on
various internet traffic

Mulki Indana Zulfa1,*, Adhistya Erna Permanasari2, Ari Fadli3, Waleed Ali4
1,3Department of Electrical Engineering, Jenderal Soedirman University

2Department of Electrical Engineering and Information Technology, Gadjah Mada University
4Department of Information Technology, King Abdulaziz University

1,3Jl. Mayjen Sungkono, Blater, Purbalingga 53371, Indonesia
2Jl. Grafika, No.2, Sinduadi, Sleman 52281, Indonesia

4Faculty of Computing and Information, Rabigh 21911, Saudi Arabia
*Corresponding email: mulki indanazulfa@unsoed.ac.id

Received 19 December 2022, Revised 10 January 2023, Accepted 1 February 2023

Abstract — Internet users tend to skip and look for alternative websites if they have slow response times. For cloud network
managers, implementing a caching strategy on the edge network can help lighten the workload of databases and application
servers. The caching strategy is carried out by storing frequently accessed data objects in cache memory. Through this
strategy, the speed of access to the same data becomes faster. Cache replacement is the main mechanism of the caching
strategy. There are seven cache replacement algorithms with good performance that can be used, namely LRU, LFU, LFUDA,
GDS, GDSF, SIZE, and FIFO. The algorithm is developed uniquely according to the internet traffic patterns encountered.
Therefore, a particular cache replacement algorithm cannot be said to be superior to other algorithms. This paper presents
a performance comparison simulation of the seven cache replacement algorithms on various internet traffic extracted from
the public IRcache dataset. The results of this study indicate that the Hit Ratio (HR) performance is strongly influenced
by cache size, cacheable and unique requests. The smaller the unique request that occurs, the greater the HR performance
obtained. The LRU algorithm shows a very good HR performance to perform cache replacement work under normal internet
conditions. However, when the access impulse phenomenon occurs, the GDSF algorithm is superior in obtaining HRs with
limited cache memory capacity. The simulation results show that GDSF reaches a 50.75% HR while LRU is only 49.17%
when access anomalies occur.

Keywords – cache memory, cache replacement, caching strategy, hit ratio

Copyright ©2023 JURNAL INFOTEL
All rights reserved.

I. INTRODUCTION

The economic growth of a nation is caused by
the rapid development of the internet, which makes it
easier to explore information and adds to the insights
of economic actors [1], [2]. Internet technology also
causes shifts in individual lifestyles that can improve
the population’s welfare and strengthen the institution-
alization of village communities [3], [4]. The number
of internet and digital technology users has increased
since the COVID-19 pandemic [5], [6], especially e-
learning and e-banking users [7], [8]. In addition, data
transactions in the internet world are getting bigger as
5G technology, edge computing, and the Internet of
Things (IoT) evolve [9], [10].

Internet users tend to go through and look for alter-
native websites if they have a slow response time [11],
[12]. Response time is the time it takes to measure
the speed at which the browser fully loads a web page
since it was first clicked [13], [14]. Response time is a
problem that must be considered by internet-based ap-
plication developers and cloud network infrastructure
managers as it can improve the experience and comfort
of their users [15], [16].

For internet-based application developers, one so-
lution to overcome the problem of response time
is to scale out applications using cache memory or
In-memory Database (IMDB) [17], [18]. For cloud
network managers, implementing caching strategies
on the edge network can help ease the workload of

Jurnal Infotel Vol. 15 No. 1 February 2023
https://doi.org/10.20895/infotel.v15i1.872

1



ISSN: 2085-3688; e-ISSN: 2460-0997
Performance comparison of cache replacement algorithms on various internet traffic

Table 1. Statistics of Four IRcache Datasets
No. Info BO2 SV UC NY
1. Proxy location Boulder, Colorado Silicon Valley, California Urbana Champaign New York
2. Total requests 666 666 666 666
3. Cacheable requests 110 87 141 74
4. Cacheable bytes 57629 44480 71583 37218
5. Unique requests 386 527 388 267

databases and application servers [19], [20]. Caching
strategies can also save bandwidth and reduce network
latency [21], [22]. The caching strategy is carried
out by storing data objects accessed often at specific
locations [23], [24]. Through this strategy, the same
speed of data access becomes faster because the data
has been stored before [25]. The right caching strategy
can reduce the exact data requests to the origin server
to speed up the response time on the client side.

Caching strategy is a relatively broad field of re-
search because this strategy is widely used in several
areas such as cloud networks [19], [26], browser appli-
cations [27], [28], operating systems [29], embedded
systems [30], mobile network [31], [32], and telecom-
munications [20]. The primary mechanism of caching
strategy is cache replacement, changing the content of
cached data in cache memory because of its limited
capacity [33], [34]. Researchers have developed several
cache replacement algorithms, such as Least Recently
Used (LRU), Least Frequently Used (LFU), Least Re-
cently Used Dynamic Aging (LFUDA), Greedy-Dual
Size (GDS), Greedy-Dual Size Frequency (GDSF),
SIZE, and First-in-First-out (FIFO). The seven algo-
rithms are generally used in the benchmarking process
in caching strategy research. Practically some of these
algorithms have also been adopted in caching systems
contained in proxy servers such as Squid and Varnish.

The selection of the cache replacement algorithm
must be carried out comprehensively so that it does not
reduce the application’s performance or cause traffic
congestion [35]. The researchers uniquely developed
the cache replacement mechanism following the pat-
tern of internet traffic [36]. Therefore, specific cache
replacement algorithms cannot be considered superior
to other cache replacement algorithms [37], [38].

This paper aims to compare the performance of
the seven caching algorithms on different internet
access patterns. The internet traffic pattern tends to be
random, following Zipf’s law [39], [40]. However, in
certain conditions, impulse access can occur like a viral
phenomenon that occurs quickly and then gradually
returns to normal [41]. Therefore, this paper can be an
essential reference for researchers caching strategies to
develop new cache replacement algorithms based on
the internet access patterns they face.

For a better understanding, the rest of this paper
is organized as follows. In section II, we provide the
research method, followed by the result in section III.
Section IV presents the discussion of the result. Finally,

we provide the conclusion in section V.

II. RESEARCH METHOD

This section discusses research scenarios, cache
replacement algorithms, IRcache dataset, and Hit Ratio
(HR).

A. Research Scenarios

The contribution of this paper is to present the
simulation results of comparing the HR performance
of seven cache replacement algorithms on various
internet traffic using the IRcache dataset consisting of
four sub-datasets. Each sub-datasets consists of 666
records. Various types of internet traffic conditions
are known from statistics on total requests, cacheable
bytes, cacheable requests, and unique requests, as
presented in Table 1.

Seven algorithms were run to simulate the cache
replacement mechanism in four IRcache datasets. The
performance evaluation of the algorithm is calculated
using the HR by calculating the percentage of request
data served successfully by the cache memory com-
pared to the total request data. The work of the seven
cache replacement algorithms, the IRcache dataset, and
the HR are described in more detail in section II-B,
section II-C, and section II-D, respectively.

B. Cache Replacement Algorithms

LFU and LRU are the most famous cache replace-
ment algorithms with good HR performance. If there
is a new cached data storage request in the cache
memory, the LFU algorithm will first delete the cached
data with a minor access count. At the same time,
the LRU algorithm will delete the most recently used
cached data. LRU algorithm performance is strongly
influenced by access recency, while LFU is influenced
by access count or the number of accesses to cached
data. Arlitt et al. [42] then developed LFU by adding
a wear factor called Dynamic Aging. Eq. (1) is used to
calculate the aging factor (L) represented in the key-
value variable K(g). A variable F(g) is an access count
value of cached data that must be deleted to be replaced
with new cached data entering the cache memory.

K(g) = L+ F(g) (1)

The SIZE algorithm will erase the cached data with
the largest cache size, while FIFO will erase the cached

Jurnal Infotel, Vol. 15, No. 1, February 2023
https://doi.org/10.20895/infotel.v15i1.872

2



ISSN: 2085-3688; e-ISSN: 2460-0997
Performance comparison of cache replacement algorithms on various internet traffic

Table 2. The Information Contained in the Cache Dataset
No. Information Description
1. Timestamp The time when the data request.
2. Elapse time Time difference between connection accept and close.
3. Client address The destination of target IP address.
4. HTTP code HTTP status code.
5. Size The number of data Bytes received.
6. Request method HTTP request method.
7. URL The destination of target URL.
8. Content type HTTP content type.
9. Hierarchy data The hierarchy of data request.

10. User ID The user ID.

data in the order in which it first entered the cache
memory.

LFU, LRU, SIZE, and FIFO algorithms do not con-
sider network costs or other costs that affect caching
decisions. Therefore, Cao et al. [43] propose a new
key-value calculation by including the cost-aware vari-
able. Eq. (2) is used to calculate K(g) the value of the
GDS algorithm.

K(g) = L+
C(g)

S(g)
(2)

Parameter L shows the running queue, its value
starts from 0 and is updated with the min K value
of the lowest value in priority queue. Parameter S(g)

is the size of document i. Parameter C(g) is the cost
associated with bringing document i into the cache.

In its development, the access count variable is
necessary so that caching decisions can be taken more
comprehensively by considering the cost awareness
and popularity based on the value of the access count.
Cherkasova et al. [44], therefore, proposed improving
the performance of the GDS by proposing the GDSF.
Eq. (3) calculates the key value of the GDSF.

Parameters L, C(g) and S(g) are the same as those
parameters in the GDS algorithm. Parameter F(g) in-
dicates the number of documents (g)

K(g) = L+ F(g) ×
C(g)

S(g)
(3)

C. IRcache Dataset

This paper used the IRcache dataset to synthesize
various internet traffic. The IRcache dataset was first
released in 1999 by Alex Rousskov [45], who was
later managed by the National Laboratory of Applied
Network Research (NLANR) in the United States. The
IRcache dataset is an accurate world proxy drawn
from proxy servers spread across five the United
States cities, namely Urbana-Champaign (UC), Boul-
der (BO2), Silicon Valley (SV), San Diego (SD), and
New York (NY).

The IRcache dataset is perfect for simulating the
cache replacement mechanism in the data caching
process in cache memory. The IRcache dataset also

represents the characteristics of internet traffic in actual
conditions. In the last five years, this IRcache dataset
is still used by Ibrahim et al. [46] in cache replace-
ment research and Li et al. [47] in content caching
optimization research. Table 2 presents the properties
contained in the IRcache dataset.

D. Hit Ratio

HR is the percentage of data service requests suc-
cessfully served by cache memory (ri) compared to
the total data requests it receives (N ). One cache
hit indicates that one data request was successfully
served by cache memory. If this condition occurs, then
ri would be worth 1. The opposite of cache hit is
cache miss, a condition if a request for data cannot
be served by cache memory, so the requested data will
be forwarded to the origin server. When the requested
data has been obtained from the origin server, this data
will be immediately stored in the cache memory. The
value of the hit cache in that condition remains one,
but the total number of data requests (N ) is already
two. Therefore, the resulting HR value of 1

2×100% =
50% in this condition. Eq. (4) is used to calculate the
HR value.

HR =

∑N
i=1 ri
N

(4)

III. RESULT

Table 3 shows the average HR performance of seven
cache replacement algorithms run on four IRcache
sub-datasets. Based on Table 3, the most significant
HR performance measurement is achieved in the NY
dataset. In this dataset, the minimum HR performance
is 48.41%, obtained by the FIFO algorithm, while the
maximum HR performance is 50.75%, obtained by the
GDSF algorithm. The SV dataset became the smallest
in terms of HR performance. In this dataset, the
maximum HR performance is 7.43%, obtained by the
GDSF algorithm, while the minimum HR performance
is 6.40%, obtained by the SIZE algorithm. The best HR
values in Table 3 are marked in bold print, while the
worst performances are marked in italic print.

The HR performance of the GDSF algorithm was
superior in two datasets, namely SV and NY, while
the LRU algorithm was superior in the BO2 and UC

Jurnal Infotel, Vol. 15, No. 1, February 2023
https://doi.org/10.20895/infotel.v15i1.872

3



ISSN: 2085-3688; e-ISSN: 2460-0997
Performance comparison of cache replacement algorithms on various internet traffic

datasets. The LFU algorithm obtains the worst HR
performance in two datasets: SV and UC. At the same
time, the worst performance in the other datasets was
obtained by the SIZE algorithm in the BO2 dataset
and the FIFO algorithm in the NY dataset. Algorithms
based on access recency, such as LRU, tend to be
superior in the BO2, SV, and UC datasets, while
algorithms based on key-value and access counts, such
as GDSF LFU and LFUDA, are superior in the NY
dataset.

Table 2 and Table 3 show the relationship. The
smaller the cacheable and unique request that occurs,
the greater the resulting HR performance. It is shown
based on the performance HR in the NY dataset, which
is superior to the other three datasets.

Table 3. The Average HR Performance
No. Algorithm BO2 SV UC NY
1. FIFO 20.87 6.94 31.88 47.9
2. GDS 18.62 6.91 31.68 48.41
3. GDSF 21.85 7.43 28.86 50.75
4. LFU 21.52 5.57 23.78 49.28
5. LFUDA 21.94 7.22 28.89 50.36
6. LRU 22.21 7.3 32.6 49.17
7. SIZE 17.42 6.4 25.5 49.54

Fig. 1. The HR performance on four IRcache datasets NY.

Fig. 2. The HR performance on four IRcache datasets UC.

Urbana-Champaign (UC), Boulder (BO2), Silicon
Valley (SV), San Diego (SD), and New York (NY) are
five cities in the United States where proxy servers are
located. The proxy log retrieved from the server is the
IRcache Dataset. This dataset is suitable for testing the
cached data offloading method because it can illustrate
the characteristics of internet traffic in real conditions.

Fig. 3. The HR performance on four IRcache datasets SV.

Fig. 4. The HR performance on four IRcache datasets BO2.

In addition, the correlation between Table 2 and
Table 3 also shows that the greater the unique request
that occurs, the smaller the resulting HR performance.
The more significant number of unique requests causes
the lesser probability of saving cached data in the cache
memory.

Fig. 1 to Fig. 4 shows the relationship between
cache size and the resulting HR performance. The
performance of the HR is directly proportional to the
cache size. The replacement cache mechanism is more
common in cache size with a small size. It causes not
many cacheable requests to be stored, so the smaller
the chance of a cache hit occurs. A rare hit cache
causes the hit performance ratio to be low.

Based on Fig. 1 to Fig. 4, the GDSF algorithm
achieves the highest HR in the NY dataset of 50.75%,
while the FIFO algorithm HR value is the lowest at
47.90%. In the UC dataset, the LRU algorithm is the
best with a HR of 32.60%, while LFU is the worst with
a HR of 23.78%. In the SV dataset, the highest HR
was achieved by the GDSF algorithm of 7.43%, while
the lowest value was obtained by the LFU of 5.57%.
Finally, the simulation results on the BO2 dataset show
that the LRU algorithm is the best with a 22.21% HR,
while the SIZE algorithm is the worst with a 17.42%
HR.

The SIZE algorithm gives higher priority to small
size cached data to occupy cache memory. It was
intended that more cached data can be stored. However,
the simulation results show that this strategy is not

Jurnal Infotel, Vol. 15, No. 1, February 2023
https://doi.org/10.20895/infotel.v15i1.872

4



ISSN: 2085-3688; e-ISSN: 2460-0997
Performance comparison of cache replacement algorithms on various internet traffic

effective in increasing the HR performance. It happens
because those small-size cached are rarely accessed,
then such cached data is often replaced with other data.

Fig. 1 to Fig. 4 also shows that the NY dataset is un-
favorable for access recency-based cache replacement
algorithms such as LRU. The LRU algorithm can excel
over the HR performance in three datasets but not in
the NY dataset. Based on Fig. 1 to Fig. 4, key-value
and access frequency-based algorithms such as GDSF,
LFU, and LFUDA obtained superior HR performance
than the other four algorithms. Caching decisions based
on the calculation of access count data on datasets
with low unique request statistics will produce more
cache hits because each cached data has the same
caching probability. This fact is significantly inversely
proportional to the SV dataset with the unique requests.
Each cached data has a small caching probability in
cache memory with minimal size because its position
in the cache memory may be quickly replaced with
other cached data.

Based on the HR performance in Fig. 1 to Fig. 4,
the access pattern that occurs in the NY dataset is an
anomaly. This small number of cacheable and unique
requests illustrates that there has been impulse access
at a particular time that only accesses a small portion
of cached data. It is the leading cause of cacheable and
unique request values in the NY dataset to be the small-
est. If further attention is paid, this phenomenon of
impulse access only occurs briefly. This phenomenon
can be avoided by providing a cache memory of a
larger size. Fig. 1 to Fig. 4 shows that the 150 (KB)
cache size configuration can produce the same enor-
mous HR performance (59.91%) in the seven existing
cache replacement algorithms. This condition has never
been found in the other three datasets, namely Urbana-
Champaign (UC), Boulder (BO2), Silicon Valley (SV),
San Diego (SD).

IV. DISCUSSION

Proxy servers generally utilize cache replacement
algorithms to organize popular web-object storage in
cache memory so that subsequent web-object requests
can be served more quickly. In typical internet traffic
conditions and during impulse access, key-value-based
and cost-aware algorithms such as GDSF can maintain
good HR performance, as shown in the simulation of
NY and SV datasets. However, the LRU algorithm
can be relied on in regular internet traffic, such as
the HR performance results in the BO2 and UC
datasets. Some researchers develop GDSF algorithms
into WGDSF [48] or WSCRP [34] with quite con-
vincing HR performance results. LRU algorithm has
also been developed using metaheuristic optimization
methods [49] or machine learning [50]. Both show
better HR performance compared to the standard LRU
version.

In addition to being used as a proxy server, the
cache replacement algorithm discussed in this paper
can also be adapted to perform caching on the server
database. Complex query requests with joins to mul-
tiple tables can be stored in the memory buffer to
speed up the same query request later. Caching the
Cachematic framework [51] in caching the query result
by building an abstract syntax tree to identify ”where”
and ”join” clauses on each target query submitted by
the user. The cache replacement mechanism can also be
specifically utilized directly on in-memory databases,
such as Redis [52] or Memcached [53], to store small-
sized data objects that users often access.

V. CONCLUSION

The HR performance is strongly influenced by
cache size, cacheable and unique request. The smaller
the unique request, the greater the performance HR
obtained. LRU algorithm shows excellent HR perfor-
mance for cache replacement work in normal inter-
net conditions. However, when there is an impulse
access phenomenon, the GDSF algorithm is superior
in acquiring a HR on limited cache memory capacity.
The GDSF algorithm is more flexible to handle inter-
net traffic under normal conditions and when access
anomalies occur.

However, the LRU algorithm can be relied on in reg-
ular internet traffic, such as the HR performance results
in the BO2 and UC datasets. The SIZE algorithm gives
higher priority to small size cached data to occupy
cache memory. It was intended that more cached data
can be stored. However, the simulation results show
that this strategy is not effective in increasing the HR
performance. GDSF, LFU, and LFUDA obtained su-
perior HR performance than the other four algorithms
on dataset with high the unique requests.

REFERENCES

[1] T. Mariyati, Pembangunan desa dengan memanfaatkan strategi
pemerataan akses internet dan penyebaran informasi, Bul. Pos
dan Telekomun., vol. 7, no. 3, pp. 2550, 2009.

[2] T. Mariyati, Public policy implementation strategy in encour-
aging acceleration of internet users development, Bul. Pos dan
Telekomun., vol. 11, no. 2, pp. 147158, 2013.

[3] T. Mariyati, Efek pertumbuhan ekonomi dalam proses pengem-
bangan telekomunikasi pedesaan, Bul. Pos dan Telekomun., vol.
7, no. 1, pp. 132, 2009.

[4] T. Mariyati, Strategi pengembangan teknologi informasi dan
komunikasi TIK serta pengaruhnya terhadap pertumbuhan
ekonomi dan daya saing, Bul. Pos dan Telekomun., vol. 7, no.
2, pp. 4994, 2009.

[5] R. De’, N. Pandey, and A. Pal, Impact of digital surge during
Covid-19 pandemic: A viewpoint on research and practice, Int.
J. Inf. Manage., vol. 55, no. June, p. 102171, Dec. 2020, doi:
10.1016/j.ijinfomgt.2020.102171.

Jurnal Infotel, Vol. 15, No. 1, February 2023
https://doi.org/10.20895/infotel.v15i1.872

5



ISSN: 2085-3688; e-ISSN: 2460-0997
Performance comparison of cache replacement algorithms on various internet traffic

[6] G. Nimrod, Changes in internet use when coping with stress:
older adults during the COVID-19 pandemic, Am. J. Geri-
atr. Psychiatry, vol. 28, no. 10, pp. 10201024, 2020, doi:
10.1016/j.jagp.2020.07.010.

[7] C. A. Azlan, J. H. D. Wong, L. K. Tan, M. S. N. A. D. Huri, N.
M. Ung, V. Pallath, C. P. L. Tan, C. H. Yeong, and K. H. Ng,
Teaching and learning of postgraduate medical physics using
Internet-based e-learning during the COVID-19 pandemic A
case study from Malaysia, Phys. Medica, vol. 80, no. October,
pp. 1016, 2020, doi: 10.1016/j.ejmp.2020.10.002.

[8] M. Naeem and W. Ozuem, The role of social media in
internet banking transition during COVID-19 pandemic: Using
multiple methods and sources in qualitative research, J. Retail.
Consum. Serv., vol. 60, no. January, p. 102483, 2021, doi:
10.1016/j.jretconser.2021.102483.

[9] Y. Sai, D. Fan, and M. Fan, Cooperative and efficient content
caching and distribution mechanism in 5G network, Com-
put. Commun., vol. 161, no. July, pp. 183190, 2020, doi:
10.1016/j.comcom.2020.07.030.

[10] C. Zhang, Design and application of fog computing and
Internet of Things service platform for smart city, Futur.
Gener. Comput. Syst., vol. 112, pp. 630640, 2020, doi:
10.1016/j.future.2020.06.016.

[11] J. Thomas, Are ASEANs internet speeds world class?, The
Asean Post, 2019. .

[12] A. Saverimoutou, B. Mathieu, and S. Vaton, Influence of
internet protocols and CDN on web browsing, in 2019 10th
IFIP International Conference on New Technologies, Mobility
and Security, NTMS 2019 - Proceedings and Workshop, 2019,
pp. 15, doi: 10.1109/NTMS.2019.8763827.

[13] A. Gasparyan, Most important metrics for your website
performance, Monitis. 2019, Accessed: Oct. 26, 2019.
[Online]. Available: https://www.monitis.com/blog/most-
important-metrics-for-your-website-performance/.

[14] E. T. Loiacono, R. T. Watson, and D. L. Goodhue, WebQual:
An instrument for consumer evaluation of web sites, Int.
J. Electron. Commer., vol. 11, no. 3, pp. 5187, 2007, doi:
10.2753/JEC1086-4415110302.

[15] D. Ayuba, A. Ismail, and M. Isa, Evaluation of page response
time between partial and full rendering in a web-based catalog
system, in Procedia Technology, vol. 11, pp. 807814, 2013,
doi: 10.1016/j.protcy.2013.12.262.

[16] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, Edge computing:
Vision and challenges, IEEE Internet Things J., vol. 3, no. 5,
pp. 637646, 2016, doi: 10.1109/JIOT.2016.2579198.

[17] G. Karnitis and G. Arnicans, Migration of relational database
to document-oriented database: Structure denormalization and
data transformation, in Proceedings - 7th International Con-
ference on Computational Intelligence, Communication Sys-
tems and Networks, CICSyN 2015, 2015, pp. 113118, doi:
10.1109/CICSyN.2015.30.

[18] Y. K. A. E. Alami, M. Bahaj, Supply of a key value database
redis in-memory by data from a relational database, in IEEE
Mediterranean Electrotechnical Conference, 2018, pp. 4651.

[19] D. Wang, X. An, X. Zhou, and X. L, Data cache optimization
model based on cyclic genetic ant colony algorithm in edge
computing environment, Int. J. Distrib. Sens. Networks, vol.
15, no. 8, 2019, doi: 10.1177/1550147719867864.

[20] D. Prerna, R. Tekchandani, and N. Kumar, Device-to-device
content caching techniques in 5G: A taxonomy, solutions, and
challenges, Comput. Commun., vol. 153, no. November 2019,
pp. 4884, 2020, doi: 10.1016/j.comcom.2020.01.057.

[21] T. M. Kroeger and D. D. E. Long, Exploring the bounds of web
latency reduction from caching and prefetching, in Symposium
on Internet Technologies and Systems on USENIX, 1997, [On-
line]. Available: https://dl.acm.org/citation.cfm?id=1267281.

[22] W. Teng, C. Chang, and M. Chen, Integrating web caching
and web prefetching in client-side proxies, IEEE Transactions
On Parallel And Distributed Systems, vol. 16, no. 5, 2005, pp.
444455.

[23] W. Ali, S. M. Shamsuddin, and A. S. Ismail, A survey of web
caching and prefetching, Int. J. Adv. Soft Comput. Appl., vol.
3, no. 1, pp. 127, 2011.

[24] M. Luthfi, M. Data, and W. Yahya, Perbandingan performa
reverse proxy caching nginx dan varnish pada web server
apache, J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2,
no. 4, pp. 14571463, 2018.

[25] M. Kusuma, Evaluasi performa web server menggunakan
varnish HTTP eeserve proxy dan redis database cache, in
Prosiding SENIATI, 2016, no. Book-2, pp. 260264.

[26] I. A. Elgendy, W. Zhang, Y.-C. Tian, and K. Li, Resource
allocation and computation offloading with data security for
mobile edge computing, Futur. Gener. Comput. Syst., vol. 100,
pp. 531541, 2019, doi: 10.1016/j.future.2019.05.037.

[27] N. Pande, A. Somani, S. P. Samal, and V. Kakkirala, Enhanced
web application and browsing performance through service-
worker infusion framework, in Proceedings - 2018 IEEE
International Conference on Web Services, ICWS 2018 - Part of
the 2018 IEEE World Congress on Services, 2018, pp. 195202,
doi: 10.1109/ICWS.2018.00032.

[28] K. Kim, S. Hong, S. Kim, and T. Kim, How to im-
prove the performance of browsers with NVRAM, in
NVMSA 2017 - 6th IEEE Non-Volatile Memory Systems
and Applications Symposium, 2017, no. 10041608, doi:
10.1109/NVMSA.2017.8064470.

[29] X. S. Li, S. K. Yoon, J. G. Kim, and S. D. Kim, A self-learning
pattern adaptive prefetching method for big data applications,
Sustain. Comput. Informatics Syst., vol. 20, pp. 6675, 2018,
doi: 10.1016/j.suscom.2017.12.003.

[30] W. Chang, D. Goswami, S. Chakraborty, L. Ju, C. J. Xue, and
S. Andalam, Memory-aware embedded control systems design,
IEEE Trans. Comput. Des. Integr. Circuits Syst., vol. 36, no.
4, pp. 586599, 2017, doi: 10.1109/TCAD.2016.2613933.

[31] T. Wang, Y. Wang, X. Wang, and Y. Cao, A detailed review of
D2D cache in helper selection, World Wide Web, no. October
2019, 2020, doi: 10.1007/s11280-019-00756-z.

[32] K. Dutta and D. Vandermeer, Caching to Reduce Mobile App
Energy Consumption, ACM Trans. Web, vol. 12, no. 1, pp. 130,
2017, doi: https://doi.org/10.1145/3125778.

[33] G. Barish and K. Obraczka, World wide web caching: Trends
and techniques, IEEE Commun. Mag., vol. 38, no. 5, pp.
178185, 2000, doi: https://doi.org/10.1109/35.841844.

[34] T. Ma, Y. Hao, W. Shen, Y. Tian, and M. Al-Rodhaan, An
improved web cache replacement algorithm based on weighting
and cost, IEEE Access, vol. 6, pp. 2701027017, 2018, doi:
10.1109/ACCESS.2018.2829142.

[35] T. Koskela, J. Heikkonen, and K. Kaski, Web cache optimiza-
tion with nonlinear model using object features, Comput. Net-
works, vol. 43, no. 6, pp. 805817, 2003, doi: 10.1016/S1389-
1286(03)00334-7.

[36] J. Mertz and I. Nunes, Automation of application-level caching
in a seamless way, Softw. Pract. Exp., vol. 48, no. 6, pp.
12181237, Jun. 2018, doi: 10.1002/spe.2571.

[37] T. Chen, Obtaining the optimal cache document replace-
ment policy for the caching system of an EC website,
Eur. J. Oper. Res., vol. 181, no. 2, pp. 828841, 2007, doi:
10.1016/j.ejor.2006.05.034.

[38] S. Podlipnig and L. B. Osz, A Survey of Web Cache Re-
placement Strategies, ACM Comput. Surv., vol. 35, no. 4, pp.
374398, 2003, doi: https://doi.org/10.1145/954339.954341.

Jurnal Infotel, Vol. 15, No. 1, February 2023
https://doi.org/10.20895/infotel.v15i1.872

6



ISSN: 2085-3688; e-ISSN: 2460-0997
Performance comparison of cache replacement algorithms on various internet traffic

[39] C. Cunha, A. Bestavros, and M. Crovella, Characteristics of
WWW client-based traces, Cummington St. Boston, MA, 1995.
doi: 10.5555/859844.

[40] G. Hasslinger, K. Ntougias, F. Hasslinger, and O. Hohlfeld,
Performance evaluation for new web caching strategies
combining LRU with score based object selection,
Comput. Networks, vol. 125, pp. 172186, 2017, doi:
10.1016/j.comnet.2017.04.044.

[41] M. I. Zulfa, R. Hartanto, and A. Erna Permanasari, Cached
data offload framework based on hybrid least recently used and
metaheuristic optimization methods, Gadjah Mada University,
2022.

[42] M. Arlitt, L. Cherkasova, J. Dilley, R. Friedrich, and T. Jin,
Evaluating content management techniques for Web proxy
caches, ACM SIGMETRICS Perform. Eval. Rev., vol. 27, no.
4, pp. 311, Mar. 2000, doi: 10.1145/346000.346003.

[43] P. Cao and S. Irani, Cost-Aware WWW Proxy Caching Al-
gorithms, in 1st USENIX Symp. Internet Technol. Syst. USITS
1997, no. December, 1997.

[44] L. Cherkasova, Improving WWW proxies performance with
greedy-dual-size-frequency caching policy, HP Lab. Tech.
Rep., no. 9869, 1998, doi: 10.1.1.94.5958.

[45] NLANR, The National Laboratory for Applied Network Re-
search (NLANR), 2001. http://www.nlanr.net/ (accessed Jul.
03, 2020).

[46] H. Ibrahim, W. Yasin, N. I. Udzir, and B. Process, Intelligent
cooperative web caching policies for media objects based on
J48 decision tree and Nave Bayes supervised machine learning
algorithms in structured peer-to-peer systems, J. Inf. Commun.
Technol., vol. 15, no. 2, pp. 85116, 2016.

[47] X. Li, X. Wang, Z. Sheng, H. Zhou, and V. C. M. Leung,
Resource allocation for cache-enabled cloud-based small cell
networks, Comput. Commun., vol. 127, no. April, pp. 2029,
Sep. 2018, doi: 10.1016/j.comcom.2018.05.007.

[48] T. Ma, J. Qu, W. Shen, Y. Tian, A. Al-Dhelaan, and M. Al-
Rodhaan, Weighted greedy dual size frequency based caching
replacement algorithm, IEEE Access, vol. 6, pp. 72147223,
2018, doi: 10.1109/ACCESS.2018.2790381.

[49] M. I. Zulfa, R. Hartanto, A. E. Permanasari, and W. Ali,
Improving cached data offloading optimization based on en-
hanced hybrid ant colony genetic algorithm, IEEE Access,
vol. 10, no. August, pp. 8455884568, 2022, doi: 10.1109/AC-
CESS.2022.3197205.

[50] W. Ali, S. Sulaiman, and N. Ahmad, Performance improvement
of least-recently-used policy in web proxy cache replacement
using supervised machine learning, Int. J. Adv. Soft Comput.
its Appl., vol. 6, no. 1, pp. 138, 2014.

[51] V. Holmqvist and J. Nilsfors, Cachematic automatic invali-
dation in application-level caching systems, in International
Conference on Performance Engineering, 2019, pp. 167178.

[52] S. Chen, X. Tang, H. Wang, H. Zhao, and M. Guo, Towards
scalable and reliable in-memory storage system: A case study
with redis, in 2016 IEEE Trustcom/BigDataSE/ISPA, Aug.
2016, pp. 16601667, doi: 10.1109/TrustCom.2016.0255.

[53] M. Li, H. Zhang, Y. Wu, and C. Zhao, MemSC: A scan-
resistant and compact cache replacement framework for
memory-based key-value cache systems, J. Comput. Sci. Tech-
nol., vol. 32, no. 1, pp. 5567, Jan. 2017, doi: 10.1007/s11390-
017-1705-3.

Jurnal Infotel, Vol. 15, No. 1, February 2023
https://doi.org/10.20895/infotel.v15i1.872

7


